The Semantics of Extended ML:
A Gentle Introduction

Stefan Kahrs”
Laboratory for Foundations of Computer Science, Edinburgh University
Edinburgh, Scotland

Donald Sannella'
Laboratory for Foundations of Computer Science, Edinburgh University
Edinburgh, Scotland

Andrzej Tarlecki?

Institute of Informatics, Warsaw University, and
Institute of Computer Science, Polish Academy of Sciences,

Warsaw, Poland

Abstract

Extended ML (EML) is a framework for the formal development of modu-
lar Standard ML (SML) software systems. Development commences with
a specification of the behaviour required and proceeds via a sequence of
partial solutions until a complete solution, an executable SML program,
is obtained. All stages in this development process are expressed in the
EML specification language, an extension of SML with axioms for describ-
ing properties of module components.

This is a report on the current state of the semantics of the EML
specification language as it nears completion. EML is unusual in being
built around a “real” programming language having a formal semantics.
Interesting and complex problems arise both from the nature of this re-
lationship and from interactions between the features of the language.

1 Introduction

Extended ML (EML) is a framework for the formal development of modular
Standard ML (SML) software systems which are correct with respect to a spe-
cification of their required behaviour. The long-term goal of work on EML is to
provide a practical framework for formal development together with an integ-
rated suite of computer-based specification and development support tools and
complete mathematical foundations to substantiate claims of correctness. A
short-term subgoal 1s to complete the formal definition of the semantics of the
EML specification language [14], in order to provide a basis for further research

*This research was supported by SERC grants GR/E78463, GR/H73103 and GR/J07303.

TThis research was supported by SERC grants GR/E78463, GR/J07693, a SERC Ad-
vanced Fellowship, and the COMPASS Basic Research working group.

{This research was supported by SERC grants GR/H76739 and GR/E78463, an EC-
funded COST fellowship, and KBN grant PB 1247/P3/93/04.



on foundations and tools. This paper is a report on the current state of this
definition as it nears completion.

SML is a widely-used functional programming language. Apart from useful
features it shares with a number of similar languages (a flexible type system
with polymorphic types, function definition by patterns, etc.) it has two spe-
cial characteristics which make 1t very well-suited to the enterprise mentioned
above. First, it provides state-of-the-art modularisation facilities for building
large software systems by defining and combining self-contained generic pro-
gram units. Such facilities seem to be a prerequisite for the use of formal
development methods on examples of significant size. The main emphasis of
EML is on development “in the large”, relying heavily on linguistic support from
the SML module facilities and incorporating ideas from foundational work on
specification and formal development of modular systems [37], [33], [30], [36].
Second, the syntax and semantics of SML is formally defined [22]. This makes
it possible (at least in principle) to reason formally about the behaviour of SML
programs, as required for proofs of correctness with respect to a specification of
requirements. The size and complexity of the semantics is such that fully formal
use of it, e.g. to prove correctness of an optimizing transformation, would be
quite a difficult task. Nevertheless, the semantics is small and elegant enough
that such use seems not to be completely out of the question.

The idea of building a fully-fledged specification and formal development
framework around a “real” programming language seems to be novel to EML.
Somewhat related is work on the Anna language for annotating Ada programs
with assertions concerning their intended behaviour [19]; but this is not inten-
ded for formal development of software from specifications (although see [17]),
and as far as we are aware there is no formal semantics of Anna nor any in-
tention to formally relate Anna to the semantics of Ada [2]. Similar comments
apply to Larch [10], which has been used in connection with various program-
ming languages. Attempts to apply Larch to the specification of SML modules
have recently begun [39], but this work is still at an early stage and many prob-
lems remain to be solved. Real programming languages are inevitably complex,
and any serious attempt to give a formal treatment of such a language and a
development framework based on it is an ambitious goal bringing a host of
problems which do not arise when considering toy programming languages or
when considering specification and formal development in abstract terms.

Another novelty of this work is in its treatment of the specification of a num-
ber of “difficult” facets of computation, all of which arise in SML. These include
polymorphic types, higher-order functions, exceptions and non-termination. In
spite of the fact that these are common features of modern programming lan-
guages, they are rarely addressed by approaches to specification. There have
been attempts to treat each of these features in isolation, but not in combina-
tion with one another. It is precisely in the interaction between such features
that some of the most difficult issues arise.

The structure of the paper is as follows. Section 2 gives a short introduction
to the main features of SML and EML in order to set the scene for the rest of
the paper. We have resisted the temptation to dwell at length on aspects of
EML which are not directly relevant to the topic at hand; for more information,
see the papers cited in Section 2. Section 3 discusses the way in which EML
relates to and extends SML. Section 4 is an overview of the semantics of EML
which attempts to give the reader an overall impression of its structure without



the need to study the details of [14], while touching on the ideas behind many
of the most interesting and important points. Section 5 concludes with some
remarks about the trials and tribulations involved in writing such a semantics.

2 An overview of EML

The main aim of this section is to provide enough background concerning EML
to make the paper self-contained. The first subsection is a summary of the
features of the SML programming language, which is the target of EML formal
program development and on which EML is based. The next subsection gives
an overview of the EML language and formal development framework. A small
example is given to demonstrate some of the features of the language, and a
final subsection summarizes the main features of the logic used to write axioms.

2.1 SML

The following is necessarily very brief. Readers with no prior knowledge of
SML or related languages (Hope, Haskell, etc.) will probably find it necessary
to consult e.g. [11] or [24].

SML consists of two sub-languages: the core language and the module lan-
guage. The core language provides constructs for programming “in the small”
by defining a collection of types and values (including functions) of those types.
The module language provides constructs for programming “in the large” by
defining and combining a number of self-contained program units coded using
the core. To a large extent, these sub-languages can be understood separately
from each other, both because the dependency is only one-way (modules con-
tain core constructs, but not vice versa) and because the constructs available
in the module language are applicable to the organization of declarations of
any kind. SML is an interactive language in which top-level declarations are
typechecked, compiled and evaluated one at a time.

The SML core language is a strongly typed functional programming lan-
guage with a flexible type system including polymorphic types, disjoint union,
product and (higher-order) function types, recursive types, and user-defined
abstract and concrete types. Conceptually, all values in SML (except those of
certain special built-in types, such as real and function types) are represen-
ted as finite ground terms built from uninterpreted constructors. A function
is defined by a sequence of equations, each of which specifies the value of the
function over some subset of the set of possible argument values. This subset
is described by a pattern (a term containing constructors and variables only,
without repeated variables) on the left-hand side of the equation, which serves
both for case selection and variable binding. Certain types are designated by
SML as equality types; roughly, these are types whose definitions do not in-
volve abstract types or function types. The built-in equality function = has
type ’’a * ’’a -> bool; the type variable ’’a can only be instantiated to
equality types (in contrast to ’a which can be instantiated to any type), pre-
venting values of non-equality types from being tested for equality. Exceptions
(possibly carrying values) may be raised by built-in functions (e.g. division by
zero) or by user code. Once raised, an exception propagates until it is trapped
by a surrounding handler or reaches top level. Typed references are available



with dereferencing and assignment operations. Input/output is handled via
streams; input streams are associated with producers (e.g. a keyboard or a file)
and output streams are associated with consumers.

The SML module language provides mechanisms that allow large SML pro-
grams to be structured into self-contained program units with explicit inter-
faces. Under this scheme, interfaces (signatures) and their implementations
(structures) are defined separately. Structures contain definitions of types, val-
ues and exceptions, and may also contain definitions of lower-level structures
(substructures). Signatures may be attached to structures; this imposes a re-
quirement for the structure to match that signature, meaning that the struc-
ture must define types, values, exceptions and substructures with the names
indicated by the signature, and the types of values and exceptions as well as
the signatures of substructures must correspond to those given in the signature.
Functors are “parameterized” structures; the application of a functor to a struc-
ture yields a structure. A functor has an input signature describing structures
to which it may be applied, and an output signature describing the structure
which results from such an application. It is possible, and sometimes neces-
sary to allow interaction between different parts of a program, to declare that
certain substructures (or just certain types) are identical or shared. Structures
and functors are referred to collectively as modules.

Signatures serve both to impose constraints on the bodies of modules and to
restrict the information which is made available externally about the compon-
ents of module bodies. Roughly speaking, only the information that is explicitly
recorded in the signature(s) of a module is available externally. (In fact, this
statement is not accurate for SML, but it is accurate in the context of EML.
See Section 3 for more on this point.) Such information hiding is vital to allow
parts of a large software system to be developed and maintained independently.

2.2 EML

EML is a vehicle for the formal development of programs from specifications by
means of individually-verified steps. EML is called a wide-spectrum language [4]
since it allows all stages in the formal development process to be expressed in
a single formalism, from the initial high-level specification to the final program
itself and including intermediate stages in which specification and program
are intermingled. The target of the formal development process is a modular
program in SML, and thus (a large subset of ) SML is an executable sub-language
of EML. Earlier stages in the development of such a program are incomplete
modular programs in which some parts are only specified by means of axioms
rather than defined in an executable fashion by means of SML code.
Syntactically, the main difference between SML and EML is that EML per-
mits axioms to be included in signatures and in module bodies. Including
axioms 1n signatures allows properties to be specified which are required to
hold of any structure matching that signature. The general idea is similar
to that of providing {ypes of values in signatures in addition to their names;
the difference is that types (and sharing constraints) can be checked mechan-
ically, while checking that axioms are satisfied requires the use of a theorem
prover (and human ingenuity). One reason for including types of values in an
SML signature is to provide enough information about the module it describes
to enable subsequent code which refers to it to be typechecked and compiled



without making reference to the details of the code in the module body. This
is essential for purposes of separate compilation. Similarly, a reason for includ-
ing axioms in an EML signature is to provide enough information about the
module it describes to enable properties of such subsequent code to be proved
without reference to the module body. This separation of an interface from
its implementation permits different implementations (satisfying the axioms in
the interface) to be developed and used later without affecting the correctness
of the rest of the system, and enables implementations for different modules to
be developed independently.

Axioms in module bodies may be used to describe components for which
executable definitions (in the form of SML code) are not yet available. Syn-
tactically, one gives a declaration containing the place-holder expression “?”,
followed by axioms referring to the undefined object. For example:

val x:int = 7
axiom x>7 andalso isprime x

Module bodies containing axioms may be regarded as unfinished or incomplete
abstract programs in which some decisions have already been taken but others,
such as choice of algorithms, remain open. The intention is that at a later
stage in the development of the program, the question mark will be replaced
by code that satisfies the axioms. In the first version of a module declaration,
a question mark may be used as a place-holder for the entire module body.

In EML, each structure comes equipped with a signature (this is optional
in SML) containing the information which is available externally concerning
the structure body. As in SML, the body is required to match this signature.
In addition to the name/type matching required in SML, the body must be
correct: the axioms in the signature must be satisfied by any model of the
body (that is, by any structure containing the code in the structure body and
satisfying any axioms it includes). Obviously, a proof is generally required to
establish correctness. Following ideas concerning the use of axioms to specify
encapsulated abstractions (see e.g. [26], [9], [32]), the axioms in the signature
need not actually be satisfied “literally”: it is enough if they are satisfied “up
to behavioural equivalence”. Briefly, this means that for any model of the
structure, there must be some structure satisfying the axioms in the signature
from which the model cannot be distinguished by performing computations that
yield observable results (i.e. results of base types such as bool). Similar remarks
apply to functor declarations, which must contain both an input signature (also
required in SML) and an output signature (optional in SML); in this case, all
models of the functor body which extend “literal” models of the input signature
are required to satisfy the output signature up to behavioural equivalence.
See Section 4.3 for some further details, and see [34] for more on the role of
behavioural equivalence in the context of EML.

Formal development of a system begins with an initial high-level specific-
ation of the problem to be solved, in the form of an EML module declaration
having a question mark in place of its body. If the module is parameterized
(i.e., is a functor) the input signature specifies the facilities (types, values,
exceptions, and structures) to be taken as given, in addition to the built-ins
of SML. The output signature of the module specifies the additional facilities
required. These signatures will normally contain axioms. At later stages of de-
velopment, this module declaration will be refined by providing it with a body



which is correct in the sense described above. This may contain axioms, and
may make reference to further structures or functors that are themselves not
vet defined in an executable fashion. The development process 1s finished once
all functor and structure bodies on which the original “goal” module depends
are complete, meaning that all question marks and axioms in module bodies
have been replaced by executable SML code. At this point, erasing all axioms
from signatures (or, much more usefully, regarding them as complete and form-
ally checked documentation) yields an executable SML program. This is correct
with respect to the initial specification since correctness is maintained by each
development step.!

The EML formal development methodology defines a number of ways of
gradually refining an unfinished module declaration towards a complete and
correct version. A common way to proceed is to decompose the problem into
simpler problems by specifying a number of new modules and defining the mod-
ule at hand as a composition of these. The task of providing a body for each
of these new modules becomes a refinement task in its own right which can
be tackled separately from the others. Such steps give rise to proof obliga-
tions which must be proved in order to ensure that correctness is preserved;
these proof obligations can be generated mechanically from the “before” and
“after” versions of the module at hand. See [34], [35], [15] and [28] for further
details, and see [34], [27] and [29] for examples of EML-style formal software
development.

2.3 An example in EML

The example in Figure 1 illustrates some of the language features of EML. It
1s an implementation of evaluation for a rewrite system, based on some simple
abstract properties one would expect for arbitrary rewrite systems, (enriched)
A-calculi, ete. This takes the form of a functor, where properties required of
the argument and properties of the result are specified by EML axioms. The
functor itself is coded in the executable subset of EML, so this is an example of
what might emerge from a formal development which began with a specification
of the problem consisting of the same functor with its body replaced by the
place-holder “?”.

The idea of the example is as follows. Rewrite systems operate on some
set of terms; each term is either a normal form (NF) or contains a redex that
can be contracted. A (one-step) strategy picks a redex in a term and returns
the redex together with the context of its occurrence in the term, given as
a function. The functor Reduce provides a function eval which repeatedly
contracts redexes selected by the given strategy until a term in normal form
is obtained. A copy of the argument structure L is included as a substructure
T of the result in order to provide convenient access to the type of terms. T
inherits the signature of L (TERMSIG).

The signature TERMSIG imposes certain requirements on the behaviour of
NF and strategy: the axiom forall t => (NF t) proper is true if the eval-
uation of NF t neither fails to terminate nor raises an exception; for strategy

1To be completely accurate, it must be mentioned that the compilation of the result-
ing program is not guaranteed to terminate: EML copes gracefully with non-terminating
functions, as explained below, but not with non-terminating declarations. The guarantee of
correctness is subject to this proviso.



signature TERMSIG =
sig
type term
val contract: term -> term
val NF: term -> bool
axiom forall t => (NF t) proper
val strategy: term -> term * (term -> term)
exception noredex
axiom forall t =>
if NF t then (strategy t) raises noredex
else ((strategy t) proper andalso
let val (u,f) = strategy t

in £ u == t andalso
(f (contract u)) proper
end)

end;

signature EVAL =
sig
structure T: TERMSIG
val eval: T.term —-> T.term
axiom forall t =>

(eval t) terminates implies T.NF(eval t)
end;

functor Reduce (L: TERMSIG)
sig include EVAL; sharing L=T end =
struct structure T = L
fun eval t =
if L.NF t then t
else let val (redex,context) = L.strategy t

in eval (context (L.contract redex))
end
end;

Figure 1: An example: evaluation for a rewrite system



there are even stronger conditions, for example that the redex created by
strategy can be properly contracted, and that strategy t raises an exception
if and only if t i1s in normal form. Typical for EML is here the mixture of logical
connectives and programming language constructs.

The functor Reduce gives us an evaluation function eval, as specified in
the “included” signature EVAL, for any rewrite system matching TERMSIG. From
the interface of TERMSIG and the implementation of eval we can show that it
will never raise an exception (although it may fail to terminate). The sharing
equation, an SML feature, is needed to ensure that the type T.term used in
the type of eval is the same as the type L.term provided by the argument of
Reduce, so evaluation is for the kind of terms defined by the argument and not
for some other kind of terms. It also makes eval applicable to terms other
than the ones that can be built using structure T only. This is quite desirable,
as structure T contains no functions for building terms, except by contraction
of other terms; normally, the argument of Reduce (or structures on which it
depends) will contain such functions, in addition to those required by TERMSIG.

2.4 The language of EML axioms

The syntax used to write axioms in the above example should have been suf-
ficiently self-explanatory to make the intended meaning clear. However, the
logical system used 1s not a conventional one; it is necessarily much more com-
plex than (for example) many-sorted equational logic or first-order predicate
logic because of the need to deal with all the features of SML programs. For
example, consider an equation asserting that the values of two expressions, exp
and ezp’, are equal. What if either exp or exp’ (or both) fail to terminate?
What if one raises an exception (or in the terminology of the SML definition,
evaluates to a packet)? What if exp and exp” are of a function type? And in the
case of universally and existentially quantified formulae, what is the meaning
of quantification over a polymorphic type?

The syntax of EML axioms is designed to be a natural extension of the
syntax of EML boolean expressions, with the meaning of the new constructs
chosen to be as simple and natural as possible under the circumstances. We
have attempted to maximize expressive power, and to avoid making certain
common specification idioms unduly awkward to write.

Any expression of type bool may be used as an axiom in EML. Such use
amounts to an assertion that the expression evaluates? to the value true rather
than evaluating to the value false, or evaluating to a packet, or failing to
terminate. Hence, the basic connectives are those of SML: andalso, orelse,
and not, with the additional connective implies. The first two of these have
the same “sequential” interpretation as they do in SML (and analogously for
implies), so for example the expression true orelse exp evaluates to true
even if exp produces a packet or fails to terminate.

A “logical” equality predicate == complements the “computational” equality
= provided by SML. The expression exp==ezp’ is well-formed whenever exp and
exp’ have the same type, in contrast to exp=ezp’ which requires this to be an
equality type. Logical equality is extensional equality in “logical-relation style”

2 Actually, verificates — see Section 4.3.



[23] on function types, meaning that if f, f' are both of type 7 — 7/ then f==f
is defined as

forall (x:7,x’:7) => x==x’ implies (f x)==(f" x’)

— see below for the meaning of quantification. It i1s also “extensional” for
packets and non-termination: exp==ezp is true even if exp produces a packet
or fails to terminate. For any expression ezp, additional atomic formulae are:

erp terminates, which 1s true if erp produces a normal value or a packet,
and false if it fails to terminate;

exp proper, which is true if exp produces a normal value, and false if it
produces a packet or fails to terminate; and

exp raises excon,® which is true if ezp raises the exception ezcon and false
if 1t produces a normal value or raises a different exception. If exp fails
to terminate then so does exp raises excon.

Universal and existential quantification is provided over all SML types; func-
tion types are included here so this gives a form of higher-order logic, although
since quantification ranges over values that are ezpressible in SML, it is not true
higher-order quantification. The meaning of quantification over polymorphic
types is a tricky issue. An easy choice would be to require explicit quantifica-
tion of type variables, as in System F [8], but this seems contrary to the spirit
of SML in which all such quantification is implicit. The best balance seems to
be struck by viewing a quantified formula as having a defined value only if it
has that value for all instances (including polymorphic instances) of the type of
the bound variable. More explicitly, this amounts to the following four cases:

e In order for forall «:7 => exp to be true, the expression exp[z := v]
must be true for every expressible value v of every instance of 7.

e In order for exists x:7 => exp to be true, there must be an expressible
value v of type 7 such that exp[x := v] is true. (Note that this is stronger
than requiring such a v of some instance of 7.)

e In order for forall x:7 => exp to be false, there must be an expressible
value v of type 7 such that exp[a :=v] is false.

e In order for exists x:7 => exp to be false, the expression exple := v]
must be false for every expressible value v of every instance of 7.

Note that the third and fourth cases above are obtained from the second and
first cases respectively using the de Morgan laws (Vz.¢o = =3x.—p, and Juw.p =
—Vz.m¢p). The value of a quantified expression is left undefined if none of the
above applies, so for example forall «:7 => exp has no value if exp[z := v]
is false for some expressible value v of some instance of 7, but there is no
expressible value v of type 7 itself such that exp[x := v] is false.

An example of a formula involving polymorphic quantification that is true
for some type instances but false for others is the following:

31n fact, this is a special case of a slightly more general form.



forall (x,xs) => [x] @ xs == xs @ [x]

where @ is concatenation of lists and [x] is a singleton list containing x. One
might expect the value of this formula to be false, since this is what happens
when (for example) x:int and xs:int list. But when x:unit (the type
having just one value, written ()) and xs:unit list, the value of the formula
is true since lists of type unit list are uniquely determined by their length.
As a consequence, this formula has no value whatsoever. Fortunately, such odd
examples occur rarely. A positive example of a polymorphic formula that holds
is

forall xs => exists ys => xs @ ys == ys Q@ xs

because for any list type, the empty list has the property required for ys. The
type quantification is left implicit.

A similar but slightly different semantics for quantifiers is considered by
Kazmierczak in [16].

Datatype declarations in SML can be seen as carrying logical content. For
example, consider the declaration:

datatype t = ¢1 | c2 of int

Apart from declaring a new type t which is different from all previously-defined
types, a constant value c1:t and a function value c2:int->t, this makes the
following assertions (the terminology is due to [5]):

“No junk”: The only values of type t are c1 and (c2 n) for integer values n:
forall x:t => (x == cl orelse exists n:int => x == c2 n)

“No confusion”: The values produced by different constructors are different,
and each constructor function is injective and total:

forall n:int => not(cl == ¢2 n)
forall (n:int,n’:int) => (¢c2 n == ¢2 n’ implies n == n’)
forall n:int => ¢2 n proper

“No junk” corresponds to an induction principle for the new datatype; in the
case of recursive datatype declarations, this is necessarily a higher-order for-
mula. Both conditions are necessary for the use of constructors in patterns.
EML provides a new form of declaration which has syntax similar to that of
datatype declarations, but which only asserts “no junk”:

spantype ’’a set = empty | singleton of ’’a
| union of ’’a set * ’’a set

Here we are specifying that all sets are either empty, or singletons, or unions of
such sets, but we are not saying (for example) whether union is commutative or
not; if such a property is required, an axiom can be added to impose it. In this
paper, the term “axiom” refers to spantypes (although they are syntactically
quite different from axioms) as well as to ordinary axioms.



3 The relationship between SML and EML

The EML language was very deliberately designed as a language for specifying
modular SML software systems. In contrast to much related work, the intention
was not to create a completely general-purpose specification language. One of
the main guiding principles of the design was to make EML a minimal exten-
sion to SML. The addition of axioms was clearly necessary to enable module
properties to be specified, but we have attempted to keep the syntax of axioms
simple and have resisted the temptation to add features or to repair minor
defects in the design of SML. For example, EML does not include paramet-
erised specifications (functions from signatures to signatures), despite the fact
that these are commonly provided by other specification languages. We have
not yet seen a compelling need to add parameterised specifications to EML.
In fact, it has become clear to us [30] that what is really important in formal
software development is the ability to specify parameterised program modules
(i.e. SML functors), and EML already has this facility: one uses an EML functor
declaration having a question mark in place of a body.

There are at least four senses in which EML is a minimal extension of SML.
First, the syntax of EML minimally extends the syntax of SML. As already
stated, the main syntactic extension is the addition of axioms. Second, the se-
mantics of EML is based directly on the semantics of SML, as will be explained
in detail in the next section. This is to ensure consistency with SML “by con-
struction” — the fact that significant portions of the two semantic definitions
are identical would make a proof of consistency considerably simpler than oth-
erwise. Our initial attempts to give a semantics of EML took quite a different
and much more “algebraic” route [31]; we have temporarily abandoned this
approach, in part because of the difficulty of ensuring consistency with the
existing definition of SML (but see [16]). A third and related point is that
the extension to the semantics of SML is such that the semantics of the SML
fragment of EML is preserved, making EML a “conservative” extension of SML.
This is vital to ensure that the end-product of EML formal development can be
compiled and run using existing implementations of SML without modification.
Finally, we have attempted to preserve the spirit of SML in the extensions in-
sofar as this is possible. This is a necessarily vague statement, but there was
already an example of this in Section 2.4 where we eschew the use of explicit
quantification of type variables in axioms because such quantification is always
left implicit in SML.

In spite of the above, EML is not quite an extension of SML; it is an ex-
tension of a large subset of SML. This subset is obtained by excluding the im-
perative features of SML (references, assignment, and so-called imperative type
variables) and input/output, by requiring structure declarations and functor
declarations to include explicit signatures, and by adopting a more restrictive
view of the role of signatures as interfaces. The first restriction i1s made for
the sake of simplicity, and for philosophical reasons which will be familiar to
advocates of functional programming [3]. The second restriction seems appro-
priate in a specification and formal development framework in which signatures
play a central role, in contrast to a programming language where the need to
supply explicit signatures may be viewed as an unnecessary inconvenience. The
only structure declarations that are exempt from this restriction are those in
which the signature is already available from the structure used in the body



of the declaration, as in the case of the structure declaration in the body of
Reduce in Figure 1. The final restriction is to enforce the principle that only
the information which is explicitly recorded in the signature(s) of a module is
available externally, as mentioned in Section 2.1. This is necessary since the
SML module system does not otherwise fully insulate the clients of a module
from choices in the representation of types in the body, and therefore does not
properly support separate development of the components of a modular system.
See [34] for more on the methodological technicalities behind this restriction.*
None of these changes makes EML incompatible with SML, as any program in
the SML fragment of EML (which therefore satisfies these restrictions) is a well-
formed SML program. However, certain SML programs cannot be developed
using EML.

There is one additional restriction imposed by EML which causes certain
pathological but well-formed SML programs to be regarded as incorrect. This
is demonstrated by the following example:

signature SIG =
sig
type t
local val x:t in end
end;

structure S:SIG =
struct
datatype t = foo of t
end

This is well-formed according to SML but fails to verificate in EML because S.t
is a type with no values! (Recall that values in SML are represented as finite
ground terms built from constructors; since the only constructor for type S.t is
S.f00:S.t->S.t, there are no finite ground terms of type S.t.) The point here
is that local val x:t in end in SIGimposes a logical constraint, namely that
t has at least one value, which is disregarded by SML but cannot be correctly
disregarded by EML. Apart from this minor restriction and the restrictions
mentioned above, EML does not limit the freedom of the SML programmer in
the sense that well-formed SML programs satisfying these restrictions (even
“ugly” ones) are also well-formed according to EML. Of course, it is clear that
it will be easier to reason about the correctness of some SML programs than
others, in EML or any other framework.

Compatibility between SML and EML is a more delicate matter than simply
insuring compatibility for the SML fragment of EML. For example, the dynamic
semantics of EML (see Section 4.2),; which defines the result of evaluating EML
“code” insofar as this is possible, raises the exception NoCode when producing
a result would involve evaluating a specification construct such as a quantifier
or question mark. Refinement steps involve the replacement of question marks
by expressions. This would lead one to expect that successive refinement steps
should cause the dynamic semantics to raise NoCode exceptions less frequently,

*The original design of the SML module system [20] proposed an additional kind of struc-
ture, a so-called abstraction, for which the stricter interpretation of signatures taken in EML
would apply. This was unfortunately not included in SML as defined in [22] although some
SML implementations provide it as a non-standard extension [1].



without affecting the “ordinary” values produced. In order to achieve this, it
is essential to define NoCode as a special exception which cannot be trapped
by any surrounding handler. Consider the following (contrived) refinement
example:

val x = (? handle _ => 2) ~~» val x = (1 handle _ => 2)

In SML, exp handle _ => 2 evaluates to 2 if exp raises any exception. If
this were the case in EML, then the above refinement would change the result of
evaluating x from 2 to 1. By treating NoCode as a special non-trappable excep-
tion (which involves a change to the dynamic semantics of the SML fragment
of EML!) the result changes from [NoCode] to 1, as desired.

By way of disclaimer, it should be noted that the assertions above con-
cerning such matters as compatibility between the semantics of SML and EML
should be formally regarded as conjectures which we strongly believe to be
true but which have not yet been formally proved; the same goes for similar
assertions in the remainder of the paper.

4 An Overview of the EML semantics

As mentioned earlier, one of the most important features of SML is that it
has a fully formal definition (modulo some minor faults [13]). Not only is its
syntax formally defined, which is quite common, but also the meaning of SML
programs is determined unambiguously by a formal mathematical semantics
[22], [21]. This is given in the form of so-called natural semantics [12] (or
structural operational semantics [25]) via deduction rules which determine a
meaning for each SML phrase. We will present a number of such rules below,
hopefully giving the reader the flavour of the entire semantics.

The semantics of SML consists of some two hundred rules, grouped to reflect
both the structure of the language and the envisaged phases of program inter-
pretation. Thus, on one hand, the semantics of SML divides into the semantics
for the core layer of the language and the semantics for its module system.
Then, the semantics for the core and the semantics for modules are split into
two parts: the static semantics, which describes the type-checking phase of
program interpretation, and the dynamic semantics, which describes the actual
evaluation of programs. In addition, the derived forms of the language are
described by translation to phrases of the bare language.

The dependencies between various parts of the semantics are kept to a
minimum, to facilitate understanding of the quite complex language definition.
As expected, the static semantics for modules relies on the static semantics
for the core. Similarly for the dynamic semantics: the dynamic semantics for
modules relies on the dynamic semantics for the core. However, no part of the
semantics for the core depends on the semantics for modules, and the static
semantics and the dynamic semantics are independent®. All the parts are joined
at the top level, where the overall semantics for SML programs involves both
type-checking (the static semantics) and evaluation (the dynamic semantics).

5Alth0ugh this statement is technically accurate, a successful “run” of the static semantics
is needed to ensure that the dynamic semantics yields expected meanings. In this sense the
dynamic semantics depends on the static semantics. A precise statement of this “soundness”
property may be found in [38].



The semantics of EML inherits its basic form and structure from the se-
mantics of SML. It is given as a natural semantics and consists of a number of
deduction rules grouped to reflect the structure of the language and the various
aspects of the interpretation of EML phrases. As in the SML semantics, the
semantics for EML core and modules are given separately, each of them incor-
porating static semantics and dynamic semantics. The meaning of the derived
forms of EML is given by translation to the bare language — the description
of this translation is considerably more detailed than the corresponding part
of the SML semantics, since we have decided to capture formally all the tech-
nicalities, whereas the definition of SML relies on a somewhat informal English
description.

In addition we also have a verification semantics for EML, again split into the
verification semantics for the core and for modules. In a way, the verification
semantics for EML modules is the essence of Extended ML. It is here that the
correctness of modules w.r.t. their interfaces is formally defined. We consider a
(well-typed) EML program to be correct if the verification semantics produces
a meaning for it. If the verification semantics fails for this program, that is, no
verification meaning for the program may be derived, the program is considered
incorrect. Incorrect programs may still be “run” (according to their dynamic
semantics) — but the results are not guaranteed to meet the requirements
expressed in the module interfaces.

The dependencies between the various parts of the EML semantics are some-
what more complicated than in SML. As in SML, the semantics for modules
depends on the semantics for the core, while the semantics for the core does
not depend on the semantics for modules. The static semantics and the dy-
namic semantics are independent. However, the new part of the semantics, the
verification semantics, depends on both the static and the dynamic semantics.
As explained in Section 2.4, the interpretation of axioms depends on typing
information (for example, the type of the bound variable must be known to
interpret the meaning of a universally quantified formula) — hence the de-
pendency on the static semantics. The dependency on the dynamic semantics
results from the need to interpret axioms describing evaluation properties of
expressions (for example, stating that an expression terminates). We should
hasten to add that neither the static nor the dynamic semantics depends on
the verification semantics, as should be expected. Finally, as for SML, all the
parts of the semantics are joined at the top level, where the overall semantics
of EML “programs” is given.

In the rest of this section we present fundamental ideas important for each
part of the semantics — see [14] for the complete semantics. We skim through
the static and the dynamic semantics, as the issues involved there are much
the same as in the semantics of SML — we hope, however, to give the flavour
of these parts. More attention is paid to the verification semantics, as this is
the really new (and most interesting) part of EML.

4.1 Static semantics

The static semantics of EML describes the process of static elaboration of EML
phrases. This includes, for example, checking that all the objects used have
been declared in the current environment and, most significantly, that phrases
are well-typed.



Perhaps most typically, the rules of the static semantics for expressions
allow one to derive judgements of the form C' F exp = 7. This is to be read: in
the context €', the expression ezp can elaborate to the type 7 (or exp can have
type 7). Here, contexts are triples, where the most essential component is a
static environment storing typing information about the objects declared in the
current environment. We have C' + [1] = int1list and C'F [] = int list
(for any® context C). Note, however, that we also have C' - []1 = a list,
where «1list is the type of lists over arbitrary type «. The polymorphic
generalisation of this type is written as Va.alist. It is formed when an
expression of type « list is bound to an identifier (provided « is not fixed by
the context). Va.a 1ist may be instantiated to any type of the form 7 1ist.

Declarations are slightly more complicated: the static semantics elaborates
a declaration to a static environment, containing typing information about
the objects introduced by the declaration. The corresponding judgements are
of the form C' F dec = FE, and for example we have C' - val a = 5 =
{a — int}. Examples involving function declarations are no more complicated:
we have C' F val £ = fn x=> [x] = {f — int —int list}, as well as C' +
val f = fn x=> [x] = {f — Va. o — a list}.

The judgements mentioned above may be formally derived using the rules of
the static semantics. A typical example of such a rule, involving the elaboration
of both declarations and expressions, is the following rule for expressions with
local declarations (this is a simplified version of the rule!):

Ckdece=FE CoEFerp=>T1
C'F let dec in exp end = 7

This is to be read: if in the context C' the declaration dec elaborates to the static
environment £ and in the context ' extended by the static environment E the
expression ezp elaborates to the type 7, then in the context (' the expression
let dec in exp end elaborates to the type 7. Notice that the result of the
elaboration of dec does not appear in the overall result. For example, using
this rule we can derive C' - let val £ = fn x=> [x] in £ 5 end = int list
(for any context C').

The static semantics for modules proceeds in much the same way as that
for the core, but the semantic values built are more complex. For example,
structure expressions elaborate to static environments, which store typing in-
formation about the objects declared within the structure, together with a
unique name attached to the structure to keep track of sharing. The corres-
ponding judgements have the form B & strezp = (m, E), where B is a static
basis, containing a context and a set N of structure names, like m, used so far.
Here is a typical rule, for the encapsulation of a structure-level declaration of
objects to form a new structure:

Bt sirdec = E m ¢ (N of B) Unames F
B | struct strdec end = (m, E)

The hints above on the static semantics apply to SML as well as to EML.
However, as mentioned before, there are some differences. For example (cf.

8We tacitly assume that contexts, environments, etc., used in the small running examples
throughout this section map the built-in type constructors and values of EML to their expec-
ted meanings, as described in the initial basis for SML, cf. [22].



Section 3) we have designed typing for EML modules to be stricter than for
SML, and this change is properly reflected by the static semantics for EML
modules. Let us consider a simple structure declaration:

structure S: sig type t; val c:t end =
struct type t = int; val ¢ = 17 end

In SML, the signature constraint in this particular example has no effect: the
static environment assigned to the structure identifier S maps t and ¢ to int. A
signature constraint in SML, if present, is used only to check that the structure
matches the signature and to hide auxiliary structure components. In EML,
signature constraints have an additional purpose: they also hide information
about structure components — only the information provided in the signature
can be exploited when using the structure. In particular, in the above example,
the EML static semantics binds S to a static environment which maps t and ¢
to a new, otherwise unknown type. Consequently, in the context of the above
structure binding, in EML we cannot form expressions like S.c+2 — this is
not well-typed in EML (but it is well-typed in SML). This behaviour of EML
is compatible with SML in the sense that every successful elaboration in EML
will also succeed in SML.

Another difference is that in EML we have a new part of the semantics,
the verification semantics, which relies on the type information gathered dur-
ing static elaboration. We need some mechanism to export this informa-
tion from the static to the verification semantics of EML, also covering cases
in which the intermediate types for some parts of EML phrases do not ap-
pear in the overall result, as for example the type of f in the elaboration of
let val f = fn x => [x] in f 5 end, which we considered earlier. This is done
by requiring that all the types used in a static elaboration of a phrase are ac-
cumulated in an additional component of the result of elaboration: a tree of
type guesses. One can think of this as an annotation of the entire parse tree
for the phrase with results of the static analysis. The presence of type guesses
somewhat complicates both the form of judgements and the rules of the static
semantics. For instance, the above rule for expressions with local declarations
in fact looks as follows”:

Ctdec=FE vy CHEFexp=r+ tynames T C T of C
C't let dec in exp end = 7,7 - 7/

Here, the tree of type guesses v accumulates the types used in the elaboration of
dec to the static environment £ in the context C, 7" accumulates the types used
in the elaboration of exp to the type 7 in the context C'@ E, and consequently
v -~" accumulates the types used in the elaboration of let dec in exp end to
the type 7 in the context C'.

An additional problem is that the static semantics may “choose” differ-
ent types for some parts of a phrase without affecting the overall result (the
differences would be visible in the tree of intermediate type guesses though).

"The third premise, which requires that the type of ezp does not use any new type names
not mentioned in the original context, is not present in the corresponding rule of the SML
definition. The type system is unsound without this requirement, because type names intro-
duced by different let expressions can accidentally become equal. This was an oversight in
the definition of SML [22] which was not fixed in [21].



As mentioned above, the type of fn x=> [x] may be either int — int list
or &« — o list (among others). Moreover, since f 5 elaborates to int list
both in the context assigning int — int list to £ and in the context assign-
ing Va. o« — « 1list to £, the elaboration of 1et val £ = fn x=> [x] in £ 5 end
may proceed either via the judgement C' + valf=fnx=>[x] = {f —
int —int list}, or via C' F val £ = fnx=>[x] = {f — Va.a—alist},
in each case yielding C'F let val £ = fn x => [x] in £ 5 end = int list, but
with different intermediate type guesses. The type chosen for £ may influence
the result of the verification semantics (well, not in this trivial case, but for
example if £ was involved in an axiom like forall (x,y) =>f x = £y, which
unexpectedly happens to be true if f is typed as unit — unit list — see Sec-
tion 2.4). To resolve the potential ambiguity, we have to decide which of the
possible types should be “exported”. The obvious choice is the most general,
principal type [6] (Va. & — o List for £ here), and so an appropriate principal-
ity requirement is imposed on type guesses, much as in the SML static semantics
for modules the principality requirement is imposed on signatures. The exist-
ence of principal types and signatures is a fundamental property of the SML
type system (see [21] for a precise statement and proof) which is retained by

EML.

The requirement of principality is essentially an infinitary condition which
states that any type that can be used in the static elaboration of a phrase is
an instance of the principal type the elaboration is required to choose. In the
semantics of SML it is imposed for example in the following rule:

Cof BF dec = F I principal for dec in (C of B)
Bt dee=F

which states that if a declaration dec elaborates as a core declaration to a static
environment F that is moreover principal for dec in the given context, then dec,
as a structure-level declaration, elaborates to £ (notice the crucial distinction
between the elaboration of dec as a core declaration and as a structure-level
declaration). Infinitary requirements of this kind, hidden behind somewhat in-
formal (but precise enough) English descriptions, occur in a very few places in
the semantics of SML. They are, however, rather more common in the semantics
of EML; for example, they naturally arise in the semantics of quantifiers or ex-
tensional equality, see Section 2.4. We have decided to make such requirements
explicit and formalise the use of infinitary conditions via higher-order rules.
For instance, the above SML rule may be expressed as follows:

Cof Bt dec = E'
Cof BF dec = F B ey e

BtFdec=F

Here, the second premise is a rule, which is true as a premise if it is admissible
as a rule. The meta-variable E' is scoped at this premise, making it universally
quantified for the local rule. Thus, the premise requires each E’ to which dec
may elaborate to be an instance of . Consequently, the new rule means exactly
the same as its original version quoted above from the semantics of SML.
Actually, the semantics of EML uses here yet a different rule, which imposes
the principality requirement not just on the resulting static environment, but



on the entire elaboration as accumulated in the tree of type guesses:

_ Cof Bt deec = E',+
Cof BFdec= F,v N = namesy \ N of B M s
Bt dec=FE,y

The last premise of this rule requires that any tree of type guesses corres-
ponding to an elaboration of dec in the given context may be obtained from
the tree of type guesses 7 by instantiating new type variables introduced in
the corresponding elaboration of dec. As explained above, this requirement,
stronger than just principality of the resulting environment, is necessary for
the semantics of EML.

Higher-order rules, which come with an additional scoping mechanism for
meta-variables, considerably increase the expressive power of the formalism.
They have to be used with care, as the formalism no longer guarantees that the
rules inductively define all the true judgement of the semantics. In particular,
“impredicative” dependencies between premises and conclusions in higher-order
rules must be avoided.

4.2 Dynamic semantics

The dynamic semantics of SML, as for any other programming language, is the
key part of its description. After all, the main reason for writing programs is in
order to evaluate them, and this is what the dynamic semantics describes. One
might think, however, that a dynamic semantics for a program development
framework like EML is somewhat pointless: the dynamic semantics for the
programs produced by formal development is provided by the definition of
SML, and can be used to evaluate them. Omne reason to nevertheless provide
a separate dynamic semantics for EML 1s that the verification semantics, the
main part of the EML semantics, relies on the dynamic semantics, for example
to determine the value of the terminates predicate — hence, the dynamic
semantics is needed here for the sake of completeness of the formal definition of
EML. Another important reason is that we want to formally define a basis for
early practical experiments with incomplete programs. EML programs, even
those which are incomplete and contain specification constructs, are viewed as
“partially executable”. The idea is that any such program should be executable
insofar as this is possible, and that evaluation should proceed as in SML for the
parts which contain only SML code. The dynamic semantics of EML formalises
this.

The dynamic semantics describes the evaluation of language phrases. In
particular, for expressions, the dynamic semantics allows one to derive judge-
ments of the form® E + ezp = v, stating that in the (dynamic) environment I,
the expression ezp evaluates’ to the value v, where environments store the val-
ues of objects currently defined. For example, we have {a + 27} F a*37 = 999.
Environments are built by declarations, with corresponding judgements of the
form E + dec = E’ expressing the fact that in the environment E the declar-
ation dec evaluates to the environment E’, which stores the values of objects

8This is an approximation used here for presentation purposes only; more details will be
provided below.

°E + exp = v literally means that in F,ezp can evaluate to v, but since evaluation is
deterministic, v is uniquely determined (if it exists).



declared in dec. For instance, we have F - val a = 27 = {a — 27} (for any en-
vironment ). Formally, judgements are derived using the rules of the dynamic
semantics, with a typical example being the following rule for expressions with
local declarations:

Et dec = E' E+FE Fewp=v
EF let dec in exp end = v

Using this rule, we can for example derive directly from the judgements above
that £ let val a = 27 in a * 37 end = 999.

Evaluation of expressions involving functions is just as simple. One has to
remember though that values of function types are not functions in the usual
sense but rather closures, which result from the encapsulation of expressions de-
fining function bodies [18]. Closures are expanded when applied to arguments,
and a rather elaborate scheme of self-expansion is used to model recursion (see
[22] for details). The possibility of non-termination is reflected by the fact
that using the rules of the dynamic semantics one cannot derive values for all
the expressions of the language. For example, there is no value v for which
the judgement # F let fun loop() = loop() in loop() end = v can be
derived, as expected.

Another complication arises from the fact that SML (and hence EML) ex-
pressions may raise exceptions. In this case, the result of evaluation is a packet
(an exception name possibly together with a value). Consequently, the formal
judgements of the dynamic semantics for expressions may also have the form
E + exp = p (in the environment E the expression exp evaluates to the packet
p). To express the two possibilities jointly, we write £ & exp = v/p, and use
the semantic rules to determine which form is derivable for a particular expres-
sion. The possibility of a phrase raising an exception is often left implicit in the
semantic rules, relying on the so-called “exception convention” to ensure that
packets are propagated by the rules of the dynamic semantics. Thus, the above
rule for expressions with local declarations induces implicitly, by the exception
convention, the following rule:

Et dec = B E+EFep=p
EFlet dec in exp end = p

(and similarly for packets arising from evaluation of dec). Of course, some
semantic rules must be exempted from the exception convention. Most notably,
the rules that describe how exceptions may be trapped (how packets may be
handled) deal with packets explicitly.

Another aspect of dealing with exceptions is that the set of exception names
used is determined dynamically — a new exception name is generated each time
an exception declaration is evaluated (this new exception name is used as the
meaning of the exception identifier declared). Consequently, the set of exception
names generated so far must be stored. In SML this set is one of the components
of the current state — and since its other components are used to describe the
imperative features of SML programs, this is the only component of states in
the dynamic semantics of EML (apart from the specification flag, see below).
This means that states are necessary in EML, and the real form of semantic
judgements describing evaluation of expressions is s, £ F exp = v/p, s (in
the state s and the environment F, the expression ezp evaluates to the value



v or packet p with the resulting state s’). The so-called “state convention”
allows one to formulate many rules without mentioning states explicitly, using
the order of premises to determine how states resulting from evaluation of one
phrase are passed to another. Thus, in particular, the above rule for expressions
with local declarations expands to the following:

s, B+ dec = E', s s E4+E' ¢ exp = v, s
s, I/ F let dec in exp end = v, s

The rules resulting from the use of the exception convention are affected sim-
ilarly.

The above remarks apply to SML as well as to EML — the overall ideas on
how programs are evaluated are the same. What is new in EML is that it con-
tains some phrases which, intuitively, cannot be evaluated. Typical examples
here are objects defined by declarations where no code is provided (the lack
of code being represented by ?) or phrases containing constructs for building
formulae, such as ==, terminates, or forall. Even though the dynamic se-
mantics of EML simply skips axioms, these non-executable constructs may be
encountered in evaluation of EML expressions. When this is the case, a special
exception NoCode i1s raised. NoCode cannot be handled explicitly in programs,
as explained in Section 3. However, to enable execution of completed parts
of EML programs, NoCode is trapped by the dynamic semantics of EML at
the declaration level and a special value Incomplete is used to mark its pres-
ence in the evaluation of an object declaration. An attempt to use the value
Incomplete causes NoCode to be raised again. Here are a few examples:

FF(fnx:int=>x-1)==(fn x: int =>x+ 1) = [NoCode]

Etval x:int = ? = {x+— Incomplete}

{x — Incomplete} - x + 27 = [NoCode]

{x — Incomplete,y — Incomplete} - 27 * 3 = 81
FlFletvalx:int=7;valy=x+1; vala=27 ina#*3 end = 81

This yields a rather subtle difference between the dynamic semantics of EML
and both the dynamic semantics of SML (which simply does not deal with
these special new constructs of EML) and the verification semantics of EML
(where, in a sense, these constructs are properly dealt with). To make this
explicit, we have added to EML states a new component, a specification flag,
which 1s raised by the dynamic semantics whenever one of these special new
constructs is encountered. When the specification flag is not raised during the
evaluation of a phrase, the results provided by the dynamic semantics of EML
coincide with the results of the dynamic semantics of SML'® as well as with the
results of the verification semantics for the core of EML (see Section 4.3 below).
However, when the specification flag 1s raised, then the dynamic semantics of
SML cannot yield a result, and the verification semantics of EML may yield a
different result (or fail to yield a result at all).

The dynamic semantics for EML modules follows the dynamic semantics
for SML modules in the same manner as the dynamic semantics for the EML
core sketched above follows the dynamic semantics for the SML core. Thus, in

19Somewhat informally, we mean here the semantics of SML literally applied to EML
phrases, hence in particular with no rules applicable for the special new constructs of EML.



particular, EML structure expressions evaluate to environments, but evaluation
need not terminate and may modify the state. Moreover, evaluation proceeds in
a basis, a “richer” environment which apart from the values of objects stored as
in the dynamic environment for the core may also store functors and signatures.
The corresponding judgements have the form s, B + strexp = E,s’. The
specific EML constructs are treated as sketched above: axioms are disregarded,
evaluation of non-executable expressions raises the NoCode exception and may
result in the value Incomplete being stored in the environment. In particular,
environments resulting from evaluation of EML structures may contain objects
with Incomplete stored as their value.

4.3 Verification semantics

Although we provide a dynamic semantics for EML, the main stress in a frame-
work like EML is not so much on running programs (their dynamic evaluation)
but rather on the verification of correctness assertions that are present in EML
phrases. Consequently, we view the verification semantics as the main part
of the formal description of EML. The essence of this semantics is to check
whether structures and functors match their signatures, which in particular
means that they satisfy the axioms given in the signatures. This i1s described
by the verification semantics for EML modules. Verification of an EML phrase
does not result in a binary statement saying whether the phrase is correct or
not. Some more detailed information about the contribution of the phrase to
the meaning of the whole program must be determined as well. We will say that
the verification semantics describes how EML phrases verificate!! to semantic
objects.

One crucial 1dea of the EML methodology is that not only should developed
modules be correct w.r.t. their specifications, but also this should follow solely
from properties stated in module interfaces. Consequently, the verification se-
mantics must express the information hiding implicit in this EML understanding
of the role of module interfaces. Incompleteness of information is represented by
the fact that EML module phrases verificate to sets of semantic objects, rather
than just to a single semantic object as in the dynamic semantics. For instance,
in a given basis, EML structure expressions verificate to sets of environments'?
with the corresponding formal judgements having the form B F strezp = &.
Typically, in a complete EML structure expression (containing only SML code)
without substructures, the resulting set of environments will contain exactly
one element: the environment determined by the SML code. But there are
several reasons why this set might not be a singleton. Most obviously, there
may be unresolved choices within strexp. For example, a structure-level declar-
ation like val a : int = ? results in a set of environments, each mapping a to a
different integer. Then, inconsistency within strezp may cause the resulting set
to be empty. For example, an axiom like axiom a>5 andalso a<3 results in the

11 An obvious alternative is “verify”, but this carries connotations we would like to avoid.

1276 be quite precise, we should point out that just as in the dynamic semantics of EML
it was necessary to consider environments together with state s, in the verification semantics
of EML structure expressions verificate to sets of elements that are pairs of an environment
and a state. Fortunately, this does not bring much additional complication, and for the pur-
poses of the presentation here we disregard states in the further discussion of the verification
semantics.



empty set of environments. Notice, however, that this is different from a failure
to verificate at all! Finally, and perhaps most crucially for the methodological
aspects of the verification of EML programs, if strezp contains a substructure
or uses another structure then the interface attached to it is used to filter the
information available, hiding the more detailed information given in its body.
Consequently, the “verification meaning” of the structure is the set of environ-
ments matching its interface, rather than the particular environment given by
its body.

This last point is perhaps best explained by looking at the verification of a
single structure declaration structure S : sigexp = strexzp. To verificate this,
one proceeds as follows (we leave the basis in which the verification takes place
implicit):

1. First, verificate the signature expression sigexp, obtaining a verification
interface . This stores the names of objects specified in the signature
together with static information about them. Moreover, axioms given in
the signature are stored in an appropriate form — see below for more
details.

2. Then, verificate the structure expression strezp, obtaining a set of envir-
onments &£ as discussed above.

3. The next step is where the real verification takes place: check that each
environment £ € &£ matches the interface X. This involves checking
whether the axioms incorporated in X are satisfied by E. Section 2.4
presents the particular forms of axioms and their intended meaning, which
we return to below.

4. The result is the set of all environments binding S to an environment that
matches the interface X. Notice that this “includes” but is in general
larger than the set £ of environments obtained from the verification of
strexp.

If any of the above steps fails (this may happen in step 2, for example if strezp
contains an incorrect substructure declaration, or in step 3, if the verification
requirement formulated there does not hold) then the structure declaration
structure S : sigexp = strexp isincorrect and hence its verification fails as well.
This is different, however, from the case in which the result is the empty set.
The latter is possible when sigezp is inconsistent, and hence strezp (which
satisfies it) is inconsistent as well.

Here is (a simplified version of) the rule which embodies the above verific-
ation procedure:

B sigexp = X B strezp = & for each F € £, F matches X
B structure S : sigexp = strexp = { {S — B’} | B/ matches X}

A few comments are necessary here. First, we omit a formal definition of the
condition stating that an environment matches an interface. Second, for the
presentation here we have used an ad hoc (but self-explanatory) notation to
present a rule with an infinite set of premises, where moreover the number of
these depends on a semantic object mentioned in another premise. The formal
semantics uses a higher-order rule to express this more precisely. Finally, this is



a very simplified version of a rule that does not actually appear in the semantics,
but may be derived using more elementary rules for structure bindings and for
structure declarations.

To take a simple example, consider the following structure declaration:

structure S: sig val a: int; axiom a>0 andalso a<5 end =
struct val a: int = 7; axiom a>1 andalso a<4 end

The verification of the structure expression in this declaration results in the set
of environments { Ey, Es} where we write E; for {a +— 7}. Tt is then checked that
each of these environments does indeed match the interface, and in particular
satisfies the axiom given there. The resulting set of environments assigning an
interpretation for the structure S contains not only {S — F53} and {S — Fjs},
but also {S — F1} and {S + FE4}, since the set of environments matching the
interface is exactly {F1, E2, Es3, E4}.
If we modify the interface as follows:

structure S: sig val a: int; axiom a>0 andlalso a<3 end =
struct val a: int = 7; axiom a>1 andalso a<4 end

then the check that each of the environments resulting from the verification
of the structure expression (F2 and E3) matches the interface fails (since Fs
does not satisfy the modified axiom). Thus, the verification of this structure
declaration fails. Intuitively, the structure declaration is incorrect.

Summing up, the outcome of a successful verification of a structure-level
declaration 1s a set of environments, each expressing a possible meaning of the
declared objects. Further verification proceeds for each of these possibilities
separately, as expressed by the following rule for sequential composition of
structure-level declarations (again, a very simplified version is used, with an ad
hoe notation to represent dependencies between objects):

B F strdecy = & for each F € &, B® E F sirdecs = E[F)
B sirdecy ;strdecs = {E1 + Fo | By € &1, Ea € E[F4]}

The above rule appropriately respects the dependencies between consecutive
structure declarations. Consider the following example:

structure S: sig val a: bool end =
struct val a: bool = 7 end;

structure T: sig val b: bool; axiom b = S.a end =
struct val b: bool = S.a end

The verification of these two declarations will result in the set of environments
containing {S +— Sy, T — 1;} and {S +— S, T+ T}, where S; = {a — true},
T; = {b — true}, S = {a — false} and Ty = {b — false}. However, the
resulting set of environments does not contain for example {S — Sy, T — T}
even though the interface for S does not determine the value of a (nor does the
structure body in this case). The point is that the verification of the declaration
of T proceeds in the context of an arbitrary but fixed interpretation for S.a, for
each of the open possibilities separately.

On the other hand, removing the explicit information about the dependency
from the interface for T changes the result:



structure S: sig val a: bool end =
struct val a: bool = ? end;

structure T’: sig val b: bool end =
struct val b: bool = S.a end

Now, the result of the verification of these two declarations will consist of four
environments: {S +— S, T’ — T3} and {S — S¢, T’ — Ty} as before, but also
{8 — 5, 7> — Tt} and {S +— S§, T’ — T;}. Even though the verification
of the structure expression in the declaration of T’ results in the set of only
two environments (as before), this information is filtered out by the interface
provided in the binding. Consequently, a further declaration

structure U: sig val c: bool; axiom ¢ = S.a end =
struct val c: bool = T’.b end

is incorrect and does not verificate.

All the small examples above were extremely simple and an intuitive under-
standing of EML axioms as presented in Section 2.4 was sufficient to interpret
them. In general, however, the situation may be much more complex, and
matching an EML structure against an EML signature involves a number of
rather subtle points. Perhaps the most obvious is the fact that the axioms in
the signature must be interpreted relative to the type instantiation determined
by the structure. For example, in

signature A = sig type t
axiom exists x:t => true
end

the axiom requires the type t to be non-empty and its satisfaction depends on
the particular realisation of t in the structure we match against A.

Another important point is that signatures in both SML and EML allow the
use of hidden functions and hidden types. For the dynamic semantics hidden
objects are of no concern, but they do matter in the verification semantics,
because their interpretation may influence the verification of axioms. For ex-
ample, a structure matching the following signature

signature B = sig local val b: int
axiom b>0
in val c: int
axiom c>b+1
end
end

need not include a value b (but has to include an integer value ¢, of course).
However, to successfully verificate the axiom c¢>b+1, such a value b has to be
guessed so that both the “hidden” axiom b>0 and then the “visible” axiom
c>b+1 are satisfied (in this example, this would not be possible unless the
value of ¢ is greater than 2). In a certain sense, the hidden declarations are
existentially quantified (see [7]). To take appropriate care of such cases the
axioms in verification interfaces are stored in a rather more elaborate form of
generalised axioms.

The above presentation of the verification of structure declarations extends
to the verification of functor declarations in the obvious way.



In this sketch of the verification semantics for EML modules we have entirely
omitted the issue of behavioural equivalence mentioned in Section 2.2. Unfortu-
nately, we have not yet put the relevant technicalities into the current version of
the semantics. However, we do not anticipate major problems with this. First,
a concept of behavioural equivalence between EML structures (environments)
will be needed. In any basis, this will be defined to require that any well-formed
expression (possibly built in the context of an additional declaration of a local
structure) of observable type has the same value in behaviourally equivalent
structures. The appropriate set of observable types to choose seems to be the
set of all equality types (for the verification of functor bodies, the types in
parameter interfaces, which may be instantiated by equality types, should also
be treated as observable). Then, the only further change in the verification
semantics for structure declarations will be to replace the requirement that all
environments resulting from the verification of a structure expression match
the structure interface by the requirement that each of these environments is
behaviourally equivalent to an environment which matches the interface.

The verification semantics for the EML core is quite similar to 1ts dynamic
semantics. The basic ideas are the same, and for example expressions verificate
to values or to packets (since exceptions may be raised), possibly changing
the current state. This is captured by judgements of the form s, M F exp =
v/p,s’, where M is a model, a richer context in which the EML core phrases
are verificated. Similarly for declarations, where judgements have the form
s,M F dec = FE,s. In contrast to the verification semantics for modules,
the verification of EML core phrases yields single objects, as in the dynamic
semantics. There are, however, some crucial differences.

First, the specification constructs added in EML, such as ==, terminates,
forall, are now viewed as special operators with their own verification rules
(recall that an attempt to evaluate them in the dynamic semantics simply
raises NoCode, a special exception reserved for this purpose). The rules of the
verification semantics capture the meaning of these constructs as sketched in
Section 2.4. It is important to realise that in most cases verification of these
constructs depends in an essential way on static information inherited from the
static semantics and incorporated in models.

Then, in contrast to the dynamic semantics, axioms are not ignored. When
the verification semantics encounters an axiom declaration, it attempts to veri-
ficate the axiom body and proceeds further only if the result obtained is the
value true. Otherwise, verification fails. This does not necessarily mean that
the structure declaration in which this axiom occurs is incorrect. Rather, it
implies only that a particular choice of resolving all the open possibilities in
the structure body, the choice currently under consideration by the verification
semantics, 1s not successful and does not yield a realisation of the structure
satisfying this axiom. The crucial point which makes this work is the inter-
pretation of question marks. In the verification semantics for the EML core
the interpretation of question marks is provided by an extra component of the
model. These question mark interpretations are guessed in an arbitrary way by
the verification semantics for modules at the point where a core declaration is
viewed as a structure-level declaration. Only those environments resulting from
a successful verification of the declaration for some guess of the interpretation of
question marks contribute to the result of the verification of this declaration at



the structure level. This is captured by the verification rule given below, again
in a somewhat simplified form. Rather informally, we write M[B, QI] for the
model obtained by extracting the appropriate components of the verification
basis B and adding the question mark interpretation Q1.

BF dec = {E | for some QI, M[B, QI F dec = E'}

As in the static semantics (see the rule imposing principality discussed in Sec-
tion 4.1) the declaration dec is viewed here as a core declaration in the judge-
ment M[B,QI| F dec = E, and as a structure-level declaration in B + dec =

Here is a simple example of a structure expression:

struct
val a: int = 7
axiom a>5 andalso a<8
val b = a+2

end

(The question mark in the declaration of a should perhaps be indexed to avoid
potential confusion with other question marks elsewhere.) The verification se-
mantics for the declaration enclosed in struct ... end tries to verificate its
enclosed sequence of core declarations for each possible interpretation of the
question mark, one interpretation {? +— i} for each integer 7. It is clear that
the verification succeeds only for the interpretations {? — 6} and {? — 7},
yielding environments Fs = {a — 6,b — 8} and E7 = {a+— 7,b+— 9} respect-
ively. The result of the verification of the declaration is thus {Fs, E7}, and this
set of environments is taken as the result of verification of the entire structure
expression.

In the same way as our quantification is based on expressible values (see
Section 2.4) question marks interpretations @I map question marks to expres-
sions, not to values. In this way ill-formed values are avoided, and moreover,
the interpretation of each question mark may depend on the context in which
it appears. The latter point means that in the verification of a function declar-
ation like

fun f x = let val ¢ = ? in g c end

question mark interpretations may replace the ? by expressions containing free
occurrences of x.

The treatment of question marks in type expressions is somewhat different.
The static semantics guarantees that whatever replacement a question mark in-
terpretation provides (preserving certain attributes), the success of static ana-
lysis, and hence well-formedness of the program, is not affected. However, the
exact results of static analysis are affected, and this has to be taken into ac-
count in the verification semantics, by interpreting the types derived during
static analysis with respect to some realisation. Realisations are functions on
semantic objects that assign concrete types to formal type parameters.



5 Final remarks

We have tried in this paper to provide a readable exposition of the semantics of
EML, a framework for formal specification and development of SML programs.
We have not discussed here in any detail the methodological assumptions and
theoretical underpinnings underlying the design of this framework — these have
been presented elsewhere. We have also refrained from discussing merits of the
design of the SML programming language.

Work on the EML semantics is nearly finished: the complete formal defin-
ition [14] is at the proof-reading stage. Because the definition is still subject
to change, there is a small possibility that some of the details in the above
presentation will turn out to be slightly inaccurate with respect to the final
version. But we are confident that the basic principles presented in this paper
are correct and stable, and accurately reflect the intentions incorporated in the
design of the framework.

The problems we are wrestling with are those inherent in the enterprise
of engineering a sizable completely formal definition of a realistic, practically
useful formalism. All the different aspects of this formalism interact with each
other, and their mutual relationship is a delicate matter which has to be handled
with care and extreme attention to detail. We should perhaps quote here the
example of the formal definition of SML on which we build. The original defin-
ition of SML went through three major revisions before it was finally officially
published as [22]. As a result of the study of the semantics by a larger body
of users, this was then followed by a number of subsequent changes included
in [21]. And even now, some inaccuracies, weak points and minor mistakes
in the definition are still being discovered [13]. Nevertheless, as a whole, the
SML semantics is considered (certainly by us) to be an excellent example of
the precise definition of a realistic programming language, with very few prac-
tical examples of formal design achieving a comparable level of accuracy and
mathematical precision.

Thus, the main problems with producing the formal definition of EML are
the problems of size, necessarily involving a struggle with many tedious details.
We have tried to illustrate this point in the paper. This does not mean that
all the 1ssues addressed in the semantics are mathematically trivial: on the
contrary, in our view some of the specific decision in the semantics, especially
those related to the formal definition of the logic of axioms, are of independent
interest, and deserve further separate study.

The next major step, once the semantics is finished, is to develop a sound
proof theory, which would provide the user with some formal proof rules and
proof tactics to verify the correctness conditions arising in the process of pro-
gram development. Given the complexity of SML and hence of EML, it may be
difficult to come up with appropriate proof rules. Furthermore, checking the
formal soundness of these rules w.r.t. the semantics given will be a formidable
task on its own.

Defining the formal semantics of a framework like EML, or indeed of a pro-
gramming language like SML, is not a futile exercise. Most obviously, it provides
a common unambiguous reference for all the users of the formalism. Perhaps
even more importantly, such a semantics constitutes a basis for all further work
on the framework: sound development methodologies, proof techniques, sup-
port tools (including the compiler for the programming language) must all be



based on and checked against precise semantics if they are to be trustworthy
in practical applications. Defining the formal semantics of a language involves
taking a very close look at all the details of the language and of the complex
interactions between its features. Such a detailed examination of a language
is a good way (perhaps the only way) of uncovering both major and minor
problems that would otherwise escape notice.

Acknowledgements: Thanks to Fabio da Silva for early collaboration on
the static and dynamic semantics of EML and to Edmund Kazmierczak and
anonymous referees for helpful comments on a draft of this paper. We owe
special thanks to Robin Milner, Mads Tofte and Robert Harper for their work
on the semantics of SML, without which the research described here would not
have been possible.

References

[1] A. Appel and D. MacQueen. Standard ML of New Jersey, version 0.93.
AT&T Bell Laboratories (1993).

[2] E. Astesiano et al. The draft formal definition of ANSI-MIL/STD 1815A
Ada. Deliverable 7 of the CEC-MAP project (1986).

[3] J. Backus. Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs. Comm. of the Assoc.
for Computing Machinery 21(8):613-641 (1978).

[4] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R.
Gnatz, E. Hangel, W. Hesse, B. Krieg-Bruckner, A. Laut, T. Matzner, B.
Moller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H.
Wossner. The Munich Project CIP, Vol. 1: The Wide Spectrum
Language CIP-L. Springer LNCS 183 (1985).

[5] R. Burstall and J. Goguen. An informal introduction to specifications using
Clear. In: The Correctness Problem in Computer Science (R. Boyer

and J.S. Moore, eds.), 185-213. Academic Press (1981).

[6] L. Damas and R. Milner. Principle type schemes for functional programs.
Proc. 9th Annual ACM Symp. on Principles of Programming
Languages, 207-212 (1982).

[7] J. Farrés-Casals. Verification in ASL and Related Specification Languages.
Ph.D. thesis; Report CST-92-92, Univ. of Edinburgh (1992).

[8] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge
University Press (1989).

[9] J. Goguen and J. Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. Proc. 9th Intl. Colloq. on
Automata, Languages and Programming, Aarhus. Springer LNCS
140, 265-281 (1982).



[10] J. Guttag and J. Horning. Report on the Larch shared language. Science
of Computer Programming 6(2):103-134 (1986).

[11] R. Harper. Introduction to Standard ML (revised edition). Report ECS-
LFCS-86-14, Univ. of Edinburgh (1989).

[12] G. Kahn. Natural semantics. In: Programming of Future Genera-
tion Computers (K. Fuchi and M. Nivat, eds.), 237-258. North-Holland
(1988).

[13] S. Kahrs. Mistakes and ambiguities in the definition of Standard ML. Re-
port ECS-LFCS-93-257, Univ. of Edinburgh (1993).

[14] S. Kahrs, D. Sannella and A. Tarlecki. The definition of Extended ML.
Draft report, Univ. of Edinburgh (1993).

[15] E. Kazmierczak. Modularizing the specification of a small database system
in Extended ML. Formal Aspects of Computer Science 4(1):100-142
(1992).

[16] E. Kazmierczak. Model theory for Extended ML. Draft report, Univ. of
Edinburgh (1992).

[17] B. Krieg-Briickner. PROgram development by SPECification and TRAns-
formation. Technique et Science Informatiques (1990).

[18] P. Landin. The mechanical evaluation of expressions. Computer Journal

6:308-320 (1964).

[19] D.C. Luckham, F.W. von Henke, B. Krieg-Briickner and O. Owe. Anna,
a Language for Annotating Ada Programs: Reference Manual.

Springer LNCS 260 (1987).

[20] D. MacQueen. Modules for Standard ML. In: Report ECS-LFCS-86-2,
Univ. of Edinburgh (1986).

[21] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press
(1991).

[22] R. Milner, M. Tofte and R. Harper. The Definition of Standard ML.
MIT Press (1990).

[23] J. Mitchell. Type systems for programming languages. In Handbook of
Theoretical Computer Science, Vol. B (J. van Leeuwen, ed.). North
Holland (1990).

[24] L. Paulson. ML for the Working Programmer. Cambridge Univ. Press
(1991).

[25] G.Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Aarhus University (1981).

[26] H. Reichel. Behavioural equivalence: a unifying concept for initial and
final specification methods. Proc. 3rd Hungarian Computer Science

Conference, 27-39 (1981).



[27]

[37]

[38]

[39]

D. Sannella. Formal program development in Extended ML for the work-
ing programmer. Proc. 3rd BCS/FACS Workshop on Refinement,
Hursley Park. Springer Workshops in Computing, 99-130 (1991).

D. Sannella. Static and logical correctness conditions in formal develop-
ment of modular programs. Draft report, Univ. of Edinburgh (1993).

D. Sannella and F. da Silva. Case studies in Extended ML. Draft report,
Univ. of Edinburgh (1993).

D. Sannella, S. Sokolowski and A. Tarlecki. Toward formal development of
programs from algebraic specifications: parameterisation revisited. Acta

Informatica 29:689-736 (1992).

D. Sannella and A. Tarlecki. Extended ML: an institution-independent
framework for formal program development. Proc. Workshop on Cat-

egory Theory and Computer Programming, Guildford. Springer
LNCS 240, 364-389 (1986).

D. Sannella and A. Tarlecki. On observational equivalence and algebraic
specification. Journal of Computer and System Sciences 34:150-178

(1987).

D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementations revisited. Acta Informatica

25:233-281 (1988).

D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Proc. Joint Conf. on Theory and Prac-
tice of Software Development, Barcelona. Springer LNCS 352, 375-389
(1989).

D. Sannella and A. Tarlecki. Extended ML: past, present and future. Proc.
7th Workshop on Specification of Abstract Data Types, Wuster-
hausen. Springer LNCS 534, 297-322 (1991).

D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: model-theoretic foundations. Proc. Intl. Col-
loq. on Automata, Languages and Programming, Vienna. Springer

LNCS 623, 656-671 (1992).

O. Schoett. Data Abstraction and the Correctness of Modular Program-
ming. Ph.D. thesis; Report CST-42-87, Univ. of Edinburgh (1987).

M. Tofte. Operational Semantics and Polymorphic Type Inference. Ph.D.
thesis; Report CST-52-88, Univ. of Edinburgh (1988).

J. Wing, E. Rollins and A. Zaremski. Thoughts on a Larch/ML and a new
application for LP. Report CMU-CS-92-135, Carnegie Mellon University
(1992).



