
The Semantics of Extended ML:A Gentle IntroductionStefan Kahrs�Laboratory for Foundations of Computer Science, Edinburgh UniversityEdinburgh, ScotlandDonald SannellayLaboratory for Foundations of Computer Science, Edinburgh UniversityEdinburgh, ScotlandAndrzej TarleckizInstitute of Informatics, Warsaw University, andInstitute of Computer Science, Polish Academy of Sciences,Warsaw, PolandAbstractExtended ML (EML) is a framework for the formal development of modu-lar Standard ML (SML) software systems. Development commences witha speci�cation of the behaviour required and proceeds via a sequence ofpartial solutions until a complete solution, an executable SML program,is obtained. All stages in this development process are expressed in theEML speci�cation language, an extension of SML with axioms for describ-ing properties of module components.This is a report on the current state of the semantics of the EMLspeci�cation language as it nears completion. EML is unusual in beingbuilt around a \real" programming language having a formal semantics.Interesting and complex problems arise both from the nature of this re-lationship and from interactions between the features of the language.1 IntroductionExtended ML (EML) is a framework for the formal development of modularStandard ML (SML) software systems which are correct with respect to a spe-ci�cation of their required behaviour. The long-term goal of work on EML is toprovide a practical framework for formal development together with an integ-rated suite of computer-based speci�cation and development support tools andcomplete mathematical foundations to substantiate claims of correctness. Ashort-term subgoal is to complete the formal de�nition of the semantics of theEML speci�cation language [14], in order to provide a basis for further research�This research was supported by SERC grants GR/E78463, GR/H73103 and GR/J07303.yThis research was supported by SERC grants GR/E78463, GR/J07693, a SERC Ad-vanced Fellowship, and the COMPASS Basic Research working group.zThis research was supported by SERC grants GR/H76739 and GR/E78463, an EC-funded COST fellowship, and KBN grant PB 1247/P3/93/04.

on foundations and tools. This paper is a report on the current state of thisde�nition as it nears completion.SML is a widely-used functional programming language. Apart from usefulfeatures it shares with a number of similar languages (a
exible type systemwith polymorphic types, function de�nition by patterns, etc.) it has two spe-cial characteristics which make it very well-suited to the enterprise mentionedabove. First, it provides state-of-the-art modularisation facilities for buildinglarge software systems by de�ning and combining self-contained generic pro-gram units. Such facilities seem to be a prerequisite for the use of formaldevelopment methods on examples of signi�cant size. The main emphasis ofEML is on development \in the large", relying heavily on linguistic support fromthe SML module facilities and incorporating ideas from foundational work onspeci�cation and formal development of modular systems [37], [33], [30], [36].Second, the syntax and semantics of SML is formally de�ned [22]. This makesit possible (at least in principle) to reason formally about the behaviour of SMLprograms, as required for proofs of correctness with respect to a speci�cation ofrequirements. The size and complexity of the semantics is such that fully formaluse of it, e.g. to prove correctness of an optimizing transformation, would bequite a di�cult task. Nevertheless, the semantics is small and elegant enoughthat such use seems not to be completely out of the question.The idea of building a fully-
edged speci�cation and formal developmentframework around a \real" programming language seems to be novel to EML.Somewhat related is work on the Anna language for annotating Ada programswith assertions concerning their intended behaviour [19]; but this is not inten-ded for formal development of software from speci�cations (although see [17]),and as far as we are aware there is no formal semantics of Anna nor any in-tention to formally relate Anna to the semantics of Ada [2]. Similar commentsapply to Larch [10], which has been used in connection with various program-ming languages. Attempts to apply Larch to the speci�cation of SML moduleshave recently begun [39], but this work is still at an early stage and many prob-lems remain to be solved. Real programming languages are inevitably complex,and any serious attempt to give a formal treatment of such a language and adevelopment framework based on it is an ambitious goal bringing a host ofproblems which do not arise when considering toy programming languages orwhen considering speci�cation and formal development in abstract terms.Another novelty of this work is in its treatment of the speci�cation of a num-ber of \di�cult" facets of computation, all of which arise in SML. These includepolymorphic types, higher-order functions, exceptions and non-termination. Inspite of the fact that these are common features of modern programming lan-guages, they are rarely addressed by approaches to speci�cation. There havebeen attempts to treat each of these features in isolation, but not in combina-tion with one another. It is precisely in the interaction between such featuresthat some of the most di�cult issues arise.The structure of the paper is as follows. Section 2 gives a short introductionto the main features of SML and EML in order to set the scene for the rest ofthe paper. We have resisted the temptation to dwell at length on aspects ofEML which are not directly relevant to the topic at hand; for more information,see the papers cited in Section 2. Section 3 discusses the way in which EMLrelates to and extends SML. Section 4 is an overview of the semantics of EMLwhich attempts to give the reader an overall impression of its structure without

the need to study the details of [14], while touching on the ideas behind manyof the most interesting and important points. Section 5 concludes with someremarks about the trials and tribulations involved in writing such a semantics.2 An overview of EMLThe main aim of this section is to provide enough background concerning EMLto make the paper self-contained. The �rst subsection is a summary of thefeatures of the SML programming language, which is the target of EML formalprogram development and on which EML is based. The next subsection givesan overview of the EML language and formal development framework. A smallexample is given to demonstrate some of the features of the language, and a�nal subsection summarizes the main features of the logic used to write axioms.2.1 SMLThe following is necessarily very brief. Readers with no prior knowledge ofSML or related languages (Hope, Haskell, etc.) will probably �nd it necessaryto consult e.g. [11] or [24].SML consists of two sub-languages: the core language and the module lan-guage. The core language provides constructs for programming \in the small"by de�ning a collection of types and values (including functions) of those types.The module language provides constructs for programming \in the large" byde�ning and combining a number of self-contained program units coded usingthe core. To a large extent, these sub-languages can be understood separatelyfrom each other, both because the dependency is only one-way (modules con-tain core constructs, but not vice versa) and because the constructs availablein the module language are applicable to the organization of declarations ofany kind. SML is an interactive language in which top-level declarations aretypechecked, compiled and evaluated one at a time.The SML core language is a strongly typed functional programming lan-guage with a
exible type system including polymorphic types, disjoint union,product and (higher-order) function types, recursive types, and user-de�nedabstract and concrete types. Conceptually, all values in SML (except those ofcertain special built-in types, such as real and function types) are represen-ted as �nite ground terms built from uninterpreted constructors. A functionis de�ned by a sequence of equations, each of which speci�es the value of thefunction over some subset of the set of possible argument values. This subsetis described by a pattern (a term containing constructors and variables only,without repeated variables) on the left-hand side of the equation, which servesboth for case selection and variable binding. Certain types are designated bySML as equality types; roughly, these are types whose de�nitions do not in-volve abstract types or function types. The built-in equality function = hastype ''a * ''a -> bool; the type variable ''a can only be instantiated toequality types (in contrast to 'a which can be instantiated to any type), pre-venting values of non-equality types from being tested for equality. Exceptions(possibly carrying values) may be raised by built-in functions (e.g. division byzero) or by user code. Once raised, an exception propagates until it is trappedby a surrounding handler or reaches top level. Typed references are available

with dereferencing and assignment operations. Input/output is handled viastreams; input streams are associated with producers (e.g. a keyboard or a �le)and output streams are associated with consumers.The SML module language provides mechanisms that allow large SML pro-grams to be structured into self-contained program units with explicit inter-faces. Under this scheme, interfaces (signatures) and their implementations(structures) are de�ned separately. Structures contain de�nitions of types, val-ues and exceptions, and may also contain de�nitions of lower-level structures(substructures). Signatures may be attached to structures; this imposes a re-quirement for the structure to match that signature, meaning that the struc-ture must de�ne types, values, exceptions and substructures with the namesindicated by the signature, and the types of values and exceptions as well asthe signatures of substructures must correspond to those given in the signature.Functors are \parameterized" structures; the application of a functor to a struc-ture yields a structure. A functor has an input signature describing structuresto which it may be applied, and an output signature describing the structurewhich results from such an application. It is possible, and sometimes neces-sary to allow interaction between di�erent parts of a program, to declare thatcertain substructures (or just certain types) are identical or shared. Structuresand functors are referred to collectively as modules.Signatures serve both to impose constraints on the bodies of modules and torestrict the information which is made available externally about the compon-ents of module bodies. Roughly speaking, only the information that is explicitlyrecorded in the signature(s) of a module is available externally. (In fact, thisstatement is not accurate for SML, but it is accurate in the context of EML.See Section 3 for more on this point.) Such information hiding is vital to allowparts of a large software system to be developed and maintained independently.2.2 EMLEML is a vehicle for the formal development of programs from speci�cations bymeans of individually-veri�ed steps. EML is called a wide-spectrum language [4]since it allows all stages in the formal development process to be expressed ina single formalism, from the initial high-level speci�cation to the �nal programitself and including intermediate stages in which speci�cation and programare intermingled. The target of the formal development process is a modularprogram in SML, and thus (a large subset of) SML is an executable sub-languageof EML. Earlier stages in the development of such a program are incompletemodular programs in which some parts are only speci�ed by means of axiomsrather than de�ned in an executable fashion by means of SML code.Syntactically, the main di�erence between SML and EML is that EML per-mits axioms to be included in signatures and in module bodies. Includingaxioms in signatures allows properties to be speci�ed which are required tohold of any structure matching that signature. The general idea is similarto that of providing types of values in signatures in addition to their names;the di�erence is that types (and sharing constraints) can be checked mechan-ically, while checking that axioms are satis�ed requires the use of a theoremprover (and human ingenuity). One reason for including types of values in anSML signature is to provide enough information about the module it describesto enable subsequent code which refers to it to be typechecked and compiled

without making reference to the details of the code in the module body. Thisis essential for purposes of separate compilation. Similarly, a reason for includ-ing axioms in an EML signature is to provide enough information about themodule it describes to enable properties of such subsequent code to be provedwithout reference to the module body. This separation of an interface fromits implementation permits di�erent implementations (satisfying the axioms inthe interface) to be developed and used later without a�ecting the correctnessof the rest of the system, and enables implementations for di�erent modules tobe developed independently.Axioms in module bodies may be used to describe components for whichexecutable de�nitions (in the form of SML code) are not yet available. Syn-tactically, one gives a declaration containing the place-holder expression \?",followed by axioms referring to the unde�ned object. For example:val x:int = ?axiom x>7 andalso isprime xModule bodies containing axioms may be regarded as un�nished or incompleteabstract programs in which some decisions have already been taken but others,such as choice of algorithms, remain open. The intention is that at a laterstage in the development of the program, the question mark will be replacedby code that satis�es the axioms. In the �rst version of a module declaration,a question mark may be used as a place-holder for the entire module body.In EML, each structure comes equipped with a signature (this is optionalin SML) containing the information which is available externally concerningthe structure body. As in SML, the body is required to match this signature.In addition to the name/type matching required in SML, the body must becorrect: the axioms in the signature must be satis�ed by any model of thebody (that is, by any structure containing the code in the structure body andsatisfying any axioms it includes). Obviously, a proof is generally required toestablish correctness. Following ideas concerning the use of axioms to specifyencapsulated abstractions (see e.g. [26], [9], [32]), the axioms in the signatureneed not actually be satis�ed \literally": it is enough if they are satis�ed \upto behavioural equivalence". Brie
y, this means that for any model of thestructure, there must be some structure satisfying the axioms in the signaturefrom which the model cannot be distinguished by performing computations thatyield observable results (i.e. results of base types such as bool). Similar remarksapply to functor declarations, which must contain both an input signature (alsorequired in SML) and an output signature (optional in SML); in this case, allmodels of the functor body which extend \literal" models of the input signatureare required to satisfy the output signature up to behavioural equivalence.See Section 4.3 for some further details, and see [34] for more on the role ofbehavioural equivalence in the context of EML.Formal development of a system begins with an initial high-level speci�c-ation of the problem to be solved, in the form of an EML module declarationhaving a question mark in place of its body. If the module is parameterized(i.e., is a functor) the input signature speci�es the facilities (types, values,exceptions, and structures) to be taken as given, in addition to the built-insof SML. The output signature of the module speci�es the additional facilitiesrequired. These signatures will normally contain axioms. At later stages of de-velopment, this module declaration will be re�ned by providing it with a body

which is correct in the sense described above. This may contain axioms, andmay make reference to further structures or functors that are themselves notyet de�ned in an executable fashion. The development process is �nished onceall functor and structure bodies on which the original \goal" module dependsare complete, meaning that all question marks and axioms in module bodieshave been replaced by executable SML code. At this point, erasing all axiomsfrom signatures (or, much more usefully, regarding them as complete and form-ally checked documentation) yields an executable SML program. This is correctwith respect to the initial speci�cation since correctness is maintained by eachdevelopment step.1The EML formal development methodology de�nes a number of ways ofgradually re�ning an un�nished module declaration towards a complete andcorrect version. A common way to proceed is to decompose the problem intosimpler problems by specifying a number of new modules and de�ning the mod-ule at hand as a composition of these. The task of providing a body for eachof these new modules becomes a re�nement task in its own right which canbe tackled separately from the others. Such steps give rise to proof obliga-tions which must be proved in order to ensure that correctness is preserved;these proof obligations can be generated mechanically from the \before" and\after" versions of the module at hand. See [34], [35], [15] and [28] for furtherdetails, and see [34], [27] and [29] for examples of EML-style formal softwaredevelopment.2.3 An example in EMLThe example in Figure 1 illustrates some of the language features of EML. Itis an implementation of evaluation for a rewrite system, based on some simpleabstract properties one would expect for arbitrary rewrite systems, (enriched)�-calculi, etc. This takes the form of a functor, where properties required ofthe argument and properties of the result are speci�ed by EML axioms. Thefunctor itself is coded in the executable subset of EML, so this is an example ofwhat might emerge from a formal development which began with a speci�cationof the problem consisting of the same functor with its body replaced by theplace-holder \?".The idea of the example is as follows. Rewrite systems operate on someset of terms; each term is either a normal form (NF) or contains a redex thatcan be contracted. A (one-step) strategy picks a redex in a term and returnsthe redex together with the context of its occurrence in the term, given asa function. The functor Reduce provides a function eval which repeatedlycontracts redexes selected by the given strategy until a term in normal formis obtained. A copy of the argument structure L is included as a substructureT of the result in order to provide convenient access to the type of terms. Tinherits the signature of L (TERMSIG).The signature TERMSIG imposes certain requirements on the behaviour ofNF and strategy: the axiom forall t => (NF t) proper is true if the eval-uation of NF t neither fails to terminate nor raises an exception; for strategy1To be completely accurate, it must be mentioned that the compilation of the result-ing program is not guaranteed to terminate: EML copes gracefully with non-terminatingfunctions, as explained below, but not with non-terminating declarations. The guarantee ofcorrectness is subject to this proviso.

signature TERMSIG =sig type termval contract: term -> termval NF: term -> boolaxiom forall t => (NF t) properval strategy: term -> term * (term -> term)exception noredexaxiom forall t =>if NF t then (strategy t) raises noredexelse ((strategy t) proper andalsolet val (u,f) = strategy tin f u == t andalso(f (contract u)) properend)end;signature EVAL =sig structure T: TERMSIGval eval: T.term -> T.termaxiom forall t =>(eval t) terminates implies T.NF(eval t)end;functor Reduce (L: TERMSIG) :sig include EVAL; sharing L=T end =struct structure T = Lfun eval t =if L.NF t then telse let val (redex,context) = L.strategy tin eval (context (L.contract redex))endend; Figure 1: An example: evaluation for a rewrite system

there are even stronger conditions, for example that the redex created bystrategy can be properly contracted, and that strategy t raises an exceptionif and only if t is in normal form. Typical for EML is here the mixture of logicalconnectives and programming language constructs.The functor Reduce gives us an evaluation function eval, as speci�ed inthe \included" signature EVAL, for any rewrite system matching TERMSIG. Fromthe interface of TERMSIG and the implementation of eval we can show that itwill never raise an exception (although it may fail to terminate). The sharingequation, an SML feature, is needed to ensure that the type T.term used inthe type of eval is the same as the type L.term provided by the argument ofReduce, so evaluation is for the kind of terms de�ned by the argument and notfor some other kind of terms. It also makes eval applicable to terms otherthan the ones that can be built using structure T only. This is quite desirable,as structure T contains no functions for building terms, except by contractionof other terms; normally, the argument of Reduce (or structures on which itdepends) will contain such functions, in addition to those required by TERMSIG.2.4 The language of EML axiomsThe syntax used to write axioms in the above example should have been suf-�ciently self-explanatory to make the intended meaning clear. However, thelogical system used is not a conventional one; it is necessarily much more com-plex than (for example) many-sorted equational logic or �rst-order predicatelogic because of the need to deal with all the features of SML programs. Forexample, consider an equation asserting that the values of two expressions, expand exp 0, are equal. What if either exp or exp 0 (or both) fail to terminate?What if one raises an exception (or in the terminology of the SML de�nition,evaluates to a packet)? What if exp and exp 0 are of a function type? And in thecase of universally and existentially quanti�ed formulae, what is the meaningof quanti�cation over a polymorphic type?The syntax of EML axioms is designed to be a natural extension of thesyntax of EML boolean expressions, with the meaning of the new constructschosen to be as simple and natural as possible under the circumstances. Wehave attempted to maximize expressive power, and to avoid making certaincommon speci�cation idioms unduly awkward to write.Any expression of type bool may be used as an axiom in EML. Such useamounts to an assertion that the expression evaluates2 to the value true ratherthan evaluating to the value false, or evaluating to a packet, or failing toterminate. Hence, the basic connectives are those of SML: andalso, orelse,and not, with the additional connective implies. The �rst two of these havethe same \sequential" interpretation as they do in SML (and analogously forimplies), so for example the expression true orelse exp evaluates to trueeven if exp produces a packet or fails to terminate.A \logical" equality predicate == complements the \computational" equality= provided by SML. The expression exp==exp0 is well-formed whenever exp andexp 0 have the same type, in contrast to exp=exp 0 which requires this to be anequality type. Logical equality is extensional equality in \logical-relation style"2Actually, veri�cates | see Section 4.3.

[23] on function types, meaning that if f; f 0 are both of type � ! � 0 then f==f 0is de�ned asforall (x:�,x':�) => x==x' implies (f x)==(f 0 x')| see below for the meaning of quanti�cation. It is also \extensional" forpackets and non-termination: exp==exp is true even if exp produces a packetor fails to terminate. For any expression exp, additional atomic formulae are:exp terminates, which is true if exp produces a normal value or a packet,and false if it fails to terminate;exp proper, which is true if exp produces a normal value, and false if itproduces a packet or fails to terminate; andexp raises excon,3 which is true if exp raises the exception excon and falseif it produces a normal value or raises a di�erent exception. If exp failsto terminate then so does exp raises excon.Universal and existential quanti�cation is provided over all SML types; func-tion types are included here so this gives a form of higher-order logic, althoughsince quanti�cation ranges over values that are expressible in SML, it is not truehigher-order quanti�cation. The meaning of quanti�cation over polymorphictypes is a tricky issue. An easy choice would be to require explicit quanti�ca-tion of type variables, as in System F [8], but this seems contrary to the spiritof SML in which all such quanti�cation is implicit. The best balance seems tobe struck by viewing a quanti�ed formula as having a de�ned value only if ithas that value for all instances (including polymorphic instances) of the type ofthe bound variable. More explicitly, this amounts to the following four cases:� In order for forall x:� => exp to be true, the expression exp[x := v]must be true for every expressible value v of every instance of � .� In order for exists x:� => exp to be true, there must be an expressiblevalue v of type � such that exp[x := v] is true. (Note that this is strongerthan requiring such a v of some instance of � .)� In order for forall x:� => exp to be false, there must be an expressiblevalue v of type � such that exp[x := v] is false.� In order for exists x:� => exp to be false, the expression exp[x := v]must be false for every expressible value v of every instance of � .Note that the third and fourth cases above are obtained from the second and�rst cases respectively using the de Morgan laws (8x:' = :9x::', and 9x:' =:8x::'). The value of a quanti�ed expression is left unde�ned if none of theabove applies, so for example forall x:� => exp has no value if exp[x := v]is false for some expressible value v of some instance of � , but there is noexpressible value v of type � itself such that exp[x := v] is false.An example of a formula involving polymorphic quanti�cation that is truefor some type instances but false for others is the following:3In fact, this is a special case of a slightly more general form.

forall (x,xs) => [x] @ xs == xs @ [x]where @ is concatenation of lists and [x] is a singleton list containing x. Onemight expect the value of this formula to be false, since this is what happenswhen (for example) x:int and xs:int list. But when x:unit (the typehaving just one value, written ()) and xs:unit list, the value of the formulais true since lists of type unit list are uniquely determined by their length.As a consequence, this formula has no value whatsoever. Fortunately, such oddexamples occur rarely. A positive example of a polymorphic formula that holdsis forall xs => exists ys => xs @ ys == ys @ xsbecause for any list type, the empty list has the property required for ys. Thetype quanti�cation is left implicit.A similar but slightly di�erent semantics for quanti�ers is considered byKazmierczak in [16].Datatype declarations in SML can be seen as carrying logical content. Forexample, consider the declaration:datatype t = c1 | c2 of intApart from declaring a new type t which is di�erent from all previously-de�nedtypes, a constant value c1:t and a function value c2:int->t, this makes thefollowing assertions (the terminology is due to [5]):\No junk": The only values of type t are c1 and (c2 n) for integer values n:forall x:t => (x == c1 orelse exists n:int => x == c2 n)\No confusion": The values produced by di�erent constructors are di�erent,and each constructor function is injective and total:forall n:int => not(c1 == c2 n)forall (n:int,n':int) => (c2 n == c2 n' implies n == n')forall n:int => c2 n proper\No junk" corresponds to an induction principle for the new datatype; in thecase of recursive datatype declarations, this is necessarily a higher-order for-mula. Both conditions are necessary for the use of constructors in patterns.EML provides a new form of declaration which has syntax similar to that ofdatatype declarations, but which only asserts \no junk":spantype ''a set = empty | singleton of ''a| union of ''a set * ''a setHere we are specifying that all sets are either empty, or singletons, or unions ofsuch sets, but we are not saying (for example) whether union is commutative ornot; if such a property is required, an axiom can be added to impose it. In thispaper, the term \axiom" refers to spantypes (although they are syntacticallyquite di�erent from axioms) as well as to ordinary axioms.

3 The relationship between SML and EMLThe EML language was very deliberately designed as a language for specifyingmodular SML software systems. In contrast to much related work, the intentionwas not to create a completely general-purpose speci�cation language. One ofthe main guiding principles of the design was to make EML a minimal exten-sion to SML. The addition of axioms was clearly necessary to enable moduleproperties to be speci�ed, but we have attempted to keep the syntax of axiomssimple and have resisted the temptation to add features or to repair minordefects in the design of SML. For example, EML does not include paramet-erised speci�cations (functions from signatures to signatures), despite the factthat these are commonly provided by other speci�cation languages. We havenot yet seen a compelling need to add parameterised speci�cations to EML.In fact, it has become clear to us [30] that what is really important in formalsoftware development is the ability to specify parameterised program modules(i.e. SML functors), and EML already has this facility: one uses an EML functordeclaration having a question mark in place of a body.There are at least four senses in which EML is a minimal extension of SML.First, the syntax of EML minimally extends the syntax of SML. As alreadystated, the main syntactic extension is the addition of axioms. Second, the se-mantics of EML is based directly on the semantics of SML, as will be explainedin detail in the next section. This is to ensure consistency with SML \by con-struction" | the fact that signi�cant portions of the two semantic de�nitionsare identical would make a proof of consistency considerably simpler than oth-erwise. Our initial attempts to give a semantics of EML took quite a di�erentand much more \algebraic" route [31]; we have temporarily abandoned thisapproach, in part because of the di�culty of ensuring consistency with theexisting de�nition of SML (but see [16]). A third and related point is thatthe extension to the semantics of SML is such that the semantics of the SMLfragment of EML is preserved, making EML a \conservative" extension of SML.This is vital to ensure that the end-product of EML formal development can becompiled and run using existing implementations of SML without modi�cation.Finally, we have attempted to preserve the spirit of SML in the extensions in-sofar as this is possible. This is a necessarily vague statement, but there wasalready an example of this in Section 2.4 where we eschew the use of explicitquanti�cation of type variables in axioms because such quanti�cation is alwaysleft implicit in SML.In spite of the above, EML is not quite an extension of SML; it is an ex-tension of a large subset of SML. This subset is obtained by excluding the im-perative features of SML (references, assignment, and so-called imperative typevariables) and input/output, by requiring structure declarations and functordeclarations to include explicit signatures, and by adopting a more restrictiveview of the role of signatures as interfaces. The �rst restriction is made forthe sake of simplicity, and for philosophical reasons which will be familiar toadvocates of functional programming [3]. The second restriction seems appro-priate in a speci�cation and formal development framework in which signaturesplay a central role, in contrast to a programming language where the need tosupply explicit signatures may be viewed as an unnecessary inconvenience. Theonly structure declarations that are exempt from this restriction are those inwhich the signature is already available from the structure used in the body

of the declaration, as in the case of the structure declaration in the body ofReduce in Figure 1. The �nal restriction is to enforce the principle that onlythe information which is explicitly recorded in the signature(s) of a module isavailable externally, as mentioned in Section 2.1. This is necessary since theSML module system does not otherwise fully insulate the clients of a modulefrom choices in the representation of types in the body, and therefore does notproperly support separate development of the components of a modular system.See [34] for more on the methodological technicalities behind this restriction.4None of these changes makes EML incompatible with SML, as any program inthe SML fragment of EML (which therefore satis�es these restrictions) is a well-formed SML program. However, certain SML programs cannot be developedusing EML.There is one additional restriction imposed by EML which causes certainpathological but well-formed SML programs to be regarded as incorrect. Thisis demonstrated by the following example:signature SIG =sig type tlocal val x:t in endend;structure S:SIG =structdatatype t = foo of tendThis is well-formed according to SML but fails to veri�cate in EML because S.tis a type with no values! (Recall that values in SML are represented as �niteground terms built from constructors; since the only constructor for type S.t isS.foo:S.t->S.t, there are no �nite ground terms of type S.t.) The point hereis that local val x:t in end in SIG imposes a logical constraint, namely thatt has at least one value, which is disregarded by SML but cannot be correctlydisregarded by EML. Apart from this minor restriction and the restrictionsmentioned above, EML does not limit the freedom of the SML programmer inthe sense that well-formed SML programs satisfying these restrictions (even\ugly" ones) are also well-formed according to EML. Of course, it is clear thatit will be easier to reason about the correctness of some SML programs thanothers, in EML or any other framework.Compatibility between SML and EML is a more delicate matter than simplyinsuring compatibility for the SML fragment of EML. For example, the dynamicsemantics of EML (see Section 4.2), which de�nes the result of evaluating EML\code" insofar as this is possible, raises the exception NoCode when producinga result would involve evaluating a speci�cation construct such as a quanti�eror question mark. Re�nement steps involve the replacement of question marksby expressions. This would lead one to expect that successive re�nement stepsshould cause the dynamic semantics to raise NoCode exceptions less frequently,4The original design of the SML module system [20] proposed an additional kind of struc-ture, a so-called abstraction, for which the stricter interpretation of signatures taken in EMLwould apply. This was unfortunately not included in SML as de�ned in [22] although someSML implementations provide it as a non-standard extension [1].

without a�ecting the \ordinary" values produced. In order to achieve this, itis essential to de�ne NoCode as a special exception which cannot be trappedby any surrounding handler. Consider the following (contrived) re�nementexample:val x = (? handle => 2) ���> val x = (1 handle => 2)In SML, exp handle => 2 evaluates to 2 if exp raises any exception. Ifthis were the case in EML, then the above re�nement would change the result ofevaluating x from 2 to 1. By treating NoCode as a special non-trappable excep-tion (which involves a change to the dynamic semantics of the SML fragmentof EML!) the result changes from [NoCode] to 1, as desired.By way of disclaimer, it should be noted that the assertions above con-cerning such matters as compatibility between the semantics of SML and EMLshould be formally regarded as conjectures which we strongly believe to betrue but which have not yet been formally proved; the same goes for similarassertions in the remainder of the paper.4 An Overview of the EML semanticsAs mentioned earlier, one of the most important features of SML is that ithas a fully formal de�nition (modulo some minor faults [13]). Not only is itssyntax formally de�ned, which is quite common, but also the meaning of SMLprograms is determined unambiguously by a formal mathematical semantics[22], [21]. This is given in the form of so-called natural semantics [12] (orstructural operational semantics [25]) via deduction rules which determine ameaning for each SML phrase. We will present a number of such rules below,hopefully giving the reader the
avour of the entire semantics.The semantics of SML consists of some two hundred rules, grouped to re
ectboth the structure of the language and the envisaged phases of program inter-pretation. Thus, on one hand, the semantics of SML divides into the semanticsfor the core layer of the language and the semantics for its module system.Then, the semantics for the core and the semantics for modules are split intotwo parts: the static semantics, which describes the type-checking phase ofprogram interpretation, and the dynamic semantics, which describes the actualevaluation of programs. In addition, the derived forms of the language aredescribed by translation to phrases of the bare language.The dependencies between various parts of the semantics are kept to aminimum, to facilitate understanding of the quite complex language de�nition.As expected, the static semantics for modules relies on the static semanticsfor the core. Similarly for the dynamic semantics: the dynamic semantics formodules relies on the dynamic semantics for the core. However, no part of thesemantics for the core depends on the semantics for modules, and the staticsemantics and the dynamic semantics are independent5. All the parts are joinedat the top level, where the overall semantics for SML programs involves bothtype-checking (the static semantics) and evaluation (the dynamic semantics).5Although this statement is technically accurate, a successful \run" of the static semanticsis needed to ensure that the dynamic semantics yields expected meanings. In this sense thedynamic semantics depends on the static semantics. A precise statement of this \soundness"property may be found in [38].

The semantics of EML inherits its basic form and structure from the se-mantics of SML. It is given as a natural semantics and consists of a number ofdeduction rules grouped to re
ect the structure of the language and the variousaspects of the interpretation of EML phrases. As in the SML semantics, thesemantics for EML core and modules are given separately, each of them incor-porating static semantics and dynamic semantics. The meaning of the derivedforms of EML is given by translation to the bare language | the descriptionof this translation is considerably more detailed than the corresponding partof the SML semantics, since we have decided to capture formally all the tech-nicalities, whereas the de�nition of SML relies on a somewhat informal Englishdescription.In addition we also have a veri�cation semantics for EML, again split into theveri�cation semantics for the core and for modules. In a way, the veri�cationsemantics for EML modules is the essence of Extended ML. It is here that thecorrectness of modules w.r.t. their interfaces is formally de�ned. We consider a(well-typed) EML program to be correct if the veri�cation semantics producesa meaning for it. If the veri�cation semantics fails for this program, that is, noveri�cation meaning for the program may be derived, the program is consideredincorrect. Incorrect programs may still be \run" (according to their dynamicsemantics) | but the results are not guaranteed to meet the requirementsexpressed in the module interfaces.The dependencies between the various parts of the EML semantics are some-what more complicated than in SML. As in SML, the semantics for modulesdepends on the semantics for the core, while the semantics for the core doesnot depend on the semantics for modules. The static semantics and the dy-namic semantics are independent. However, the new part of the semantics, theveri�cation semantics, depends on both the static and the dynamic semantics.As explained in Section 2.4, the interpretation of axioms depends on typinginformation (for example, the type of the bound variable must be known tointerpret the meaning of a universally quanti�ed formula) | hence the de-pendency on the static semantics. The dependency on the dynamic semanticsresults from the need to interpret axioms describing evaluation properties ofexpressions (for example, stating that an expression terminates). We shouldhasten to add that neither the static nor the dynamic semantics depends onthe veri�cation semantics, as should be expected. Finally, as for SML, all theparts of the semantics are joined at the top level, where the overall semanticsof EML \programs" is given.In the rest of this section we present fundamental ideas important for eachpart of the semantics | see [14] for the complete semantics. We skim throughthe static and the dynamic semantics, as the issues involved there are muchthe same as in the semantics of SML | we hope, however, to give the
avourof these parts. More attention is paid to the veri�cation semantics, as this isthe really new (and most interesting) part of EML.4.1 Static semanticsThe static semantics of EML describes the process of static elaboration of EMLphrases. This includes, for example, checking that all the objects used havebeen declared in the current environment and, most signi�cantly, that phrasesare well-typed.

Perhaps most typically, the rules of the static semantics for expressionsallow one to derive judgements of the form C ` exp) � . This is to be read: inthe context C, the expression exp can elaborate to the type � (or exp can havetype �). Here, contexts are triples, where the most essential component is astatic environment storing typing information about the objects declared in thecurrent environment. We have C ` [1]) int list and C ` []) int list(for any6 context C). Note, however, that we also have C ` []) � list,where � list is the type of lists over arbitrary type �. The polymorphicgeneralisation of this type is written as 8�: � list. It is formed when anexpression of type � list is bound to an identi�er (provided � is not �xed bythe context). 8�: � list may be instantiated to any type of the form � list.Declarations are slightly more complicated: the static semantics elaboratesa declaration to a static environment, containing typing information aboutthe objects introduced by the declaration. The corresponding judgements areof the form C ` dec) E, and for example we have C ` val a = 5)fa 7! intg. Examples involving function declarations are no more complicated:we have C ` val f = fn x => [x]) ff 7! int!int listg, as well as C `val f = fn x => [x]) ff 7! 8�: �!� listg.The judgements mentioned above may be formally derived using the rules ofthe static semantics. A typical example of such a rule, involving the elaborationof both declarations and expressions, is the following rule for expressions withlocal declarations (this is a simpli�ed version of the rule!):C ` dec) E C �E ` exp) �C ` let dec in exp end) �This is to be read: if in the context C the declaration dec elaborates to the staticenvironment E and in the context C extended by the static environment E theexpression exp elaborates to the type � , then in the context C the expressionlet dec in exp end elaborates to the type � . Notice that the result of theelaboration of dec does not appear in the overall result. For example, usingthis rule we can derive C ` let val f = fn x => [x] in f 5 end) int list(for any context C).The static semantics for modules proceeds in much the same way as thatfor the core, but the semantic values built are more complex. For example,structure expressions elaborate to static environments, which store typing in-formation about the objects declared within the structure, together with aunique name attached to the structure to keep track of sharing. The corres-ponding judgements have the form B ` strexp) (m;E), where B is a staticbasis, containing a context and a set N of structure names, like m, used so far.Here is a typical rule, for the encapsulation of a structure-level declaration ofobjects to form a new structure:B ` strdec) E m =2 (N of B) [namesEB ` struct strdec end) (m;E)The hints above on the static semantics apply to SML as well as to EML.However, as mentioned before, there are some di�erences. For example (cf.6We tacitly assume that contexts, environments, etc., used in the small running examplesthroughout this section map the built-in type constructors and values of EML to their expec-ted meanings, as described in the initial basis for SML, cf. [22].

Section 3) we have designed typing for EML modules to be stricter than forSML, and this change is properly re
ected by the static semantics for EMLmodules. Let us consider a simple structure declaration:structure S: sig type t; val c:t end =struct type t = int; val c = 17 endIn SML, the signature constraint in this particular example has no e�ect : thestatic environment assigned to the structure identi�er S maps t and c to int. Asignature constraint in SML, if present, is used only to check that the structurematches the signature and to hide auxiliary structure components. In EML,signature constraints have an additional purpose: they also hide informationabout structure components | only the information provided in the signaturecan be exploited when using the structure. In particular, in the above example,the EML static semantics binds S to a static environment which maps t and cto a new, otherwise unknown type. Consequently, in the context of the abovestructure binding, in EML we cannot form expressions like S.c+2 | this isnot well-typed in EML (but it is well-typed in SML). This behaviour of EMLis compatible with SML in the sense that every successful elaboration in EMLwill also succeed in SML.Another di�erence is that in EML we have a new part of the semantics,the veri�cation semantics, which relies on the type information gathered dur-ing static elaboration. We need some mechanism to export this informa-tion from the static to the veri�cation semantics of EML, also covering casesin which the intermediate types for some parts of EML phrases do not ap-pear in the overall result, as for example the type of f in the elaboration oflet val f = fn x => [x] in f 5 end, which we considered earlier. This is doneby requiring that all the types used in a static elaboration of a phrase are ac-cumulated in an additional component of the result of elaboration: a tree oftype guesses. One can think of this as an annotation of the entire parse treefor the phrase with results of the static analysis. The presence of type guessessomewhat complicates both the form of judgements and the rules of the staticsemantics. For instance, the above rule for expressions with local declarationsin fact looks as follows7:C ` dec) E;
 C � E ` exp) �;
0 tynames � � T of CC ` let dec in exp end) �;
 �
0Here, the tree of type guesses
 accumulates the types used in the elaboration ofdec to the static environment E in the context C,
0 accumulates the types usedin the elaboration of exp to the type � in the context C �E, and consequently
 �
0 accumulates the types used in the elaboration of let dec in exp end tothe type � in the context C.An additional problem is that the static semantics may \choose" di�er-ent types for some parts of a phrase without a�ecting the overall result (thedi�erences would be visible in the tree of intermediate type guesses though).7The third premise, which requires that the type of exp does not use any new type namesnot mentioned in the original context, is not present in the corresponding rule of the SMLde�nition. The type system is unsound without this requirement, because type names intro-duced by di�erent let expressions can accidentally become equal. This was an oversight inthe de�nition of SML [22] which was not �xed in [21].

As mentioned above, the type of fn x => [x] may be either int! int listor �!� list (among others). Moreover, since f 5 elaborates to int listboth in the context assigning int!int list to f and in the context assign-ing 8�: �!� list to f, the elaboration of let val f = fn x => [x] in f 5 endmay proceed either via the judgement C ` val f = fn x => [x]) ff 7!int!int listg, or via C ` val f = fn x => [x]) ff 7! 8�: �!� listg,in each case yielding C ` let val f = fn x => [x] in f 5 end) int list, butwith di�erent intermediate type guesses. The type chosen for f may in
uencethe result of the veri�cation semantics (well, not in this trivial case, but forexample if f was involved in an axiom like forall (x; y) => f x = f y, whichunexpectedly happens to be true if f is typed as unit! unit list | see Sec-tion 2.4). To resolve the potential ambiguity, we have to decide which of thepossible types should be \exported". The obvious choice is the most general,principal type [6] (8�: �!� list for f here), and so an appropriate principal-ity requirement is imposed on type guesses, much as in the SML static semanticsfor modules the principality requirement is imposed on signatures. The exist-ence of principal types and signatures is a fundamental property of the SMLtype system (see [21] for a precise statement and proof) which is retained byEML.The requirement of principality is essentially an in�nitary condition whichstates that any type that can be used in the static elaboration of a phrase isan instance of the principal type the elaboration is required to choose. In thesemantics of SML it is imposed for example in the following rule:C of B ` dec) E E principal for dec in (C of B)B ` dec) Ewhich states that if a declaration dec elaborates as a core declaration to a staticenvironment E that is moreover principal for dec in the given context, then dec,as a structure-level declaration, elaborates to E (notice the crucial distinctionbetween the elaboration of dec as a core declaration and as a structure-leveldeclaration). In�nitary requirements of this kind, hidden behind somewhat in-formal (but precise enough) English descriptions, occur in a very few places inthe semantics of SML. They are, however, rather more common in the semanticsof EML; for example, they naturally arise in the semantics of quanti�ers or ex-tensional equality, see Section 2.4. We have decided to make such requirementsexplicit and formalise the use of in�nitary conditions via higher-order rules.For instance, the above SML rule may be expressed as follows:C of B ` dec) E C of B ` dec) E0E � E0B ` dec) EHere, the second premise is a rule, which is true as a premise if it is admissibleas a rule. The meta-variable E0 is scoped at this premise, making it universallyquanti�ed for the local rule. Thus, the premise requires each E0 to which decmay elaborate to be an instance of E. Consequently, the new rule means exactlythe same as its original version quoted above from the semantics of SML.Actually, the semantics of EML uses here yet a di�erent rule, which imposesthe principality requirement not just on the resulting static environment, but

on the entire elaboration as accumulated in the tree of type guesses:C of B ` dec) E;
 N = names
 nN of B C of B ` dec) E0;
0(N)
 �
0B ` dec) E;
The last premise of this rule requires that any tree of type guesses corres-ponding to an elaboration of dec in the given context may be obtained fromthe tree of type guesses
 by instantiating new type variables introduced inthe corresponding elaboration of dec. As explained above, this requirement,stronger than just principality of the resulting environment, is necessary forthe semantics of EML.Higher-order rules, which come with an additional scoping mechanism formeta-variables, considerably increase the expressive power of the formalism.They have to be used with care, as the formalism no longer guarantees that therules inductively de�ne all the true judgement of the semantics. In particular,\impredicative" dependencies between premises and conclusions in higher-orderrules must be avoided.4.2 Dynamic semanticsThe dynamic semantics of SML, as for any other programming language, is thekey part of its description. After all, the main reason for writing programs is inorder to evaluate them, and this is what the dynamic semantics describes. Onemight think, however, that a dynamic semantics for a program developmentframework like EML is somewhat pointless: the dynamic semantics for theprograms produced by formal development is provided by the de�nition ofSML, and can be used to evaluate them. One reason to nevertheless providea separate dynamic semantics for EML is that the veri�cation semantics, themain part of the EML semantics, relies on the dynamic semantics, for exampleto determine the value of the terminates predicate | hence, the dynamicsemantics is needed here for the sake of completeness of the formal de�nition ofEML. Another important reason is that we want to formally de�ne a basis forearly practical experiments with incomplete programs. EML programs, eventhose which are incomplete and contain speci�cation constructs, are viewed as\partially executable". The idea is that any such program should be executableinsofar as this is possible, and that evaluation should proceed as in SML for theparts which contain only SML code. The dynamic semantics of EML formalisesthis.The dynamic semantics describes the evaluation of language phrases. Inparticular, for expressions, the dynamic semantics allows one to derive judge-ments of the form8 E ` exp) v, stating that in the (dynamic) environment E,the expression exp evaluates9 to the value v, where environments store the val-ues of objects currently de�ned. For example, we have fa 7! 27g ` a*37) 999.Environments are built by declarations, with corresponding judgements of theform E ` dec) E0 expressing the fact that in the environment E the declar-ation dec evaluates to the environment E0, which stores the values of objects8This is an approximation used here for presentation purposes only; more details will beprovided below.9E ` exp) v literally means that in E,exp can evaluate to v, but since evaluation isdeterministic, v is uniquely determined (if it exists).

declared in dec. For instance, we have E ` val a = 27) fa 7! 27g (for any en-vironment E). Formally, judgements are derived using the rules of the dynamicsemantics, with a typical example being the following rule for expressions withlocal declarations: E ` dec) E0 E + E0 ` exp) vE ` let dec in exp end) vUsing this rule, we can for example derive directly from the judgements abovethat E ` let val a = 27 in a * 37 end) 999.Evaluation of expressions involving functions is just as simple. One has toremember though that values of function types are not functions in the usualsense but rather closures, which result from the encapsulation of expressions de-�ning function bodies [18]. Closures are expanded when applied to arguments,and a rather elaborate scheme of self-expansion is used to model recursion (see[22] for details). The possibility of non-termination is re
ected by the factthat using the rules of the dynamic semantics one cannot derive values for allthe expressions of the language. For example, there is no value v for whichthe judgement E ` let fun loop() = loop() in loop() end) v can bederived, as expected.Another complication arises from the fact that SML (and hence EML) ex-pressions may raise exceptions. In this case, the result of evaluation is a packet(an exception name possibly together with a value). Consequently, the formaljudgements of the dynamic semantics for expressions may also have the formE ` exp) p (in the environment E the expression exp evaluates to the packetp). To express the two possibilities jointly, we write E ` exp) v=p, and usethe semantic rules to determine which form is derivable for a particular expres-sion. The possibility of a phrase raising an exception is often left implicit in thesemantic rules, relying on the so-called \exception convention" to ensure thatpackets are propagated by the rules of the dynamic semantics. Thus, the aboverule for expressions with local declarations induces implicitly, by the exceptionconvention, the following rule:E ` dec) E0 E + E0 ` exp) pE ` let dec in exp end) p(and similarly for packets arising from evaluation of dec). Of course, somesemantic rules must be exempted from the exception convention. Most notably,the rules that describe how exceptions may be trapped (how packets may behandled) deal with packets explicitly.Another aspect of dealing with exceptions is that the set of exception namesused is determined dynamically | a new exception name is generated each timean exception declaration is evaluated (this new exception name is used as themeaning of the exception identi�er declared). Consequently, the set of exceptionnames generated so far must be stored. In SML this set is one of the componentsof the current state | and since its other components are used to describe theimperative features of SML programs, this is the only component of states inthe dynamic semantics of EML (apart from the speci�cation
ag, see below).This means that states are necessary in EML, and the real form of semanticjudgements describing evaluation of expressions is s; E ` exp) v=p; s0 (inthe state s and the environment E, the expression exp evaluates to the value

v or packet p with the resulting state s0). The so-called \state convention"allows one to formulate many rules without mentioning states explicitly, usingthe order of premises to determine how states resulting from evaluation of onephrase are passed to another. Thus, in particular, the above rule for expressionswith local declarations expands to the following:s; E ` dec) E0; s0 s0; E + E0 ` exp) v; s00s; E ` let dec in exp end) v; s00The rules resulting from the use of the exception convention are a�ected sim-ilarly.The above remarks apply to SML as well as to EML | the overall ideas onhow programs are evaluated are the same. What is new in EML is that it con-tains some phrases which, intuitively, cannot be evaluated. Typical exampleshere are objects de�ned by declarations where no code is provided (the lackof code being represented by ?) or phrases containing constructs for buildingformulae, such as ==, terminates, or forall. Even though the dynamic se-mantics of EML simply skips axioms, these non-executable constructs may beencountered in evaluation of EML expressions. When this is the case, a specialexception NoCode is raised. NoCode cannot be handled explicitly in programs,as explained in Section 3. However, to enable execution of completed partsof EML programs, NoCode is trapped by the dynamic semantics of EML atthe declaration level and a special value Incomplete is used to mark its pres-ence in the evaluation of an object declaration. An attempt to use the valueIncomplete causes NoCode to be raised again. Here are a few examples:E ` (fn x : int => x - 1) == (fn x : int => x + 1)) [NoCode]E ` val x : int = ?) fx 7! Incompletegfx 7! Incompleteg ` x + 27) [NoCode]fx 7! Incomplete; y 7! Incompleteg ` 27 * 3) 81E ` let val x : int = ?; val y = x + 1; val a = 27 in a * 3 end) 81This yields a rather subtle di�erence between the dynamic semantics of EMLand both the dynamic semantics of SML (which simply does not deal withthese special new constructs of EML) and the veri�cation semantics of EML(where, in a sense, these constructs are properly dealt with). To make thisexplicit, we have added to EML states a new component, a speci�cation
ag,which is raised by the dynamic semantics whenever one of these special newconstructs is encountered. When the speci�cation
ag is not raised during theevaluation of a phrase, the results provided by the dynamic semantics of EMLcoincide with the results of the dynamic semantics of SML10 as well as with theresults of the veri�cation semantics for the core of EML (see Section 4.3 below).However, when the speci�cation
ag is raised, then the dynamic semantics ofSML cannot yield a result, and the veri�cation semantics of EML may yield adi�erent result (or fail to yield a result at all).The dynamic semantics for EML modules follows the dynamic semanticsfor SML modules in the same manner as the dynamic semantics for the EMLcore sketched above follows the dynamic semantics for the SML core. Thus, in10Somewhat informally, we mean here the semantics of SML literally applied to EMLphrases, hence in particular with no rules applicable for the special new constructs of EML.

particular, EML structure expressions evaluate to environments, but evaluationneed not terminate and may modify the state. Moreover, evaluation proceeds ina basis, a \richer" environment which apart from the values of objects stored asin the dynamic environment for the core may also store functors and signatures.The corresponding judgements have the form s; B ` strexp) E; s0. Thespeci�c EML constructs are treated as sketched above: axioms are disregarded,evaluation of non-executable expressions raises the NoCode exception and mayresult in the value Incomplete being stored in the environment. In particular,environments resulting from evaluation of EML structures may contain objectswith Incomplete stored as their value.4.3 Veri�cation semanticsAlthough we provide a dynamic semantics for EML, the main stress in a frame-work like EML is not so much on running programs (their dynamic evaluation)but rather on the veri�cation of correctness assertions that are present in EMLphrases. Consequently, we view the veri�cation semantics as the main partof the formal description of EML. The essence of this semantics is to checkwhether structures and functors match their signatures, which in particularmeans that they satisfy the axioms given in the signatures. This is describedby the veri�cation semantics for EML modules. Veri�cation of an EML phrasedoes not result in a binary statement saying whether the phrase is correct ornot. Some more detailed information about the contribution of the phrase tothe meaning of the whole program must be determined as well. We will say thatthe veri�cation semantics describes how EML phrases veri�cate11 to semanticobjects.One crucial idea of the EML methodology is that not only should developedmodules be correct w.r.t. their speci�cations, but also this should follow solelyfrom properties stated in module interfaces. Consequently, the veri�cation se-mantics must express the information hiding implicit in this EML understandingof the role of module interfaces. Incompleteness of information is represented bythe fact that EML module phrases veri�cate to sets of semantic objects, ratherthan just to a single semantic object as in the dynamic semantics. For instance,in a given basis, EML structure expressions veri�cate to sets of environments12,with the corresponding formal judgements having the form B ` strexp) E .Typically, in a complete EML structure expression (containing only SML code)without substructures, the resulting set of environments will contain exactlyone element: the environment determined by the SML code. But there areseveral reasons why this set might not be a singleton. Most obviously, theremay be unresolved choices within strexp. For example, a structure-level declar-ation like val a : int = ? results in a set of environments, each mapping a to adi�erent integer. Then, inconsistency within strexp may cause the resulting setto be empty. For example, an axiom like axiom a>5 andalso a<3 results in the11An obvious alternative is \verify", but this carries connotations we would like to avoid.12To be quite precise, we should point out that just as in the dynamic semantics of EMLit was necessary to consider environments together with state s, in the veri�cation semanticsof EML structure expressions veri�cate to sets of elements that are pairs of an environmentand a state. Fortunately, this does not bring much additional complication, and for the pur-poses of the presentation here we disregard states in the further discussion of the veri�cationsemantics.

empty set of environments. Notice, however, that this is di�erent from a failureto veri�cate at all! Finally, and perhaps most crucially for the methodologicalaspects of the veri�cation of EML programs, if strexp contains a substructureor uses another structure then the interface attached to it is used to �lter theinformation available, hiding the more detailed information given in its body.Consequently, the \veri�cation meaning" of the structure is the set of environ-ments matching its interface, rather than the particular environment given byits body.This last point is perhaps best explained by looking at the veri�cation of asingle structure declaration structure S : sigexp = strexp. To veri�cate this,one proceeds as follows (we leave the basis in which the veri�cation takes placeimplicit):1. First, veri�cate the signature expression sigexp, obtaining a veri�cationinterface �. This stores the names of objects speci�ed in the signaturetogether with static information about them. Moreover, axioms given inthe signature are stored in an appropriate form | see below for moredetails.2. Then, veri�cate the structure expression strexp, obtaining a set of envir-onments E as discussed above.3. The next step is where the real veri�cation takes place: check that eachenvironment E 2 E matches the interface �. This involves checkingwhether the axioms incorporated in � are satis�ed by E. Section 2.4presents the particular forms of axioms and their intended meaning, whichwe return to below.4. The result is the set of all environments binding S to an environment thatmatches the interface �. Notice that this \includes" but is in generallarger than the set E of environments obtained from the veri�cation ofstrexp.If any of the above steps fails (this may happen in step 2, for example if strexpcontains an incorrect substructure declaration, or in step 3, if the veri�cationrequirement formulated there does not hold) then the structure declarationstructure S : sigexp = strexp is incorrect and hence its veri�cation fails as well.This is di�erent, however, from the case in which the result is the empty set.The latter is possible when sigexp is inconsistent, and hence strexp (whichsatis�es it) is inconsistent as well.Here is (a simpli�ed version of) the rule which embodies the above veri�c-ation procedure:B ` sigexp) � B ` strexp) E for each E 2 E ; E matches �B ` structure S : sigexp = strexp) f fS 7! E0g j E0 matches �gA few comments are necessary here. First, we omit a formal de�nition of thecondition stating that an environment matches an interface. Second, for thepresentation here we have used an ad hoc (but self-explanatory) notation topresent a rule with an in�nite set of premises, where moreover the number ofthese depends on a semantic object mentioned in another premise. The formalsemantics uses a higher-order rule to express this more precisely. Finally, this is

a very simpli�ed version of a rule that does not actually appear in the semantics,but may be derived using more elementary rules for structure bindings and forstructure declarations.To take a simple example, consider the following structure declaration:structure S: sig val a: int; axiom a>0 andalso a<5 end =struct val a: int = ?; axiom a>1 andalso a<4 endThe veri�cation of the structure expression in this declaration results in the setof environments fE2; E3g where we write Ei for fa 7! ig. It is then checked thateach of these environments does indeed match the interface, and in particularsatis�es the axiom given there. The resulting set of environments assigning aninterpretation for the structure S contains not only fS 7! E2g and fS 7! E3g,but also fS 7! E1g and fS 7! E4g, since the set of environments matching theinterface is exactly fE1; E2; E3; E4g.If we modify the interface as follows:structure S: sig val a: int; axiom a>0 andlalso a<3 end =struct val a: int = ?; axiom a>1 andalso a<4 endthen the check that each of the environments resulting from the veri�cationof the structure expression (E2 and E3) matches the interface fails (since E3does not satisfy the modi�ed axiom). Thus, the veri�cation of this structuredeclaration fails. Intuitively, the structure declaration is incorrect.Summing up, the outcome of a successful veri�cation of a structure-leveldeclaration is a set of environments, each expressing a possible meaning of thedeclared objects. Further veri�cation proceeds for each of these possibilitiesseparately, as expressed by the following rule for sequential composition ofstructure-level declarations (again, a very simpli�ed version is used, with an adhoc notation to represent dependencies between objects):B ` strdec1) E1 for each E 2 E1; B �E ` strdec2) E2[E]B ` strdec1;strdec2) fE1 + E2 j E1 2 E1; E2 2 E2[E1]gThe above rule appropriately respects the dependencies between consecutivestructure declarations. Consider the following example:structure S: sig val a: bool end =struct val a: bool = ? end;structure T: sig val b: bool; axiom b = S.a end =struct val b: bool = S.a endThe veri�cation of these two declarations will result in the set of environmentscontaining fS 7! St; T 7! Ttg and fS 7! Sf ; T 7! Tfg, where St = fa 7! trueg,Tt = fb 7! trueg, Sf = fa 7! falseg and Tf = fb 7! falseg. However, theresulting set of environments does not contain for example fS 7! St; T 7! Tfgeven though the interface for S does not determine the value of a (nor does thestructure body in this case). The point is that the veri�cation of the declarationof T proceeds in the context of an arbitrary but �xed interpretation for S:a, foreach of the open possibilities separately.On the other hand, removing the explicit information about the dependencyfrom the interface for T changes the result:

structure S: sig val a: bool end =struct val a: bool = ? end;structure T': sig val b: bool end =struct val b: bool = S.a endNow, the result of the veri�cation of these two declarations will consist of fourenvironments: fS 7! St; T' 7! Ttg and fS 7! Sf ; T' 7! Tfg as before, but alsofS 7! St; T' 7! Tfg and fS 7! Sf ; T' 7! Ttg. Even though the veri�cationof the structure expression in the declaration of T' results in the set of onlytwo environments (as before), this information is �ltered out by the interfaceprovided in the binding. Consequently, a further declarationstructure U: sig val c: bool; axiom c = S.a end =struct val c: bool = T'.b endis incorrect and does not veri�cate.All the small examples above were extremely simple and an intuitive under-standing of EML axioms as presented in Section 2.4 was su�cient to interpretthem. In general, however, the situation may be much more complex, andmatching an EML structure against an EML signature involves a number ofrather subtle points. Perhaps the most obvious is the fact that the axioms inthe signature must be interpreted relative to the type instantiation determinedby the structure. For example, insignature A = sig type taxiom exists x:t => trueendthe axiom requires the type t to be non-empty and its satisfaction depends onthe particular realisation of t in the structure we match against A.Another important point is that signatures in both SML and EML allow theuse of hidden functions and hidden types. For the dynamic semantics hiddenobjects are of no concern, but they do matter in the veri�cation semantics,because their interpretation may in
uence the veri�cation of axioms. For ex-ample, a structure matching the following signaturesignature B = sig local val b: intaxiom b>0in val c: intaxiom c>b+1endendneed not include a value b (but has to include an integer value c, of course).However, to successfully veri�cate the axiom c>b+1, such a value b has to beguessed so that both the \hidden" axiom b>0 and then the \visible" axiomc>b+1 are satis�ed (in this example, this would not be possible unless thevalue of c is greater than 2). In a certain sense, the hidden declarations areexistentially quanti�ed (see [7]). To take appropriate care of such cases theaxioms in veri�cation interfaces are stored in a rather more elaborate form ofgeneralised axioms.The above presentation of the veri�cation of structure declarations extendsto the veri�cation of functor declarations in the obvious way.

In this sketch of the veri�cation semantics for EML modules we have entirelyomitted the issue of behavioural equivalence mentioned in Section 2.2. Unfortu-nately, we have not yet put the relevant technicalities into the current version ofthe semantics. However, we do not anticipate major problems with this. First,a concept of behavioural equivalence between EML structures (environments)will be needed. In any basis, this will be de�ned to require that any well-formedexpression (possibly built in the context of an additional declaration of a localstructure) of observable type has the same value in behaviourally equivalentstructures. The appropriate set of observable types to choose seems to be theset of all equality types (for the veri�cation of functor bodies, the types inparameter interfaces, which may be instantiated by equality types, should alsobe treated as observable). Then, the only further change in the veri�cationsemantics for structure declarations will be to replace the requirement that allenvironments resulting from the veri�cation of a structure expression matchthe structure interface by the requirement that each of these environments isbehaviourally equivalent to an environment which matches the interface.The veri�cation semantics for the EML core is quite similar to its dynamicsemantics. The basic ideas are the same, and for example expressions veri�cateto values or to packets (since exceptions may be raised), possibly changingthe current state. This is captured by judgements of the form s;M ` exp)v=p; s0, where M is a model, a richer context in which the EML core phrasesare veri�cated. Similarly for declarations, where judgements have the forms;M ` dec) E; s. In contrast to the veri�cation semantics for modules,the veri�cation of EML core phrases yields single objects, as in the dynamicsemantics. There are, however, some crucial di�erences.First, the speci�cation constructs added in EML, such as ==, terminates,forall, are now viewed as special operators with their own veri�cation rules(recall that an attempt to evaluate them in the dynamic semantics simplyraises NoCode, a special exception reserved for this purpose). The rules of theveri�cation semantics capture the meaning of these constructs as sketched inSection 2.4. It is important to realise that in most cases veri�cation of theseconstructs depends in an essential way on static information inherited from thestatic semantics and incorporated in models.Then, in contrast to the dynamic semantics, axioms are not ignored. Whenthe veri�cation semantics encounters an axiom declaration, it attempts to veri-�cate the axiom body and proceeds further only if the result obtained is thevalue true. Otherwise, veri�cation fails. This does not necessarily mean thatthe structure declaration in which this axiom occurs is incorrect. Rather, itimplies only that a particular choice of resolving all the open possibilities inthe structure body, the choice currently under consideration by the veri�cationsemantics, is not successful and does not yield a realisation of the structuresatisfying this axiom. The crucial point which makes this work is the inter-pretation of question marks. In the veri�cation semantics for the EML corethe interpretation of question marks is provided by an extra component of themodel. These question mark interpretations are guessed in an arbitrary way bythe veri�cation semantics for modules at the point where a core declaration isviewed as a structure-level declaration. Only those environments resulting froma successful veri�cation of the declaration for some guess of the interpretation ofquestion marks contribute to the result of the veri�cation of this declaration at

the structure level. This is captured by the veri�cation rule given below, againin a somewhat simpli�ed form. Rather informally, we write M [B;QI] for themodel obtained by extracting the appropriate components of the veri�cationbasis B and adding the question mark interpretation QI.B ` dec) fE j for some QI;M [B;QI] ` dec) EgAs in the static semantics (see the rule imposing principality discussed in Sec-tion 4.1) the declaration dec is viewed here as a core declaration in the judge-ment M [B;QI] ` dec) E, and as a structure-level declaration in B ` dec)fE j : : :g.Here is a simple example of a structure expression:structval a: int = ?axiom a>5 andalso a<8val b = a+2end(The question mark in the declaration of a should perhaps be indexed to avoidpotential confusion with other question marks elsewhere.) The veri�cation se-mantics for the declaration enclosed in struct : : : end tries to veri�cate itsenclosed sequence of core declarations for each possible interpretation of thequestion mark, one interpretation f? 7! ig for each integer i. It is clear thatthe veri�cation succeeds only for the interpretations f? 7! 6g and f? 7! 7g,yielding environments E6 = fa 7! 6; b 7! 8g and E7 = fa 7! 7; b 7! 9g respect-ively. The result of the veri�cation of the declaration is thus fE6; E7g, and thisset of environments is taken as the result of veri�cation of the entire structureexpression.In the same way as our quanti�cation is based on expressible values (seeSection 2.4) question marks interpretations QI map question marks to expres-sions, not to values. In this way ill-formed values are avoided, and moreover,the interpretation of each question mark may depend on the context in whichit appears. The latter point means that in the veri�cation of a function declar-ation likefun f x = let val c = ? in g c endquestion mark interpretations may replace the ? by expressions containing freeoccurrences of x.The treatment of question marks in type expressions is somewhat di�erent.The static semantics guarantees that whatever replacement a question mark in-terpretation provides (preserving certain attributes), the success of static ana-lysis, and hence well-formedness of the program, is not a�ected. However, theexact results of static analysis are a�ected, and this has to be taken into ac-count in the veri�cation semantics, by interpreting the types derived duringstatic analysis with respect to some realisation. Realisations are functions onsemantic objects that assign concrete types to formal type parameters.

5 Final remarksWe have tried in this paper to provide a readable exposition of the semantics ofEML, a framework for formal speci�cation and development of SML programs.We have not discussed here in any detail the methodological assumptions andtheoretical underpinnings underlying the design of this framework | these havebeen presented elsewhere. We have also refrained from discussing merits of thedesign of the SML programming language.Work on the EML semantics is nearly �nished: the complete formal de�n-ition [14] is at the proof-reading stage. Because the de�nition is still subjectto change, there is a small possibility that some of the details in the abovepresentation will turn out to be slightly inaccurate with respect to the �nalversion. But we are con�dent that the basic principles presented in this paperare correct and stable, and accurately re
ect the intentions incorporated in thedesign of the framework.The problems we are wrestling with are those inherent in the enterpriseof engineering a sizable completely formal de�nition of a realistic, practicallyuseful formalism. All the di�erent aspects of this formalism interact with eachother, and their mutual relationship is a delicate matter which has to be handledwith care and extreme attention to detail. We should perhaps quote here theexample of the formal de�nition of SML on which we build. The original de�n-ition of SML went through three major revisions before it was �nally o�ciallypublished as [22]. As a result of the study of the semantics by a larger bodyof users, this was then followed by a number of subsequent changes includedin [21]. And even now, some inaccuracies, weak points and minor mistakesin the de�nition are still being discovered [13]. Nevertheless, as a whole, theSML semantics is considered (certainly by us) to be an excellent example ofthe precise de�nition of a realistic programming language, with very few prac-tical examples of formal design achieving a comparable level of accuracy andmathematical precision.Thus, the main problems with producing the formal de�nition of EML arethe problems of size, necessarily involving a struggle with many tedious details.We have tried to illustrate this point in the paper. This does not mean thatall the issues addressed in the semantics are mathematically trivial: on thecontrary, in our view some of the speci�c decision in the semantics, especiallythose related to the formal de�nition of the logic of axioms, are of independentinterest, and deserve further separate study.The next major step, once the semantics is �nished, is to develop a soundproof theory, which would provide the user with some formal proof rules andproof tactics to verify the correctness conditions arising in the process of pro-gram development. Given the complexity of SML and hence of EML, it may bedi�cult to come up with appropriate proof rules. Furthermore, checking theformal soundness of these rules w.r.t. the semantics given will be a formidabletask on its own.De�ning the formal semantics of a framework like EML, or indeed of a pro-gramming language like SML, is not a futile exercise. Most obviously, it providesa common unambiguous reference for all the users of the formalism. Perhapseven more importantly, such a semantics constitutes a basis for all further workon the framework: sound development methodologies, proof techniques, sup-port tools (including the compiler for the programming language) must all be

based on and checked against precise semantics if they are to be trustworthyin practical applications. De�ning the formal semantics of a language involvestaking a very close look at all the details of the language and of the complexinteractions between its features. Such a detailed examination of a languageis a good way (perhaps the only way) of uncovering both major and minorproblems that would otherwise escape notice.Acknowledgements: Thanks to Fabio da Silva for early collaboration onthe static and dynamic semantics of EML and to Edmund Kazmierczak andanonymous referees for helpful comments on a draft of this paper. We owespecial thanks to Robin Milner, Mads Tofte and Robert Harper for their workon the semantics of SML, without which the research described here would nothave been possible.References[1] A. Appel and D. MacQueen. Standard ML of New Jersey, version 0.93.AT&T Bell Laboratories (1993).[2] E. Astesiano et al. The draft formal de�nition of ANSI-MIL/STD 1815AAda. Deliverable 7 of the CEC-MAP project (1986).[3] J. Backus. Can programming be liberated from the von Neumann style?A functional style and its algebra of programs. Comm. of the Assoc.for Computing Machinery 21(8):613{641 (1978).[4] F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R.Gnatz, E. Hangel, W. Hesse, B. Krieg-Br�uckner, A. Laut, T. Matzner, B.M�oller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, and H.W�ossner. The Munich Project CIP, Vol. 1: The Wide SpectrumLanguage CIP-L. Springer LNCS 183 (1985).[5] R. Burstall and J. Goguen. An informal introduction to speci�cations usingClear. In: The Correctness Problem in Computer Science (R. Boyerand J.S. Moore, eds.), 185{213. Academic Press (1981).[6] L. Damas and R. Milner. Principle type schemes for functional programs.Proc. 9th Annual ACM Symp. on Principles of ProgrammingLanguages, 207{212 (1982).[7] J. Farr�es-Casals. Veri�cation in ASL and Related Speci�cation Languages.Ph.D. thesis; Report CST-92-92, Univ. of Edinburgh (1992).[8] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. CambridgeUniversity Press (1989).[9] J. Goguen and J. Meseguer. Universal realization, persistent interconnec-tion and implementation of abstract modules.Proc. 9th Intl. Colloq. onAutomata, Languages and Programming, Aarhus. Springer LNCS140, 265{281 (1982).

[10] J. Guttag and J. Horning. Report on the Larch shared language. Scienceof Computer Programming 6(2):103{134 (1986).[11] R. Harper. Introduction to Standard ML (revised edition). Report ECS-LFCS-86-14, Univ. of Edinburgh (1989).[12] G. Kahn. Natural semantics. In: Programming of Future Genera-tion Computers (K. Fuchi and M. Nivat, eds.), 237{258. North-Holland(1988).[13] S. Kahrs. Mistakes and ambiguities in the de�nition of Standard ML. Re-port ECS-LFCS-93-257, Univ. of Edinburgh (1993).[14] S. Kahrs, D. Sannella and A. Tarlecki. The de�nition of Extended ML.Draft report, Univ. of Edinburgh (1993).[15] E. Kazmierczak. Modularizing the speci�cation of a small database systemin Extended ML. Formal Aspects of Computer Science 4(1):100-142(1992).[16] E. Kazmierczak. Model theory for Extended ML. Draft report, Univ. ofEdinburgh (1992).[17] B. Krieg-Br�uckner. PROgram development by SPECi�cation and TRAns-formation. Technique et Science Informatiques (1990).[18] P. Landin. The mechanical evaluation of expressions. Computer Journal6:308{320 (1964).[19] D.C. Luckham, F.W. von Henke, B. Krieg-Br�uckner and O. Owe. Anna,a Language for Annotating Ada Programs: Reference Manual.Springer LNCS 260 (1987).[20] D. MacQueen. Modules for Standard ML. In: Report ECS-LFCS-86-2,Univ. of Edinburgh (1986).[21] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press(1991).[22] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML.MIT Press (1990).[23] J. Mitchell. Type systems for programming languages. In Handbook ofTheoretical Computer Science, Vol. B (J. van Leeuwen, ed.). NorthHolland (1990).[24] L. Paulson.ML for theWorking Programmer. Cambridge Univ. Press(1991).[25] G. Plotkin. A structural approach to operational semantics. Report DAIMIFN-19, Aarhus University (1981).[26] H. Reichel. Behavioural equivalence: a unifying concept for initial and�nal speci�cation methods. Proc. 3rd Hungarian Computer ScienceConference, 27{39 (1981).

[27] D. Sannella. Formal program development in Extended ML for the work-ing programmer. Proc. 3rd BCS/FACS Workshop on Re�nement,Hursley Park. Springer Workshops in Computing, 99{130 (1991).[28] D. Sannella. Static and logical correctness conditions in formal develop-ment of modular programs. Draft report, Univ. of Edinburgh (1993).[29] D. Sannella and F. da Silva. Case studies in Extended ML. Draft report,Univ. of Edinburgh (1993).[30] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development ofprograms from algebraic speci�cations: parameterisation revisited. ActaInformatica 29:689{736 (1992).[31] D. Sannella and A. Tarlecki. Extended ML: an institution-independentframework for formal program development. Proc. Workshop on Cat-egory Theory and Computer Programming, Guildford. SpringerLNCS 240, 364{389 (1986).[32] D. Sannella and A. Tarlecki. On observational equivalence and algebraicspeci�cation. Journal of Computer and System Sciences 34:150{178(1987).[33] D. Sannella and A. Tarlecki. Toward formal development of programs fromalgebraic speci�cations: implementations revisited. Acta Informatica25:233{281 (1988).[34] D. Sannella and A. Tarlecki. Toward formal development of ML programs:foundations and methodology.Proc. JointConf. on Theory and Prac-tice of Software Development, Barcelona. Springer LNCS 352, 375{389(1989).[35] D. Sannella and A. Tarlecki. Extended ML: past, present and future. Proc.7th Workshop on Speci�cation of Abstract Data Types, Wuster-hausen. Springer LNCS 534, 297{322 (1991).[36] D. Sannella and A. Tarlecki. Toward formal development of programs fromalgebraic speci�cations: model-theoretic foundations. Proc. Intl. Col-loq. on Automata, Languages and Programming, Vienna. SpringerLNCS 623, 656{671 (1992).[37] O. Schoett. Data Abstraction and the Correctness of Modular Program-ming. Ph.D. thesis; Report CST-42-87, Univ. of Edinburgh (1987).[38] M. Tofte. Operational Semantics and Polymorphic Type Inference. Ph.D.thesis; Report CST-52-88, Univ. of Edinburgh (1988).[39] J. Wing, E. Rollins and A. Zaremski. Thoughts on a Larch/ML and a newapplication for LP. Report CMU-CS-92-135, Carnegie Mellon University(1992).

