
The definition of Extended ML:
a gentle introduction∗

Stefan Kahrs† Donald Sannella‡ Andrzej Tarlecki§

Abstract

Extended ML (EML) is a framework for the formal development of modular
Standard ML (SML) software systems. Development commences with a specification
of the behaviour required and proceeds via a sequence of partial solutions until
a complete solution, an executable SML program, is obtained. All stages in this
development process are expressed in the EML language, an extension of SML with
axioms for describing properties of module components.

This is an overview of the formal definition of the EML language. To complement
the full technical details presented elsewhere, it provides an informal explanation of
the main ideas, gives the rationale for certain design decisions, and outlines some
of the technical issues involved. EML is unusual in being built around a “real”
programming language having a formally-defined syntax and semantics. Interesting
and complex problems arise both from the nature of this relationship and from
interactions between the features of the language.

1 Introduction

Extended ML (EML) is a framework for the formal development of modular Standard ML
(SML) software systems that are correct with respect to a specification of their required
behaviour. The long-term goal of work on EML is to provide a practical framework for
formal development together with an integrated suite of computer-based specification and
∗This is an essentially revised and expanded version of [KST94a], which was based on an earlier, draft

version of [KST94b].
†Laboratory for Foundations of Computer Science, Edinburgh University, Edinburgh, Scotland; e-mail

smk@dcs.ed.ac.uk. This research was supported by EPSRC grant GR/J07303.
‡Laboratory for Foundations of Computer Science, Edinburgh University Edinburgh, Scotland; e-mail

dts@dcs.ed.ac.uk. This research was supported by the EC-funded COMPASS Basic Research working
group and MeDiCiS Scientific Cooperation Network, and by EPSRC grant GR/J07303 and an EPSRC
Advanced Fellowship.
§Institute of Informatics, Warsaw University, and Institute of Computer Science, Polish Academy of

Sciences, Warsaw, Poland; e-mail tarlecki@mimuw.edu.pl. This research was supported by the EC-
funded COMPASS Basic Research working group and MeDiCiS Scientific Cooperation Network, and by
KBN grant 2 P301 007 04.

development support tools and complete mathematical foundations to substantiate claims
of correctness. The complete formal definition of the EML language [KST94b] constitutes
an important milestone in this programme, necessary to provide a basis for further research
on foundations and tools. The length and requisite formality of the definition renders it
rather difficult to penetrate. Accordingly, this paper provides an informal overview of the
definition, explaining most of the main issues involved and justifying some of the choices
taken.

SML is a widely-used functional programming language. Apart from useful features
it shares with a number of similar languages (a flexible type system with polymorphic
types, function definition by patterns, etc.) it has two special characteristics that make it
very well-suited to the enterprise mentioned above. First, it provides powerful modularisa-
tion facilities for building large software systems by defining and combining self-contained
generic program units. Such facilities seem to be a prerequisite for the use of formal
development methods on examples of significant size. The main emphasis of EML is on
development “in the large”, relying heavily on linguistic support from the SML module
facilities and incorporating ideas from foundational work on specification and formal de-
velopment of modular systems [Sch87], [ST88], [SST92], [ST92]. This should in turn be
seen in the context of a large body of work on algebraic specification and the theory of
formal software development (see [BKLOS91] for a comprehensive presentation of the re-
lated literature). Second, the syntax and semantics of SML is formally defined [MTH90].
This makes it possible — at least in principle — to reason formally about the behaviour
of SML programs, as required for proofs of correctness with respect to a specification of
requirements (provided that the specification itself is given a formal meaning as well). The
size and complexity of the semantics is such that fully formal use of it, e.g. to prove cor-
rectness of an optimizing transformation, would be quite a difficult task. An encouraging
start in this direction, using the HOL theorem prover, is described in [VG94], [MG94].

The idea of building a fully-fledged specification and formal development framework
around a “real” programming language seems to be novel to EML. Somewhat related is
work on the Anna language for annotating Ada programs with assertions concerning their
intended behaviour [LHKO87]; but this is not intended for formal development of software
from specifications (although see [Kri90]), and as far as we are aware there is no formal
semantics of Anna nor any intention to formally relate Anna to the semantics of Ada
[Ast86]. Similar comments apply to Larch [GH86], which has been used in connection
with various programming languages. An attempt to apply Larch to the specification of
SML modules is reported in [WRZ92], but many difficult problems remain to be solved
there. Real programming languages are inevitably complex, and any serious attempt
to give a formal treatment of such a language and a development framework based on
it is an ambitious goal bringing a host of problems that do not arise when considering
toy programming languages or when considering specification and formal development in
abstract terms.

A related novelty of this work is in its treatment of the specification of a number of
“difficult” facets of computation, all of which arise in SML. These include polymorphic
types, higher-order functions, exceptions and non-termination. In spite of the fact that

2

these are common features of modern programming languages, they are rarely addressed
by approaches to specification. There have been attempts to treat each of these features
in isolation, but not in combination with one another. It is precisely in the interaction
between such features that some of the most difficult issues arise.

The structure of the paper is as follows. Section 2 gives a short introduction to the main
features of SML and EML in order to set the scene for the rest of the paper. We have resisted
the temptation to dwell at length on aspects of EML that are not directly relevant to the
topic at hand; for more information, see the papers cited in Section 2. Section 3 briefly
discusses the way in which EML relates to and extends SML. Section 4 is an overview
of the semantics of EML which attempts to give the reader an overall impression of its
structure without the need to study the details of [KST94b], while touching on the ideas
behind many of the most interesting and important points. Section 5 concludes with some
remarks about the trials and tribulations involved in writing such a semantics.

2 An overview of EML

The main aim of this section is to provide enough background concerning EML to make
the paper self-contained. The first subsection is a summary of the features of the SML
programming language, which is the target of EML formal program development and on
which EML is based. The next subsection gives an overview of the EML language and
formal development framework. A small example is given to demonstrate some of the
features of the language, and a final subsection summarizes the main features of the logic
used to write axioms.

2.1 SML

The following is necessarily very brief. Readers with no prior knowledge of SML or related
languages (Hope, Haskell, etc.) will probably find it necessary to consult e.g. [Har89] or
[Pau91].

SML consists of two sub-languages: the core language and the module language. The
core language provides constructs for programming “in the small” by defining a collection
of types and values (including functions) of those types. The module language provides
constructs for programming “in the large” by defining and combining self-contained pro-
gram units coded using the core. To a large extent, these sub-languages can be understood
separately from each other, both because the dependency is only one-way (modules contain
core constructs, but not vice versa) and because the constructs available in the module
language are applicable to the organization of declarations of any kind. SML is an inter-
active language in which top-level declarations are typechecked, compiled and evaluated
one at a time.

The SML core language is a strongly typed functional programming language with a
flexible type system including polymorphic types, disjoint union, product and (higher-
order) function types, recursive types, and user-defined abstract and concrete types. Con-
ceptually, all values in SML (except those of certain special built-in types, such as real

3

and function types) are represented as finite closed terms built from uninterpreted con-
structors. A function is defined by a sequence of equations, each of which specifies the
value of the function over some subset of the set of possible argument values. This sub-
set is described by a pattern (a term containing constructors and variables only, without
repeated variables) on the left-hand side of the equation, which serves both for case se-
lection and variable binding. Certain types are designated by SML as equality types;
roughly, these are types whose definitions do not involve abstract types or function types.
The built-in equality function = has type ’’a * ’’a -> bool; the type variable ’’a can
only be instantiated to equality types (in contrast to ’a which can be instantiated to any
type), preventing values of non-equality types from being tested for equality. Exceptions,
possibly carrying values, may be raised by built-in functions (e.g. division by zero), by
failure of pattern matching, or by user code. Once raised, an exception propagates until
it is trapped by a surrounding handler or reaches top level. Typed references are available
with dereferencing and assignment operations. Input/output is handled via streams; input
streams are associated with producers (e.g. a keyboard or a file) and output streams are
associated with consumers.

The SML module language provides mechanisms that allow large SML software sys-
tems to be structured into self-contained program units with explicit interfaces. Under
this scheme, interfaces (signatures) and their implementations (structures) are defined
separately. Structures contain definitions of types, values and exceptions, and may also
contain definitions of lower-level structures (substructures). Signatures may be attached
to structures; this imposes a requirement for the structure to match that signature, mean-
ing that the structure must define types, values, exceptions and substructures with the
names indicated by the signature, and the types of values and exceptions as well as the
signatures of substructures must correspond to those given in the signature. Functors are
“parameterized” structures; the application of a functor to a structure yields a structure.
A functor has an input signature describing structures to which it may be applied, and
an optional output signature describing the structure that results from such an applica-
tion. It is possible, and sometimes necessary to allow interaction between different parts
of a program, to declare that certain substructures (or just certain types) are identical or
shared. Structures and functors are referred to collectively as modules.

Signatures serve both to impose constraints on the bodies of modules and to restrict
the information that is made available externally about the components of module bodies.
Roughly speaking, only the information that is explicitly recorded in the signature(s) of a
module is available externally. (In fact, this statement is not accurate for SML, but it is
accurate in the context of EML. See Section 3 for more on this point.) Such information
hiding is vital to allow parts of a large software system to be developed and maintained
independently.

2.2 EML

EML is a vehicle for the formal development of programs from specifications by means of
individually-verified steps. EML is called a wide-spectrum language (cf. [Bau85]) since it

4

allows all stages in the formal development process to be expressed in a single formalism,
from the initial high-level specification to the final program itself and including intermedi-
ate stages in which specification and program are intermingled. The target of the formal
development process is a modular program in SML, and thus (a large subset of) SML is an
executable sub-language of EML. Earlier stages in the development of such a program are
incomplete modular programs in which some parts are only specified by means of axioms
rather than defined in an executable fashion by means of SML code.

Syntactically, the main difference between SML and EML is that EML permits axioms to
be included in signatures and in module bodies. Axioms in signatures specify properties
that are required to hold of any structure matching that signature. The general idea
is similar to that of providing types of values in signatures in addition to their names;
the difference is that types (and sharing constraints) can be checked mechanically, while
checking that axioms are satisfied requires proof. One reason for including types of values
in an SML signature is to provide enough information about the module it describes to
enable subsequent code that refers to it to be typechecked and compiled without making
reference to the details of the code in the module body. This is essential for purposes
of separate compilation. Similarly, a reason for including axioms in an EML signature
is to provide enough information about the module it describes to enable properties of
such subsequent code to be proved without reference to the module body. This separation
of an interface from its implementation permits different implementations (satisfying the
axioms in the interface) to be developed and used later without affecting the correctness of
the rest of the system, and enables implementations for different modules to be developed
independently.

Axioms in module bodies may be used to describe components for which executable
definitions (in the form of SML code) are not yet available. Syntactically, one gives a
declaration containing the place-holder expression “?”, followed by axioms referring to the
undefined object. For example:

val x:int = ?
axiom x>7 andalso isprime x

Module bodies containing axioms may be regarded as unfinished or incomplete abstract
programs in which some decisions have already been taken but others, such as choice of
algorithms, remain open. The intention is that at a later stage in the development of the
program, the question mark will be replaced by code that satisfies the axioms. A question
mark may even be used as a place-holder for the entire module body.

In EML, each structure comes equipped with a signature (this is optional in SML)
containing the information that is available externally concerning the structure body. As in
SML, the body is required to match this signature. In addition to the name/type matching
required in SML, the body must be correct: the axioms in the signature must be satisfied
by any model of the body (that is, by any structure containing the code in the structure
body and satisfying any axioms it includes). Obviously, a proof is generally required to
establish correctness. Similar remarks apply to functors, which must be equipped with
both an input signature (also required in SML) and an output signature (optional in SML).

5

Formal development of a system typically begins with an initial high-level specification
of the problem to be solved, in the form of an EML module declaration having a question
mark in place of its body. If the module is parameterized (i.e., is a functor) the input signa-
ture specifies the facilities (types, values, exceptions, and structures) to be taken as given,
in addition to the built-ins of SML. The output signature of the module specifies the ad-
ditional facilities required. These signatures will normally contain axioms. At later stages
of development, this module declaration will be refined by providing it with a body that is
correct in the sense described above. This may contain axioms, and may make reference to
further structures or functors that are themselves not yet defined in an executable fashion.
The development process is finished once all functor and structure bodies on which the
original “goal” module depends are complete, meaning that all question marks and axioms
in module bodies have been replaced by executable SML code. At this point, erasing all
axioms from signatures (or, much more usefully, regarding them as complete and formally
checked documentation) yields an executable SML program. This is correct with respect
to the initial specification since correctness is maintained by each development step.1

The EML formal development methodology defines a number of ways of gradually
refining an unfinished module declaration towards a complete and correct version. A
common way to proceed is to decompose the problem into simpler problems by specifying
a number of new modules and defining the module at hand as a composition of these. The
task of providing a body for each of these new modules becomes a refinement task in its
own right that can be tackled separately from the others. Such steps give rise to proof
obligations that must be discharged in order to ensure that correctness is preserved; these
proof obligations can be generated mechanically from the “before” and “after” versions of
the module at hand. See [ST89], [ST91], [Kaz92a] and [San93] for further details, and see
[ST89], [San91] and [SdS93] for examples of EML-style formal software development.

2.3 An example in EML

The example in Figure 1 illustrates some of the language features of EML. It is an imple-
mentation of evaluation for a rewrite system, based on some simple abstract properties
one would expect for arbitrary rewrite systems, (enriched) λ-calculi, etc. This takes the
form of a functor, where properties required of the argument and properties of the result
are specified by EML axioms. The functor itself is coded in the executable subset of EML,
so this is an example of what might emerge from a formal development that began with a
specification of the problem consisting of the same functor with its body replaced by the
place-holder “?”.

The idea of the example is as follows. Rewrite systems operate on some set of terms;
each term is either a normal form (NF) or contains a redex that can be contracted. A (one-
step) strategy picks a redex in a term and returns the redex together with the context of its
occurrence in the term, given as a function. The functor Reduce provides a function eval

1To be completely accurate, it must be mentioned that the compilation of the resulting program is not
guaranteed to terminate: EML copes gracefully with non-terminating functions, as explained below, but
not with non-terminating declarations. The guarantee of correctness is subject to this proviso.

6

signature TERMSIG =
sig

type term
val contract: term -> term
val NF: term -> bool
axiom forall t => (NF t) proper
val strategy: term -> term * (term -> term)
exception noredex
axiom forall t =>

if NF t then (strategy t) raises noredex
else ((strategy t) proper andalso

let val (u,f) = strategy t
in f u == t andalso

(f (contract u)) proper
end)

end;

signature EVAL =
sig

structure T: TERMSIG
val eval: T.term -> T.term
axiom forall t =>

((eval t) terminates implies T.NF(eval t))
end;

functor Reduce (L: TERMSIG) :
sig include EVAL; sharing L=T end =
struct structure T = L

fun eval t =
if L.NF t then t
else let val (redex,context) = L.strategy t

in eval (context (L.contract redex))
end

end;

Figure 1: An example: evaluation for a rewrite system

7

that repeatedly contracts redexes selected by the given strategy until a term in normal
form is obtained. A copy of the argument structure L is included as a substructure T of the
result in order to provide convenient access to the type of terms. T inherits the signature
of L (TERMSIG).

The signature TERMSIG imposes certain requirements on the behaviour of NF and
strategy: the axiom forall t => (NF t) proper is true if for all terms t the eval-
uation of NF t neither fails to terminate nor raises an exception; for strategy there are
even stronger conditions, for example that the redex created by strategy can be properly
contracted, and that strategy t raises an exception if and only if t is in normal form.
Typical for EML is here the mixture of logical connectives and programming language con-
structs. Incidentally, the arrow => appears in a formula like forall t => (NF t) proper
for the same reason as it appears in a functional expression like fn x => x+1, which is
SML’s syntax for λx.x+ 1.

The functor Reduce gives us an evaluation function eval, as specified in the “included”
signature EVAL, for any rewrite system matching TERMSIG. From the interface of TERMSIG
and the implementation of eval we can show that it will never raise an exception (although
it may fail to terminate). The sharing equation, an SML feature, is needed to ensure that
the type T.term used in the type of eval is the same as the type L.term provided by the
argument of Reduce, so evaluation is for the kind of terms defined by the argument and
not for some other kind of terms. It also makes eval applicable to terms other than the
ones that can be built using structure T only. This is important, as structure T contains no
functions for building terms, except by contraction of other terms; normally, the argument
of Reduce (or structures on which it depends) will contain such functions, in addition to
those required by TERMSIG.

2.4 The language of EML axioms

The syntax used to write axioms in the above example should have been sufficiently self-
explanatory to make the intended meaning clear. However, the logical system used is not
a conventional one; it is necessarily much more complex than (for example) many-sorted
equational logic or first-order predicate logic because of the need to deal with all the
features of SML programs. For example, consider an equation asserting that the values
of two expressions, exp and exp ′, are equal. What if either exp or exp ′ (or both) fail to
terminate? What if one raises an exception (or in the terminology of the SML definition,
evaluates to a packet)? What if exp and exp ′ are of a function type? And in the case
of universally and existentially quantified formulae, what is the meaning of quantification
over a polymorphic type?

The syntax of EML axioms is designed to be a natural extension of the syntax of SML
boolean expressions, with the meaning of the new constructs chosen to be as simple and
natural as possible under the circumstances. Given these constraints, we have attempted
to maximize expressive power and to avoid making certain common specification idioms
unduly awkward to write.

Any expression of type bool may be used as an axiom in EML. Such use amounts to

8

an assertion that the expression evaluates2 to the value true rather than evaluating to
the value false, or evaluating to a packet, or failing to terminate. The basic connectives
are those of SML: andalso, orelse, and not, with the additional connective implies.
The first two of these have the same “sequential” interpretation as they do in SML (and
analogously for implies), so for example the expression true orelse exp evaluates2 to
true even if exp produces a packet or fails to terminate.

The identification of logical formulae used as axioms with boolean expressions of EML
was a major design decision of the language of EML axioms. An alternative would be to
introduce an additional type for logical formulae, subsuming boolean expressions via a
coercion amounting semantically to the “evaluates to true” judgement, with additional
logical connectives separate from those supplied by SML for booleans. This would seem
to put us on familiar territory with a clear separation between the layer of computations
and the layer of logical assertions, but the resulting system would be far from standard.
The complications introduced by exceptions and potential non-termination would still be
present, albeit at a lower level, and the intricacies involved in quantification (see below)
would not disappear.

This identification requires EML to extend the language of SML boolean expressions
with constructs corresponding to logical equality, assertions about the outcome of evalu-
ating expressions, and quantification. The syntax of these and (a sketch of) their meaning
is as follows — see Section 4.3.1 for some further details concerning their semantics.

The “logical” equality predicate == complements the “computational” equality = provided
by SML. The expression exp==exp ′ is well-formed whenever exp and exp ′ have the same
type, in contrast to exp=exp ′ which also requires this to be an equality type. If both exp
and exp ′ produce values, then the result is true if and only if the two values are indistin-
guishable in any context. In particular, this means that logical equality on function types
is extensional in “logical-relation style” [Mit90]: if f, f ′ are both of type τ → τ ′ then f==f ′

entails

forall (x:τ,x’:τ) => x==x’ implies (f x)==(f ′ x’)

— see below for the meaning of quantification. Logical equality is also “extensional” for
packets and non-termination, i.e. exp==exp ′ is true if exp and exp ′ both fail to terminate,
or both produce the same packet.

The following additional constructs are provided for building axioms that constrain the
outcome of computing the value of an expression exp:

exp terminates, which is true if exp produces a normal value or a packet, and false if
it fails to terminate;

exp proper, which is true if exp produces a normal value, and false if it produces a
packet or fails to terminate; and

2Actually, verificates — see Section 4.3.

9

exp raises excon,3 which is true if exp raises the exception excon and false if it pro-
duces a normal value or raises a different exception. If exp fails to terminate then so
does exp raises excon.

Universal and existential quantification is provided over all SML types; function types
are included here so this gives a form of higher-order logic, although since quantification
ranges over values that are expressible in SML, it is not true higher-order quantification.
The meaning of quantification over polymorphic types is a tricky issue. An “easy” choice
would be to require explicit quantification of type variables, as in System F [GLT89], but
this seems contrary to the spirit of SML in which all such quantification is implicit. The
best balance seems to be struck by viewing a quantified expression as having a defined
value only if it has that value for all instances (including polymorphic instances) of the
type of the bound variable. More explicitly, this amounts to the following four cases:

1. In order for forall x:τ => exp to be true, the expression exp[x := v] must be true
for every expressible value v of every instance of τ .

2. In order for exists x:τ => exp to be true, there must be an expressible value v of
type τ such that exp[x := v] is true. (Note that this is stronger than requiring such
a v of some instance of τ .)

3. In order for forall x:τ => exp to be false, there must be an expressible value v of
type τ such that exp[x := v] is false.

4. In order for exists x:τ => exp to be false, the expression exp[x := v] must be
false for every expressible value v of every instance of τ .

Note that the third and fourth cases above are obtained from the second and first cases
respectively using the de Morgan laws (∀x.ϕ = ¬∃x.¬ϕ, and ∃x.ϕ = ¬∀x.¬ϕ). The value
of a quantified expression is left undefined if none of the above applies, so for example
forall x:τ => exp has no value if exp[x := v] is false for some expressible value v of
some instance of τ , but there is no expressible value v of type τ itself such that exp[x := v]
is false.

An example of a expression involving polymorphic quantification that is true for some
type instances but false for others is the following:

forall (x,xs) => [x] @ xs == xs @ [x]

where @ is concatenation of lists and [x] is a singleton list containing x. One might expect
the value of this expression to be false, since this is what happens when (for example)
x:int and xs:int list. But when x:unit (the type having just one value, written ())
and xs:unit list, the value of the expression is true since lists of type unit list are
uniquely determined by their length. As a consequence, this expression has no value
whatsoever. Fortunately, such odd examples occur rarely! An example of a quantified
expression that is true is

3In fact, this is a special case of a slightly more general form.

10

forall xs => exists ys => xs @ ys == ys @ xs

because for any list type, the empty list has the property required for ys.
A similar but slightly different semantics for EML quantifiers is considered by Kazmier-

czak in [Kaz92b].

3 The relationship between SML and EML

The EML language was very deliberately designed as a language for specifying modular
SML software systems. In contrast to much related work, the intention was not to create
a completely general-purpose specification language. One of the main guiding principles
of the design was to make EML a minimal extension to SML. The addition of axioms
was clearly necessary to enable module properties to be specified, but we have attempted
to keep the syntax of axioms simple and have resisted the temptation to add features
or to repair minor defects in the design of SML. For example, EML does not include
parameterised specifications (functions from signatures to signatures), despite the fact
that these are commonly provided by other specification languages. We have not yet seen
a compelling need to add parameterised specifications to EML. In fact, it has become clear
to us [SST92] that what is really important in formal software development is the ability
to specify parameterised program modules (i.e. SML functors), and EML already has this
facility: one uses an EML functor declaration having a question mark in place of a body.

There are at least four senses in which EML is a minimal extension of SML. First, the
syntax of EML minimally extends the syntax of SML. As already stated, the main syntactic
extension is the addition of axioms. Second, the semantics of EML is based directly on
the semantics of SML, as will be explained in detail in the next section. This is to ensure
consistency with SML “by construction” — the fact that significant portions of the two
semantic definitions match would make a proof of consistency considerably simpler than
otherwise. Our initial attempts to give a semantics of EML took quite a different and
much more “algebraic” route [ST86]; we have temporarily abandoned this approach, in
part because of the difficulty of ensuring consistency with the existing definition of SML
(but see [Kaz92b]). A third and related point is that the extension to the semantics
of SML is such that the semantics of the SML fragment of EML is preserved, making
EML a “conservative” extension of SML. This is vital to ensure that the end-product of
EML formal development can be compiled and run using existing implementations of SML
without modification. Finally, we have attempted to preserve the spirit of SML in the
extensions insofar as this is possible. This is a necessarily vague statement, but there was
already an example of this in Section 2.4 where we eschew the use of explicit quantification
of type variables in axioms because such quantification is always left implicit in SML.

In spite of the above, EML is not quite an extension of SML; it is an extension of
a large subset of SML. This subset is obtained by excluding the imperative features of
SML (references, assignment, and so-called imperative type variables) and input/output,
by requiring structure declarations and functor declarations to include explicit signatures,
and by adopting a more restrictive view of the role of signatures as interfaces. The first

11

restriction is made for the sake of simplicity, and for philosophical reasons which will be
familiar to advocates of functional programming [Bac78]. (In hindsight, the inclusion of
imperative features would seem to add less complexity than we originally anticipated,
because the presence of exceptions leads to some of the same complications.) The second
restriction seems appropriate in a specification and formal development framework in which
signatures play a central role, in contrast to a programming language where the need
to supply explicit signatures may be viewed as an unnecessary inconvenience. The only
structure declarations that are exempt from this restriction are those in which the signature
is already available from the structure used in the body of the declaration, as in the case
of the structure declaration in the body of Reduce in Figure 1. The final restriction is to
enforce the principle that only the information that is explicitly recorded in the signature(s)
of a module is available externally, as mentioned in Section 2.1. This is necessary since
the SML module system does not otherwise fully insulate the clients of a module from
choices in the representation of types in the body, and therefore does not properly support
separate development of the components of a modular system. See [ST89] for more on
the methodological technicalities behind this restriction, and see [Ler94] and [HL94] for
recent independent work having similar motivations.4 None of these changes makes EML
incompatible with SML, as any program in the SML fragment of EML (which therefore
satisfies these restrictions) is a well-formed SML program. However, certain SML programs
cannot be developed using EML.

There is one additional restriction imposed by EML that causes certain pathological
but well-formed SML programs to be regarded as incorrect. This is demonstrated by the
following example:

signature SIG =
sig

type t
local val x:t in end

end;
structure S:SIG =

struct
datatype t = foo of t

end

This is well-formed according to SML but is ill-formed according to the verification se-
mantics of EML because S.t is a type with no values! (Recall that values in SML are
represented as finite closed terms built from constructors; since the only constructor for
type S.t is S.foo:S.t->S.t, there are no finite closed terms of type S.t.) The point here
is that local val x:t in end in SIG imposes a logical constraint, namely that t has at
least one value, which is disregarded by SML but cannot be correctly disregarded by EML.

4The original design of the SML module system [MacQ86] proposed an additional kind of structure,
a so-called abstraction, for which the stricter interpretation of signatures taken in EML would apply.
This was unfortunately not included in SML as defined in [MTH90] although some SML implementations
provide it as a non-standard extension [AM93].

12

Apart from this minor restriction and the restrictions mentioned above, EML does not
limit the freedom of the SML programmer in the sense that well-formed SML programs
(even “ugly” ones) satisfying these restrictions are also well-formed according to EML. Of
course, it is clear that it will be easier to reason about the correctness of some programs
than others, in EML or any other framework.

Compatibility between SML and EML is a more delicate matter than simply insuring
compatibility for the SML fragment of EML. For example, the dynamic semantics of EML
(see Section 4.2), which defines the result of evaluating EML “code” insofar as this is
possible, raises the exception NoCode when producing a result would involve evaluating
a specification construct such as a quantified expression or question mark. To eliminate
“programs” that depend on the lack of code, it is essential to define NoCode as a special
exception that cannot be trapped by any surrounding handler. As another example, special
care is taken in the static semantics of EML (see Section 4.1) to ensure that the presence
of axioms does not influence the result of typechecking signatures. Then regarding all the
axioms in an EML program as comments results in a well-formed SML program.

By way of disclaimer, it should be noted that the assertions above concerning such
matters as compatibility between the semantics of SML and EML should be formally re-
garded as conjectures which we strongly believe to be true but which have not yet been
formally proved; the same goes for similar assertions in the remainder of the paper.

4 An overview of the EML semantics

As mentioned earlier, one of the most important features of SML is that it has a fully
formal definition (modulo some minor faults [Kah93]). Not only is its syntax formally
defined — this is not unusual — but also the meaning of SML programs is determined
unambiguously by a formal mathematical semantics [MTH90], [MT91]. This is given
in the form of so-called natural semantics [Kah88] (or structural operational semantics
[Plo81]) via deduction rules that determine a meaning for each SML phrase. We will
present a number of such rules below, hopefully giving the reader the flavour of the entire
semantics.

The semantics of SML consists of some two hundred rules, grouped to reflect both the
structure of the language and the envisaged phases of program interpretation. Thus, on
one hand, the semantics of SML divides into the semantics for the core language and the
semantics for the module language. Then, the semantics for the core and the semantics
for modules are each split into two parts: the static semantics, which describes the type-
checking phase of program interpretation, and the dynamic semantics, which describes the
actual evaluation of programs. In addition, the derived forms of the syntax are described
by translation to phrases of the bare language.

The dependencies between various parts of the semantics are kept to a minimum, to
facilitate understanding of the quite complex language definition. As expected, the static
semantics for modules relies on the static semantics for the core. Similarly, the dynamic
semantics for modules relies on the dynamic semantics for the core. However, no part of
the semantics for the core depends on the semantics for modules, and the static semantics

13

and the dynamic semantics are independent.5 All the parts are joined at the top level,
where the overall semantics for SML programs involves both type-checking (the static
semantics) and evaluation (the dynamic semantics).

The semantics of EML inherits its basic form and structure from the semantics of SML.
It is given as a natural semantics and consists of a number of deduction rules grouped
to reflect the structure of the language and the various aspects of the interpretation of
EML phrases. As in the SML semantics, the semantics for EML core and modules are
given separately, each of them incorporating static semantics and dynamic semantics. The
meaning of the derived forms of EML is given by translation to the bare language, but
the description of this translation is considerably more detailed than the corresponding
part of the SML semantics, since we have decided to capture formally all the technicalities,
whereas the definition of SML relies on a somewhat informal English description.

In addition we also have a verification semantics for EML, again split into the verifica-
tion semantics for the core and for modules. In a way, the verification semantics for EML
modules is the essence of EML. This part of the semantics captures the requirement that
modules are correct w.r.t. their interfaces. We consider a (well-typed) EML program to be
correct if the verification semantics produces a meaning for it. If the verification semantics
fails for this program, that is, no verification meaning for the program may be derived,
the program is considered incorrect. Incorrect programs may still be “run” (according to
their dynamic semantics) — but the results are not guaranteed to meet the requirements
expressed in the module interfaces.

The dependencies between the various parts of the EML semantics are somewhat more
complicated than in SML. As in SML, the semantics for modules depends on the semantics
for the core, while the semantics for the core does not depend on the semantics for modules.
The static semantics and the dynamic semantics are independent. However, the new
part of the semantics, the verification semantics, depends on both the static and the
dynamic semantics. As explained in Section 2.4, the interpretation of axioms depends
on typing information (for example, the type of the bound variable must be known to
interpret the meaning of a universally quantified expression) — hence the dependency on
the static semantics. The dependency on the dynamic semantics stems from the need to
interpret axioms describing evaluation properties of expressions (for example, stating that
an expression terminates) and to determine exactly what the expressible values are. We
should hasten to add that neither the static nor the dynamic semantics depends on the
verification semantics, as should be expected. Finally, as for SML, all the parts of the
semantics are joined at the top level, where the overall semantics of EML “programs” is
given. Figure 2 is a diagram of the direct dependencies between the various parts of the
semantics.

In the rest of this section we present fundamental ideas that are important for each
part of the semantics — see [KST94b] for the complete definition. We skim through the
static and the dynamic semantics, as the issues involved there are much the same as in the

5Although this statement is technically accurate, a successful “run” of the static semantics is needed to
ensure that the dynamic semantics yields expected meanings. In this sense the dynamic semantics depends
on the static semantics. A precise statement of this “soundness” property may be found in [Tof88].

14

Static semantics
for the Core

� Static semantics
for Modules

Dynamic semantics
for the Core

� Dynamic semantics
for Modules

6

Verification semantics
for the Core

� Verification semantics
for Modules

}

Derived forms � Programs

� o

Figure 2: Dependencies between parts of the semantics

15

semantics of SML — we hope, however, to give the flavour of these parts. More attention
is paid to the verification semantics, as this is the really new (and most interesting) part
of the definition of EML. We go into some of the technical details there, and the reader
should be warned that these are somewhat intricate. This should give some idea of how
many issues had to be taken into account in the course of work on the definition. The
definition of the syntax is not discussed, although certain intricate problems arise there
due to unconventional features of SML’s syntax.

4.1 Static semantics

The static semantics of EML describes the process of static elaboration of EML phrases.
This includes, for example, checking that all the objects used have been declared in the
current environment and, most significantly, that phrases are well-typed.

Perhaps most typically, the rules of the static semantics for expressions allow one to
derive judgements of the form6 C ` exp ⇒ τ . This is to be read: in the context C,
the expression exp can elaborate to the type τ (or exp can have type τ). Here, contexts
are triples, where the most essential component is a static environment storing typing
information about the objects declared in the current environment. We have C ` [1]⇒
int list and C ` []⇒ int list (for any7 context C). Note, however, that we also have
C ` []⇒ α list, where α list is the type of lists over arbitrary type α. The polymorphic
generalisation of this type is written as ∀α. α list. It is formed when an expression of
type α list is bound to an identifier (provided α is not fixed by the context). ∀α. α list
may be instantiated to any type of the form τ list.

Declarations are slightly more complicated: the static semantics elaborates a declara-
tion to a static environment, containing typing information about the objects introduced
by the declaration. The corresponding judgements are of the form C ` dec ⇒ E, and for
example we have C ` val a = 5⇒ {a 7→ int}. Examples involving function declarations
are no more complicated: we have C ` val f = fn x => [x]⇒ {f 7→ int→ int list}, as
well as C ` val f = fn x => [x]⇒ {f 7→ ∀α. α→α list}.

The judgements mentioned above may be formally derived using the rules of the static
semantics. A typical example of such a rule, involving the elaboration of both declarations
and expressions, is the following rule for expressions with local declarations (this is a
simplified version of the rule!):

C ` dec ⇒ E C ⊕ E ` exp ⇒ τ

C ` let dec in exp end⇒ τ

This is to be read: if in the context C the declaration dec elaborates to the static environ-
mentE and in the context C extended by the static environmentE the expression exp elab-
orates to the type τ , then in the context C the expression let dec in exp end elaborates

6This is an approximation used here for presentation purposes only; more details will be provided
below.

7We tacitly assume that contexts, environments, etc., used in the small running examples throughout
this section map the built-in type constructors and values of EML to their expected meanings, as described
in the initial basis for SML, cf. [MTH90].

16

to the type τ . Notice that the result of the elaboration of dec does not appear in the overall
result. For example, using this rule we can deriveC ` let val f = fn x => [x] in f 5 end⇒
int list (for any context C).

The static semantics for modules proceeds in much the same way as that for the core,
but the semantic values built are more complex. For example, a structure expression
elaborates to a static environment E, which stores typing information about the objects
declared within the structure, together with a structure name m (a unique internal tag)
attached to the structure to keep track of sharing. The corresponding judgements have
the form B ` strexp ⇒ (m,E), where B is a static basis, containing a context and a
set N of structure names used so far. Here is a typical rule, for the encapsulation of a
structure-level declaration of objects to form a new structure:

B ` strdec ⇒ E m /∈ (N of B)∪ namesE
B ` struct strdec end⇒ (m,E)

The hints above on the static semantics apply to SML as well as to EML. However, as
mentioned before, there are some differences. For example (cf. Section 3) we have designed
typing for EML modules to be stricter than for SML, and this change is properly reflected
by the static semantics for EML modules. Let us consider a simple structure declaration:

structure S: sig type t; val c:t end =
struct type t = int; val c = 17 end

In SML, the signature constraint in this particular example has no effect : the static envir-
onment assigned to the structure identifier S maps t and c to int. A signature constraint
in SML, if present, is used only to check that the structure matches the signature and to
hide auxiliary structure components. In EML, signature constraints have an additional
purpose: they also hide information about structure components — only the information
provided in the signature can be exploited when using the structure. In particular, in the
above example, the EML static semantics binds S to a static environment that maps t and
c to a new, otherwise unknown type. Consequently, in the context of the above structure
binding, in EML we cannot form expressions like S.c+2 — this is not well-typed in EML,
although it is well-typed in SML. This behaviour of EML is compatible with SML in the
sense that every successful elaboration in EML will also succeed in SML.

Another difference is that in EML we have a new part of the semantics, the verification
semantics, which relies on the type information gathered during static elaboration. We
need some mechanism to export this information from the static to the verification se-
mantics of EML, also covering cases in which the intermediate types for some parts of EML
phrases do not appear in the overall result, as for example the type of f in the elaboration
of let val f = fn x => [x] in f 5 end, which we considered earlier. This is achieved by
accumulating all the types used in static elaboration of a phrase in an additional compon-
ent of the result of elaboration — a so-called trace — for use by the verification semantics.
One can think of a trace as an annotation of the entire parse tree for the phrase with results
of the static analysis of each of its subphrases. The presence of traces somewhat complic-
ates both the form of judgements and the rules of the static semantics. For instance, the

17

above rule for expressions with local declarations in fact looks as follows:8

C ` dec ⇒ E, γ C ⊕ E ` exp ⇒ τ, U, γ′ tynames τ ⊆ T of C
C ` let dec in exp end⇒ τ, U, γ · γ′

Here, the trace γ accumulates the types used in the elaboration of dec to the static en-
vironment E in the context C, γ′ accumulates the types used in the elaboration of exp
to the type τ in the context C ⊕ E, and consequently γ · γ′ accumulates the types used
in the elaboration of let dec in exp end to the type τ in the context C. (Elaborating an
expression produces an additional result U , the set of unguarded type variables, used to
keep track of the scope of explicit type variables. This issue is treated semi-formally in
[MTH90].)

An additional problem is that the static semantics may “choose” different types for
some parts of an expression without affecting the type of the expression as a whole. As
mentioned above, the type of fn x => [x] may be either int→ int list or α→α list
(among others). Moreover, since f 5 elaborates to int list both in the context assign-
ing int→ int list to f and in the context assigning ∀α. α→α list to f, the elabor-
ation of let val f = fn x => [x] in f 5 end may proceed either via the judgement C `
val f = fn x => [x] ⇒ {f 7→ int→ int list}, or via C ` val f = fn x => [x] ⇒ {f 7→
∀α. α→α list}, in each case yieldingC ` let val f = fn x => [x] in f 5 end⇒ int list,
but with different traces. The type chosen for f may influence the result of the verification
semantics (well, not in this trivial case, but for example if f was involved in an axiom
like forall (x, y) => f x = f y, which unexpectedly happens to be true if f is typed as
unit→ unit list — see Section 2.4). To resolve the potential ambiguity, we have to
decide which of the possible types should be “exported”. The obvious choice is the most
general, principal type [DM82] (∀α. α→α list for f here), and so an appropriate princip-
ality requirement is imposed on traces, much as in the SML static semantics for modules
the principality requirement is imposed on signatures. The existence of principal types
and signatures is a fundamental property of the SML type system (see [MT91] for a precise
statement and proof) that is retained by EML and extends to the existence of principal
traces.

The requirement of principality is essentially an infinitary condition which states that
any type that can be produced by the static elaboration of a phrase is an instance of the
type that elaboration is required to choose. In the semantics of SML it is imposed for
example in the following rule:

C of B ` dec ⇒ E E principal for dec in (C of B)
B ` dec ⇒ E

which states that if a declaration dec elaborates as a core declaration to a static environ-
ment E that is moreover principal for dec in the given context, then dec, as a structure-level

8The third premise, which requires that the type of exp does not use any new type names not mentioned
in the original context, is not present in the corresponding rule of the SML definition. The type system
is unsound without this requirement, because type names introduced by different let expressions can
accidentally become equal. See [Kah93].

18

declaration, elaborates to E (notice the crucial distinction between the elaboration of dec
as a core declaration and as a structure-level declaration). In the semantics of EML, such
infinitary conditions are formalised by means of higher-order rules. For instance, the above
SML rule may be expressed as follows:

C of B ` dec ⇒ E C of B ` dec ⇒ E′

E � E′
B ` dec ⇒ E

Here, the second premise is a rule, which is true as a premise if it is admissible as a rule.
The meta-variable E′ is scoped at this premise, making it universally quantified for the
local rule. Thus, the premise requires each E′ to which dec may elaborate to be an instance
of E. Consequently, the new rule means exactly the same as its original version quoted
above from the semantics of SML.

Actually, the semantics of EML uses here yet a different rule, which imposes the princip-
ality requirement not just on the resulting static environment, but on the entire elaboration
as accumulated in the trace:

C of B ` dec ⇒ E, γ N = names γ \N of B C of B ` dec ⇒ E′, γ′

(N)γ � γ′

B ` dec ⇒ E, γ

The last premise of this rule requires that any trace corresponding to an elaboration of dec
in the given context may be obtained from the trace γ by instantiating new type variables
introduced in the corresponding elaboration of dec. As explained above, this requirement,
which is stronger than just principality of the resulting environment, is necessary for the
semantics of EML.

The static semantics of the axioms of EML requires little comment. Boolean expressions
used as axioms are typechecked exactly as usual. The only subtle point is that an explicit
restriction must be imposed to prevent the static analysis of an axiom from influencing the
results of the static analysis of the phrase in which it occurs. For example, the signature
expression

sig
type t
val a:t
axiom a=5

end

is not statically well-formed in EML, since the axiom forces the type t to share with
int. The restriction is required to ensure that treating the axioms in an EML program as
comments yields a well-formed SML program.

Higher-order rules, which come with an additional scoping mechanism for meta-variables,
considerably increase the expressive power of the formalism. They have to be used with
care, as the formalism no longer guarantees that the usual inductive interpretation of the
rules unambiguously defines the true judgements of the semantics. In particular, “im-
predicative” dependencies between premises and conclusions in higher-order rules must

19

be avoided. This problem was already present in the semantics of SML [MTH90], but
was less explicit there since the problematic premises were formulated in terms of con-
cepts defined semi-formally in English and separately from the rules. The requirement of
principality was the most visible example of this, and the potential problem is resolved
by a theorem in [MT91]. In the EML semantics, the need for higher-order rules arises
much more frequently and prominently since the verification of axioms naturally involves
infinitary premises (because of the presence of e.g. quantifiers and extensional equality, see
Sections 2.4 and 4.3.1). Thus the semi-formal style used in SML seemed inappropriate.

4.2 Dynamic semantics

The dynamic semantics of SML, as for any other programming language, is the key part
of its description. After all, the main reason for writing programs is in order to evaluate
them, and this is what the dynamic semantics describes. One might think, however, that a
dynamic semantics for a program development framework like EML is somewhat pointless:
the dynamic semantics for the programs produced by formal development is provided by
the definition of SML, and can be used to evaluate them. One reason to nevertheless
provide a separate dynamic semantics for EML is that the verification semantics, the main
part of the EML semantics, relies on the dynamic semantics, for example to determine the
value of the terminates predicate and in quantification over expressible values — hence,
the dynamic semantics is needed to make the formal definition of EML self-contained.
Another important reason is that we want to formally define a basis for experiments
with unfinished programs. EML programs, even incomplete ones containing specification
constructs, are viewed as “partially executable”. The idea is that such programs should
be executable insofar as this is possible, and that evaluation should proceed as in SML for
the parts that contain only SML code. The dynamic semantics of EML formalises this.

The dynamic semantics describes the evaluation of language phrases. In particular,
for expressions, the dynamic semantics allows one to derive judgements of the form9 E `
exp ⇒ v, stating that in the (dynamic) environment E, the expression exp evaluates10

to the value v, where environments store the values of objects that are currently defined.
For example, we have {a 7→ 27} ` a * 37⇒ 999. Environments are built by declarations,
with corresponding judgements of the form E ` dec ⇒ E′ expressing the fact that in
the environment E the declaration dec evaluates to the environment E′, which stores
the values of objects declared in dec. For instance, we have E ` val a = 27 ⇒ {a 7→
27} (for any environment E). Formally, judgements are derived using the rules of the
dynamic semantics, with a typical example being the following rule for expressions with
local declarations:

E ` dec ⇒ E′ E + E′ ` exp ⇒ v

E ` let dec in exp end⇒ v

9This is an approximation used here for presentation purposes only; more details will be provided
below.

10E ` exp ⇒ v literally means that in E, exp can evaluate to v, but since evaluation is deterministic, v
is uniquely determined (if it exists).

20

Using this rule, we can for example derive directly from the judgements above that E `
let val a = 27 in a * 37 end⇒ 999.

Evaluation of expressions involving functions is just as simple. One has to remember
though that values of function types are not functions in the usual sense but rather clos-
ures, which result from the encapsulation of expressions defining function bodies [Lan64].
Closures are expanded when applied to arguments, and a rather elaborate scheme of self-
expansion is used to model recursion (see [KST94b], [MTH90] for details). The possibility
of non-termination is reflected by the fact that using the rules of the dynamic semantics
one cannot derive values for certain expressions of the language. For example, there is no
value v for which the judgement E ` let fun loop() = loop() in loop() end ⇒ v
can be derived, as expected.

Another complication arises from the fact that SML (and hence EML) expressions may
raise exceptions. In this case, the result of evaluation is a packet (an exception name
possibly together with a value). Consequently, the formal judgements of the dynamic
semantics for expressions may also have the form E ` exp ⇒ p (in the environment E
the expression exp evaluates to the packet p). To express the two possibilities jointly, we
write E ` exp ⇒ v/p, and use the semantic rules to determine which form is derivable
for a particular expression. The possibility of a phrase raising an exception is often left
implicit in the semantic rules, relying on the so-called “exception convention” to ensure
that packets are propagated by the rules of the dynamic semantics. Thus, the above rule
for expressions with local declarations induces implicitly, by the exception convention, the
following rule:

E ` dec ⇒ E′ E + E′ ` exp ⇒ p

E ` let dec in exp end⇒ p

(and similarly for packets arising from evaluation of dec). Of course, some semantic rules
must be exempted from the exception convention. Most notably, the rules that describe
how exceptions may be trapped (i.e. how packets may be handled) deal with packets
explicitly.

Another aspect of dealing with exceptions is that the set of exception names used is
determined dynamically — a new exception name is generated each time an exception
declaration is evaluated (this new exception name is used as the meaning of the exception
identifier declared). Consequently, the set of exception names generated so far must be
stored. In SML this set is one of the components of the current state — and since its other
components are used to describe the imperative features of SML programs, this is the only
component of states in the dynamic semantics of EML (apart from the specification flag,
see below). This means that states are necessary in EML, and the real form of semantic
judgements describing evaluation of expressions is s, E ` exp ⇒ v/p, s′ (in the state s
and the environment E, the expression exp evaluates to the value v or packet p with the
resulting state s′). The so-called “state convention” allows one to formulate many rules
without mentioning states explicitly, using the order of premises to determine how states
resulting from evaluation of one phrase are passed to another. Thus, in particular, the

21

above rule for expressions with local declarations expands to the following:

s, E ` dec ⇒ E′, s′ s′, E + E′ ` exp ⇒ v, s′′

s, E ` let dec in exp end⇒ v, s′′

The rules resulting from the use of the exception convention are affected similarly.
The above remarks apply to SML as well as to EML — the overall ideas on how programs

are evaluated are the same. What is new in EML is that it contains some phrases which,
intuitively, cannot be evaluated. Typical examples here are objects defined by declarations
where no code is provided (the absence of code being represented by the placeholder ?) or
phrases containing constructs for building formulae, such as ==, terminates, or forall.
Even though the dynamic semantics of EML simply skips axioms, these non-executable
specification constructs may be encountered in evaluation of EML expressions outside
axioms. When this is the case, a special exception NoCode is raised. NoCode cannot be
handled explicitly in programs, as mentioned in Section 3. However, to enable execution
of completed parts of EML programs, NoCode is trapped by the dynamic semantics of EML
at the declaration level and a special value Incomplete is used to mark its presence in
the evaluation of an object declaration. An attempt to use the value Incomplete causes
NoCode to be raised again. Here are a few examples (where [NoCode] denotes the packet
with exception name NoCode):

E ` (fn x : int => x - 1) == (fn x : int => x + 1)⇒ [NoCode]
E ` val x : int = ?⇒ {x 7→ Incomplete}
{x 7→ Incomplete} ` x + 27⇒ [NoCode]
{x 7→ Incomplete, y 7→ Incomplete} ` 27 * 3⇒ 81
E ` let val x : int = ?; val y = x + 1; val a = 27 in a * 3 end⇒ 81

This yields a rather subtle difference between the dynamic semantics of EML and both the
dynamic semantics of SML (which simply does not deal with the specification constructs of
EML) and the verification semantics of EML (where, in a sense, these constructs are prop-
erly dealt with). To make this explicit, we have added to EML states a new component,
the specification flag. This flag is raised whenever evaluation encounters a specification
construct, or when a closure is produced that depends on a specification construct whose
evaluation may be required when the closure is applied to an argument. When the spe-
cification flag is not raised during the evaluation of a phrase, the results provided by the
dynamic semantics of EML coincide both with the results of the dynamic semantics of
SML11 and with the results of the verification semantics for the core of EML (see Sec-
tion 4.3.1 below). However, when the specification flag is raised, the behaviour of the
dynamic semantics of SML and the verification semantics of EML need not be related: one
may yield a result when the other does not, or they may yield different results; similarly,
the results of the dynamic semantics of EML may differ from those of the verification se-
mantics in this case. To complete the picture: when the dynamic semantics of EML does
not yield a result, the verification semantics cannot yield one either.

11Somewhat informally, we mean here the semantics of SML literally applied to EML phrases, hence in
particular with no rules applicable to the specification constructs of EML.

22

The role of the dynamic semantics for EML modules is purely to define a basis for
experiments with unfinished programs (see the beginning of this section). The other
parts of the semantics do not depend on this part, as Figure 2 indicates. It follows the
dynamic semantics for SML modules in the same manner as the dynamic semantics for
the EML core sketched above follows the dynamic semantics for the SML core. Thus, in
particular, EML structure expressions evaluate to environments, but evaluation need not
terminate and may modify the state. Moreover, evaluation proceeds in a basis, a “richer”
environment which, apart from the values of objects stored as in the dynamic environment
for the core, may also store functors and signatures. The corresponding judgements have
the form s, B ` strexp ⇒ E, s′. The EML-specific constructs are treated as sketched
above: axioms are disregarded, evaluation of non-executable expressions raises the NoCode
exception and may result in the value Incomplete being stored in the environment. In
particular, environments resulting from evaluation of EML structures may contain objects
with Incomplete stored as their value.

4.3 Verification semantics

Although we provide a dynamic semantics for EML, the main stress in a specification and
formal development framework like EML is rather on the verification of correctness asser-
tions that are present in EML phrases. Consequently, we view the verification semantics
as the essence of the formal description of EML. The heart of this part of the semantics is
the check that structures and functors match their signatures, which in particular means
that they satisfy the axioms given in the signatures. Signature matching is described by
the verification semantics for modules, and the meaning of axioms is described by the
verification semantics for the core. Verification of an EML phrase does not result merely
in a binary statement indicating whether the phrase is correct or not. Some more detailed
information about the contribution of the phrase to the meaning of the whole program
must be determined as well. We will say that the verification semantics describes how
EML phrases verificate12 to semantic objects.

4.3.1 Verification semantics for the core

The verification semantics for the EML core is in many respects quite similar to its dynamic
semantics. The basic ideas are the same, and for example expressions verificate to values
or to packets (since exceptions may be raised), possibly changing the state. A difference
with respect to the dynamic semantics stems from the fact that verificating an expres-
sion requires information that is not available in the expression itself or in the dynamic
environment. This information comes from various sources. As mentioned earlier, the
interpretation of axioms depends on type information that appears in the trace produced
by the static semantics. Expressions are substituted for question marks by reference to the
question mark interpretation produced by the verification semantics for modules, see Sec-
tion 4.3.2. The verification semantics thus interprets expressions in the context of a model

12An obvious alternative is “verify”, but this carries connotations we would like to avoid.

23

consisting of a dynamic environment (with some type information added), a trace for the
expression at hand, and a question mark interpretation; the corresponding judgement has
the form s,M ` exp ⇒ v/p, s′. Each state is augmented with (among other things) two
type interpretations: one is used to interpret types that were defined using question marks
in other phrases, and the second, produced by the verification semantics for modules,
penetrates the abstraction barrier imposed by interfaces for use in the interpretation of
logical equality and quantifiers, see below. Similar remarks apply to declarations, where
judgements have the form s,M ` dec ⇒ E/p, s′.

The specification constructs of EML, such as ==, terminates and forall, are viewed
as special operators with their own verification rules (recall that an attempt to evaluate
them in the dynamic semantics simply raises NoCode, a special exception reserved for this
purpose). The rules of the verification semantics capture the meaning of these constructs
as sketched in Section 2.4.

The verification of logical equality exp1 == exp2 proceeds in two stages. First, the
expressions exp1 and exp2 are classified according to whether they (i) verificate to values,
(ii) verificate to packets, (iii) fail to evaluate, or (iv) fail to verificate without failing to
evaluate. If (iv) holds for either of the two expressions then we have no reliable information
about its value (see the discussion of the terminates construct below) and exp1 == exp2 is
undefined; otherwise it is always defined. Most typically, if (i) holds for the two expressions,
we proceed by considering their values v1 and v2 (see below). The result of verification is
determined directly if (iii) holds for the two expressions — then exp1 == exp2 verificates to
true — and if they fall into different categories as described by (i), (ii) and (iii) — then
exp1 == exp2 verificates to false. If (ii) holds for the two expressions and the exception
names in the resulting packets are different, then exp1 == exp2 again verificates to false.
Otherwise, values v1 and v2 are extracted from the packets.

To resolve the remaining cases, the values v1 and v2 obtained from exp1 and exp2 as
above are compared. This comparison is always defined and yields true if v1 and v2 are
indistinguishable in every context, i.e., if there is no expression exp of type bool that
yields different results in two environments distinguished only by assigning to some new
variable x the values v1 and v2 respectively.

This informal explanation is not as precise as it appears. The phrase “expression exp
of type bool” may seem innocuous, but it omits one crucial ingredient: a static context C
in which exp elaborates to bool. There are various choices for C, each giving a distinctive
flavour to the comparison. We use a context C in which every constructor is available (dis-
regarding scoping) and associated with its original type (disregarding abstraction barriers).
This also determines the two environments in which the value of exp is to be obtained:
they carry all the values and types mentioned in C, plus the binding of the new variable x
to v1 and v2 respectively. This decision makes it possible to distinguish values even if the
current program context is not capable of making such a distinction. A small example:

datatype adt = A | B
val z = A and y = B
datatype cover = A of int | B

In the context obtained by elaborating the above sequence of declarations, no means are

24

provided to distinguish the values of z and y. The verification semantics builds a context
that restores the constructors A and B hidden by the second datatype declaration (without
hiding the constructors from that declaration) and these two values then become easily
distinguishable. The use of this enriched context means that the result of comparison is
unaffected by the textual position of the formula. For example, the expression z==y will
verificate to false regardless of whether it occurs before or after the second datatype
declaration. If the unenriched context of the expression itself were used, z==y would
verificate to false if placed before this declaration and to true if placed after it.

Another informality in our description of the comparison of two values was that the
phrase “yields different results” could refer to either evaluation or verification. The val-
ues might be (or might contain) higher-order functions, and then the potential for non-
termination makes the comparison a delicate business. Some problems are circumvented
by using verification to do the comparison, since then contexts involving the terminates
operator can be effectively used.

In spite of the way that a structure’s interface signature abstracts away from the details
of the structure body, hiding the concrete realisation of its types and other components (see
Section 4.3.2 below for details), each model incorporates a particular choice of these details
satisfying the axioms in the signature.13 Comparison of values takes this information into
account. Consider the following example:

signature TWOVAL =
sig

type t; val c:t; val d:t
end;

structure T: TWOVAL =
struct

type t=int; val c=1; val d=2
end

A model will bind T.t to some type and T.c, T.d to values of that type. The fact that the
body of T binds t to int and c and d to different values (in this case 1 and 2 respectively) is
immaterial, since none of this is required by TWOVAL. In a model that happens to bind T.c
and T.d to different values, the expression T.c==T.d will verificate to false; in a model
that binds them to the same value, it will verificate to true. If the choice of bindings
in the model were not taken into account and only the information in the signature were
available for comparison of values, then T.c==T.d would verificate to true in every model
since no contexts are available to distinguish between T.c and T.d.

The result of verificating an expression of the form exp terminates indicates whether
the verification of the expression exp terminates or not, provided we have reliable inform-
ation to determine this. This proviso is crucial to avoid the usual paradoxes involving
expressions exp that contain the termination predicate itself. Reliable information about
termination of verification is provided by the dynamic semantics. If in the dynamic envir-
onment obtained by removing type information from the current verification environment

13This information is partly in the type interpretations that are contained in the state.

25

exp evaluates to a value v or packet p without raising the specification flag, then the
verification of exp will terminate as well (and yield the same value) — the circumstances
under which the dynamic semantics raises the specification flag are carefully chosen to
ensure this property. Consequently, we can then reliably verificate exp terminates to
true. If, however, the evaluation of exp results in a value or packet with the specification
flag raised, the termination information thus obtained is unreliable and we indicate this
fact by raising the special exception Abuse. Finally, if there does not exist a successful
evaluation of exp then exp terminates verificates to false. An important consequence
of this definition is that the verification of exp terminates for expressions exp that do
not depend on specification constructs is always determined and yields true or false
consistently with the termination behaviour of this expression in the dynamic semantics
for SML.

Intuitively, a universally quantified formula forall x => exp is true if exp[x := v] is
true for all values v. Since SML is a typed language, we have to modify this statement by
requiring v to have the type that x has. But what is the type of x and how do we obtain
all its values?

The answer to the first question is given by the static semantics of EML.14 However, it
is only a partial answer, since the type assigned to x (available from the trace) is its most
general “polymorphic” type. For the purposes of quantification instantiation of this type
is required as it increases the set of values: for example, α list only has the single value
[] (the empty list), but we get non-empty lists as well when α is instantiated to non-
empty types. This explains why it is counter-intuitive to stick solely to the most general
type for the purposes of quantification: we want to be able to reason about non-empty
lists without giving a particular instantiation of α, thus for universal quantification over
α list we have to consider all possible instantiations of α. Consequently, a universally
quantified expression forall x => exp verificates to true if exp[x := v] verificates to true
for all values v of all instances of the type of x, as presented in Section 2.4.

This might suggest that a universally quantified expression is false if exp[x := v]
verificates to false for some value of some type instance, and analogously for existentially
quantified expressions verificating to true. We have, however, decided against the second
“some”, in part because it leads to certain anomalies as the following example illustrates.

signature P =
sig

val p: int list -> bool
axiom exists x => p x

end;
structure S:P =

struct
val p:’a list -> bool = ?
axiom exists x => p x

end
14This is not the whole story. The type inferred by the static semantics needs to be modified to take

the realisation of types in structures into account, see Section 4.3.2.

26

Both the structure and the signature contain literally the same axiom, and signature
matching permits the structure to be more polymorphic than the signature specifies, so
we would expect this declaration to verificate (and indeed it does verificate in EML).
Had we instead adopted the above suggestion, then one environment resulting from the
verification of the structure body would map p to the strange predicate

fn xs => length xs > 0 andalso
forall ys => xs@ys == ys@xs

since p [()] verificates to true (where ():unit, and [()]:unit list is a witness for the
existential axiom in the structure body, with p considered over the type unit list -> bool).
Clearly, for this choice of the predicate p, the axiom in the signature cannot be satisfied,
since p is considered there over the type int list.

Thus, as indicated in Section 2.4, we require witnesses to existential axioms to have
the same type as the quantified variable. Therefore, all the environments in the result
of verification of the structure body above map p to predicates such that a polymorphic
witness v:’a list can be provided for p v to verificate to true; then v can be instantiated
to the type int list, giving a witness to the axiom in the signature.

We decided to define the set of all values of a type τ to be the values that can be
expressed in the language, i.e. each value considered can be obtained from an expression
exp of type τ . Again, two aspects of this characterisation have to be made precise: we have
to decide in which static context exp should have type τ , and we have to choose whether
“obtain” refers to the dynamic or verification semantics. For the former, a solution similar
to that for logical equality is chosen: we disregard scoping and abstraction barriers and
quantify over the values of the type realisation in the model at hand. The following
structure declaration verificates, as expected:

structure S : sig type t
val c:t; val p: t -> bool
axiom exists x => p x

end =
struct type t = int

val c = 1
val p = fn y => y=2

end

To verificate the axiom in the signature we use the type t as realised (by int) in the
structure body, and then the axiom clearly holds. Had we instead relied on the type t as
abstractly characterised by the signature, the axiom would not hold, since the only value
of t we could construct at this level is given by the constant c, and c is not a witness for
the existential axiom in the signature.

The choice whether we obtain values by evaluation or verification has to be decided
in favour of evaluation to avoid vicious circles — after all, the verification of a quantified
expression produces a value (of type bool) itself. A complication arising from this choice
is that we have to check that the evaluation of the expression exp used to generate a value

27

does not raise the specification flag. This is necessary to ensure that the verification of
exp yields the same value. A consequence is that the values considered cannot depend on
specification constructs.

4.3.2 Verification semantics for modules

EML module phrases verificate to sets of semantic objects, rather than just to a single
semantic object as in the verification semantics for the core. For instance, in a given
basis, EML structure expressions verificate to sets of (verification) environments,15 with
the corresponding formal judgements having the form B, γ ` strexp ⇒ E. Typically, in a
complete EML structure expression (containing only SML code) without substructures, the
resulting set of environments will contain exactly one element: the environment determined
by the SML code. But there are several reasons why this set might not be a singleton.
Most obviously, there may be unresolved choices within strexp. For example, a structure-
level declaration like val a : int = ? results in a set of environments, each mapping a to
a different integer. Then, the resulting set may be empty — for example, an axiom like
axiom a>5 andalso a<3 in strexp results in the empty set of environments — but notice
that this is different from a failure to verificate at all! Finally, and perhaps most crucially
for the methodological aspects of the verification of EML programs, if strexp contains a
substructure or uses another structure then its attached interface is used to filter the
information available, hiding the details given in its body. Consequently, the “verification
meaning” of a structure is the set of all environments matching its interface, rather than
the particular environment (or set of environments) given by its body.

This last point is perhaps best explained by looking at the verification of a single
structure declaration structure S : sigexp = strexp. To verificate this, one proceeds as
follows (we leave the basis in which the verification takes place implicit):

1. First, verificate the signature expression sigexp, obtaining a (verification) signature
Σ. This stores the names of objects specified in the signature together with static
information about them. Moreover, axioms given in the signature are stored in an
appropriate form — see below for more details.

2. Then, verificate the structure expression strexp, obtaining a set of environments E
as discussed above.

3. Then, check that each environmentE ∈ E matches the signature Σ. This is where the
real verification takes place: it involves checking whether the axioms incorporated
in Σ are satisfied by E.

4. The result is the set of all environments binding S to an environment that matches
the signature Σ. Notice that this “includes” but is in general larger than the set E
of environments obtained from the verification of strexp.

15In fact, just as in the dynamic semantics of EML it was necessary to consider an environment together
with a state, in the verification semantics structure expressions verificate to sets of elements that are pairs
of an environment and a state. For presentation purposes we disregard states in the rest of this section.

28

If any of the above steps fails (this may happen in step 2, for example if strexp contains
an incorrect substructure declaration, or in step 3, if the verification requirement formu-
lated there does not hold) then the structure declaration structure S : sigexp = strexp is
incorrect and hence its verification fails as well. This is different, however, from the case
in which the result is the empty set. The latter is possible if no environment matches Σ,
and the verification of strexp results in the empty set of environments. Of course, such a
structure would not be of much use!

Here is (a simplified version of) the rule that embodies the above verification procedure:

B ` sigexp ⇒ Σ B ` strexp ⇒ E for each E ∈ E, E matches Σ
B ` structure S : sigexp = strexp ⇒ { {S 7→ E′} | E′ matches Σ}

A few comments are necessary here. First, see below for a discussion of the details involved
in matching an environment against a signature. Second, we have elided traces and use an
ad hoc (but self-explanatory) notation to present a rule with an infinite set of premises,
where moreover the number of these depends on a semantic object mentioned in another
premise. The semantics uses a higher-order rule to express this more formally. Finally, this
is a very simplified version of a rule that does not actually appear in the semantics, but may
be derived using more elementary rules for structure bindings and structure declarations.

To take a simple example, consider the following structure declaration:

structure S: sig val a: int; axiom a>0 andalso a<5 end =
struct val a: int = ?; axiom a>1 andalso a<4 end

The verification of the structure expression in this declaration results in the set of envir-
onments {E2, E3} where we write Ei for {a 7→ i}. It is then checked that each of these
environments does indeed match the signature, and in particular satisfies the axiom given
there. The resulting set of environments assigning an interpretation for the structure S
contains not only {S 7→ E2} and {S 7→ E3}, but also {S 7→ E1} and {S 7→ E4}, since the
set of environments matching the signature is exactly {E1, E2, E3, E4}.

If we modify the interface as follows:

structure S: sig val a: int; axiom a>0 andalso a<3 end =
struct val a: int = ?; axiom a>1 andalso a<4 end

then the check that each of the environments resulting from the verification of the structure
expression (E2 and E3) matches the signature fails, since E3 does not satisfy the modified
axiom. Thus, the verification of this structure declaration fails: the structure declaration
is (not surprisingly) incorrect.

The outcome of a successful verification of a structure-level declaration is a set of envir-
onments, each expressing a possible meaning of the declared objects. Further verification
proceeds for each of these possibilities separately, as expressed by the following rule for
sequential composition of structure-level declarations (again, a very simplified version is
used, with an ad hoc notation to represent dependencies between objects):

B ` strdec1 ⇒ E1 for each E ∈ E1, B ⊕E ` strdec2 ⇒ E2[E]
B ` strdec1;strdec2 ⇒ {E1 + E2 | E1 ∈ E1, E2 ∈ E2[E1]}

29

The above rule appropriately respects the dependencies between consecutive structure
declarations. Consider the following example:

structure S: sig val a: bool end =
struct val a: bool = ? end;

structure T: sig val b: bool; axiom b = S.a end =
struct val b: bool = S.a end

The verification of these two declarations will result in the set of environments containing
{S 7→ St, T 7→ Tt} and {S 7→ Sf , T 7→ Tf}, where St = {a 7→ true}, Tt = {b 7→ true},
Sf = {a 7→ false} and Tf = {b 7→ false}. However, the resulting set of environments
does not contain for example {S 7→ St, T 7→ Tf} even though the interface for S does not
determine the value of a (nor does the structure body in this case). The point is that
the verification of the declaration of T proceeds in the context of an arbitrary but fixed
interpretation for S.a, for each of the open possibilities separately.

On the other hand, removing the explicit information about the dependency from the
interface for T changes the result:

structure S: sig val a: bool end =
struct val a: bool = ? end;

structure T’: sig val b: bool end =
struct val b: bool = S.a end

Now, the result of the verification of these two declarations will consist of four environ-
ments: {S 7→ St, T’ 7→ Tt} and {S 7→ Sf , T’ 7→ Tf} as before, but also {S 7→ St, T’ 7→ Tf}
and {S 7→ Sf , T’ 7→ Tt}. Even though the verification of the structure expression in the
declaration of T’ results in the set of only two environments (as before), this information
is filtered out by the interface provided in the binding as described earlier. Consequently,
a further declaration

structure U: sig val c: bool; axiom c = S.a end =
struct val c: bool = T’.b end

is incorrect and does not verificate.
The sets of environments above arise through interaction between the verification se-

mantics for modules and for the core. At the point where a declaration is passed from
the module semantics to the core semantics, a question mark interpretation (which is re-
quired as a component of the model used to interpret core phrases) is chosen arbitrarily.
Verification may succeed or fail for this choice; one possible reason for failure is that an
axiom contained in the declaration may not verificate to true (see Section 4.3.1). This
does not necessarily mean that the declaration is incorrect. It means only that the partic-
ular choice of question mark interpretation is unsuccessful and will not contribute to the
result of the verification semantics of the declaration. Only those environments resulting
from a successful verification of the declaration for some choice of the interpretation of
question marks are included in the result of the verification of the declaration at the struc-
ture level. This is captured by the rule given below, again in a somewhat simplified form.

30

Rather informally, we write M [B,QI] for the model obtained by extracting the appropri-
ate components of the verification basis B and adding the question mark interpretation
QI.

B ` dec ⇒ {E | for some QI,M [B,QI] ` dec ⇒ E}
As in the static semantics (see the rule imposing principality discussed in Section 4.1) the
declaration dec is viewed here as a core declaration in the judgement M [B,QI] ` dec ⇒ E,
and as a structure-level declaration in B ` dec ⇒ {E | . . .}.

Here is a simple example of a structure expression:

struct
val a: int = ?
axiom a>5 andalso a<8
val b = a+2

end

The verification semantics for the structure-level declaration enclosed in struct . . . end
tries to verificate its enclosed sequence of declarations for each possible interpretation
of the question mark, one interpretation {? 7→ i} for each integer i. It is clear that
the verification succeeds only for the interpretations {? 7→ 6} and {? 7→ 7}, yielding
environments E6 = {a 7→ 6, b 7→ 8} and E7 = {a 7→ 7, b 7→ 9} respectively. The result of
the verification of the declaration is thus {E6, E7}, and this set of environments is taken
as the result of verification of the entire structure expression.

The constraints imposed by consecutive axioms accumulate by gradually restricting the
set of environments constructed by the verification semantics. For example, the verification
semantics for the following structure expression yields {E6}:

struct
val a: int = ?
axiom a>5 andalso a<8
val b = a+2
axiom a mod 2 = 0

end

The order of such axioms does not matter, and they may be arbitrarily intermingled as
above with core declarations (provided that identifiers used in axioms remain in scope).
The situation is different when substructure declarations are present. Consider the follow-
ing structure expression:

struct
val a: int = ?
axiom a>5 andalso a<8
val b = a+2
structure A:sig val c:int; axiom c mod 3 = 2 end =

struct val c:int = b end
axiom a mod 2 = 0

end

31

The declaration of the substructure A is required to verificate in both E6 and E7. Since
its verification fails for E7, the verification of the overall structure expression fails. In
contrast, changing the order of the final axiom (which filters out E7) and the substructure
declaration gives the following structure expression which verificates successfully, since the
substructure A verificates in E6:

struct
val a: int = ?
axiom a>5 andalso a<8
val b = a+2
axiom a mod 2 = 0
structure A:sig val c:int; axiom c mod 3 = 2 end =

struct val c:int = b end
end

In the same way as EML quantification is based on expressible values (see Sections 2.4
and 4.3.1), question mark interpretations QI map question marks to expressions, not to
values. In this way ill-formed values are avoided, and moreover, the interpretation of each
question mark may depend on the context in which it appears. The latter point means
that in the verification of a function declaration like

fun f x = let val c = ?:int in g c end

question mark interpretations may replace the ? by (integer) expressions containing free
occurrences of x.

The treatment of question marks in type bindings is somewhat different. The static
semantics guarantees that whatever replacement a question mark interpretation provides
for a question mark type (such that certain attributes are preserved), the success of static
analysis, and hence well-formedness of the program, is not affected. However, the exact
results of static analysis are affected, and this has to be taken into account by interpreting
the types derived during static analysis using one or both of the type interpretations
recorded in the state.

Matching an EML structure against an EML signature involves a number of rather
subtle points. Perhaps the most obvious is the fact that the axioms in the signature must
be interpreted relative to the type instantiation determined by the structure. For example,
in

signature A =
sig

type t
axiom exists x:t => true

end

the axiom requires the type t to be non-empty and its satisfaction depends on the par-
ticular realisation of t in the structure we match against A. When a structure is matched
against A, the type instantiation arising from the match is applied to the axiom in A. The

32

semantic object associated with axioms in signatures consists mainly of the syntax of the
axiom itself — see below for details — and this is not affected by the application of the
type instantiation. But the syntax of the axiom is accompanied by its trace, and this is
affected. The result is that the existential quantifier in the above axiom will range over
the realisation of t given by the type instantiation.

Another important point is that signatures in both SML and EML allow the use of
hidden functions and hidden types. For the dynamic semantics hidden objects are of
no concern, but they do matter in the verification semantics, where their interpretation
may influence the verification of axioms. For example, a structure matching the following
signature

signature B =
sig

local val b: int
axiom b>0

in val c: int
axiom c>b+1

end
end

need not include a value b (but has to include an integer value c, of course). However,
to successfully verificate the axiom c>b+1, a value b has to be found such that both the
“hidden” axiom b>0 and then the “visible” axiom c>b+1 are satisfied (in this example,
this would not be possible unless the value of c is greater than 2). In a certain sense, the
hidden declarations are existentially quantified (see [Far92]).

Axioms in signatures are stored in the form of so-called generalised axioms. The two
most important forms of generalised axiom arise in the signatures A and B above. There are
no hidden components in A, so the resulting generalised axiom has the form (B, γ, axdesc)
where axdesc is the syntax of the axiom as it appears above, γ is the trace produced for this
phrase by the static semantics, and B is a basis for the interpretation of global identifiers
in the axiom (in this case, just the identifier true). The purpose of the basis is exactly
the same as that of the environment in a closure. The judgement form for satisfaction of
a generalised axiom is E ` A⇒ {}, which is read: in the environment E, the generalised
axiom A holds. The environment E comes from the structure that is matched against the
signature containing the axiom. For a generalised axiom of the form (B, γ, axdesc), this
judgement amounts to the statement that axdesc verificates to true in the environment
B+E, using a trace obtained from γ as explained above. Since the signature B has hidden
components, the resulting generalised axiom has a form that we can write as ∃Σ.A, where
A is a “normal” generalised axiom (as in the previous example) for the visible part of the
signature and Σ is the hidden part. For this to be satisfied, there must exist a structure
expression strexp that matches Σ (and satisfies its axioms) such that A is satisfied in an
appropriate extension of the environment obtained from strexp.

The above presentation has focussed on the verification of structure expressions and
structure declarations. This extends to the verification of functor declarations in the
obvious way.

33

5 Final remarks

We have tried in this paper to provide a readable exposition of the definition of EML,
a framework for formal specification and development of SML programs. We have not
discussed here in any detail the methodological assumptions and theoretical underpinnings
underlying the design of this framework — these have been presented elsewhere. We have
also refrained from discussing merits of the design of the SML programming language.

The enterprise of engineering a sizable completely formal definition of a realistic, prac-
tically useful formalism is an inherently complex task. All the different aspects of this
formalism interact with each other, and their mutual relationship is a delicate matter
which has to be handled with care and extreme attention to detail. We should perhaps
quote here the example of the formal definition of SML on which we build. The original
definition of SML went through three major revisions before it was finally officially pub-
lished as [MTH90]. As a result of the study of the definition by a larger body of users,
this was then followed by a number of subsequent changes included in [MT91]. And even
now, some inaccuracies, weak points and minor mistakes in the definition are still being
discovered [Kah93]. Nevertheless, as a whole, the SML definition is considered (certainly
by us) to be an excellent example of the precise definition of a realistic programming lan-
guage, with very few practical examples of formal design achieving a comparable level of
accuracy and mathematical precision.

Thus, the main problems with producing the formal definition of EML have been prob-
lems of size, necessarily involving a struggle with many tedious details. We have tried
to illustrate this point in the paper. This does not mean that all the issues addressed in
the definition are mathematically trivial: on the contrary, in our view some of the specific
decisions in the semantics, especially those related to the formal definition of the language
of axioms, are of independent interest, and deserve further separate study.

One issue that is not treated in [KST94b] is the role of behavioural equivalence in
the methodology for formal development in EML as described in [ST89]. Following ideas
concerning the use of axioms to specify encapsulated abstractions (see e.g. [Rei81], [GM82],
[ST87]), in order to obtain correct results it is not actually necessary for the axioms in
an EML signature to be satisfied “literally”: it is enough if they are satisfied “up to
behavioural equivalence”, meaning that there is no way to detect failure to satisfy the
axioms by performing computations that yield observable results (i.e. results of base types
such as bool). This relaxation is required to adequately deal with certain examples of
refinement involving choice of data representation.

Further study is needed before we will be able to change the present definition to
permit axioms in signatures to be satisfied up to behavioural equivalence. Unexpectedly,
the approach used in [ST89], via a definition of behavioural equivalence between models,
will not achieve the desired effect here because of our use of models incorporating a rather
concrete representation of types and values. It should be possible to take a different
approach, which would involve a comparatively slight modification to the semantics of
quantification and logical equality. It is first necessary to show that there is a satisfactory
relationship between what this would yield and the behavioural equivalence relation used

34

for the foundations of formal development, following [BHW94]; a first step in this direction
is taken in [HS95].

The next major step in work on EML is to develop a sound proof theory, which would
provide the user with some formal proof rules and proof tactics to verify the correctness
conditions arising in the process of program development. Given the complexity of SML
and hence of EML, it may be difficult to come up with appropriate proof rules. Further-
more, checking the formal soundness of these rules w.r.t. the semantics given in [KST94b]
will be a formidable task on its own.

Defining the formal semantics of a framework like EML, or indeed of a programming
language like SML, is not a futile exercise. Most obviously, it provides a common unam-
biguous reference for all the users of the formalism. Perhaps even more importantly, such
a definition constitutes a basis for all further work on the framework: sound development
methodologies, proof techniques, support tools (including the compiler for the program-
ming language) must all be based on and checked against precise semantics if they are
to be trustworthy in applications in which correctness is important. Defining the formal
semantics of a language involves taking a very close look at all the details of the language
and of the complex interactions between its features. Such a detailed examination of a lan-
guage is a good way (perhaps the only way) of uncovering both major and minor problems
that would otherwise escape notice.

Acknowledgements: Thanks to Fabio da Silva for early collaboration on the static
and dynamic semantics of EML and to Edmund Kazmierczak and anonymous referees
for helpful comments on a draft of this paper. We owe special thanks to Robin Milner,
Mads Tofte and Robert Harper for their work on the definition of SML, without which the
research described here would not have been possible.

References

[AM93] A. Appel and D. MacQueen. Standard ML of New Jersey, version 0.93. AT&T
Bell Laboratories (1993).

[Ast86] E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inverardi,
E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reggio and E. Zucca. The draft
formal definition of Ada. Deliverable 7 of the CEC-MAP project (1986).

[Bac78] J. Backus. Can programming be liberated from the von Neumann style? A func-
tional style and its algebra of programs. Comm. of the Assoc. for Computing Ma-
chinery 21(8):613–641 (1978).

[Bau85] F. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R. Gnatz,
E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T. Matzner, B. Möller, F. Nickl, H.
Partsch, P. Pepper, K. Samelson, M. Wirsing and H. Wössner. The Munich Project
CIP, Vol. 1: The Wide Spectrum Language CIP-L. Springer LNCS 183 (1985).

35

[BHW94] M. Bidoit, R. Hennicker and M. Wirsing. Characterizing behavioural semantics
and abstractor semantics. Proc. 5th European Symposium on Programming, Edin-
burgh. Springer LNCS 788, 105–119 (1994).

[BKLOS91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas and D. Sannella (eds.) Al-
gebraic System Specification and Development: A Survey and Annotated Bibliography.
Springer LNCS 501 (1991).

[BG81] R. Burstall and J. Goguen. An informal introduction to specifications using Clear.
In: The Correctness Problem in Computer Science (R. Boyer and J.S. Moore, eds.),
185–213. Academic Press (1981).

[DM82] L. Damas and R. Milner. Principle type schemes for functional programs. Proc.
9th Annual ACM Symp. on Principles of Programming Languages, 207–212 (1982).

[Far92] J. Farrés-Casals. Verification in ASL and Related Specification Languages. Ph.D.
thesis; Report CST-92-92, Univ. of Edinburgh (1992).

[GLT89] J.-Y. Girard, Y. Lafont and P. Taylor. Proofs and Types. Cambridge University
Press (1989).

[GM82] J. Goguen and J. Meseguer. Universal realization, persistent interconnection and
implementation of abstract modules. Proc. 9th Intl. Colloq. on Automata, Languages
and Programming, Aarhus. Springer LNCS 140, 265–281 (1982).

[GH86] J. Guttag and J. Horning. Report on the Larch shared language. Science of Com-
puter Programming 6(2):103–134 (1986).

[Har89] R. Harper. Introduction to Standard ML (revised edition). Report ECS-LFCS-86-
14, Univ. of Edinburgh (1989).

[HL94] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. Proc. 21st Annual ACM Symp. on Principles of Programming Lan-
guages, 123–137 (1994).

[HS95] M. Hofmann and D. Sannella. On behavioural abstraction and behavioural satis-
faction in higher-order logic. Proc. 20th Colloq. on Trees in Algebra and Programming,
Intl. Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Aar-
hus. Springer LNCS 915, 247–261 (1995).

[Kah88] G. Kahn. Natural semantics. In: Programming of Future Generation Computers
(K. Fuchi and M. Nivat, eds.), 237–258. North-Holland (1988).

[Kah93] S. Kahrs. Mistakes and ambiguities in the definition of Standard ML. Report ECS-
LFCS-93-257, Univ. of Edinburgh (1993). With addenda dated 14th February 1995
in /pub/smk/SML/errors-new.ps.Z on ftp.dcs.ed.ac.uk.

36

[KST94a] S. Kahrs, D. Sannella and A. Tarlecki. The semantics of Extended ML: a gentle
introduction. Proc. Intl. Workshop on Semantics of Specification Languages, Utrecht,
1993. Springer Workshops in Computing, 186–215 (1994).

[KST94b] S. Kahrs, D. Sannella and A. Tarlecki. The definition of Extended ML. Report
ECS-LFCS-94-300, Univ. of Edinburgh (1994).

[Kaz92a] E. Kazmierczak. Modularizing the specification of a small database system in
Extended ML. Formal Aspects of Computer Science 4(1):100-142 (1992).

[Kaz92b] E. Kazmierczak. Model theory for Extended ML. Draft report, Univ. of Edin-
burgh (1992).

[Kri90] B. Krieg-Brückner. PROgram development by SPECification and TRAns-
formation. Technique et Science Informatiques (1990).

[Lan64] P. Landin. The mechanical evaluation of expressions. Computer Journal 6:308–320
(1964).

[Ler94] X. Leroy. Manifest types, modules, and separate compilation. Proc. 21st Annual
ACM Symp. on Principles of Programming Languages, 109–122 (1994).

[LHKO87] D. Luckham, F. von Henke, B. Krieg-Brückner and O. Owe. Anna, a Language
for Annotating Ada Programs: Reference Manual. Springer LNCS 260 (1987).

[MacQ86] D. MacQueen. Modules for Standard ML. In: Report ECS-LFCS-86-2, Univ.
of Edinburgh (1986).

[MG94] S. Maharaj and E. Gunter. Studying the ML module system in HOL. Higher Order
Logic Theorem Proving and its Applications. Springer LNCS 859, 346–361 (1994).

[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press (1991).

[MTH90] R. Milner, M. Tofte and R. Harper. The Definition of Standard ML. MIT Press
(1990).

[Mit90] J. Mitchell. Type systems for programming languages. In Handbook of Theoretical
Computer Science, Vol. B (J. van Leeuwen, ed.). North Holland (1990).

[Pau91] L. Paulson. ML for the Working Programmer. Cambridge Univ. Press (1991).

[Plo81] G. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19,
Aarhus University (1981).

[Rei81] H. Reichel. Behavioural equivalence: a unifying concept for initial and final spe-
cification methods. Proc. 3rd Hungarian Computer Science Conference, 27–39 (1981).

37

[San91] D. Sannella. Formal program development in Extended ML for the working pro-
grammer. Proc. 3rd BCS/FACS Workshop on Refinement, Hursley Park. Springer
Workshops in Computing, 99–130 (1991).

[San93] D. Sannella. Static and logical correctness conditions in formal development of
modular programs. Draft report, Univ. of Edinburgh (1993).

[SdS93] D. Sannella and F. da Silva. Case studies in Extended ML. Draft report, Univ. of
Edinburgh (1993).

[SST92] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of pro-
grams from algebraic specifications: parameterisation revisited. Acta Informatica
29:689–736 (1992).

[ST86] D. Sannella and A. Tarlecki. Extended ML: an institution-independent framework
for formal program development. Proc. Workshop on Category Theory and Computer
Programming, Guildford. Springer LNCS 240, 364–389 (1986).

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic specific-
ation. Journal of Computer and System Sciences 34:150–178 (1987).

[ST88] D. Sannella and A. Tarlecki. Toward formal development of programs from algeb-
raic specifications: implementations revisited. Acta Informatica 25:233–281 (1988).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: found-
ations and methodology. Proc. Intl. Joint Conf. on Theory and Practice of Software
Development, Barcelona. Springer LNCS 352, 375–389 (1989).

[ST91] D. Sannella and A. Tarlecki. Extended ML: past, present and future. Proc. 7th
Workshop on Specification of Abstract Data Types, Wusterhausen. Springer LNCS
534, 297–322 (1991).

[ST92] D. Sannella and A. Tarlecki. Toward formal development of programs from al-
gebraic specifications: model-theoretic foundations. Proc. Intl. Colloq. on Automata,
Languages and Programming, Vienna. Springer LNCS 623, 656–671 (1992).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Programming.
Ph.D. thesis; Report CST-42-87, Univ. of Edinburgh (1987).

[Tof88] M. Tofte. Operational Semantics and Polymorphic Type Inference. Ph.D. thesis;
Report CST-52-88, Univ. of Edinburgh (1988).

[VG94] M. VanInwegen and E. Gunter. HOL-ML. Higher Order Logic Theorem Proving
and its Applications. Springer LNCS 780 (1994).

[WRZ92] J. Wing, E. Rollins and A. Zaremski. Thoughts on a Larch/ML and a new
application for LP. Report CMU-CS-92-135, Carnegie Mellon University (1992).

38

