
Global Development via Local Observational
Construction Steps?

Michel Bidoit1, Donald Sannella2, and Andrzej Tarlecki3

1 Laboratoire Spécification et Vérification, CNRS & ENS de Cachan, France
2 Laboratory for Foundations of Computer Science, University of Edinburgh, UK
3 Institute of Informatics, Warsaw University and Institute of Computer Science,

Polish Academy of Sciences, Warsaw, Poland

Abstract. The way that refinement of individual “local” components
of a specification relates to development of a “global” system from a
specification of requirements is explored. Observational interpretation of
specifications and refinements add expressive power and flexibility while
bringing in some subtle problems. The results are instantiated in the
context of Casl architectural specifications.

1 Introduction

There has been a great deal of work in the algebraic specification tradition on
formalizing the rather intuitive and appealing idea of program development by
stepwise refinement, including [EKMP82,Gan83,GM82,Sch87,ST88b]; for a re-
cent survey, see [EK99]). There are many issues that make this a difficult prob-
lem, and some of them are rather subtle, one example being the relationship
between specification structure and program structure. There are difficult inter-
actions and tradeoffs, an obvious one being between the expressive power of a
specification formalism and the ease of reasoning about specifications. Different
approaches give more or less prominence to different issues. An overview that
covers most of our own contributions is [ST97], with some more recent work
addressing the problem of how to prove correctness of refinement steps [BH98],
the design of a convenient formalism for writing specifications [ABK+03,BST02],
and applications to data refinement in typed λ-calculus [HLST00].

A new angle that we explore here is the “global” effect of refining individual
“local” components of a specification. This involves a well-known technique from
algebraic specification, namely the use of pushouts of signatures and amalgama-
tion of models to build large systems by composition of separate interrelated
components. The situation becomes considerably more subtle when observa-
tional interpretation of specifications and refinements is taken into account.

Part of the answer has already been provided, the main references being
Schoett’s thesis [Sch87,Sch90] and our work on formal development in the Ex-
tended ML framework [ST89]; the general ideas go back at least to [Hoa72].
? This work has been partially supported by KBN grant 7T11C 002 21 and Euro-

pean AGILE project IST-2001-32747 (AT), CNRS–PAS Research Cooperation Pro-
gramme (MB, AT), and British–Polish Research Partnership Programme (DS, AT).

2

We have another look at these issues here, in the context of the Casl spec-
ification formalism [ABK+03] and in particular, its architectural specifications
[BST02]. Architectural specifications, for describing the modular structure of
software systems, are probably the most novel feature of Casl. We view them
here as a means of making complex refinement steps, by defining well-structured
constructions to be used to build the overall system from implementations of
individual units (these also include parametrized units, acting as constructions
providing some local construction steps to be used in a more global context).

We begin by introducing in Sect. 2 some details of the underlying logical
system we will be working with, and our assumptions concerning specifications
built using this system. Our basic view of program development by means of
consecutive local refinement steps is presented in Sect. 3. Then, an observational
view of specifications is motivated and recalled in Sect. 4. The principal core of
the work is in Sect. 5, where we combine the ideas of the previous two sections
and discuss program development by local refinement steps with respect to an
observational interpretation of the specifications involved. Section 6 introduces
a simplified version of Casl architectural specifications, while Sect. 7 sketches
their observational semantics and shows how the ideas of Sect. 5 are instantiated
in this context. Further work and possible generalizations are discussed in Sect. 8.
Due to lack of space we have been unable to include concrete examples that
illustrate the definitions and results, but we plan to provide such material in a
future extended version.

2 Signatures, Models and Specifications

A basic assumption underpinning algebraic specification and derived approaches
to software specification and development is that software systems are modeled
as algebras (of some kind) and their static properties are captured by alge-
braic signatures (again, adapted as appropriate). This leads to quite a flexible
framework, which can be tuned as desired to cope with various programming
features of interest by selecting the appropriate variation of algebra and signa-
ture. This flexibility has been formalized via the notion of institution [GB92]
and related work on the theory of specifications and formal program develop-
ment [ST88a,ST97,BH93]. However, rather than exploiting the full generality of
institutions, to keep things simple and illustrative we will in this paper base our
considerations on a very basic logical framework, leaving to a more extensive pre-
sentation elsewhere the required generalization and adaptation to a fully-fledged
formalism such as Casl.

So, we will deal here with the usual notions of many-sorted algebraic sig-
natures and signature morphisms; we will assume that all signatures contain a
distinguished Boolean part: a sort bool with two constants true and false pre-
served by all signature morphisms. This yields the category AlgSig — it is
cocomplete, and we will assume that it comes with some standard construction
of pushouts.

3

For each algebraic signature Σ, Alg(Σ) stands for the usual category of Σ-
algebras and their homomorphisms — we restrict attention to algebras with a
fixed, standard interpretation of the Boolean part of the signature. As usual, each
signature morphism σ:Σ → Σ ′ determines a reduct functor σ: Alg(Σ ′) →
Alg(Σ). This yields a functor Alg: AlgSigop → Cat. We refer to [ST99] for a
more detailed presentation of the technicalities and for the standard notations
we will use in the following.

It can easily be checked that Alg is continuous, i.e., maps colimits of algebraic
signatures to limits of (algebra) categories (the initial signature, containing the
Boolean part only, is mapped to the category having as its only object the
algebra providing the fixed interpretation for the Boolean part). In particular,
the following amalgamation property holds:

Lemma 2.1. Given a pushout in the category of algebraic signatures AlgSig:

Σ

Σ1

Σ ′

Σ ′1
6

γ

-
ι

-ι
′

6
γ′

for any algebras A1 ∈ |Alg(Σ1)| and A′ ∈ |Alg(Σ ′)| such that A1 γ = A′ ι there
exists a unique algebra A′1 ∈ |Alg(Σ ′1)| such that A′1 ι′ = A1 and A′1 γ′ = A′;
and similarly for algebra homomorphisms.

Given a signatureΣ, terms and first-order formulae with equality are defined
as usual. Σ-sentences are closed first-order formulae. Given a Σ-algebra A, a set
of variables X and a valuation of variables v:X → |A|, the value tA[v] of a term
t with variables X in A under v and the satisfaction A[v] |= φ of a formula φ
with variables X in A under v are defined as usual.

We will also employ a generalized notion of terms, modeling a pretty general
idea of how a value may be determined in an algebra. Given a signature Σ, a
conditional term of sort s with variables X is of the form p = ((φi, ti)i≥0, t),
where for i ≥ 0, φi are formulae with variables X , and ti and t are terms of
sort s with variables X . Given a Σ-algebra A and a valuation v:X → |A|, the
value pA[v] of such a conditional term p is (tk)A[v] for the least k ≥ 0 such that
A[v] |= φk, or tA[v] if no such k ≥ 0 exists.

This allows for a further generalization of derived signature morphisms [SB83],
where we allow such a morphism δ:Σ → Σ ′ to map function symbols f : s1 ×
. . .×sn → s to conditional terms of sort s with variables {x1: s1, . . . , xn: sn}. Ev-
idently, such a derived signature morphisms δ:Σ → Σ ′ still determines a reduct
function δ : |Alg(Σ ′)| → |Alg(Σ)| on algebra classes (which in general does
not extend to a reduct functor between algebra categories).

We will not need to know much about the formalism used for writing spec-
ifications. We just assume that some class of specifications is defined, equipped
with a semantics that for any specification SP determines its signature Sig(SP) ∈
|AlgSig| and its class of models Mod (SP) ⊆ |Alg(Sig(SP))|. We also assume

4

that the class specifications is closed under translation along signature mor-
phisms, i.e., for any specification SP and signature morphism σ: Sig (SP) →
Σ ′, we have a specification σ(SP) with Sig(σ(SP)) = Σ ′ and Mod (σ(SP)) =
{A′ ∈ |Alg(Σ ′)| | A′ σ ∈Mod (SP)}, and under unions, i.e., for any specifica-
tions SP 1 and SP 2 with common signature, we have a specification SP 1 and SP2
with Sig(SP 1 and SP 2) = Sig(SP 1) = Sig(SP 2) and Mod(SP 1 and SP 2) =
Mod(SP1) ∩Mod(SP 2). So, specifications can for instance be basic specifica-
tions, given by a signature and a set of axioms (sentences) over this signature;
or structured specifications built over the institution we have implicitly intro-
duced above as defined in [ST88a]; or structured specifications built using more
advanced structuring mechanisms such as those of Casl [ABK+03].

3 Program Development and Refinements

In this section we briefly recapitulate our view of the process by means of which
software can be formally developed from an algebraic specification of require-
ments, see [ST88b,ST97]. This is followed by an explanation of the way that
development steps can arise from “local” constructions.

Given a requirements specification SP , the programmer’s task is to pro-
vide a program that correctly implements it. In semantic terms, this amounts
to building an algebra A ∈ |Alg(Sig(SP))| such that A ∈ Mod (SP). At this
level of generality and abstraction, we will not offer programming techniques for
achieving this. We will instead concentrate on the methodological idea that one
may proceed in a stepwise fashion by means of successive refinements, gradually
enriching the original requirements specification with more and more implemen-
tation details until a directly implementable specification is obtained:

SP 0∼∼∼> SP 1∼∼∼> · · · ∼∼∼> SPn

SP0 is the original requirements specification and SPi−1 ∼∼∼> SPi for i = 1, . . . , n
are individual refinement steps. Joined together, these lead from SP 0 to a spec-
ification SPn which is so detailed that it can be implemented directly — that
is, such that an algebra An ∈ Mod(SPn) can be easily programmed. This “pro-
gram” An correctly implements SP 0 provided we require that refinement steps
preserve the specification signature and define:

SP ∼∼∼> SP ′ ⇐⇒ Mod(SP ′) ⊆ Mod (SP)

Although mathematically simple and quite powerful (in the context of a suffi-
ciently rich specification formalism), this view of the development process may
be made more practical by taking into account the fact that successive specifica-
tions in the above chain will tend to incorporate more and more details arising
from successive design decisions. Some parts thereby become fully determined,
and remain fixed until the development process is complete:

5

'

&

$

%

SP 0 ∼∼∼>

κ1

'

&

$

%
SP 1 ∼∼∼>

κ1
κ2

�

�

�

�
SP2 ∼∼∼> · · · ∼∼∼>

κ1
κ2

· · · κn•

It seems only natural to separate the finished parts from the specification of
what remains to be done. This gives the following picture:

'

&

$

%

SP 0 κ1
∼∼∼>

'

&

$

%
SP 1 κ2

∼∼∼>
�

�

�

�
SP 2 κ3

∼∼∼> · · · κn∼∼∼>• SPn = EMPTY

where for i = 1, . . . , n, the specifications SPi now describe the part of the sys-
tem that remains to be implemented, while each κi is a parametrized program
[Gog84] which semantically amounts to a (possibly partial) function on alge-
bras κi: |Alg(Sig(SP i))|⇀ |Alg(Sig(SP i−1))| which we will call a construction.
Now, given specifications SP and SP ′ and a construction κ: |Alg(Sig(SP ′))|⇀
|Alg(Sig(SP))|, we define:

SP κ∼∼∼> SP ′ ⇐⇒ Mod(SP ′) ⊆ dom(κ) and κ(Mod(SP ′)) ⊆ Mod (SP)

This definition captures the correctness requirements we impose on the indi-
vidual refinement steps, which guarantee that given a successful development
sequence:

SP 0 κ1
∼∼∼> SP 1 κ2

∼∼∼> . . . κn∼∼∼>SPn = EMPTY

we obtain the algebra:

κ1(κ2(. . . κn(empty) . . .)) ∈ Mod(SP0)

where EMPTY is the empty specification over the “empty” signature (i.e. the
initial object in AlgSig, containing the Boolean part only) and empty is its
unique standard realization.

Even though our presentation suggests a “top-down” development process,
starting from the requirements specification and proceeding towards a situation
where nothing is left to be implemented, this need not be the case in general.
We can instead proceed “bottom-up”, starting with EMPTY and successively
providing constructions which add in bits and pieces in an incremental fashion
until an implementation of the original specification is obtained. Or we can com-
bine the two techniques, and proceed in a “middle-out” fashion. What matters
is that at the end a chain of correct refinement steps emerges which links the
requirements specification with EMPTY .

6

Another point about the above presentation is that it relies on a global
view of specifications and their refinement: constructions are required to work
on the whole system (represented as a model of the refining specification) and
produce a whole system (represented as a model of the refined specification).
Good practice suggests that there should be a way to develop such complex
constructions in a well-structured way. In Sect. 6 we will present a specific view
of how constructions may be built from smaller pieces, and how to decompose a
development task into a number of subtasks via multi-argument constructions.
For now, let us concentrate on one aspect of this, and discuss how to make
refinement steps “local” — that is, how to use only part of the system built so
far to implement some remaining parts of the requirements specification, and
then incorporate the result in the system as a whole.

Technically, this means that we need to look at constructions that map Σ-
algebras to Σ ′-algebras, but apply them to parts cut out of “larger”ΣG-algebras,
where this “cutting out” is given as the reduct with respect to a signature mor-
phism γ:Σ → ΣG that fits the local argument signature into its global context.
W.l.o.g. we can assume that constructions are persistent : the argument of a con-
struction is always fully included in its result, without modification4 — note that
this assumption holds for all constructions that can be declared and specified in
Casl, see Sect. 6. In fact, we generalize this somewhat by considering arbitrary
signature morphisms rather than just inclusions.

Throughout the rest of the paper, we will repeatedly refer to the signatures
and morphisms in the following pushout diagram:

Σ

ΣG

Σ ′

Σ ′G
6

γ

-
ι

-ι
′

6
γ′

where the local construction is along the bottom of the diagram, “cutting out”
its argument from a larger algebra uses the signature morphism on the left, and
the resulting global construction is along the top.

Definition 3.1. Given a signature morphism ι:Σ → Σ ′, a local construc-
tion along ι is a persistent partial function F : |Alg(Σ)| ⇀ |Alg(Σ ′)| (for each
A ∈ dom(F), F (A) ι = A). We write Mod (Σ ι−→Σ ′) for the class of all local
constructions along ι.

Given a local construction F along ι:Σ → Σ ′, a morphism γ:Σ → ΣG fitting
Σ into a “global” signature ΣG, and a ΣG-algebra G ∈ |Alg(ΣG)|, we define the
global result FG(G) of applying F to G by reference to the pushout diagram
4 Otherwise we would have to explicitly indicate “sharing” between the argument and

result of each construction, and explain how such sharing is preserved by the vari-
ous ways of putting together constructions, as was painfully spelled out in [ST89].
If necessary, superfluous components of algebras constructed using persistent con-
structions can be discarded at the end using the reduct along a signature inclusion.

7

above, using the amalgamation property: if G γ ∈ dom(F) then FG(G) is the
unique Σ ′G-algebra such that FG(G) ι′ = G and FG(G) γ′ = F (G γ); otherwise
FG(G) is undefined.

This determines a global construction FG: |Alg(ΣG)| ⇀ |Alg(Σ ′G)|, which
is persistent along ι′:ΣG → Σ ′G.

This way of “lifting” a persistent function to a larger context via a “fitting mor-
phism” using signature pushout and amalgamation is well established in the
algebraic specification tradition, going back at least to “parametrized specifica-
tions” with free functor semantics, see [EM85].

We will not dwell here on how particular (local) constructions are defined.
Free functor semantics for parametrized specifications is one way to proceed, with
the persistency requirement giving rise to additional proof obligations [EM85].
Perhaps closer to ordinary programming is to give explicitly a “definitional”
derived signature morphism δ:Σ ′ → Σ that defines Σ ′-components in terms
of Σ-components. The induced reduct function δ: |Alg(Σ)| → |Alg(Σ ′)| is a
local construction along a signature morphism ι:Σ → Σ ′ whenever ι;δ = idΣ.5

Suppose now that a local construction F along ι:Σ → Σ ′ comes with a
“semantic” specification of its input/output properties, given as a specification
SP with Sig(SP) = Σ of the requirements on its arguments together with a
specification SP ′ with Sig (SP ′) = Σ ′ of the guaranteed properties of its result.
Again w.l.o.g. we require that Mod (SP ′) ι ⊆ Mod (SP), as is indeed ensured for
instance in Casl.

Definition 3.2. A local construction F along ι: Sig(SP) → Sig(SP ′) is strictly
correct w.r.t. SP and SP ′ if for all models A ∈ Mod(SP), A ∈ dom (F) and
F (A) ∈ Mod(SP ′). We write Mod(SP ι−→SP ′) for the class of all local construc-
tions along ι that are strictly correct w.r.t. SP and SP ′.

The following theorem shows how such locally correct constructions can be
used for global refinement steps.

Theorem 3.3. Given a local construction F ∈ Mod (SP ι−→SP ′), specification
SPG with fitting morphism γ: Sig(SP)→ Sig(SPG), and specification SP ′G with
Sig(SP ′G) = Σ ′G, SPG correctly refines SP ′G via the global construction FG (i.e.,
SP ′G FG

∼∼∼> SPG) provided that

– Mod (SPG) ⊆ Mod(γ(SP)), and
– Mod (γ′(SP ′) and ι′(SPG)) ⊆ Mod(SP ′G).

Proof. Let G ∈ Mod(SPG). Then G γ ∈ Mod(SP), and so G γ ∈ dom(F) and
F (G γ) ∈ Mod(SP ′). Consequently FG(G) ∈ Mod(γ′(SP ′)) ∩Mod (ι′(SPG)). ut

Informally, this captures directly a “bottom-up” process of building implementa-
tions, whereby we start with SPG, find a local constructionF ∈ Mod(SP ι−→SP ′)
5 Composition of derived signature morphisms can be defined in the evident fashion,

and equality of two derived signature morphisms is understood here semantically.

8

with a fitting morphism γ that satisfies the first condition, and define SP ′G such
that the second condition is satisfied (e.g. take SP ′G = γ′(SP ′) and ι′(SPG)).
When proceeding “top-down”, we start with the global requirements specifica-
tion SP ′G. To use a local construction F ∈ Mod(SP ι−→SP ′), we have to decide
which part of the requirements it is going to implement by providing a signature
morphism γ′: Sig(SP ′)→ Sig(SP ′G), then construct the “pushout complement”
γ: Sig(SP) → ΣG, ι′:ΣG → Sig(SP ′G) for ι and γ′, and finally devise a specifi-
cation SPG with Sig(SPG) = ΣG such that both conditions are satisfied. Then
we can proceed with SPG as the requirements specification for the components
that remain to be implemented.

4 Observational Equivalence

So far, we have made few assumptions about the formalism used for writing
specifications. Intuitively, it is clear that any such formalism should admit basic
specifications given as sets of axioms over some fixed signature. The usual inter-
pretation then is to take as models for such a basic specification all the algebras
that satisfy the axioms. However, in many practical examples this turns out to
be overly restrictive. The point is that only a subset of the sorts in the signature
of a specification are typically intended to be directly observable — the oth-
ers are treated as internal, with properties of their elements made visible only
via observations leading to the observable sorts. This calls for a relaxation of
the interpretation of specifications, as advocated in numerous “observational” or
“behavioural” approaches, going back at least to [GGM76,Rei81]. The starting
point is that given an algebraic signature, one has to fix a set of observable sorts.
Then, roughly, two approaches are possible:

– introduce an internal observational indistinguishability relation between al-
gebra elements, and re-interpret equality in the axioms as indistinguishabil-
ity,

– introduce an external observational equivalence on algebras, and re-interpret
specifications by closing their class of models under such equivalence.

It turns out that under some acceptable technical conditions, the two approaches
are closely related and coincide for most basic specifications [BHW95,BT96].
However, the former approach seems more difficult to extend to structured spec-
ifications and parametrization. Hence, we follow here the latter possibility.

Definition 4.1. Consider a signature Σ with observable sorts OBS ⊆ sorts(Σ).
We always assume that bool ∈ OBS . A correspondence between two algebras
A,B ∈ |Alg(Σ)|, written ρ:A ./ B, is a relation ρ ⊆ |A| × |B| that is closed
under the operations6 and is the identity on |A|bool = |B|bool . It is observational
if it is bijective on observable sorts.

Two algebras A,B ∈ |Alg(Σ)| are observationally equivalent, written A ≡OBS
B, if there exists an observational correspondence between them.
6 That is, for f : s1× . . . × sn → s, a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈ |B|s1 , . . . , bn ∈
|B|sn , if (a1 , b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn then (fA(a1, . . . , an), fB(b1, . . . , bn)) ∈ ρs.

9

This formulation is due to [Sch87] (cf. “simulations” in [Mil71] and “weak ho-
momorphisms” in [Gin68]) and is equivalent to other standard ways of defining
observational equivalence between algebras, where a special role is played by
observable equalities, i.e., equalities between terms of observable sorts.

It is easy to check that identities are correspondences and the class of corre-
spondences is closed under composition and reducts w.r.t. signature morphisms.

Correspondences may in fact be identified with certain spans of homomor-
phisms: a correspondence ρ:A ./ B is a span (hA:C → A, hB :C → B) where,
for each sort s distinct from bool , |C|s is a subset of the Cartesian product
|A|s× |B|s, |C|bool = |A|bool = |B|bool , the homomorphisms are the projections
for all sorts s 6= bool , and the identity on the carrier of the sort bool . Such a span
is observational if the homomorphisms are bijective on observable sorts. This
directly implies that the reduct of a correspondence along a signature morphism
is a correspondence. More interestingly, for observational correspondences this
extends to derived signature morphisms with observable conditions.

Consider a signatureΣ with observable sorts OBS ⊆ sorts(Σ). A conditional
term ((φi, ti)i≥0, t) is OBS -admissible if for all i ≥ 0, φi are quantifier-free
formulae with observable equalities only. A derived signature morphism δ:Σ ′→
Σ is OBS -admissible if it maps Σ ′-operations to OBS-admissible terms.

Lemma 4.2. Let δ:Σ ′ → Σ be an OBS-admissible derived signature morphism,
A and B be two Σ-algebras, and ρ:A ./ B be an observational correspondence.
Then ρ δ :A δ ./ B δ is a correspondence as well. Moreover, it is observational
for any set OBS ′ ⊆ sorts(Σ ′) of observable sorts such that δ(OBS ′) ⊆ OBS. ut

The view of correspondences as spans of homomorphisms also leads to an easy
extension to correspondences of the amalgamation property given in Lemma 2.1
for algebras and homomorphisms.

Observational equivalence between algebras can be characterized in terms
of the alternative approach based on internal indistinguishability. Consider a
signature Σ with observable sorts OBS ⊆ sorts(Σ) (with bool ∈ OBS) and
an algebra A ∈ |Alg(Σ)|. Let 〈A〉OBS be the subalgebra of A generated by
the carriers of observable sorts. Observational indistinguishability on A, denoted
by ≈OBS , is the largest congruence on 〈A〉OBS that is the identity on observ-
able sorts. The observational quotient of A, written A/≈OBS , is the quotient of
〈A〉OBS by ≈OBS .

Theorem 4.3. Consider a signature Σ with observable sorts OBS ⊆ sorts(Σ).
Two Σ-algebras are observationally equivalent if and only if their observational
quotients are isomorphic. ut

So far we have considered observational equivalence w.r.t. a rather arbitrary
set of observable sorts. In practice, however, for any development framework
(and programming language), the set of types directly observable to the user is
fixed and given in advance — for the framework at hand, the right choice seems
to be to take the sort bool as the only observable sort. Note that choosing bool as
the only observable sort is not a restriction, since one can always treat another

10

sort as observable by introducing an “equality predicate” on it. Moreover, this
choice will not prevent us from manipulating an explicit set of observable sorts
(always keeping bool among them though) when considering “local” signatures
for verification purposes.

We will consider observational equivalence of “global” models with respect
to the single observable sort bool — we write ≡{bool } simply as ≡. For any
“global” specification SPG with Sig (SPG) = ΣG, we define its observational
interpretation by abstracting from the standard interpretation as follows:

Abs≡(SPG) = {G ∈ |Alg(ΣG)| | G ≡ H for some H ∈ Mod(SPG)}.

5 Observational Refinement Steps

The most obvious way to re-interpret correctness of refinement steps SP ′ κ∼∼∼> SP
to take advantage of the observational interpretation of specifications indicated
in the previous section is to relax the earlier definition by requiring Abs≡(SP) ⊆
dom(κ) and κ(Abs≡(SP)) ⊆ Abs≡(SP ′). This works, but misses a crucial point:
when using a realization of a specification, we should be able to pretend that it
satisfies the specification literally, even if when actually implementing it we are
permitted to supply an algebra that is correct only up to observational equiva-
lence. This leads to a new notion of observational refinement : given specifications
SP and SP ′ and a construction κ: |Alg(Sig(SP ′))|⇀ |Alg(Sig(SP))|, we define:

SP ≡κ∼∼∼∼> SP ′ ⇐⇒ Mod(SP ′) ⊆ dom(κ) and κ(Mod (SP ′)) ⊆ Abs≡(SP)

This relaxation has a price: observational refinements do not automatically com-
pose! The crucial insight to resolve this problem comes from [Sch87], who noticed
that well-behaved constructions satisfy the following stability property.

Definition 5.1. A construction κ: |Alg(Σ)| ⇀ |Alg(Σ′)| is stable if it pre-
serves observational equivalence of algebras, i.e., for any algebras A,B ∈ |Alg(Σ)|
such that A ≡ B, if A ∈ dom(κ) then B ∈ dom(κ) and κ(A) ≡ κ(B).

Now, if all the constructions involved are stable then from a successful chain of
observational refinements

SP 0
≡
κ1
∼∼∼∼> SP 1

≡
κ2
∼∼∼∼> . . .

≡
κn∼∼∼∼>SPn = EMPTY

we obtain:
κ1(κ2(. . .κn(empty) . . .)) ∈ Abs≡(SP0).

The rest of this section is devoted to an analysis of conditions that ensure
stability of constructions and observational correctness of refinement steps when
the constructions arise via the use of local constructions, as in Sect. 3. The
problem is that we want to restrict attention to conditions that are essentially
local to the local constructions involved, rather than conditions that refer to all
the possible global contexts in which such a construction can be used.

Let us start with the stability property.

11

Definition 5.2. A local construction F along ι:Σ → Σ ′ is locally stable if for
any Σ-algebras A,B ∈ |Alg(Σ)| and correspondence ρ:A ./ B, A ∈ dom(F) if
and only if B ∈ dom(F) and moreover, if this is the case then there exists a
correspondence ρ′:F (A) ./ F (B) that extends ρ (i.e., ρ′ ι = ρ).

Proposition 5.3. The composition of locally stable constructions is a locally
stable construction. ut

Lemma 5.4. If F is a locally stable construction along ι:Σ → Σ ′ then for any
signature ΣG and fitting morphism γ:Σ → ΣG, the induced global construction
FG: |Alg(ΣG)|⇀ |Alg(Σ ′G)| along ι′:ΣG → Σ ′G is locally stable as well.

Proof. Consider a correspondenceρG:G ./ H between algebrasG,H ∈ |Alg(ΣG)|.
Its reduct is a correspondence ρG γ:G γ ./H γ, so G γ ∈ dom (F) iff H γ ∈
dom(F), and consequently G ∈ dom(FG) iff H ∈ dom(FG). Suppose G γ ∈
dom(F). Then there exists a correspondence ρ′:F (G γ) ./ F (H γ) with ρ′ ι =
ρG γ. Amalgamation of ρG and ρ′ yields a correspondence ρ′G:FG(G) ./ FG(H)
such that ρ′G ι′ = ρG. ut

Corollary 5.5. If F is a locally stable construction along ι:Σ → Σ ′ then for any
signature ΣG and fitting morphism γ:Σ → ΣG, the induced global construction
FG: |Alg(ΣG)|⇀ |Alg(Σ ′G)| along ι′:ΣG → Σ ′G is stable.

Proof. Let G,H ∈ |Alg(ΣG)| be such that G ≡ H. Then there is a correspon-
dence ρG:G ./H. By Lemma 5.4, if G ∈ dom(FG) then H ∈ dom(FG) and there
is a correspondence ρ′G:FG(G) ./ FG(H), which proves FG(G) ≡ FG(H). ut

This establishes a sufficient local condition which ensures that a local con-
struction induces a stable global construction in every possible context of use.

The following is a corollary of Lemma 4.2.

Corollary 5.6. Let δ:Σ ′ → Σ be a {bool}-admissible derived signature mor-
phism and ι:Σ → Σ ′ be a signature morphism such that ι;δ = idΣ . Then the
reduct F = δ: Mod (Σ)→ Mod(Σ ′)) is a local construction that is locally sta-
ble. ut

The above corollary supports the point put forward in [Sch87] that stable
constructions are those that respect modularity in the software construction
process. That is, such constructions can use the components provided by their
imported parameters, but they cannot take advantage of their particular internal
properties. This is the point of the requirement that δ be {bool}-admissible: any
branching in the code must be governed by directly observable properties. This
turns (local) stability into a directive for language design, rather than a condition
to be checked on a case-by-case basis: in a language with good modularization
facilities, all constructions that one can code should be locally stable.

Let us turn now to the issue of correctness w.r.t. given specifications.

12

Definition 5.7. A local construction F along ι: Sig(SP)→ Sig(SP ′) is observa-
tionally correct w.r.t. SP and SP ′ if for every model A ∈ Mod(SP), A ∈ dom(F)
and there exists a model A′ ∈ Mod(SP ′) and correspondence ρ′:A′ ./ F (A) such
that ρ′ ι is the identity.

We write Mod lc (SP ι−→SP ′) for the class of all locally stable constructions
along ι that are observationally correct w.r.t. SP and SP ′.

The requirement above implies that A′ ι = A and A′ ≡ι(sorts (Σ)) F (A), which
in turn is in general stronger than F (A) ∈ Abs≡ι(sorts(Σ)) (SP ′). It follows that
if F ∈ Mod lc (SP ι−→SP ′) then there is some F ′ ∈ Mod(SP ι−→SP ′) such that
dom(F ′) = dom(F) and for each A ∈ Mod(SP), F ′(A) ≡ι(sorts(Σ)) F (A). How-
ever, in general Mod (SP ι−→SP ′) 6⊆ Mod lc (SP ι−→SP ′), as strictly correct local
constructions need not be stable. Moreover, it may happen that there are no sta-
ble observationally correct constructions, even if there are strictly correct ones:
that is, we may have Mod lc (SP ι−→SP ′) = ∅ even if Mod (SP ι−→SP ′) 6= ∅. This
was perhaps first pointed out in [Ber87], in a different framework.

Counterexample 5.8. Let SP 1 include a non-observable sort s with two constants
a, b: s, and let SP2 enrich SP 1 by an observable sort o, two constants c, d: o and
axiom c 6= d ⇐⇒ a = b. Then Mod(SP1 → SP 2) is non-empty, with any
construction in it mapping models satisfying a = b to those that satisfy c 6= d,
and models satisfying a 6= b to those that satisfy c = d. But none of these
constructions is stable!

Lemma 5.9. Consider a local construction F along ι: Sig(SP) → Sig(SP ′) that
is observationally correct w.r.t. SP and SP ′. Then, for every global signature
ΣG and fitting morphism γ: Sig(SP)→ ΣG, for every G ∈ Mod(γ(SP)) we have
G ∈ dom(FG) and there is some G′ ∈ Mod(γ′(SP ′)) such that G′ ι′ = G and
G′ ≡ FG(G).

Proof. We have G γ ∈ Mod (SP), and so G γ ∈ dom(F) and there exist A′ ∈
Mod(SP ′) and a correspondence ρ′:A′ ./ F (G γ) with identity reduct ρ′ ι. Con-
sider the unique Σ ′G-algebra G′ such that G′ ι′ = G and G′ γ′ = A′. Then
the identity idG:G ./ G and ρ′:A′ ./ F (G γ) amalgamate to a correspondence
ρ′G:G′ ./ FG(G), which proves that FG(G) ≡ G′ ∈Mod (γ′(SP ′)). ut

If F ∈ Mod lc (SP ι−→SP ′) and γ: Sig(SP)→ ΣG, then by Lemma 5.9 we obtain
γ′(SP ′) ≡

FG
∼∼∼∼> γ(SP), and since FG is stable by Cor. 5.5, we can use this in

the observational development process. Given two “global” specifications SPG

with Sig(SPG) = ΣG and SP ′G with Sig (SP ′G) = Σ ′G, we have SP ′G
≡
FG
∼∼∼∼> SPG

whenever Mod(SPG) ⊆ Abs≡(γ(SP)) and Mod (γ′(SP ′)) ⊆ Abs≡(SP ′G). But
while the former requirement is quite acceptable, the latter is in fact impossible
to achieve in practice since it implicitly requires that all the global requirements
must follow (up to observational equivalence) from the result specification for
the local construction. More practical requirements are obtained by generalizing
Thm. 3.3 to the observational setting:

13

Theorem 5.10. Given a local construction F ∈ Mod lc(SP ι−→SP ′), specifica-
tion SPG with fitting morphism γ: Sig (SP)→ Sig(SPG), and specification SP ′G
with Sig(SP ′G) = Σ ′G, if

(i) Mod (SPG) ⊆ Abs≡(SPG and γ(SP)), and
(ii) Mod (γ′(SP ′) and ι′(SPG)) ⊆ Abs≡(SP ′G)

then for every G ∈Mod (SPG), we have G ∈ dom(FG) and FG(G) ∈ Abs≡(SP ′G).
Consequently:

SP ′G
≡
FG
∼∼∼∼> SPG.

Proof. Let G ∈ Mod(SPG). Then G ≡ H for some H ∈ Mod(SPG)∩Mod(γ(SP))
by (i). By Lemma 5.9, FG(H) ≡ H′ for some H′ ∈ Mod(γ′(SP ′)) with H′ ι′ =
H ∈ Mod(SPG). Hence H′ ∈ Abs≡(SP ′G) by (ii). By stability of FG (Cor. 5.5),
G ∈ dom(FG) and FG(G) ≡ FG(H) ≡ H′, and so FG(G) ∈ Abs≡(SP ′G). ut

Requirement (i) is perhaps the only surprising assumption in this theorem. Note
though that it straightforwardly follows from the inclusion of strict model classes
Mod(SPG) ⊆ Mod(γ(SP)) (or equivalently, Mod (SPG) γ ⊆ Mod (SP)), which is
often easiest to verify. However, (i) is strictly stronger in general than the perhaps
more expected Mod (SPG) ⊆ Abs≡(γ(SP)). This weaker condition turns out to
be sufficient (and in fact, equivalent to (i)) if we additionally assume that the
two specifications involved are behaviourally consistent [BHW95], that is, closed
under observational quotients. When this is not the case, then the use of this
weaker condition must be paid for by a stronger version of (ii):

Abs≡(γ′(SP ′))∩Mod(ι′(SPG)) ⊆ Abs≡(SP ′G),

which seems even less convenient to use than (i). Overall, we need a way to pass
information on the global context from SPG to SP ′G independently from the
observational interpretation of the local construction and its correctness, and
this must result in some inconvenience of verification on either the parameter or
the result side.

6 Architectural Specifications

Using local constructions for global implementations of specifications, we have
moved only one step away from the monolithic global view of specifications
and constructions used to implement them. The notion of architectural specifi-
cation [BST02] as introduced for Casl takes us much further. An architectural
specification prescribes a decomposition of the task of implementing a require-
ments specification into a number of subtasks to implement specifications of
“modular components” (called units) of the system under development. The
units may be parametrized, and then we can identify them with local construc-
tions; non-parametrized units are modeled as algebras. Another essential part of
an architectural specification is a prescription of how the units, once developed,

14

are to be put together using a few simple operators. One of these is an appli-
cation of a parametrized unit which corresponds exactly to the lifting of a local
construction to a larger context studied above. Thus, an architectural specifica-
tion may be thought of as a definition of a complex construction to be used in a
development process to implement a requirements specification by a number of
specifications (of non-parametrized units), where the construction uses a number
of specified local constructions to be developed as well.

For the sake of readability, we will discuss here only a very simple version of
Casl architectural specifications, with a limited (but representative) number of
constructs, shaped after a somewhat less simplified fragment used in [SMT+01];
a generalization of the work presented here to full architectural specifications
of Casl would be tedious but rather straightforward, except perhaps for the
“unguarded import” mechanism, see [Hof01]. Our version of architectural spec-
ifications is defined as follows.

Architectural specifications: ASP ::= arch spec Dcl∗ result T
An architectural specification consists of a list of unit declarations followed
by a unit result term.

Unit declarations: Dcl ::= U : SP | U : SP 1
ι−→SP 2

A unit declaration introduces a unit name with its type, which is either
a specification or a specification of a parametrized unit, determined by a
specification of its parameter and its result, which extends the parameter
via a signature morphism ι.

Unit terms: T ::= U | U [T fit σ] | T1 and T2
A unit term is either a (non-parametrized) unit name, or a unit application
with an argument that fits via a signature morphism σ, or an amalgamation
of units.

Following the semantics of full Casl [CoFI02], see also [SMT+01], we give
the semantics of this Casl fragment in two stages: first we give its extended
static semantics and then the strict model semantics.

An extended static context Cst = (Pst,Bst, ΣG) in which Casl phrases are
elaborated, consists of a static context for parametrized units Pst mapping
parametrized unit names to signature morphisms (from the parameter to the
result signatures), a global context signature ΣG, and an extended static con-
text for non-parametrized units Bst mapping non-parametrized unit names to
morphisms from the unit signature to ΣG. From any such extended static con-
text we can extract a static context ctx(Cst) = (Pst,Bst) by forgetting the global
context signature and restricting the information about non-parametrized units
to their signatures only (sources of the morphisms given by Bst).

Given a morphism θ:ΣG → Σ ′G, we write Bst ;θ for the extended static context
B′st with the same domain as Bst and such that for any name U ∈ dom(Bst),
B′st(U) = Bst (U);θ. Then the extended static context Cst ;θ is (Pst, (Bst;θ), Σ ′G).
C∅st stands for the “empty” extended static context that consists of the empty
parametrized and non-parametrized unit contexts and the initial signature.

Figure 1 gives rules to derive semantic judgments of the following forms:

15

` Dcl∗ �� Cst Cst ` T �� (θ:ΣG → Σ′G , i:Σ → Σ′G)
` arch spec Dcl ∗ result T �� (ctx (Cst),Σ)

C∅st ` Dcl 1 �� (Cst)1

· · ·
(Cst)n−1 ` Dcln �� (Cst)n
` Dcl 1 . . .Dcln �� (Cst)n

U 6∈ (dom(Pst) ∪ dom(Bst))
Σ′G is the coproduct of ΣG and Sig(SP)

with injections θ:ΣG → Σ′G , i: Sig(SP)→ Σ′G

(Pst ,Bst ,ΣG) ` U : SP �� (Pst , (Bst ;θ) + {U 7→ i},Σ′G)

ι : Sig(SP 1)→ Sig(SP 2)
U 6∈ (dom(Pst) ∪ dom(Bst))

(Pst ,Bst ,ΣG) ` U :SP 1
ι−→SP 2 �� (Pst + {U 7→ ι},Bst ,ΣG)

U ∈ dom (Bst)
(Pst , Bst, ΣG) ` U �� (idΣG ,Bst (U))

(Pst , Bst, ΣG) ` T �� (θ:ΣG → Σ′G , i:ΣT → Σ′G)
Pst (U) = ι:Σ → Σ′ σ:Σ → ΣT

(ι′:ΣT → Σ′T , σ
′:Σ′ → Σ′T) is the pushout of (σ, ι)

(ι′′:Σ′G → Σ′′G, i
′ :Σ′T → Σ′′G) is the pushout of (i, ι′)

(Pst ,Bst ,ΣG) ` U [T fit σ] �� (θ;ι′′, i′ :Σ′T → Σ′′G)

(Pst ,Bst ,ΣG) ` T1 �� (θ1:ΣG → Σ1
G, i1 :Σ1 → Σ1

G)
(Pst ,Bst ,ΣG) ` T2 �� (θ2:ΣG → Σ2

G, i2 :Σ2 → Σ2
G)

Σ = Σ1 ∪Σ2 with inclusions ι1:Σ1 → Σ, ι2:Σ2 → Σ
(θ ′2:Σ1

G → Σ′G , θ
′
1:Σ2

G → Σ′G) is the pushout of (θ1, θ2)
there is a (unique) morphism j:Σ → Σ′G such that ι1;j = i1;θ ′2 and ι2;j = i2 ;θ ′1

(Pst ,Bst ,ΣG) ` T1 and T2 �� (θ1;θ ′2, j)

Fig. 1. Extended static semantics

– ` ASP �� (Cst, Σ): the architectural specification ASP yields a static con-
text describing the units declared and the signature of the result unit;

– Cst ` Dcl �� C′st : the unit declaration Dcl in the extended static context
Cst yields a new extended static context C′st ; similarly for a sequence of unit
declarations;

– (Pst,Bst , ΣG) ` T �� (θ:ΣG → Σ ′G, i:Σ → Σ ′G): the unit term T in the
extended static context (Pst,Bst, ΣG) extends the global context signature
ΣG to a new one Σ ′G along a signature morphism θ:ΣG→ Σ ′G and yields the
signature Σ of the unit built, indicating how the unit resides in the global
context using the morphism i:Σ → Σ ′G.

16

In the strict model semantics we work with contexts C that are sets of unit
environments E . Environments map unit names to either local constructions
(for parametrized units) or to individual algebras (for non-parametrized units).
Unit evaluators UEv map unit environments to algebras.

Given an extended static unit context Cst = (Pst,Bst , ΣG), an environment
E fits Cst if

– for each U ∈ dom(Pst), E (U) is a local construction along Pst(U), and
– there exists an algebra G ∈ |Alg(ΣG)| such that for each U ∈ dom(Bst),

E (U) = G Bst(U) ; we say then that G witnesses E .

We write ucx (Cst) for the class of all environments that fit Cst . C∅ = ucx (C∅st) is
the context which constrains no unit name. Given a unit context C, a unit name
U and a class of units V , we write C × {U 7→ V} for {E + {U 7→ V } | E ∈
C,V ∈ V}, where E + {U 7→ V } maps U to V and otherwise behaves like E .

` Dcl∗ ⇒ C C ` T ⇒ UEv
` arch spec Dcl∗ result T ⇒ (C,UEv)

C∅ ` Dcl 1 ⇒ C1

· · ·
Cn−1 ` Dcln ⇒ Cn
` Dcl 1 . . .Dcln ⇒ Cn

C ` U : SP ⇒ C × {U 7→ Mod(SP)}

C ` U : SP 1
ι−→SP2 ⇒ C × {U 7→ Mod(SP 1

ι−→SP 2)}

C ` U ⇒ λE ∈ C · E(U)

C ` T ⇒ UEv; for each E ∈ C,UEv(E) σ ∈ dom(E(U))
UEv ′ = {E 7→ A | E ∈ C, A ι′ = UEv (E), A σ′ = E(U)(UEv (E) σ)}

C ` U [T fit σ]⇒ UEv ′

C ` T1 ⇒ UEv1 C ` T2 ⇒ UEv 2

for each E ∈ C, there is a unique A ∈ |Alg(Σ)| such that
A ι1 = UEv 1(E), A ι2 = UEv 2(E)

UEv = {E 7→ A | E ∈ C,A ι1 = UEv 1(E), A ι2 = UEv2(E)}
C ` T1 and T2 ⇒ UEv

Fig. 2. Strict model semantics

Figure 2 gives rules to derive semantic judgments of the following forms:

17

– ` ASP ⇒ (C,UEv): the architectural specification ASP yields a context C
with environments providing interpretations for the units declared and the
unit evaluator that for each such environment determines the result unit;

– C ` Dcl ⇒ C′: the unit declaration Dcl in the context Cst yields a new
context C′st ; similarly for a sequence of unit declarations;

– C ` T ⇒ UEv: the unit term T in the context C yields a unit evaluator UEv
that when given an environment (in C) yields the unit resulting from the
evaluation of T in this environment.

The rules rely on a successful run of the extended static semantics; this
allows us to use the static concepts and notations introduced there. Moreover,
the following invariants link the extended static semantics and model semantics
and are maintained by the rules:

– ` ASP �� (Cst , Σ) and ` ASP ⇒ (C,UEv): there is an extended static
context Cst such that ctx(Cst) = Cst and C ⊆ ucx (Cst), C ⊆ dom(UEv), and
for each E ∈ C, UEv(E) ∈ |Alg(Σ)|;

– Cst ` Dcl �� C′st and C ` Dcl ⇒ C′: if C ⊆ ucx (Cst) then C′ ⊆ ucx(C′st);
similarly for a sequence of unit declarations;

– Cst ` T �� (θ:ΣG → Σ ′G, i:Σ → Σ ′G) and C ` T ⇒ UEv : if C ⊆ ucx (Cst)
then for each unit environment E ∈ C and each algebra G that witnesses E ,
there exists a model G′ ∈ |Alg(Σ ′G)| such that G′ θ = G and UEv(E) = G′ i.

The invariants ensure that the crossed out premise of the unit amalgamation
rule of the model semantics follows from the premises of the corresponding rule
of the extended static semantics.

7 Observational Interpretation of Architectural
Specifications

In this section we discuss an observational interpretation of the architectural
specifications introduced in Sect. 6. The extended static semantics remains un-
changed — observational interpretation of specifications does not affect their
static properties. We provide, however, a new observational model semantics,
with judgments written as ` ≡=⇒ .

To begin with, the effect of unit declarations has to be modified, taking into
account observational interpretation of the specifications involved, as discussed
in Sects. 4 and 5. The new rules follow in Fig. 3.

No other modifications are necessary: all the remaining rules are the same
for observational and strict model semantics. This should not be surprising: the
interpretation of the constructs on unit terms remains the same, all we change
is the interpretation of unit specifications.

Moreover, the observational model semantics can be linked to the extended
static semantics in exactly the same way as in the case of the strict model
semantics: the invariants stated in Sect. 6 carry over without change.

18

C ` U : SP ≡=⇒ C× {U 7→ Abs≡(SP)}

C ` U : SP1
ι−→SP 2

≡=⇒ C × {U 7→ Mod lc(SP 1
ι−→SP2)}

Fig. 3. Observational model semantics — the modified rules

This does not mean that the two semantics quite coincide: there is one point
in the model semantics where verification is performed, and the resulting veri-
fication conditions for strict and observational model semantics differ. Namely,
in the rule for parametrized unit application, the premise

for each E ∈ C,UEv(E) σ ∈ dom(E (U))

checks whether what we can conclude about the argument ensures that it is
indeed in the domain of the parametrized unit. Suppose the corresponding unit
declaration was U : SP ι−→SP ′. Then in the strict model semantics this require-
ment reduces to

for each E ∈ C,UEv(E) σ ∈ Mod(SP).

Now, in the observational model semantics, this is in fact replaced by a more
permissive condition:

for each E ∈ C,UEv(E) σ ∈ Abs≡(SP).

Of course, the situation is complicated by the fact that the contexts C from
which environments are taken are different in the two semantics. In the simplest
case, where the argument T is simply given as a unit name previously declared
with a specification SPT , for the strict model semantics the above verification
condition is

Mod (SPT) ⊆ Mod(SP)

while for the observational model semantics we get, as expected,

Mod(SPT) ⊆ Abs≡(SP).

In particular, it follows that there are statically correct architectural specifica-
tions ASP (i.e., ` ASP �� (Cst , Σ) for some extended static context Cst and
signatureΣ) that are observationally correct (i.e., ` ASP ≡=⇒ (Cobs ,UEvobs) for
some unit context Cobs and evaluator UEvobs) but are not strictly correct (i.e.,
for no unit context C and evaluator UEv can we derive ` ASP ⇒ (C,UEv)).

A complete study of verification conditions for architectural specifications is
beyond the scope of this paper; we refer to [Hof01] for work in this direction,
which still has to be combined with the observational interpretation as given by
the semantics here and presented in a simpler setting in Sect. 5. In the rest of

19

this paper we will concentrate on some aspects of the relationship between the
strict and observational model semantics and on stability of unit constructions
as introduced in Sect. 6.

Our first aim is to show that the constructions that can be defined by archi-
tectural specifications are (locally) stable. To state this precisely, we need some
more notation and terminology, as the constructions are captured here by unit
evaluators operating on environments rather than on individual units.

Local constructions F1, F2 along ι:Σ → Σ ′ are observationally equivalent,
written F1 ≡ F2, if dom(F1) = dom(F2) and for each A ∈ dom (F1) there exists
a correspondence ρ:F1(A) ./ F2(A) such that its reduct ρ ι is the identity on A.

Proposition 7.1. Let F1 and F2 be observationally equivalent local construc-
tions along ι:Σ → Σ ′. Then if F1 is locally stable then so is F2. ut

Environments E1,E2 are observationally equivalent, written E1 ≡ E2, if
dom(E1) = dom(E2) and for each U ∈ dom(E1), E1(U) ≡ E2(U).

A unit environment is stable if all the parametrized units it contains are lo-
cally stable. By Prop. 7.1, the class of stable environments is closed under obser-
vational equivalence. Given an extended static context Cst , we write ucxobs(Cst)
for the class of those unit environments in ucx (Cst) that are stable. Then, given
a unit context C, we write Abs≡(C) for the class of all stable unit environments
equivalent to a unit environment in C; clearly, if C ⊆ ucx (Cst) for some static
context Cst then Abs≡(C) ⊆ ucxobs(Cst).

Back to the stability of the constructions defined by architectural specifica-
tions: we want to show that if ` ASP �� (Cst , Σ) and ` ASP ≡=⇒ (Cobs ,UEvobs)
then the unit evaluator UEvobs is stable, i.e., maps observationally equivalent
environments to observationally equivalent algebras. Unfortunately, this cannot
be proved by a simple induction on the structure of the unit terms involved. The
trouble is with amalgamation, since in general amalgamation is not stable — in-
formally, joining the signatures of two algebras may introduce new observations
for either or both of them.

Counterexample 7.2. Let Σ1 and Σ2 be signatures containing the Boolean part
and a sort s (the same in both signatures). Moreover, let Σ1 contain constants
a, b: s; and let Σ2 contain a function f : s→ bool . Since in either of the signatures
there are no observations for the non-observable sort s, all algebras in Alg(Σ1)
are observationally equivalent, and similarly for algebras in Alg(Σ2). However,
observational equivalence between (Σ1∪Σ2)-algebras is non-trivial; for instance,
algebras with f(a) = f(b) are not equivalent to those where f(a) 6= f(b). Con-
sequently, given an algebra A ∈ |Alg(Σ1)| with aA 6= bA, it is easy to indicate
algebras B,B′ ∈ |Alg(Σ2)|, with the same carrier of sort s as A and such that
B ≡ B′, while the amalgamation of A with B and B′, respectively, yields alge-
bras in Alg(Σ1 ∪Σ2) that are not observationally equivalent.

However, the key point here is that amalgamation in unit terms in architec-
tural specifications is not used as a construction on its own, but it just identifies
a new part of the global context that has been constructed earlier. Since the

20

“essential” constructions used to build new components of the global context
are locally stable, such use of amalgamation can cause no harm.

To demonstrate this, we introduce a more detailed form of the semantics for
unit terms, which carries more information about the construction of the global
context performed on the way. Given Cst ` T �� (θ:ΣG → Σ ′G, i:Σ → Σ ′G), we
derive judgments of the form Cobs ` T ≡=⇒⇒ (〈FE〉E∈C,UEvobs), where for each
E ∈ Cobs , FE : |Alg(ΣG)| ⇀ |Alg(Σ ′G)| is a construction along θ:ΣG → Σ ′G.
The rules are given in Fig. 4 (ID in the first rule is the family of identities,
appropriately indexed); as before, the rules rely on the notation introduced by
the corresponding rules of the extended static semantics, see Fig. 1.

C ` U
≡
=⇒⇒ (ID , λE ∈ C · E(U))

C ` T ≡=⇒⇒ (〈FE 〉E∈C ,UEv)
for each E ∈ C,UEv (E) σ ∈ dom(E(U))

UEv ′ = {E 7→ A | E ∈ C, A ι′ = UEv (E), A σ′ = E(U)(UEv (E) σ)}
for E ∈ C, F ′E = {G 7→ G′ | G ∈ |Alg(ΣG)| witnesses E,

G′ ι′′ = G,G′ σ′;i′ = E(U)(UEv (E) σ)}
C ` U [T fit σ]

≡
=⇒⇒ (〈FE ;F ′E 〉E∈C ,UEv ′)

C ` T1
≡=⇒⇒ (〈F 1

E 〉E∈C ,UEv1) C ` T2
≡=⇒⇒ (〈F 2

E 〉E∈C ,UEv 2)
UEv = {E 7→ A | E ∈ C,A ι1 = UEv 1(E), A ι2 = UEv2(E)}

for E ∈ C, FE = {G 7→ G′ | G ∈ |Alg(ΣG)| witnesses E,
G′ θ1 = F 1

E (G),G′ θ2 = F 2
E(G)}

C ` T1 and T2
≡
=⇒⇒ (〈FE 〉E∈C ,UEv)

Fig. 4. Modified observational model semantics

Lemma 7.3. If Cst ` T �� (θ:ΣG→ Σ ′G, i:Σ → Σ ′G) and Cobs ` T
≡=⇒ UEvobs

with Cobs ⊆ ucxobs(Cst), then Cobs ` T ≡=⇒⇒ (〈FE〉E∈C,UEvobs) for some family
〈FE〉E∈Cobs such that

– for E ∈ Cobs , FE : |Alg(ΣG)|⇀ |Alg(Σ ′G)| is persistent along θ:ΣG→ Σ ′G;
– for E ∈ Cobs , if G ∈ |Alg(ΣG)| witnesses E then G ∈ dom(FE) and

UEvobs(E) = FE(G) i;
– the family 〈FE 〉E∈Cobs is locally stable in the following sense: for E1,E2 ∈ Cobs

such that E1 ≡ E2, G1,G2 ∈ |Alg(ΣG)| that witness E1 and E2, respectively,
and correspondence ρ:G1 ./ G2, if G1 ∈ dom(FE) then G2 ∈ dom(FE) as well
and there exists a correspondence ρ′:FE1(G1) ./ FE2(G2) with ρ′ θ = ρ.

Proof. By induction on the structure of the unit term. In each case, the first two
properties follow easily from the construction and Lemma 2.1. Prop. 5.3 and

21

Lemma 5.4 imply the last property for parametrized unit application and unit
amalgamation. ut

Since reducts preserve observational equivalence, Lemma 7.3 directly implies
stability of unit constructions definable by architectural specifications:

Corollary 7.4. If ` ASP �� (Cst , Σ) and ` ASP ≡=⇒ (Cobs ,UEvobs) then for
any unit environments E1,E2 ∈ Cobs such that E1 ≡ E2, we have UEvobs(E1) ≡
UEvobs(E2). ut

As already mentioned, the observational semantics is more permissive than
the strict model semantics: there existence of a successful derivation of an ob-
servational meaning for an architectural specification does not in general imply
that its strict model semantics is defined as well. Moreover, the observational se-
mantics may “lose” some results permitted by the strict model semantics, which
follows from Counterexample 5.8. However, if an architectural specification has
a strict model semantics then its observational semantics is defined as well and
up to observational equivalence, nothing new is added:

Theorem 7.5. If ` ASP �� (Cst , Σ) and ` ASP ⇒ (C,UEv) then ` ASP ≡=⇒
(Cobs ,UEvobs), where for every Eobs ∈ Cobs there exists E ∈ C such that Eobs ≡
E and UEvobs(Eobs) ≡ UEv(E).

Proof. The following can be proved inductively:

1. ` ASP �� (Cst , Σ) and ` ASP ⇒ (C,UEv): then ` ASP ≡=⇒ (Cobs ,UEvobs)
with Cobs = Abs≡(C) and for each stable E ∈ C (then necessarily E ∈ Cobs)
we have UEvobs(E) = UEv(E);

2. Cst ` Dcl �� C′st and C ` Dcl ⇒ C′, where C ⊆ ucx (Cst): then Abs≡(C) `
Dcl ≡=⇒ Abs≡(C′), and similarly for sequences of unit declarations;

3. Cst ` T �� (θ:ΣG→ Σ ′G, i:Σ → Σ ′G) and C ` T ⇒ UEv with C ⊆ ucx(Cst):
then Abs≡(C) ` T

≡=⇒ UEvobs where for each stable E ∈ C (then E ∈
Abs≡(C)) we have UEvobs(E) = UEv(E).

The only potential difficulty is in the proof of item 3 for parametrized unit
application, where to deduce the premise of the observational semantics rule
that captures verification that the argument is in the domain of the parametrized
unit, we need to rely on the corresponding premise of the strict model semantics,
on the stability of the parametrized unit and on Lemma 7.3.

The theorem follows easily now: given the assumptions, item 1 implies that
` ASP ≡=⇒ (Cobs ,UEvobs) with Cobs = Abs≡(C), and so for each Eobs ∈ Cobs
there is a stable environment E ∈ C such that Eobs ≡ E . Thus, by item 1 and
Cor. 7.4, UEv(E) = UEvobs(E) ≡ UEvobs(Eobs). ut

8 Conclusions and Further Work

Apart from the preliminaries, this paper consists of two parts. Sects. 3, 4, and 5
recall a now rather standard and quite general view of the software develop-
ment process, paying special attention to observational interpretation of the

22

specifications involved and discussing in more detail than usual how “global”
developments proceed using “local” constructions. We point out how observa-
tional interpretation of specifications leads to the crucial — and quite natural,
Cor. 5.6 — stability requirement on the constructions, and how this in turn
helps to establish correctness of development steps, Thm. 5.10. Then, Sects. 6
and 7 study how these general ideas may be instantiated in the context of ar-
chitectural specifications as borrowed from Casl in a simplified version. We
view here architectural specifications as means to build complex constructions
to be used in the software development process. Observational interpretation
of specifications brings out rather non-trivial issues. We study stability of the
constructions involved, with the expected positive result in Cor. 7.4, and link
the results under observational interpretation with those for the standard in-
terpretation of architectural specifications, Thm. 7.5. Clearly, as mentioned in
Sect. 7, this must be augmented with an analysis of the internal correctness of
architectural specifications under observational interpretation.

Although formally we have worked in a specific — and simple — logical
framework, it should be clear that much of the above applies to a wide range
of institutions of interest. Rather than trying to embark on an exercise of for-
mally spelling out the appropriate notion of “institution with extra structure”,
let us just remark that surprisingly little is required. A special notion of obser-
vational model morphisms that must be closed under composition and reducts,
plus some extra categorical structure to identify “correspondences” as certain
spans of such morphisms, seems necessary and sufficient to formulate most of
the material presented. Notice that we have in effect not referred to the set of
observable sorts in the technical development. The trick is, however, to study a
sufficient number of special cases to demonstrate that observational intuitions
in various institutions may well be captured by such a simple structure. Further
justification may be provided via links with indistinguishability relations (via
factorization properties, like Thm. 4.3, which in turn may require a richer con-
text of concrete institutions, with model categories equipped with concretization
structure subject to a number of technical requirements as in [BT96]).

On the other hand, to transfer the present work to the specific framework of
Casl we need a precise and convincing definition of observational equivalence
between Casl models (many-sorted algebras with predicates, partial operations
and subsorting). In terms of the institutional structure hinted at above, our first
attempts dictate to simply use closed homomorphisms as observational mor-
phisms — but the resulting notion of equivalence needs a more detailed analysis,
from both the methodological and technical point of view.

The semantics for our simplified architectural specifications made reference
to the cocompleteness of the category of signatures and to the amalgamation
property of the underlying institution. Many institutions enjoy these proper-
ties, including the many-sorted versions of various standard logics. However, the
amalgamation property fails for full Casl with subsorts, as discussed in detail
in [SMT+01]. There are at least two ways to circumvent this problem. One is to
present the global context as a diagram of signatures and a compatible family

23

of models over this diagram, as in [SMT+01]. The other possibility is to use an
extension of the Casl institution to “enriched” signatures (where multiple em-
beddings between subsorts are allowed) and their corresponding models, where
the amalgamation property holds, again presented in [SMT+01].

References

[ABK+03] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P.D. Mosses,
D. Sannella and A. Tarlecki. Casl: The Common Algebraic Spec-
ification Language. Theoretical Computer Science, to appear (2003).
See also the Casl Summary at http://www.brics.dk/Projects/CoFI/
Documents/CASL/Summary/.

[AKBK99] E. Astesiano, B. Krieg-Brückner and H.-J. Kreowski, eds. Algebraic Foun-
dations of Systems Specification. Springer (1999).

[Ber87] G. Bernot. Good functors . . . are those preserving philosophy! Proc. 2nd
Summer Conf. on Category Theory and Computer Science CTCS’87,
Springer LNCS 283, 182–195 (1987).

[BH93] M. Bidoit and R. Hennicker. A general framework for modular implemen-
tations of modular systems. Proc. 4th Int. Conf. Theory and Practice of
Software Development TAPSOFT’93, Springer LNCS 668, 199–214 (1993).

[BH98] M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural
implementations. Acta Informatica 35(11):951–1005 (1998).

[BT96] M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in
concrete model categories. Proc. 20th Coll. on Trees in Algebra and Com-
puting CAAP’96, Linköping, Springer LNCS 1059, 241–256 (1996).

[BHW95] M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor spec-
ifications. Science of Computer Programming 25:149–186 (1995).

[BST02] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications
in Casl. Formal Aspects of Computing, to appear (2002). Avail-
able at http://www.lsv.ens-cachan.fr/Publis/PAPERS/BST-FAC2002.
ps. Extended abstract: Proc. 7th Intl. Conf. on Algebraic Methodology and
Software Technology, AMAST’98. Springer LNCS 1548, 341–357 (1999).

[CoFI02] The CoFI Task Group on Semantics. Semantics of the Common Alge-
braic Specification Language Casl. Available at http://www.brics.dk/
Projects/CoFI/Documents/CASL/Semantics/ (2002).

[EK99] H. Ehrig and H.-J. Kreowski. Refinement and implementation. In:
[AKBK99], 201–242.

[EKMP82] H. Ehrig, H.-J. Kreowski, B. Mahr and P. Padawitz. Algebraic implemen-
tation of abstract data types. Theoretical Comp. Sci. 20:209–263 (1982).

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equa-
tions and Initial Semantics. Springer (1985).

[Gan83] H. Ganzinger. Parameterized specifications: parameter passing and imple-
mentation with respect to observability. ACM Transactions on Program-
ming Languages and Systems 5:318–354 (1983).

[Gin68] A. Ginzburg. Algebraic Theory of Automata. Academic Press (1968).
[Gog84] J. Goguen. Parameterized programming. IEEE Trans. on Software Engi-

neering SE-10(5):528–543 (1984).
[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for speci-

fication and programming. J. of the ACM 39:95–146 (1992).

24

[GM82] J. Goguen and J. Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. Proc. 9th Intl. Coll. on Au-
tomata, Languages and Programming. Springer LNCS 140, 265–281 (1982).

[GGM76] V. Giarratana, F. Gimona and U. Montanari. Observability concepts in
abstract data type specifications. Proc. 5th Intl. Symp. on Mathematical
Foundations of Computer Science, Springer LNCS 45, 576–587 (1976).

[Hoa72] C.A.R. Hoare. Proofs of correctness of data representations. Acta Infor-
matica 1:271–281 (1972).

[Hof01] P. Hoffman. Verifying architectural specifications. Recent Trends in Alge-
braic development Techniques, Selected Papers, WADT’01, Springer LNCS
2267, 152-175 (2001).

[HLST00] F. Honsell, J. Longley, D. Sannella and A. Tarlecki. Constructive data
refinement in typed lambda calculus. Proc. 2nd Intl. Conf. on Foundations
of Software Science and Computation Structures. Springer LNCS 1784,
149–164 (2000).

[KHT+01] B. Klin, P. Hoffman, A. Tarlecki, L. Schröder and T. Mossakowski.
Checking amalgamability conditions for Casl architectural specifications.
Proc. 26th Intl. Symp. Mathematical Foundations of Computer Science
MFCS’01, Springer LNCS 2136, 451–463 (2001).

[Mil71] R. Milner. An algebraic definition of simulation between programs. Proc.
2nd Intl. Joint Conf. on Artificial Intelligence, London, 481–489 (1971).

[Rei81] H. Reichel. Behavioural equivalence — a unifying concept for initial and
final specification methods. Proc. 3rd Hungarian Comp. Sci. Conference,
27–39 (1981).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Program-
ming. Ph.D. thesis, report CST-42-87, Dept. of Computer Science, Univ.
of Edinburgh (1987).

[Sch90] O. Schoett. Behavioural correctness of data representations. Science of
Computer Programming 14:43–57 (1990).

[SB83] D. Sannella and R. Burstall. Structured theories in LCF. Proc. Colloq. on
Trees in Algebra and Programming. Springer LNCS 159, 377–391 (1983).

[ST87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic
specification. J. of Computer and System Sciences 34:150–178 (1987).

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation 76:165–210 (1988).

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: implementations revisited. Acta Informat-
ica 25:233–281 (1988).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Proc. Colloq. on Current Issues in Program-
ming Languages, Intl. Joint Conf. on Theory and Practice of Software De-
velopment TAPSOFT’89, Barcelona. Springer LNCS 352, 375–389 (1989).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing 9:229–269
(1997).

[ST99] D. Sannella and A. Tarlecki. Algebraic preliminaries. In: [AKBK99], 13–30.
[SMT+01] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman and B. Klin. Se-

mantics of architectural specifications in Casl. Proc. 4th Intl. Conf. Fun-
damental Approaches to Software Engineering FASE’01, Genova. Springer
LNCS 2029, 253–268 (2001).

