Toward formal development of programs from
algebraic specifications: implementations revisited:

Donald Sannella® and Andrzej Tarlecki®
Abstract

The program development process is viewed as a sequence of implementation steps leading from a spe-
cification to a program. Based on an elementary notion of refinement, two notions of implementation
are studied: constructor implementations which involve a construction “on top of” the implementing
specification, and abstractor implementations which additionally provide for abstraction from some
details of the implemented specification. These subsume most formal notions of implementation in
the literature. Both kinds of implementations satisfy a vertical composition and a (modified) hori-
zontal composition property. All the definitions and results are shown to generalise to the framework
of an arbitrary institution, and a way of changing institutions during the implementation process is

introduced. All this is illustrated by means of simple concrete examples.

1 Introduction

Probably the most exciting potential application of formal specifications is to the formal develop-
ment of programs by gradual refinement from a high-level specification to a low-level “program” or
“executable specification” as in HOPE [BMS 80], Standard ML [Mil 85] or OBJ2 [FGJM 85]. Each
refinement step embodies some design decisions (such as choice of data representation or algorithm).
It each refinement step can be proven correct, then the program which results is guaranteed to satisfy
the original specification.

In order to make this dream a reality, we need at least two things. The first is a theory of formal
specifications and the second is an adequate notion of refinement or implementation step. A theory of
specifications may be built upon the pioneering work of [GTW 76|, [Gut 75] and [Zil 74] on algebraic
specifications. It seems especially important to pay attention to the problem of building specifications
in a structured way (as in CLEAR [BG 77,80], CIP-L [Bau 8la], LOOK [ETLZ 82], Larch [GH 83],
etc.) and to the possibility of using different logical systems (or institutions |[GB 84a,86]) to write
specifications (as in CLEAR, ASL [ST 86a] or Extended ML [ST 86b]).

There has been a lot of interesting work done on notions of refinement as well (see e.g. [GTW 76],
[GB 80], [Ehr 81], [Ehr 82], [EKMP 82|, [EK 82], [SW 82], [GM 82], [Sch 86], [BMPW 82], [Gan 83],
[Lip 83], [BBC 86], [Wand 82]). In [SW 83] and then in [ST 85b,87a] we suggested and used a very

simple notion of specification refinement which seems appropriate for loose specifications. Namely, we

YAn extended abstract of this paper appeared in [ST 87b].

?Department of Artificial Intelligence, University of Edinburgh and Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh

3Institute of Computer Science, Polish Academy of Sciences, Warsaw

say that a specification SP refines to a specification SP’, written SP ~~> SP’, if every model of SP’
is a model of SP. This extends to a notion of refinement of parameterised specifications. In order to
be useful for stepwise and modular program development, implementations should compose vertically
(i.e. SP ~> SP' ~n> SP" should imply SP ~~> SP") and horizontally (i.e. P ~~> P’ and SP ~~% SP’
should imply P(SP)~~> P'(SP') for parameterised specifications P,P’) [GB 80]. Our simple notion
of refinement composes both vertically and horizontally.

This looks suspiciously oversimplified, especially in comparison with most previous work in this
area. This is very much in line with our approach to specification languages, however. In [SW 83] and
[ST 86a] we presented a set of kernel specification-building operations as a basis for defining higher-
level and more user-friendly specification languages. In the same sense, the above simple notion of
refinement is a kernel notion with respect to the concept of implementation. In this paper we elaborate
on how it can provide a basis for realistic and non-trivial program development.

Roughly speaking, one would expect an implementation of a specification SP by another specific-
ation SP’ to consist of a “program” or construction written in terms of SP’ to compute the functions
specified in SP. Under a suitable formalisation of the notion of a construction, we say that a spe-
cification SP is implemented by a specification SP’ via a construction & , written SP ~~> SP'/ if
SP ~~> k(SP"). That is, SP refines not to SP’ directly, but to a specification consisting of the con-
struction & “on top of” SP’. This is close to the notions of implementation in [Ehr 81] and [Lip 83]
and subsumes most previous notions of implementation in the literature, e.g. [GTW 76], [Ehr 82],
[EKMP 82] and [SW 82] (since some of these, including that of [Ehr 81], were defined as implement-
ations of one single algebra by another, and some others, like [BBC 86], were formulated in a more
syntactic, proof-oriented style, it may be more accurate to say that this subsumes the model-theoretic
ideas behind these notions). It is easy to show that such implementations compose vertically; if we
extend this notion of implementation to parameterised specifications we obtain a (modified but per-
fectly satisfactory) horizontal composition theorem as well. Both composability results hold without
any further assumptions, which comes from the fact that we do not require (and see no reason to
require) that the composed implementation should take exactly the same form as its component
implementations in contrast to e.g. [Ehr 82], [EKMP 82], [EK 82] and [SW 82].

[t may be argued that an implementation SP ~ SP’ should be correct as long as the construction
k yields functions which “behave like” those specified in SP instead of being exactly the same. This
suggests that ideas concerning behavioural equivalence of algebras as discussed in [GGM 76], [Rei 81],
[GM 82], [ST 87a] (and elsewhere) should be explored in the context of implementations. Under a
suitable formalization of the notion of an abstraction based on an equivalence on algebras, we say
that a specification SP is implemented by a specification SP’ with respect to an abstraction a via
a construction , written SP ~~> SP' if «(SP)~~> r(SP'). That is, SP’ implements SP (via &)
not “exactly” but only up to the abstraction equivalence associated with «. If this equivalence is
the behavioural equivalence relation then this subsumes the notions of implementation in [GM 82],
[Sch 86] and [BMPW 86]; other equivalence relations may be useful as well.

Now vertical composition is non-trivial, depending essentially on the requirement that the con-

structions used preserve the relevant abstraction equivalences. We show that this is the case under
certain conditions for each of the constructions we consider to demonstrate that it is not an unreas-
onable requirement. This notion of implementation extends to parameterised specifications as before.
However, horizontal composition holds only for parameterised specifications which preserve the ab-
straction equivalence (extended to specifications). This turns out to be quite satisfactory in practice
and an example shows that a stronger result cannot really be expected.

We present the above ideas in the framework of partial algebras (with first-order formulae) [BrW 82].
This is mainly to take advantage of the reader’s intuition, since all of the main definitions and results
as well as methodological remarks may be directly restated in the framework of an arbitrary institution
[GB 84a]. This means that they can be used to develop programs from specifications in a wide variety
of logical systems which involve different notions of signature, logical formula, and model (examples
include the standard framework of equational logic and total algebras as well as higher-order logics,
LCF [Plo 77], error algebras [GDLE 84] and many others). Thus, a user of the presented program
development methodology may choose the logical system which is most suited to his particular task.
Moreover, different logical systems may be most suitable at different stages of the development of
even a single program, for example when developing an efficient imperative program from a high-level
algebraic specification. We enable this by allowing specifications to be implemented by specifications
in a different institution using what we call a semi-institution morphism.

The concepts we introduce are illustrated by a running example of the implementation of sets of
natural numbers.

We assume some familiarity with a few notions from basic category theory, although no use is
made of any deep results. See [AM 75] or [MacL 71] for the definitions of e.g. category, initial object,

pushout, pullback, functor etc. which we omit here.

2 Algebraic preliminaries

Most of the following definitions are more or less standard so we give them without comment or
motivation; for a more detailed presentation see [GTW 76], [BG 82], [EM 85] for total algebras and
[BrW 82], [Bur 86] for partial algebras.

Notation Throughout this paper we deal with many-sorted sets, functions, relations, etc. (for any
set S, an S-sorted set is just a family X = {X};cs of sets indexed by S, and similarly for functions,
relations, etc.). We will feel free to use standard set-theoretic notation without explicit use of indices:
for example, we write € X rather than z € X, for some s € S, and h: X — Y rather than
h ={hs}ses and hg: Xy — Y for s € 9, etc.

A signature is a pair (9, Q) where S is a set (of sort names) and € is a family of sets {Q, s }uwesr ses
(of operation names). We write sorts((5,€)) to denote S5, opns((S,Q)) to denote Q, and f: w —
s to denote w € S*, s € S, f € Qs A signature morphism o: (S,Q) — (S,Q) is a pair

! . . !
(Csorts, Oopns) Where 050 S — 5" and ogpns 1 a family of maps {oy,51 Qs — QU*(w)7U(S)}weg*7seg

where 07(s1,...,8,) denotes os,pis(81), . -« Osorts(Sn) for $1,..., 8, € S. We will write o(s) for o0p15(5),
o(w) for o*(w) and o(f) for o, s(f), where f € Q,, ;.

The category of signatures Sign has signatures as objects and signature morphisms as morphisms;
the composition of morphisms is the composition of their corresponding components as functions.
(This obviously forms a category.) Sign is cocomplete (see [GB 84b]); the initial signature is the
empty signature ¥y with no sorts and hence no operations. |Sign| denotes the collection of objects of
Sign, and we use Sign to denote the collection of its morphisms. We use the same notation for other

categories.

Notation The composition of morphisms in any category (in particular, of functions) is denoted by

semicolon and written in the diagrammatic order, e.g. f: A — B and ¢g: B — C implies f;g: A — C.

Let ¥ = (5,Q) be a signature.

A (partial) Y-algebra A consists of an S-indexed family of carrier sets |A] = {|A|s}ses and for
each f: s1,...,8, — s a partial function f4: [Als, X -+ X |Als, — |Als. A is called a total algebra if
all of these functions are total. A X-homomorphism from a Y-algebra A to a X-algebra B, h: A — B,
is a family of (total) functions {fs}ses where hy: |Al; — |B|s such that for any f: s1,...,s, — s and
ar € |Alsy,- .- a, € |Als,

falar, ... a,) defined = fg(hs,(a1),..., hs,
hs(falar, ..., a,))

([BrW 82] would call this a total ¥-homomorphism).
The category of partial ¥-algebras PAlg(Y) has Y-algebras as objects and ¥-homomorphisms as

(a,)) defined and
= fB(h51(a1)7) hSn(an))

morphisms; the composition of homomorphisms is the composition of their corresponding components
as functions. (This obviously forms a category.) In the sequel we identify classes of ¥-algebras with
full subcategories of PAlg(X) and vice versa.

For any signature morphism o: ¥ — X" and X'-algebra A’, the o-reduct of A" is the Y-algebra A"g
defined as follows:

o For s €S, |A/‘U|s =def |A/|0(5)'

o For f: w— sin X, fA’|C, =gef 0(f)ar.

Similarly, for a ¥'-homomorphism A": A" — B’ where A" and B’ are Y¥'-algebras, the o-reduct of ' is
the ¥-homomorphism h"g: A"g — B"g defined by (h"g)s =def h;(s) fors € S.

The mappings A’ A"U and ' — h"g form a functor —|,: PAlg(Y') — PAlg(Y).

Notice that in the above we have defined a functor PAlg: Sign — Cat® (where Cat is the
category of all categories; PAlg(o) = _‘g). For the empty signature ¥y there is exactly one Y-
algebra, namely the one with no carriers, which has exactly one (empty) homomorphism on it. Thus,
PAlg maps the initial signature to the terminal category. This is a consequence of a more general
property: PAlg is cocontinuous (the proof of this fact for total algebras was given in [BW 85]; the
proof for partial algebras is essentially the same). In particular, PAlg translates pushouts in Sign to

pullbacks in Cat, which by the construction of pullbacks in Cat implies the following lemma:

4

Lemma 2.1 (amalgamation lemma) Let

ol
by »1
o2 ol
2 ; pol
o2

be a pushout in Sign. Then for any ¥ 1-algebra Al and X2-algebra A2 such that Al‘gl = AQ‘UQ, there
exists a unique ¥'-algebra A’ such that A/‘gll = Al and A/‘gzl = A2. O

A similar fact also holds for homomorphismes.

For any signature X, the algebra Ty of ground X-terms is defined in the usual way, as the (to
within isomorphism) initial total X-algebra, i.e. the carriers |Tx| contain terms of the appropriate
sorts constructed using the operations of ¥ without variables and the operations in Ty are defined
in the natural way (see for example [GTW 76]). Moreover, for any set X of variables, the ¥-algebra
T (X) of X-terms with variables X is defined as TE(X)‘L where ¥(X) is the extension of ¥ by the
elements of X as new constants of the appropriate sorts and ¢ ¥ — (X)) is the signature inclusion.

A partial first-order Y-sentence is a closed first-order formula built from Y-terms using the logical
connectives =, A, V and =, the quantifiers V and 3, and the atomic formulae D,(t) and ¢ = ¢’ (strong
equality [BrW 82]) for each sort s in ¥ and terms ¢,¢ € |Ts(X)|, (i.e. t,t" are Y-terms of sort s with
variables X).

A partial ¥-algebra A satisfies an atomic formula Dy(t) under a (total) valuation v: X — |A|,
written A |=, D,(t), iff the value t4(v) of ¢ in A under v is defined (we omit the definition of the value
of a term in a partial algebra under a valuation; see [Bur 86] for details). If X is empty (i.e. if ¢ is a
ground Y-term) we write {4 to denote the value of ¢ in A. A satisfies an atomic formula ¢ = ¢’ (where
t,t" € |Te(X)]s for some sort s in) under a valuation v: X — |A|, written A =, ¢ = ¢/, iff

o AE, D(t) and A [, Ds(t'), or
e A, Dy(t) and A |, D,(t') and the values of ¢ and ¢ in A under v are the same.

Satisfaction of (closed) partial first-order Y-sentences is defined as usual, but note that V and 3
quantify only over defined values. We generalise the satisfaction relation to classes of algebras and
sets of sentences in the usual way: C' = ® means for all A € C and ¢ € ®, A = p. We will omit the
subscript on D when there is no danger of confusion.

Let 0: ¥ — X' be a signature morphism. The unique ¥-homomorphism A: Tx — T%/|, determines

a translation of Y-terms to X'-terms. For a ground Y-term ¢ of sort s we write o(t) rather than
hs(t). This in turn determines a translation (again denoted by o) of Y-sentences to Y'-sentences:
eg. ot =) =44 o(t) = o(t') and o(Dy(t)) =aes D5 (o(t)), etc. This notation extends to sets of
sentences and sets of terms in the obvious way: o(W) = {o(t) | t € W} for any set W of ground

Y-terms and similarly for sentences.

The translations of sentences and of algebras as defined above preserve the satisfaction relation in

the following sense:

Lemma 2.2 (satisfaction lemma) For any signature morphism o: ¥ — X', Y-sentence ¢ and X'~

algebra A’, A"g Eoiff A Eo(p).

Proof This follows from the fact that definedness of terms is preserved under change of signature,

and by the proof of the analogous lemma for total algebras in [GB 84a]. O

For any signature ¥ and Y-algebra A, a (closed) Y-subalgebra of A is a Y-algebra B such that for
any sort s in X, |B|s C |Al; and for any operation f: sq,...,s, — sin X, for by € |Bls,,...,b, € |B|s,,
f(b1,...,b,) is defined iff f4(b1,...,b,) is defined and then fg(b1,...,b,) = fa(b,...,b,). Thus we
can identify Y-subalgebras of A with subsets of the carrier of A closed under operations as defined in
A. Notice that the set of ¥-subalgebras of A is closed under (set-theoretic) intersection.

For any signature ¥ and S C sorts(X), we say that a Y-algebra A is reachable on S if it contains
no proper Y-subalgebra with carriers of sorts not in .S the same as in A. In other words, every element
of A is reachable from elements of sorts not in S using the operations of ¥ (is the value of a ¥-term
with variables of sorts not in S, for some valuation). Notice that any ¥-algebra A contains exactly
one X-subalgebra which is reachable on S and has carriers of sorts not in S the same as in A, denoted
Rs(A). We omit qualification by S in these definitions if S = sorts(X).

Let A € PAlg(Y¥). A congruence on A is an equivalence relation = C |A| x |A| such that for
any f:81,...,8, — sin ¥ and a1,y € |Als,...,a,, b, € |Als,, if a1 =5, b1,...,a, =5, b, and

falay, ... a,) and fa(by,...,b,) are defined, then fa(a1,...,a,) =5 fa(by,..., by).

Fact 2.3 If = is a congruence on A, then A/= is a well-defined Y-algebra, where |A/=|s = |Als/=s

and for every f:s1,...,5, = s in X and a1 € |Als,...,a, € |Al,,, fa=([a1],... [az]) is defined iff
Ja(by, ... by) is defined for some by =5, aq,...,b, =5, a, and then fa=([a1], ..., [an]) = [fa(b1,...,)]
O

For any set F of Y-equations and A € PAlg(Y), let Nﬁ be the least congruence on A such that
ta(v)~5t,(v) for all equations VX.t = ¢’ in F and valuations v: X — |A| such that A |=, D(t) and
A=, D().

We write A/E to denote the quotient algebra A/~%4.

3 Specifications and refinement

We are not going to formally define precisely what specifications are; they are just finite syntactic
objects of some kind, where the exact syntax used does not matter here (although it may be extremely
important from the pragmatic point of view). What does matter is that every specification describes

a certain signature and a class of algebras over this signature (intuitively, the class of algebras which

satisfy the specification, or perhaps more exactly, which are acceptable realisations of the specifica-
tion). This semantics is made explicit using two mappings which assign to each specification SP a
signature Sig[SP] € |Sign| and a class Mod[SP] C |PAlg(S5ig[SP])| of Sig[SP]-algebras. Algebras in
Mod|SP] are called models of SP. We call a specification consistent if it has at least one model.
This rather general description covers high-level user-oriented loose specifications admitting many
non-isomorphic models as well as low-level detailed specifications which describe classes of isomorphic
algebras or even programs which for us are just very tight specifications describing one particular
algebra. Note that we adopt a purely model-theoretic view here and we stop the analysis of the
notion of a program at this level. Therefore, we do not distinguish between efficient and inefficient
algorithms to compute the same functions or even between effective and non-effective definitions. Any
application of the methodology we outline here would require some further syntactic constraints on

the notion of a program.

Definition 3.1 For any signature 3, Spec(X) denotes the collection of all Y-specifications, i.e. spe-
cifications SP such that Sig[SP] = X, preordered by the inclusion of model classes. (This preorder turns
Spec(X) into a category.) For any two specifications SP1 and SP2, a specification morphism from
SP1 to SP2 is a signature morphism o: Sig[SP1] — Sig[SP2] such that for any model A2 € Mod[SP2],
A2|; € Mod[SP1]. We denote this by o: SP1 — SP2.

Spec(Y) is never empty. We assume that it contains at least basic specifications. That is, given a
signature ¥ and a (finite, recursive, recursively enumerable) set @ of ¥-axioms (e.g. partial first-order

Y-sentences), (X, ®) is a specification with:

Sigl(3, @)] = ¥
Mod[(3,0)] = {A € PAlg(S) | A |= &}

If the axioms are all (universally quantified) equations or definedness formulae we call (¥, ®) an
equational specification.

In any non-trivial application, specifications will tend to grow large and unmanageable. To make
them useful, we have to build them in a structured manner and then exploit this structure as a
guide in their use and understanding. This is accomplished by use of specification-building operations
to put together little specifications in nice ways to make progressively bigger ones [BG 77]. Any
specification-building operation, given a list of argument specifications, yields a result specification.
Again, it does not matter for us how this is written; semantically, a specification-building operation
is a function on classes of algebras. It maps classes of models (of the argument specifications) to the
class of models (over a signature which must be determined as well) of the result specification. The
only assumption we make about these functions is that they are monotonic with respect to inclusion
of classes of algebras; intuitively, less restrictive argument specifications yield a less restrictive result.
Specification languages like CLEAR [BG 77,80], LOOK [ETLZ 82], ACT ONE [EFH 83], [EM 85],
ASL [SW 83], [Wir 86], [ST 86a] and others may be viewed just as sets of such operations plus some

syntactic sugar.

To make this more concrete, let us recall two simple examples of specification-building operations

(taken from [ST 86al):

Union: Given two specifications SP1 and SP2 over the same signature ¥ (i.e. Sig[SP1] = ¥ =
Sig[SP2]), SP1 U SP2 is a specification with semantics defined as follows:

SiglSP1U SP2] = %
Mod[SP1 U SP2] = Mod[SP1] N Mod[SP2]

Translate: Given a specification SP and a signature morphism o: Sig[SP] — ¥', the semantics of the
specification translate SP by o is as follows:

Sig[translate SP by o] = %'
Mod[translate SP by o] = {A" € PAlg(Y') | A"g € Mod|SP]}

Further examples will be given in the sequel.

Strictly speaking, both union and translate are really families of specification-building operations:
U= {Us: Spec(X) x Spec(X) — Spec(X) }xe|sign|

and
translate = {translate,.x_5/: Spec(X) — Spec(Z/)}gesign

The elements of these families are defined in a uniform way which allows us to leave out the subscripts
when convenient and justifies us calling them specification-building operations as in the above informal
remarks. For any specification-building operation w we will write w: Spec(X) — Spec(X') (meaning
that w takes Y-specifications to Y'-specifications) when we want to retain some of the information
lost due to this informality. Since specification-building operations are required to be monotonic,
w: Spec(X) — Spec(Y') is a functor as the notation suggests. Note that we have tacitly assumed
that w is a unary operation; to simplify the presentation we are going to make the same assumption
throughout when convenient.

Besides providing a certain collection of specification-building operations, a specification language
usually provides a way for the user to define his own specification-building operations, i.e. a mech-
anism for constructing parameterised specifications. There are different approaches to parameterised
specifications (e.g. [Ehr 82], [BG 80], [EKTWW 80], [Gan 83], [SW 83]); in this paper we use the
approach of [ST 86a).

Semantically, any parameterised specification can be viewed as a function taking any specification
over a given parameter signature X,,, to a specification over a result signature ¥,.,. Syntactically, we
write a parameterised specification as a A-expression, AX: ¥,,,.5P,.s[X], where X is an identifier and
SP,es[X] is a X,.s-specification built using specification-building operations which may involve X as
a variable denoting a ¥,,,-specification. For any X,,.-specification SP, (AX: ¥,,,.5P,s[X])(SP) is a

specification with semantics defined (essentially as -conversion) as follows:

Sigl(AX: Spar-SPres | X])(SP)] = Sres
Mod[(AX: 0, SP,es[X])(SP)] = Mod[SP,.,[SP/X]]

8

(we adopt the usual A-calculus convention that Flv/x] denotes the result of substituting v for a in
F). This easily extends to multiple arguments — see [ST 86a]. Consistently with our notation for
specification-building operations, we sometimes write (AX: X,,,.5P, [X]): Spec(X,.,) — Spec(Z,cs)
to indicate the parameter and result signatures explicitly.

The programming discipline of stepwise refinement suggests that a program (which is a specifica-
tion) be evolved from a high-level specification by working gradually via a series of successively more
detailed lower-level intermediate specifications. A formalisation of this approach requires a precise
definition of the concept of refinement.

In programming practice, proceeding from a specification to a program (by stepwise refinement or
by any other method) means making a series of design decisions. These will include decisions con-
cerning the concrete representation of abstractly defined data types, decisions about how to compute
abstractly specified functions (choice of algorithm) and decisions which select between the various pos-

sibilities which the specification leaves open. The following very simple formal notion of refinement

[SW 83], [ST 85b.87a] captures this idea.

Definition 3.2 Given two specifications SP and SP' such that Sig[SP] = Sig[SP'], we say that SP
refines to SP', written SP ~~> SP', if Mod[SP'] C Mod|SP)].

Intuitively, SP ~~> SP' if SP' incorporates more design decisions than SP. This simply requires that
any realisation of SP’ is an acceptable realisation of SP.

This notion of refinement can be extended to parameterised specifications:

Definition 3.3 Given two parameterised specifications P and P’ with the same parameter signature
Ypar, we say that P refines to P', written P ~~> P’ if for any ¥,4,-specification SP, P(SP) ~~> P'(SP).

An important issue for any notion of refinement is whether refinements can be composed vertic-
ally and horizontally [GB 80]. Refinements can be vertically composed if the refinement relation is
transitive (SP ~~> SP" and SP’' ~> SP" implies SP ~~» SP") and they can be horizontally composed
if the specification-building operations preserve refinements (i.e. P~~~ P’ and SP ~~> SP’ implies
P(SP) ~~> P'(SP")). The above notion of refinement has both these properties since specification-
building operations are monotonic. There is also an obvious operation of composition of parameterised
specifications, and it is easy to see that this preserves refinements as well. These properties allow large
structured specifications to be refined in a gradual and modular fashion.

The development of a program from a specification consists of a series of refinement steps
SPy ~er> SPy ~rss> - - ~ns> SP,) where SF 1s the original high-level specification and SP, is a program.
Vertical composability guarantees the correctness of SP, with respect to its specification SFy. This
views each of the specifications SF, ..., SP, as a single indivisible entity. If, however, we decompose
any of them using a parameterised specification, say SP, = P(SP), then the further developments of
P and of SP may proceed separately. Horizontal composability guarantees that the results of these
developments may always be combined to give a refinement of SP; and so of SFy as well. Of course,

these (sub)developments may themselves involve further decomposition.

4 Constructors and implementations

In the last section we presented a simple notion of refinement which is mathematically elegant but
perhaps a bit oversimplified from the practical point of view. In this section and those which follow,
we will develop notions of implementation built on top of this simple notion of refinement which are
more suited to practical use. We start with a notion of implementation which involves a construction
from the implementing specification to the implemented specification.

What is a construction? According to our model-theoretic view, the characteristic feature of a
construction is that it takes an algebra over one signature and transforms it to yield another algebra
over a (possibly different) signature. Thus, we can identify a construction x with a function® &
mapping Y-algebras to Y-algebras, x: PAlg(X) — PAlg(X’). In an obvious way, this determines a
specification-building operation denoted (ambiguously) by the same symbol. We call specification-

building operations of this kind constructors.

Definition 4.1 A constructor determined by a function k: PAlg(X) — PAlg(X') is a specification-
building operation r: Spec(X) — Spec(X'), where for any Y-specification SP, Siglx(SP)] = ¥’ and
Mod[x(SP)] = {x(A) | A € Mod|SP]}.

We find it convenient to view constructors as functions transforming algebras and at the same
time as specification-building operations. It should be stressed that the latter view is, in a sense,
superfluous. All the following concepts may be introduced and used directly, without assuming that
constructors are available as specification-building operations, referring to them only as functions
transforming algebras. We do not do this here, though, mainly to be able to highlight the direct
relationship between the simple notion of refinement presented in the previous section and the some-
what more complex notions of implementation introduced below. We refrain as much as possible from
developing any convenient notation for syntactic presentation of constructors. This is a very import-
ant but nevertheless separate task, which must eventually lead to the development of an appropriate
programming language with powerful modularisation facilities, which is clearly outside the scope of
this paper. Similar remarks also apply to the concept of abstractor we introduce in section 6.

A few easy facts follow immediately from the definition.

Fact 4.2 Constructors are monotonic. O
Fact 4.3 Constructors preserve consistency of specifications. a

Fact 4.4 Constructors are closed under composition: if both k1: Spec(¥1) — Spec(X2) and
k2: Spec(X2) — Spec(X3) are constructors determined by functions r1: PAlg(X1) — PAlg(X2)
and £2: PAlg(X2) — PAlg(X3), then the constructor rl;x2: Spec(X1) — Spec(X3) is determined
by the function k1;x2: PAlg(X1) — PAlg(X3). O

*From the category-theoretic point of view, it is natural to assume that this is a functor (all our examples are) but
since we do not use the morphism part in this paper we take this simplified view here.

10

Example 4.5 (derive) For any Y'-specification SP' and signature morphism o: ¥ — X' the se-
mantics of the specification derive from SP’ by o is as follows:

Siglderive from SP' by o] = ¥
Mod|derive from SP' by o] = {Al- | A€ Mod[SP']}

The derive specification-building operations (one for each o: ¥ — Y') are constructors determined by
the corresponding reduct functors _‘U (cf. section 2). Intuitively, derive can be used to hide and/or

rename some of the sorts and operations of a specification. a

Example 4.6 (restrict) For any X-specification SP and set S C sorts[X] of sorts, the semantics of
the specification restrict SP on S is as follows:

Sig[restrict SP on S] =X
Mod[restrict SP on S] = {Rs(A)| A € Mod|SP]}

The restrict specification-building operations (one for each ¥ and S C sorts[¥]) are constructors
determined by the corresponding restrict functors Rg (cf. section 2). Restrict is used to remove

“junk” (unreachable elements) of selected sorts. a

Example 4.7 (quotient) For any Y-specification SP and set E of ¥-equations, the semantics of the
specification quotient SP wrt F is as follows:

Siglquotient SP wrt F] =X
Mod|quotient SP wrt F] = {A/E | A€ Mod|SP]}

The quotient specification-building operations (one for each ¥ and F) are constructors determined
by the corresponding quotient functors __/E (cf. section 2). Intuitively, quotient is used to identify
the values of certain terms. O

Example 4.8 (extend) If we have a signature morphism o: ¥ — X' then constructors from Spec(X)
to Spec(Y') will be called synthesizing constructors along o. The intuition is that they just build new
stuff on top of the existing algebras without forgetting anything. One standard way to define such a
synthesizing constructor is using the free extension.

Namely, for any signature morphism o: ¥ — X’ and equational X'-specification SP’, there is a free
functor F,: PAlg(X) — Mod[SP'] (the left adjoint to the reduct functor —|o: Mod[SP'] — PAlg(Y)).
That this functor always exists is a well-known fact — see [GTW 76] (total algebras) and [BrW 82]
(partial algebras). Now, for any X-specification SP, extend SP to SP’ via o is a specification defined
as follows:

Siglextend SP to SP' via o] = ¥
Modlextend SP to SP' via o] = {F,(A) | A € Mod[SP]}

The extend specification-building operations (one for each o and SP’) are constructors determined

by the corresponding free functor F,.

11

In examples, we will use the standard notation enrich SP by data sorts S opns () axioms ¢
(from CLEAR) to abbreviate extend SP to (X', ®) via ¢ where X' =4; YU (5,Q) and «: ¥ — X' is
the inclusion, provided ¥’ is a signature. Recall (see [BG 80]) that the keyword data is significant
here. We will use the notation enrich SP by sorts S opns () axioms ® with a different meaning
later on (see section 5).

Note that in the above, SP may be an arbitrary specification, not necessarily equational. In general
F, does not have to preserve all the properties required by SP (o was not required to be a specification
morphism o: SP — SP') although it does preserve ground equations deducible from SP. Notice also
that this yields the initial algebra construction as a special case (where ¥ =). a

Non-example (translate) The translate specification-building operation defined in the last sec-
tion is not a constructor. Consider for example the signature morphism o: ¥y — ¥ which is the
inclusion of the empty signature into some non-empty signature ¥. The (empty) Yy-specification §§
has exactly one model while translate () by o has all of PAlg(X) as models, so translate,.x, _.x
is not determined by a function on algebras. Furthermore, if ¢': ¥ — X' is a signature morph-
ism which is non-injective on sorts (i.e. for some s,s" € sorts[X¥], o'(s) = o'(s') while s # '),
then those models A of the specification (¥,0) for which |A|; # |A|s will have no corresponding
models in translate (X, () by ¢’ so translate,.y_y is not determined by a function on algebras
either. Thus, for o: ¥ — ¥’ and a Y-specification SP, there may be models of SP which give rise to
more than one model of translate SP by ¢ and other models of SP which give rise to no model of
translate SP by o. O

Definition 4.9 A synthesizing constructor x: Spec(X) — Spec(Y') is persistent along a signature
morphism o: ¥ — X' written r: Spec(X) 2> Spec(Y'), if «: PAlg(X) — PAlg(X’) is (strongly)
persistent with respect to o, i.e. for any Y-algebra A, IQ(A)‘U = A.

Example 4.10 (amalgamated union) Given two persistent constructors «1: Spec(X) 2% Spec(X1)

and x2: Spec(X) 2% Spec(¥2), let .
o

b 21

o2 ol

Z/

22

o2

be a pushout in Sign. For any Y-algebra A, define x(A) to be the unique Y'-algebra such that
/Q(A)‘gll = k1(A) and /Q(A)‘gzl = k2(A). k(A) is well-defined by the amalgamation lemma since
/il(A)‘gl = A= KZ(A)‘O—Q. Thus, we have defined a function x: PAlg(X) — PAlg(Y'). We denote
this function and the corresponding synthesizing constructor (along ol;01" = ¢2;02') by sl + £2; if
any doubts may arise, we add ol,02 as subscripts to 4. Intuitively, k1 4+ k2 “puts together” the
constructions k1 and k2. The assumption of persistency guarantees that this is possible. (See the
notion of amalgamated sum in [PB 85] and [EM 85].) O

12

Fact 4.11 If x1: Spec(X) 2 Spec(X1) and x2: Spec(X) 2% Spec(X2) are persistent constructors
then k1 + k2: Spec(X) 2= Spec(X') is a persistent constructor along o =44 ol;01" = 02;052'.

Proof For any Y-algebra A, (k1 + /432)(14)‘01;01/ = ((kl1 + /432)(14)‘01/)

e /il(A)‘gl = A. O

Example 4.12 (translation of a constructor) There is another operator on constructors connec-
ted with the pushout in Sign. Namely, let

ol
by »1
o2 ol
2 ; pol
o2

be a pushout in Sign, and suppose x1: Spec(X) 2% Spec(X1) is a persistent constructor. Then
for any A2 € PAlg(X2), define 02(x1)(A2) to be the unique X'-algebra such that 02(/431)(142)‘01/ =
/il(AZ‘O-Q) and 02(k1)(A2) ‘02/ = A2. Thus we have defined a function o2(x1): PAlg(X2) — PAlg(X’)
which we call the translation of k1 along o2. We use the same notation and terminology to refer to
the corresponding synthesizing constructor (along ¢2'). Notice that 02(x1) is persistent. Intuitively,
02(k1) performs 1 on the “¥ part” of ¥2-algebras and leaves the other components unchanged.
Notice that the translation of a constructor is a more elementary operation than the amalgamated

union. Namely, using the notation of example 4.10, k1 4+ £2 = k2;02(rl) = kl;01(k2). O

As promised at the beginning of this section, we are going to use the notion of a constructor to

give a more practically useful definition of implementation.

Definition 4.13 (constructor implementation) A specification SP is implemented by a specifica-
tion SP' via a constructor k: Spec(Sig[SP']) — Spec(Sig[SP]), writlen SP ~ns> SP', if SP ~~> k(SP').
In other words, SP ~> SP' if r transforms every model of SP' to a model of SP.

Intuitively speaking, it we want to evaluate a function in SP., we are able to do this provided we
can evaluate any function in SP’ since the constructor & puts together functions in SP’ to obtain all
functions in SP. In this sense, £ may be viewed as a program parameterised by the (possibly not yet
executable) specification SP’. The development of an appropriate syntax for such programs is an
important and interesting but separate task.

Notice that, using the constructors introduced in examples 4.5-4.8 above, we can reduce many of
the notions of implementation in the literature (e.g. [GTW 76], [Ehr 82], [EKMP 82], [SW 82]) to the
one above. For example, the implementation notion of [EKMP 82] assumes that « is the composition
of extend, derive, restrict and quotient constructors (in that order). Notice also that constructor
implementation is a proper generalisation of the notion of refinement of the previous section; ~~% is

just ~oe> (constructor implementation via the identity constructor id).

13

Our definition of constructor implementation resembles the notion of implementation given in
[Ehr 81] for single algebras. In [Ehr 81], A is implemented by B via a construction F'if A is (isomorphic
to) a quotient of a subalgebra of F'(B). When generalising to loose specifications, the requirement that
some quotient of some subalgebra of F(B) be isomorphic to A may be regarded as a construction only
if the subalgebra and quotient are taken uniformly on all models B of the implementing specification. If
we do not require uniformity then this amounts to a non-constructive step which will be fully subsumed
by the notion of abstractor implementation defined in section 6. There are even closer similarities
with the notion of implementation of (parameterised) specifications in [Lip 83]; see section 8.1 for
details.

As indicated by fact 4.4, we are able to compose constructors, which easily yields the following

important theorem:

Theorem 4.14 (vertical composition) If SP ~s> SP' and SP' ~o> SP” then SP ~ors> SP.

Proof By definition, Mod[SP'] 2 Mod[x'(SP")], hence by definition Mod[SP] 2 Mod[x(SP")] =
&(Mod[SP']) D k(Mod[r'(SP")]) = Mod[(x';x)(SP")]. 0

Notice that since #';x is an acceptable constructor, there is no reason to require that it has (or
may be transformed to) the same form as either £ or «’. In general this will not be the case. However,
in some special cases it turns out that such normal form theorems may be obtained, often under
some additional assumptions about the specifications involved (see e.g. [Ehr 81], [EKMP 82], [SW 82],
[EWT 83], [Ore 83]). It seems to us that the requirement that the composition of constructors
must be forced into some given normal form corresponds to requiring programs to be written in a
rather restrictive programming language which does not provide sufficiently powerful modularisation
facilities for the job. In some situations, putting a constructor into a normal form can be viewed as
an optimization process.

The following simple fact allows us to mechanically strip off outermost constructors if the specific-

ation we want to implement happens to be built in this way.

Fact 4.15 For any constructor x: Spec(X) — Spec(X’) and Y-specification SP, x(SP) WSP'
provided that SP ~n> SP'.

Proof By definition, x(SP)~os> SP. Then the desired result follows from the vertical composition

theorem. O

An interesting special case of this is the amalgamated union of specifications.

Definition 4.16 For any two specification morphisms ol: SP — SP1 and 02: SP — SP2, the am-
algamated union of SP1 and SP2, written SP1 + SP2 (decorated with subscripts SP,o1,02 on + if

necessary), is a specification with semantics defined as follows:

SiglSP1 + SP2] = %
Mod[SP1 + SP2] = Mod|(translate SP1 by o1’) U (translate SP2 by ¢2')]

14

where

Sig[SP] Sig[SP1]
o2 ol
Sigl.SP2] ¥

o2

is a pushout in Sign.

In particular, we can form the disjoint union of any two specifications SP1 and SP2 by letting o1 and
02 be the inclusions of the empty specification over the empty signature into Sig[SP1] and Sig[SP2]
respectively.

Notice that according to this definition, + is a derived specification-building operation which is

defined in terms of translate and U.

Theorem 4.17 If SP1 ~y> SP and SP2 ~sy> SP where both k1: Spec(Sig[SP]) L, Spec(Sig[SP1])
and k2: Spec(Sig[SP]) 2% Spec(Sig[SP2]) are persistent constructors, then SP1 + SP2 o> SP.
Proof By definition, we have to show that for A € Mod[SP], (k1 4+ k2)(A) € Mod[SP1 + SP2], i.e.
that (k1 + #2)(A)|o1r € Mod[SP1] and (k1 + £2)(A)|s2r € Mod[SP2], which is obvious since by the
definition of k14,2, (k1+£2)(A)|s1r = £1(A) € Mod[SP1] and (k14 £2)(A)|s2r = £2(A) € Mod[SP2].
O

This theorem allows us to implement the independent components of a specification separately and
then combine their implementations provided that they do not affect the common part.

In the above theorem we required k1 and k2 to be persistent on all Sig[SP]-algebras as in the
definition of the amalgamated union of constructors. Notice that in this context, however, it is
sufficient to require that k1 and k2 are persistent only on models of SP (which may be easier to
achieve in practice). Of course formally, k1 4+ k2 is then only a constructor on Mod[SP] rather than

on PAlg(Sig[SP]) since it may be undefined on some Sig[SP]-algebras.

Theorem 4.18 Let
ol

X1

o2 ol

be a pushout in Sign, x1: Spec(X) 2% Spec(X1) be a persistent constructor, and SP1, SP2 be ¥1-

and Y.2-specifications respectively. If SP1 ~~> derive from SP2 by o2, then SP1+5P2 e 1hice SP2.

15

Proof For A2 € Mod[SP2], by definition we have 02(£1)(A2)|,2 = A2 € Mod[SP2] and 62(£1)(A2) |1 =
k1(A2|52) € Mod[SP1]. Thus 02(xk1)(A2) € Mod[SP1 + SP2]. 0

This gives another way of decomposing a specification and implementing the components separately.
Namely, we implement one component using (a part of) the other and then we can proceed with the
implementation of the other component.

Notice that again, in this context the requirement of persistency of k1 may be relaxed to persistency
on o2-reducts of models of SP2.

Summing up, the development process using this notion of implementation would consist of a
sequence of implementation steps SPy np> SPy ngy> « -+ ee> SP,. Intuitively, SFy, SP; ete. do not
“erow” as happens when we use the simple refinement notion, where the same development would
look like:

SPy ~er> (1(SPy) meed> - ne 19 (c . R (SP) L)

Using constructor implementations, we gradually reduce the specification by implementing its parts.
Our goal is to end up with an empty specification over the empty signature, i.e. SP, = (g,).
Then according to theorem 4.14, the composition of constructors k,;---;x; forms a program which
implements SF. Of course, usually it is sufficient to stop earlier, when we reach a specification
containing only definitions of types and functions available in the programming language we intend
to use.

This view of the program development process does not give a recipe for construction of the
individual implementation steps. This is where human invention is required, although research on
program and specification transformation (e.g. [Bau 81b] and [DLS 87]) offers techniques for system-
atising some of these steps, and work on program synthesis (e.g. [MW 80]) even suggests that some
steps may be mechanically constructed. Theorems 4.17 and 4.18 above as well as theorem 8.5 of
section 8.1 suggest ways of developing implementation steps in a structured manner by combining

more primitive implementation steps.

5 Examples of constructor implementations

In the following examples and those of the sequel we will use the standard specifications of the boolean
values Bool and the natural numbers Nat (which contains Bool because of the presence of operations
like >: nat,nat — bool). We also use the enrich notation of CLEAR, enrich SP by sorts S opns
axioms ®, as an abbreviation for (translate SP by ¢) U (Sig[SP]U (5,), ®), where ¢ is the obvious
signature inclusion. All axioms are implicitly universally quantified over all free variables.

We begin with a simple specification of (finite) sets of natural numbers:

SetNat =4 restrict (enrich Nat by
sorts sel
opns (: — set
add: nat, set — set

16

1sempty: set — bool
€: nat, set — bool
axioms D(0)

D(add(a, S))

add(a,add(b, S)) = add(b, add(a, 5))

add(a,add(a,S)) = add(a, S)

isempty () = true

isempty(add(a, S)) = false

a €)= false

a € add(a,S) = true

a#b=ac€addb,S)=a€9)
on {set}

We will show below how to implement SetNat by the following specification of bags (multisets)
of natural numbers:

BagNat =45 restrict (enrich Nat by

sorts bag

opns : — bag
add: nat,bag — bag
1sempty: bag — bool
count: nat, bag — nat

axioms D(0)
D(add(a, B))
add(a,add(b, B)) = add(b, add(a, B))
isempty () = true
isempty(add(a, B)) = false
count(a,P) =0
count(a,add(a, B)) = succ(count(a, B))
a # b= count(a,add(b, B)) = count(a, B))

on {bag}
The constructor implementation of Set Nat by BagNat proceeds in three steps:

Extend: Epu,_sa: Spec(Sig[BagNat]) — Spec(XBagNat') =4
AX: SiglBagNat]. enrich X by
data opns €: nat,bag — bool
axioms a € B = count(a,B) >0

Derive: Dpgu,_se: Spec(XBagNat') — Spec(Sig[SetNat]) =4
AX: Y BagNat'. derive from X by o
where o renames the sorts and operations in Sig[SetNat] to those in ¥ BagNat' by renaming

set to bag and leaving the other names as they were (note that count is hidden in this step).

17

Quotient: Qp,,_s.: Spec(Sig[SetNat]) — Spec(Sig[SetNat]) =4
AX: Sig[SetNat]. quotient X wrt
{Va: nat, S: set.add(a,add(a,S)) ~ add(a, S)}

Notice that any specification-building operation w: Spec(X) — Spec(X’) may be identified with the
parameterised specification AX: Y.w(X). This allows us to use the syntax of parameterised specific-
ations to define specification-building operations (constructors in particular) as above.
We now have:
SetNat ~rrrrrrsrrmrrmrsnrrrrass> BagN at

gBag—>Set§DBag—>Set;QBag—»Set
This may be equivalently (and perhaps more directly) presented as a single simple refinement step.

Namely, we have just stated that SetNat refines to the following specification:

quotient
derive from
enrich
BagNat
by data opns €: nat,bag — bool
axioms a € B = count(a, B) > 0
by o
wrt {Va: nat, S: set.add(a,add(a,S)) = add(a,S)}

We hope that this makes the notation we used to define Epyy—ser, Prag—ser and Qpgy_ge clear.
We prefer the previous formulation of the same implementation step, since it clearly separates the
constructive part of the refined specification (Epag—set;PBag—set; QBag—set) from its non-constructive,
yet-to-be-implemented part (BagNat).

Of course, the claim that BagNat implements SetNat via Epyy—set;PBag—set; QBag—set Tequires a
proof. We have to show that given any model BAG € Mod[BagN at], Qpag—set(PBag—set(EBag—set(BAG)))
is a model of SetNat. In this case the proof is relatively straightforward and easy, albeit tedious,
based directly on our definitions of the specific constructions involved, arguing in terms of how the
constructors transform individual models of BagNat. We omit it here, and we omit similar proofs
in the sequel. It should be pointed out, however, that if the methodology we present is to be used
in practice, some systematic and uniform techniques for constructing proofs of this kind must be de-
veloped. This task is separate from the development of the general model-theoretic framework which
is the topic of this paper.

Next we implement BagNat by the following specification of lists of natural numbers:

List Nat =45 restrict (enrich Nat by
sorts [ist
opns nil: — st
cons: nat, list — list

null: [1st — bool

18

hd: list — nat
tl: list — lust
axioms D(nil)
D(cons(a, L))
null(nil) = true
null(cons(a, L)) = false
hd(cons(a, L)) =
tl(cons(a, L)) = L)
on {list}

The constructor implementation of BagNat by List Nat proceeds in three steps. The idea is that
a finite bag is represented by a list containing at the n'" position the number of times n occurs in the

bag.

Extend: &Lispa,: Spec(Sig[List Nat]) — Spec(XList Nat') =4
AX: Sig[List Nat].
enrich X by
data opns nth: nat,list — nat

put: nat,list — list

axioms null(L) = true = nth(n,L) =0
null(L) = false = nth(0, L) = hd(L)
null(L) = false = nth(suce(n), L) = nth(n,tli(L))
null(L) = true = put(0, L) = cons(suce(0), L)
null(L) = false = put(0, L) = cons(suce(hd(L)),tl(L))
null(L) = true = put(suce(n), L) = cons(0, put(n, L))
null(L) = false = put(succ(n), L) = cons(hd(L), put(n,ti(L)))

= I
where Y List Nat' is the extension of Sig[List Nat] by the operation names nth: nat, list — nat
and put: nat, list — lust.

Derive: Driu_pa,: Spec(XListNat') — Spec(Sig|BagNat]) =4
AX: Y ListNat'. derive from X by o
where o renames the sorts and operations in Sig[BagNat] to those in Y List Nat' by renaming
bag to list, O to nil, add to put, count to nth and isempty to null and leaving the other names
as they were. Note that hd, ¢t/ and cons are hidden in this step.

Restrict: Rpisi—pa,: Spec(Sig[BagNat]) — Spec(Sig|BagNat]) =4
AX: SiglBagNat]. restrict X on {bag}
Intuitively, this removes from models those bags which cannot be constructed using § and add,
i.e. lists with trailing 0’s. This last step is necessary only because we started with the explicit

requirement that models of BagNat (and initially of SetNat) are reachable.

19

We now have:
BagNat W\&Llst]vat

5List—>Bag§DList—>Bag;RList—>Bag

Putting this together with the previous example using the vertical composition theorem, we get:

SetNat /\IVWVWVWVWVWVW\IWVWVWW\I\IV\IVWVV\I\N\IVV\&LZStNat

Erist—BagiPList—BagiRList—Bag } €Bag—Set;PBag—Sect;LBag— Set
Although both of the implementations we composed above are in the form required in [EKMP 82]
(extend-derive-restrict-quotient) the result implementation is not in this form. In this case the
result may be converted to an implementation of this form but this does not matter in our framework;

the implementation is acceptable as it is.

6 Abstractors and implementations

It is often possible to abstract away from some of the details of the user’s original specification without
violating the real intention behind it. This is the idea behind the specification technique known in
software engineering as abstract model specification [LB 77], in which the user defines in a more or
less concrete fashion a model which gives the desired results with the intention that any program
giving the same answers is acceptable. An example (not from software engineering) is in [AMRW 85]
where the semantics of a set of basic operations on transition systems (which are sufficient to define
e.g. SMoLLCS [AR 83]) is described by first presenting an operational semantics and then abstracting
in two different ways to yield the input-output semantics and strong equivalence semantics. Our
specification of sets of natural numbers in the last section may be regarded in the same way — we do
not really care whether an algebra satisfies all the axioms given there. An algebra is an acceptable
realisation of this specification as long as the membership relation behaves properly (i.e. gives the
right answers for every choice of argument).

This theme has been discussed in [GGM 76], [BM 81], [Rei 81], [GM 82|, [Sch 86], [Kam 83],
[MG 83], [ST 85a,87a] and elsewhere; the idea goes back (at least) to work on automata theory in the
1950’s [Moo 56].

To formalize these ideas we will consider another class of specification-building operations called
abstractors. Intuitively, any equivalence relation on Y-algebras determines a specification-building
operation which relaxes interpretation of any X-specification SP by admitting as a model any Y-
algebra which is equivalent to a model of SP. Seen another way, the abstractor closes the class of

models of a specification under this equivalence.

Definition 6.1 An abstractor determined by an equivalence relation = C PAlg(¥) x PAlg(Y) is a
specification-building operation a=: Spec(X) — Spec(X) where for any Y-specification SP,

Sigla=(SP)] = &
Modja=(SP)] = {A € PAlg(Y) | 3A' € Mod[SP].A = A"}

In the sequel we will omit the subscript = when there is no danger of confusion. Also, if a is known

we denote the abstraction equivalence which determines it by =,,.

20

A few easy facts follow immediately from this definition.

Fact 6.2 Abstractors are monotonic. O

Fact 6.3 Abstractors preserve and reflect consistency of specifications. That is, for any abstractor
a: Spec(X) — Spec(X) and X-specification SP, SP is consistent iff a(SP) is consistent. O

Fact 6.4 Abstractors are idempotent, i.e. for any abstractor o: Spec(X) — Spec(X), a(a(SP)) has
the same class of models as a(SP). O

Remark In general, abstractors are not closed under composition, i.e. there are abstractors
al: Spec(X) — Spec(X) and a2: Spec(X) — Spec(X) such that the composition al;a2: Spec(X) —
Spec(X) is not an abstractor.

Counterexample Let PAlg(Y¥) = C; U Cy U C3 U Cy where C4,...,Cy are disjoint classes of
Y-algebras. Consider the equivalences

==(C1 xC1)U(Cy x C2) U (Cyx C3) U (Cy x Cy)
U (Cy1 x C) U (Cy x Cr)U(Cs x Cy) U(Cy x Cs)
U (Cy x C3) U (C5 x Cy)

a=,;a=, is not idempotent, in contradiction to fact 6.4: az,(a= (C1)) = C1 UCy U Cs # PAlg(Y) =

Q=, (a51 (Oé52 (a51 (Cl))))
O

This fact is neither surprising nor disturbing; we will not in fact have occasion to compose abstractors.

Example 6.5 (observational abstraction) For any Y-specification SP and set W of ground Y-
terms, the semantics of the specification abstract SP wrt W is as follows [SW 83]:

Siglabstract SP wrt W] =X
Mod[abstract SP wrt W] = {A € PAlg(Y) | 3A" € Mod[SP]. A=y A’}

where for any two algebras A, A" € PAlg(X), A=y A’ ifl:
e forallt e W, A D(1)iff A" = D(t), and
o for all s € sorts(X) and all t,#' e Wy, AEt=t'if A =t=1.

Intuitively, W is the set of ¥-terms which represent computations the user is allowed to perform. We
do not want to distinguish between algebras in which all these computations give the same results. A
similar idea in the context of concurrent processes appears in [deNH 84].

This can be generalised in two ways. First, instead of a set of Y-terms for which we can “observe”

definedness and equality, we can consider more complicated observations: arbitrary Y-sentences. Two

21

Y-algebras are equivalent with respect to a set of Y-sentences if they satisfy exactly the same sentences
from this set. This more general notion of observational equivalence was introduced and analysed in
[ST 87a] (cf. [Pep 83]). Second, since we have only considered ground terms here, the equivalence
takes into account only reachable subparts of algebras. To take “junk” into account, one can consider
equivalence with respect to a set of X-terms (or more generally, ¥-formulae) with free variables; see
[SW 83] and [ST 87a| for details. For simplicity, we discuss only the simplest version of observational

equivalence here. a

Example 6.6 (behavioural abstraction) An important special case of observational abstraction is
behavioural abstraction. For any Y-specification SP and set OBS C sorts(X) of sorts, the semantics
of the specification behaviour SP wrt OBS is as follows [SW 83], [ST 86a,87a]:

Siglbehaviour SP wrt OBS] = X
Modbehaviour SP wrt OBS] = {A € PAlg(X) | 3A" € Mod[SP].A =g A’}

where the equivalence =g is just =y for W the set of all ground X-terms of sorts in OBS. Intu-
itively, OBS is the set of external sorts, visible to the user. The result of any computation leading to

any of these sorts is observable. a

The above considerations indicate that often we are satisfied with implementing a given specifica-

tion up to an abstraction equivalence. This leads to the following notion:

Definition 6.7 (abstractor implementation) A Y-specification SP is implemented by a X'-spec-
ification SP" wrt an abstractor a: Spec(X) — Spec(X) via a constructor k: Spec(¥') — Spec(Y),
written SP ~%> SP', if a(SP) ~~> k(SP'). In other words, SP ~2> SP' if k transforms every model of
SP' to an algebra which is =, -equivalent to a model of SP.

Every constructor implementation SP ~» SP' is also an abstractor implementation SP ~3> SP’
where = is the identity relation on PAlg(Sig[SP]). Also, if SP ~%> SP' is an abstractor imple-
mentation then so is SP ~&> SP’ for any =" D =.

It in the above definition, « is behavioural abstraction, then intuitively speaking we are imple-
menting the behaviour of SP rather than SP itself. This subsumes the notions of implementation in
[GM 82], [Sch 86] and [BMPW 86].

The abstractor o cannot be chosen arbitrarily; the choice depends on the specification SP and the
context in which it is to be used. If « abstracts too much then the implementation will be useless — for
example if = is the total equivalence on PAlg(Y) then Mod[a=(SP)] = PAlg(X) and so SP ~%> SP’
for any SP" and constructor x: Spec(Sig[SP']) — Spec(Sig[SP]).

Let us consider now the problem of vertical composability of abstractor implementations. Suppose
SP ~% SP" and SP’ ~9v9> SP". We would like to be able to conclude that SP AN\&» SP". Note that
according to the above argument we assume that « was chosen appropriately for the context in which
SP is to be used and so we do not want to change it even when composing implementations.

In general, there is no hope for such a result. If o is too “liberal”, there is no reason to expect

that x transforms any o'(SP')-model to a model of a(SP). However, the following theorem does hold:

22

Theorem 6.8 (vertical composition) If SP ~%> SP" and SP' m%l& SP" then SP ~s~ss SP” provided

k preserves the abstraction equivalences, i.e. for any two algebras Al, A2 € PAlg(Si;][SP']) if Al =,
A2 then k(Al) =, r(A2).

Proof By definition, a'(SP’) ~~> £'(SP"). Then r(a'(SP')) ~~> (k';)(SP") follows from the mono-
tonicity of k. By vertical composability of ~~ it suffices to show that a(SP)~~> r(a'(SP')), i.e.
Mod[a(SP)] 2 Mod[r('(SP"))] = k(Mod[a'(SP")]). Now, for any model A" € Mod[a'(SP")], there is
Al" € Mod[SP'] such that A" =, A1’. Since & preserves the abstraction equivalences, k(A’) =, r(Al").
Now, r(A1") € Mod[a(SP)] since SP ~% SP" and so k(A") € Mod[a(SP)]. O

A methodological conclusion from this theorem is that the development process should proceed
as follows: starting from a specification SP considered in a context for which an abstractor « is
appropriate, we (abstractor) implement SP, say SP ~~%> SP’. The next step should be to establish
the appropriate abstractor up to which SP’ may be considered by “pushing =, through «”. Namely,
from the above theorem it follows that this should be the abstractor determined by the equivalence
#~(=,) where for A, A" € PAlg(Sig[SP')), A k™' (=,) A" iff k(A) =, x(A’) (it is trivial to show that
#~'(=,) defined in this way is an equivalence). Then, we can proceed with the development of SP’ in

the context of the abstractor determined by x™'(=,). (Actually, any equivalence finer than «™'(=,)

will do.) Similar ideas in the context of concurrent processes appear in [Lar 86].

Corollary 6.9 If SPy ~zv> -+ ~2%> SP, and =, C k7" (=a,) and -+ and =,, C £, (Za,_,) then
Sy W SP,. O

In practice, it is often convenient to use a sharper version of the above results. It is not really
necessary for constructors to preserve the abstraction equivalences on all algebras; the results hold if
the constructors preserve the equivalences between models of the appropriate specifications (e.g. in
the vertical composition theorem it is sufficient that x(Al) =, k(A2) for any Al € PAlg(Sig[SP'])
and A2 € Mod[SP'] such that Al =, A2).

The requirement in the vertical composition theorem that the constructors preserve abstraction

equivalences is just the same as the requirement in [Sch 86] that constructors in implementation steps
(which correspond to implementation cells, in his terminology) be stable. A difference between the
approach in [Sch 86] and ours is that he considers a fixed abstraction equivalence between all algebras
of a given signature.

In the rest of this section, we show that vertical composition and the above methodological remarks
may work in practice. On one hand, the constructors we have introduced do preserve appropriate
(observational) equivalences; and on the other hand, we show how to push standard observational
equivalences in a satisfactory way through the constructors we have defined. By “in a satisfactory
way” we mean that although in some cases we do not characterise the result of pushing an equival-
ence through a constructor exactly, we describe instead a finer equivalence which is also sufficient as

mentioned already.

23

Lemma 6.10 (derive) For any signature morphism o: X1 — X2 and set W of ground X2-terms,
D' (=w) = =,w), where D,:Spec(¥2) — Spec(Xl) =44 AX:Y2. derive

[

from X by o. (We justified this notation in the last section.)

Proof Recall that D, (viewed as a function) is the reduct functor —ot PAlg(X2) — PAlg(X1).
Let A, A" € PAlg(X2). We have A =,y A" iff: for all t € W, A |= D(o(1)) iff A" |= D(o(t)) and for
all ty,t, € Wy, A= o(ty) = o(ty) if A" = o(ty) = o(t2). By the satisfaction lemma, this is equivalent
to: for all t € W, A‘g E D(t) iff A"g = D(t) and for all t;,1, € W, A‘g E it =ty iff A"g Et =1,
ie. A, =w A"g. 0

Lemma 6.11 (restrict) For any signature ¥, S C sorts(X), set W of ground Y-terms and YX-algebra
A, A =w Rs(A), where Rgs: Spec(X) — Spec(Y) =gef AX: Y. restrict X
on 5.

Proof Obvious since for any A € PAlg(X¥) and t € W, A |= D(t) iff Rs(A) E D(t) and moreover
if A= D(1) then the values of t in A and in Rg(A) are the same. O

The above lemma gives directly a characterisation of the result of pushing observational equivalence
through restrict constructors. Perhaps more importantly, it directly implies that restrict steps may

be skipped if we use abstractor implementations.

Corollary 6.12 Under the assumptions of lemma 6.11, R (=w) = =w. O

Corollary 6.13 Under the assumptions of lemma 6.11, if v is the abstractor determined by =yw, then
for any X-specifications SP and SP', SP %%9 SP" implies SP m%& SP'. O
S 7
It is worth pointing out that the above corollary also allows us to throw out restrict steps “i
the middle” of the development process (provided that the intermediate equivalence used in this step

satisfies the assumptions of lemma 6.11). Namely, given SP N,\%MA&» SP', if this implementation can
Sk

be decomposed into SP ~~> SP1 Ns,ﬁiﬁfs\& SP" where =, C 7 '(=,) (and, say, SP1 = Rs(x'(SP")))
and =,/ is observational equivalence with respect to a set of ground terms, then SP ~~s SP1 ~9\I®> SP’
and hence SP AN\&» SP'. This means that corollary 6.12 becomes superfluous since instead of using
it to push equlvalences through restrict steps we can just skip these steps entirely. This corresponds
nicely to standard programming practice. If we happen to produce a data type with some junk
elements, we are not forced to remove them before using the data type. Instead, we just use the data
type as usual, pretending that the junk elements are not there.

The situation with quotient steps is similar. No program can ever force two different existing data
values to be the same. At best, we can pretend that they are the same. This is possible only provided
that they exhibit the same observable behaviour. Thus, we can remove quotient steps whenever they

do not glue together elements having different observable behaviour.

24

Definition 6.14 For any signature X2, set £ of YX-equations, set W of ground Y-terms and Y-algebra
A, we say that F is observably trivial on A (wrt W) if A =w A/FE. We say that F is observably trivial
on a X-specification SP if it is observably trivial on each model of SP. We say that E is behaviourally
trivial on A (resp. SP) wrt a set OBS C sorts(X) of observable sorts if it is observably trivial on A
(resp. SP) with respect to the set of all ground terms of sorts in OBS.

As for restrict, the above definition leads directly to a (trivial) characterisation of the result of
pushing observational equivalence through the quotient constructor in the context of specifications
which guarantee observable triviality of the equations by which we quotient. More importantly,
however:

Lemma 6.15 (quotient) Under the assumptions of definition 6.1/, if o is the abstractor determined
by =w and SP, SP' are Y-specifications such that F is observably trivial on SP" wrt W and SP méci& SP'!

where Qp: Spec(Y) — Spec(X) =gef AX: XL quotignt X
wrt I, then SP mﬁl&SP’. O
Proof Trivial. O

The above definition of observable triviality does not give any hints on how to prove that a set of
equations is indeed observably trivial on a given specification. We do not study this problem here, just
as we do not treat techniques for proving implementation steps correct. We formulate the following

easy lemma to indicate what kind of results may be expected and useful here.

Lemma 6.16 Consider a signature 3, set £ of Y-equations, set OBS C sorts(X) of observable sorts
and a reachable, total S-algebra A. Let ~% be the least congruence on ground Y-terms generated by

E (i.e. ~F =44 N%). If for any two ground terms t,1" of an observable sort, A =t = t' whenever
t ~F 1 then E is behaviourally trivial on A wrt OBS.

Proof It is easy to see that since A is reachable and all terms have a defined value in A,
E ! E
~a = {{tas) [1~ 1)

Hence, by our assumption, the congruence Nﬁ is the identity relation on the carriers of A of observable

sorts and thus indeed A =npg A/E. 0

Definition 6.17 For any signature morphism o: ¥ — Y, constructor r: Spec(X) — Spec(X’) and
sets W and W' of ground Y- and ground X'-terms respectively, k is observably sufficiently complete
(wrt W, W') if for any term ' € W', either for all A € PAlg(X), x(A) & D(t') or there exists a term
t € W such that for all A € PAlg(Y), k(A) =t = o(t).

Typically, we will consider sets W and W' such that observable sufficient completeness is a weaker
condition than sufficient completeness, which corresponds to the case where W' is the set of all ground
Y'-terms of the sorts o(S) for S =4 sorts(X) and W is the set of all ground Y-terms.

25

Definition 6.18 For any signature morphism o: ¥ — Y, constructor x: Spec(X) — Spec(X') and
set W of ground X-terms, k is observably persistent (wrt W) if for all terms t1,t12 € W of the
same sort and any A € PAlg(Y), «(A) E o(tl) = o(t2) iff A E t1 =12 and x(A) E D(o(tl)) iff
A= D(t1).

Notice that observable persistency is a weaker condition than the standard persistency, i.e. that for
any A € PAlg(Y), x(A) ‘U = A. Namely, the satisfaction lemma implies that if & is persistent then it
is observably persistent.

The following lemma applies to all synthesizing constructors, including for example the extend

constructor.

Lemma 6.19 (synthesize) For any signature morphism o: ¥ — X' which is injective on sorts,
constructor r: Spec(X) — Spec(X’) and sets W and W' of ground X- and X'-terms respectively, if &
is observably sufficiently complete wrt W, W' and observably persistent wrt W then k™" (=w+) 2 =w.

Moreover, if in addition W is a minimal set such that observable sufficient completeness holds then

K_I(EW/) = =w.
Proof Let Al, A2 € PAlg(Y). Assume Al =y A2; we prove that k(Al) = k(A2).

1. For any t' € W', x(Al) E D(l') iff k(A2) E D(t'): If t' is defined in no algebra x(A) for
A € PAlg(Y) then the equivalence is obvious. Otherwise, let ¢ € W be such that for any
A € PAlg(Y), k(A) Et' = o(t). Now (A1) = D(t') iff k(A1) = D(e(t)) iff Al = D(t) (by
observable persistency) iff A2 = D(¢) iff K(A2) = D(o(t)) iff k(A2) | D(t').

2. For any t1',12" € W' of the same sort, k(Al) | 1" = 12" iff k(A2) 1" = ¢2":

“e=: If t1” and t2" are undefined in x(A2) then they are undefined in (A1) as well by (1) and
so k(A1) = t1" = t2'. So assume both 1" and 2" are defined in x(A2). Let t1,12 € W be
such that for all A € PAlg(Y), x(A) | t1' = o(t1) and x(A) | 12" = o(12). Since o is
injective on sorts, t1 and 12 are of the same sort. We have k(A2) |= o(t1) = o(¢2) hence
A2 |= t1 = t2 by observable persistency and so Al | t1 =12 and so k(Al) | o(tl) = o(12)
which finally implies k(A1) = 1" = 2",

“=7: By symmetry.

Moreover, notice that if W is a minimal set of ground Y-terms such that observable sufficient complete-
ness holds, then for all ¢ € W there exists ¢’ € W' such that for all A € PAlg(Y), (A) ' = o(1);
otherwise we could have removed ¢ from W without violating observable sufficient completeness and

observable persistency. We can now prove k(Al) =w: k(A2) implies Al =w A2 using the same
arguments as above. 0

Notice that although in order for x to be a well-defined constructor we require that it is defined

on all ¥-algebras, in the development process k will be applied to a particular specification SP in the

26

context of an abstractor . In this situation it is sufficient to show that & is observably sufficiently
complete and observably persistent only on models of a(SP).

As remarked already, constructor implementation using the derive, restrict, quotient and ex-
tend constructors subsumes many of the notions of implementation in the literature. The above
lemmas imply that the extension of any of these notions to a corresponding notion of abstractor

implementation goes through smoothly.

Lemma 6.20 (amalgamated union) Let x1: Spec(X) 2% Spec(X1) and #2: Spec(¥) 2% Spec(X2)
be persistent constructors, W, W1, W2 be sets of ground X-, ¥1- and Y2-terms respectively such that
k1l s observably sufficiently complete wrt W, W1 and k2 is observably sufficiently complete wrt W, W2.
Recall thal k =4 k1 + k2: Spec(X) — Spec(Y'), where

ol

by »1
o2 ol
2 ; Y
o2

is a pushoul in Sign, is a persistent synthesizing constructor (along o1;01" = 02;02') such that for
A € PAlg(Y), «(A) is the unique X'-algebra such that /Q(A)‘gll = k1(A) and /Q(A)‘gzl = k2(A). Under
these assumptions, is observably sufficiently complete wrt W, W' where W' =44 a1/ (W1)U a2 (W2).

Proof Lett € W'. Supposet’ = o1'(t1) for t1 € W1 (the case t’ = 02'(¢2) for {2 € W2 is symmetric)
and that x(A) | D(t') for some A € PAlg(Y). Then also x1(A) = D(t1) and so, since 1 is observably
sufficiently complete, there exists t € W such that for any A € PAlg(Y), x1(A) E t1 = ol(t). Now
for any A € PAlg(Y), x(A) | ol'(t1) = ol'(a1(t)) iff /Q(A)‘gll = tl = ol(t) by the satisfaction
lemma. However, by the definition of «, /Q(A)‘gll = kl1(A) and so k(A) Et' = al'(c1(1)). O

Notice that we have assumed that 1 and &2 are persistent constructors as required in the definition
of k1 + k2. However, as noted in the remarks after that definition, the constructor x1 + «2 will in
practice be applied to a particular X-specification SP in which case it is sufficient that x1 and k2 be
persistent and observably sufficiently complete only on models of SP (up to the relevant abstraction

equivalence).

Corollary 6.21 Under the assumptions of lemma 6.20, k™' (=w/) D =w .

Proof By lemma 6.20, k = k1 + 2 is observably sufficiently complete. Moreover, it is observably
persistent since it is persistent by fact 4.11. The result follows directly by lemma 6.19. O

Lemma 6.22 (translation of a constructor) Let

27

by »1
o2 ol
2 pol

be a pushout in Sign, let W, W1, W2 be sets of ground -, ¥1- and Y2-terms respectively, and let
#x1: Spec(¥) 2 Spec(X1) be a persistent constructor. If k1 is observably sufficiently complete wrt
W, W1 and o2(W) C W2 then o2(x1): Spec(X2) — Spec(X') is observably sufficiently complete wrt
W2, W' where W' = o1'(W1) U o2 (W?2).

Proof Let ¢ € W'. If t' = 02'(12) for 2 € W2, there is nothing to prove. Otherwise, t' = o1'(¢1)
for some 11 € W1. If for some A2 € PAlg(X2),02(x1)(A2) = D(t') then also k1(A2]52) = D(t1) and
so, by observable sufficient completeness of x1, there exists t € W such that for any A € PAlg(Y),
k1(A) | t1 = ol(t). Hence, for any A2 € PAlg(X2), 02(r1)(A2) | ol'(t1) = ol'(c1(1)) by the
satisfaction lemma, since 02(/431)(142)‘01/ = /il(AQ‘gz). Now, notice that 02'(a2(t)) = o1'(c1(t)), and
so 02(k1)(A2) E ' = 02'(02(1)). Moreover, o2(t) € W2. 0

Corollary 6.23 Under the assumptions of lemma 6.22, 02(k1) " (=) 2 =wo.

Proof By lemma 6.22, 02(x1) is observably sufficiently complete. Moreover, it is observably
persistent since it is persistent (see example 4.12 in section 4). The result follows directly by lemma

6.19. 0

Notice that again in practice it is sufficient to require that x1 be persistent and observably sufficiently
complete only on (the relevant parts of) models of the specification its translation is applied to in the

development process.

7 Examples of abstractor implementations

Recall from section 5 the development of the (constructor) implementation of sets of natural numbers

by lists of natural numbers:

SetNat WWMVWBagNGt W\&Llst]vat

gBag—>Set§DBag—>Set;QBag—nS'et 5List—>Bag§DList—>Bag;RList—>Bag

As argued in the last section, we do not really need an exact implementation of SetNat; all we are
interested in is the behaviour that Set/Nat determines, i.e. we want to implement the specification
behaviour Set Nat wrt {nat, bool}. Let

Ase: Spec(Sig[SetNat]) — Spec(Sig[SetNat]) =g
AX: Sig|Set Nat]. behaviour X wrt {nat, bool}

28

be the abstractor. We then have (trivially):

SetNat wmm@BagNat

Bag—>Set§DBa9—>Set;QBag—nS'et

We can now use lemma 6.15 simplify this implementation. Since by lemma 6.16 the equation used in
the quotient step Qpuy—set is behaviourally trivial on Dpag—set(Epag—set(BagNat)) with respect to

{nat, bool} (notice that the count operation is no longer available here), we have:

SetNat WWVV%WBagNat

gBag—>Set§DBag—>Set

The way we have arrived at this implementation step is misleading. Ordinarily, we would not
proceed by first developing a constructor implementation, then upgrading it to an abstractor imple-
mentation, and then simplifying the result. Our task from the beginning would be to implement
SetNat up to Ase; and we would not have to use an explicit quotient at all. On the other hand, the
proof that this is an implementation might well involve a quotient construction in order to show that
for every BAG € Mod[BagNat], Dpag—set(Epag—set(BAG)) is Agsei-equivalent to a model of SetNat.

We want to proceed further with the development by exploring the possibilities for an abstractor
implementation of Bag/Nat which can be composed with the above. To do this, we need to determ-
ine the appropriate abstraction equivalence for BagNat in this context by pushing =4, through
5Bag—>set;DBag—>set-

Recall that =4, , is observational equivalence wrt the set W, of all ground Sig[Set Nat]-terms of
sorts nat and bool. By lemma 6.10, Dy, _ . (=4.,,) is observational equivalence on PAlg(XBagNat')
with respect to the same set of terms (the signature morphism used in this step is the inclusion on
operation names). Notice that this set is strictly included in the set of all ground ¥ BagNat'-terms
of sorts nat and bool; for example, it does not contain terms like count(0,0), count(0,add(0,0)),
count(succ(0),0), isempty(add(count(0,0),0)), etc.

The next step is more interesting. To use lemma 6.19 we need (intuitively) to find a way of
replacing each observable term from Wy, by a (provably) equal Sig[BagNat]-term. In fact, this will
be sufficient since Egyy—se: is persistent (on models of BagNat). There is no trouble with observable
Sig[Nat]-terms — these will remain unchanged. The same holds for terms of the form isempty(B)
where B is (syntactically!) a ground Sig[Set Nat]-term of sort set, i.e. a ground Sig[BagN at]-term of
sort bag not containing an occurrence of count. The only other terms in Wg,; are of the form n € B
where n is a ground Sig[Nat]-term and B is a ground term of sort bag (to which set was renamed
in the previous step). By the construction of Egyy—set, we have that for any BAG € Mod[BagN at],
EBag—set(BAG) En € B = count(n, B) > 0.

Thus the appropriate set Wg,, of observable terms contains all ground Sig[Nat]-terms and all
Sig|Bag N at]-terms of the forms isempty(B) and count(n, B) > 0 where n is a ground Sig[Nat]-term
and B is a ground Sig[Set Nat]-term of sort set.

Now, by lemma 6.19, €5,y st (Ewe.,) = =wp,, (since Waq, is a minimal set of ground Sig[Bag N at]-
terms such that Epgy—se: is observably sufficiently complete wrt Wy, Wser and Epgy—ser is persistent).

29

Now our job is to implement BagNat in the context of the abstraction equivalence =y, . Let
Ap., be the abstractor determined by this equivalence. The constructor implementation developed
in section 5 yields the abstractor implementation:

BagNat NVWVWW\I\I\AB}I&I\IWW\IW\I\& L@StNat

5List—>Bag§DList—>Bag;RList—>Bag
The assumptions of corollary 6.12 are satisfied and so we may eliminate the restrict step:

BagNat rrrrseBGmmrrrnrss List Nal

5List—>Bag§DList—>Bag

Then similarly as above we can push the abstraction equivalence through Dy;5—. g,y and then Er— Bag
to obtain a relevant abstraction equivalence for List Nat. In this case, a suitable equivalence turns

out to be =w,,,, where Wy, contains:
e all ground Sig|Nat]-terms,

e all terms null(L) where L is a ground Sig|[List Nat]-term of sort list such that Mod[List Nat] =
D(L), and

e all ground Sig[List Nat]-terms of the form hd(L) > 0 where L is a ground Sig[List Nat]-term of
sort list such that Mod[List Nat] = D(hd(L)).

Notice that although for any ground Sig[List Nat]-term L of sort list, if Mod[ListNat] = D(L) then
Mod[ListNat] = L = cons(ny,...,cons(ng,nil)...) for some ground Sig[Nat]-terms nq,...,ng, this
need not be the case for algebras which are observably equivalent to models of List Nat wrt Wr;s.
What is true in any such algebra A is that for any such term L, either A = null(L) = true or A |=
null(L) = false and in the latter case Mod[List Nat] |= D(tI(L)) and Mod[List Nat] = D(hd(L)). This
is already sufficient to reduce terms like put(nq,. .., put(ng,nil)...) to ground Sig[List Nat]-terms of
sort list defined in every model of List Nat. As a consequence of this, null(put(nq,. .., put(ng,nil)...))
reduces to null(L) and nth(n,put(ni,...,put(ng,nil)...)) > 0 reduces to hd(L') > 0 for ground
Sig[List Nat]-terms L and L', which is our goal.

It is casy to see that 15— pag 18 persistent on algebras observably equivalent to a model of List Nat
wrt Wirst. Notice however that if we had replaced axioms like null(L) = false = nth(0,L) = hd(L)
by nth(0,cons(n,L)) = n then we would lose persistency since in algebras which are observably
equivalent to models of List Nat wrt Wy but are not themselves models of List Nat, equations like
cons(n, L) = cons(n', L) may hold even if n # n'.

By lemma 6.19, (5List—>Bag;DList—>Bag)_1(EWBW) 2O =w,,,. Thus we are interested in implementing
ListNat in the context of the abstraction equivalence =y, ,. Let us stress that this is a different
task from just implementing List Nat. By pushing the original abstraction equivalence through the
constructors used in the implementation of SetNat by ListNat we have determined a degree of
freedom in implementing List Nat. In fact, it is just because of this that we can implement List Nat
using simply lists of booleans. This is by no means a universally useful implementation of List Nat

— it is tailor-made to work in this particular context.

30

List Bool =4 restrict (enrich Bool by
sorts [ist
opns nil: — st
cons: bool, list — list
null: list — bool
hd: lvst — bool
tl: list — lust
axioms D(nil)
D(cons(a, L))
null(nil) = true
null(cons(a, L)) = false
hd(cons(a, L)) = a
tl(cons(a, L)) = L)
on {list}
Now the abstractor implementation of List Nat by List Bool+ Nat proceeds in the following two steps:

Extend: gListBoolﬁListNat: SpeC(Sig[LiStBOOZ + Nat]) — SpeC(ZLiStBOOZ/) =def
AX: Sig[List Bool + Nat].
enrich X by
data opns cons’: nat,list — list

hd': list — nat

axioms cons'(0, L) = cons(false, L)
cons'(suce(n), L) = cons(true, L)
hd(L) = false = hd'(L) =0
hd(L) = true = hd' (L) = succ(0)

Derive: DrisiBool—ListNai: Spec(X List Bool') — Spec(Sig[List Nat]) =g
AX: Y ListBool'. derive from X by o
where o renames the sorts and operations in Sig[List Nat] to those in ¥ List Bool' by renaming
cons to cons’ and hd to hd and leaving the other names unchanged. Note that this hides the
original hd and cons operations on lists of booleans.

The idea behind this implementation is that since we do not want to observe the values of elements
of lists but only test whether or not they are greater than 0, we can replace all the non-zero values by
true and 0 by false.

Let Aris be the abstractor determined by the abstraction equivalence =y, ,. We have:

. Afie .
L@StNat N\I\I\I\IW\I\I\I\I\N\I\I\MI\%V\IWW\& L@StBOOl —I— Nat
ListBool—ListNat;P List Bool—List Nat

Putting these three abstractor implementations together (the condition of the vertical composition

theorem is satisfied because of the way we developed the implementations) we get:

SetNat A

gListBoolaListNat;DListBoolaListNat H 5List—>Bag§DList—>Bag 5 gBag—>Set§DBag—>Set

> List Bool + Nat

31

Of course, we could have implemented SetNat by ListBool + Nat in a much more direct way
without going through BagNat and List Nat) but the point of this example was to show the details
gomng g

of the intermediate implementations rather than to discover a clever implementation of SetNat.

8 Parameterisation and implementations

In the same way as the simple notion of refinement on specifications gave rise to a notion of refine-
ment for parameterised specifications, the definitions of constructor and abstractor implementation
in sections 4 and 6 extend to notions of constructor and abstractor implementation for parameterised

specifications. We begin with the former.

8.1 Parameterisation and constructor implementations

Definition 8.1 For any parameterised specification P: Spec(X,q,) — Spec(X,.s) and specification-
building operation w: Spec(¥,.s) — Spec(X), w(P) is a parameterised specification defined by w(P) =g
AX: Y .w(P(X)): Spec(X,,,) — Spec().

Definition 8.2 (constructor implementation) For any parameterised specifications with a com-
mon parameter signature P: Spec(X,,,) — Spec(X) and P': Spec(X,.,) — Spec(X') and con-
structor k: Spec(Y') — Spec(X), P is implemented by P’ via , written P~ P’ if P~ g(P').

This subsumes the notion of implementation of parameterised specifications in [SW 82]. It re-
sembles the one in [Lip 83|, where a parameterised specification is a (strongly) persistent functor.
According to [Lip 83], P is implemented by P’ via a construction I (another persistent functor, ob-
tained by composing certain specification-building operations) if there is some P” and (persistent)
natural transformations z: P” = P";F and s: P" = P such that ¢ and s are componentwise injective
and surjective respectively. In our framework, this corresponds roughly to an implementation via the
composition of a persistent constructor, a restrict step and a quotient step (in that order).

Although there are several other definitions of implementation of parameterised specifications in
the literature (see e.g. [EK 82], [GM 82] and [Gan 83]) it is difficult to compare them with ours
because our definition extends the definition for the non-parameterised case in the usual way that
a relation is extended from elements to functions (that is, pointwise). In contrast, [EK 82] defines
implementation of parameterised specifications by comparing their bodies and then proves that this
implies our notion of implementation. This is arguably preferable from the point of view of proving
correctness of implementations (see section 10 for some brief comments on this point) but we prefer
to adopt the natural definition and treat the problem of proving correctness separately.

As in the non-parameterised case, vertical composition is easy to show:

Theorem 8.3 (vertical composition) For any parameterised specifications P, P', P" with common
parameter signature X,,,, if P ~~> P' and P’ ry> P" then P s> pP".

32

Proof Pointwise, using vertical composition for the non-parameterised case. a

Similarly as in fact 4.15, we can mechanically strip off outermost constructors from parameterised
specifications:

Fact 8.4 For any parameterised specifications P and P’ and constructor on the result signature of
P, &(P) rre> P’ provided that P > P,

Proof As for fact 4.15. O

Constructor implementations do not compose horizontally. In fact, the standard formulation of
the horizontal composition property is not even well-formed in this case. Namely, if P: Spec(X,..) —
Spec(X,;) is a parameterised specification, SP is a Y,,, specification and SP ~~> SP’, then in general
Sig[SP'] # X,., and so P(SP') is not even well-defined.

The following theorem plays the role of horizontal composition for constructor implementations:

Theorem 8.5 (horizontal composition) Given a parameterised specification P with parameter
signature Y,q, and a L4, -specification SP, if P ~~> P' and SP ~S> SP' then P(SP)~a P'(u(SP")).

Proof SP ~pr> SP" means SP ~~> u(SP'), hence since all specification-building operations are
monotonic, by an easy induction on the definition of P’ we can show that P'(SP)~~> P'(u(SP")).
Since by definition, P ~~> P’ implies P(SP) ~ P'(SP), the vertical composition theorem for non-
parameterised specifications implies P(SP) ~~> P'(u(SP")). O

Although this is not horizontal composition as formulated in [GB 80], it is perfectly adequate for
our purposes. [t guarantees that in the case of a specification formed by applying a parameterised
specification P to a Y-specification SP, the developments of P and SP may proceed independently and
the results be successfully combined. If P ~zv> P rzy> -+ nev> P and SP > SPy N> e > SP,,
then P(SP) ~pnrnnnes Poy((fm; -+ 501)(SPr)). We aim at reducing the parameter specification to
the empty specification and the parameterised specification to the identity. If SP,, = (¥4,0) and
P, = AX: ¥.X then the composition of constructors fi,,;---;p1;kn,; - ;&1 forms a program which
implements P(SP).

8.2 Parameterisation and abstractor implementations

Definition 8.6 (abstractor implementation) For any parameterised specifications with a com-
mon parameter signature P: Spec(X,.,) — Spec(X) and P': Spec(X,,,) — Spec(X’), abstractor
a: Spec(X) — Spec(X) and constructor r: Spec(X’) — Spec(X), P is implemented by P’ wrt « via
ke, written P~ P’ if a(P) ~> x(P').

Vertical composition of abstractor implementations of parameterised specifications is just the same

as in the non-parameterised case:

33

Theorem 8.7 (vertical composition) For any parameterised specifications P, P', P" with common
parameter signature Y., if P~ P and P’ m%& P" then P mﬁf?f;& P" provided that k preserves the
abstraction equivalences.

Proof Pointwise, using vertical composition for the non-parameterised case. a

Applicability of this result in program development requires proving that the constructors we use pre-
serve the appropriate abstraction equivalences. For this, lemmas 6.10-6.22 of section 6 are applicable
just as in the non-parameterised case.

Unfortunately, the horizontal composition theorem for abstractor implementations does not hold
in general, even in the form suggested by the horizontal composition theorem for constructor imple-

mentations. This is shown by the following counterexample:

Counterexample
Let ¥ =4 sorts p,obs
opns a,b: —p
¢, d: — obs
Let P =4 AX: Y.enrich X by opns f:p— obs
axioms f(a)=c¢
Let SP =4 sorts p, obs
opns a,b: —p
¢, d: — obs
axioms a =05
Let o,.: Spec(¥') — Spec(X’) denote the abstractor determined by behavioural equivalence
on Y'-algebras with respect to the observable sort obs, where ¥’ =,; ¥ Uopns f: p — obs. Let
aops: Spec(X) — Spec(X) denote the abstractor determined by behavioural equivalence on X-algebras
with respect to obs. Then it is easy to see that Mod[a,,s(SP)] = PAlg(X), hence SP N%‘g,;\w (3, 0).

Thus, one would expect that P(SP) N\Z%i\la\& P(ids((X,0))) if a horizontal composition theorem were to
hold. Unfortunately this is not the case: Mod[a!, (P(SP))] 2 Mod[P({%,0))]. To see this, notice that

Mod[P(SP)] E (a = b) A (f(a) = ¢), and henceo MOd[P(SP)] = f(b) = ¢. Thus Mod[c!,,(P(SP))] E
f(b) = ¢ as well. On the other hand, Mod[P((X,1))] }& f(b) = c. O

This example shows that for horizontal composition to hold, parameter specifications cannot in
general be abstracted from since parameterised specifications can make essential use of non-observable
parts of the parameter. In the above example, the fact that Mod[SP]| |= a = b but Mod[as(SP)] [~
a = b allowed (intuitively) P to distinguish between the abstract and non-abstract form of SP.

One way to circumvent this is to restrict attention to parameterised specifications which use their
arguments in an abstract way, so that if we change the argument to an equivalent one we get a result
which is equivalent. Formally:

Definition 8.8 Let a: Spec(X) — Spec(X) be an abstractor. We say that two X-specifications SP1
and SP2 are a-equivalent if Mod[o(SP1)] = Mod[a(SP2)].

34

Theorem 8.9 (horizontal composition) If P ~%> P' and SP A%;& SP' then P(SP) ~a> P'(k'(SP"))
provided that either P or P’ preserves o -equivalence, i.e. for any o' -equivalent specifications SP1, SP2

over the (common) parameler signature of P and P', either P(SP1) and P(SP2) are a-equivalent or
P'(SP1) and P'(SP2) are ™' (=.)-equivalent.

Proof Since SP AZ'Y\,&SP’, by monotonicity of x(P'), k(P'(a'(SP))) ~> r(P'(£'(SP'))).

If P preserves o'-equivalence then P(a’(SP)) and P(SP) are a-equivalent which implies that
a(P(SP)) ~~> a(P(a'(SP))), and since P ~&% P’ entails a(P(a'(SP))) ~~> k(P'(c/(SP))), we can
indeed conclude a(P(SP)) ~> k(P'('(SP"))).

If P’ preserves a'-equivalence then so does x(P'), i.e. for any two o’-equivalent specifications
SP1, SP2 over the parameter signature, £(P'(SP1)) and x(P'(SP2)) are a-equivalent (by the definition
of v H(=,)). In particular, we have a(k(P'(SP)))~> a(k(P'(a'(SP)))) and so trivially
a(k(P'(SP))) ~~> £(P'(a/(SP))). Moreover, since P ~a> P’ entails a(P(SP)) ~~> r(P'(SP)), which
trivially implies a(P(SP)) ~ a(r(P'(SP))), we can conclude that o P(SP)) ~> (P'(x'(SP"))). O

The requirement that P preserves o’-equivalence in the above theorem is guaranteed in either of

the following three cases:

1. P is given in the form AX: ¥.SP1[a/(X)], i.e. P explicitly abstracts from its argument before

using it.
2. P is built entirely from constructors which preserve the relevant abstraction equivalences.
3. The abstractor o is trivial, i.e. for any specification SP, Mod[a'(SP)] = Mod[SP].
The last case amounts to the following:
Corollary 8.10 If P ~%s P" and SP ~o> SP' then P(SP) ~a P'(r'(SP')). O

Recall that a constructor implementation SP ~s SP' is an abstractor implementation SP A%I/> SP'!
where the abstractor o' is trivial. Notice however that when we push the corresponding equivalence
(which is the identity) through " and the constructors used in the further implementation of SP’ (see
theorem 6.8 and subsequent discussion), the resulting abstraction equivalences may determine non-
trivial abstractors again and so the use of techniques of abstractor implementations may be essential
further on.

The other sufficient condition for the horizontal composability of abstractor implementations in
theorem 8.9, namely the requirement that the implementing specification P’ preserves o-equivalence,
seems more important and useful from the point of view of program development methodology.
(Thanks to Oliver Schoett for making this point.) Intuitively, P’ is to be more specific and “smal-
ler” than P and so it may be easier to formulate it in such a way that it preserves the abstraction
equivalence. In particular, suppose that we have managed to implement P entirely constructively
(which is, after all, the goal of the development process), i.e. we have P M AX: XX (where

35

¥ is the parameter signature of P). Then the requirement that AX: ¥.X preserves a'-equivalence,
as formulated in theorem 8.9, reduces to the requirement that the composite constructor ,;---;x;
preserves the corresponding abstraction equivalence on Y-algebras. This is a reasonable requirement
to impose, as the programming language used to encode constructors should guarantee this anyway
(see [Sch 86] for full discussion).

The above horizontal composition theorem may be used in modular program development just as
presented for constructor implementations of parameterised specifications. We have to ensure however

that the constructors used in the implementation preserve the relevant equivalences.

9 Institutions and implementations

In the previous sections we have chosen to present the development of our implementation notions,
theorems and methodology in the framework of partial first-order logic with equality. This was
mostly in order to take advantage of the reader’s intuition; we made use of very few properties of
partial algebras or the form of sentences. This means that in place of full partial first-order logic
with equality we could have used partial equational logic or even some higher-order logic. Moreover,
instead of partial algebras we could have used for example total algebras [GTW 76] or continuous
algebras [GTWW 77], [TW 86]. We could even change the notions of signature and of algebra to deal
with errors [GDLE 84], coercions [GJM 85], [Gog 83], or Milner-style polymorphism [Mil 78].

The notion of an institution [GB 84a] provides a tool for dealing with any of these different notions
of a logical system for writing specifications. An institution comprises definitions of signature, model
(algebra), sentence and a satisfaction relation satisfying a few minimal consistency conditions. (For
a similar but more logic-oriented approach see [Bar 74].) By basing our definitions (of specification,
implementation, etc.) on an arbitrary institution we can avoid choosing particular definitions of these
underlying notions and do everything at an adequately general level. We have presented our approach
to specifications in an arbitrary institution at an intuitive level in [ST 85a] and with full technical

details in [ST 86a].
Definition 9.1 An institution INS consists of:
e a category Signyng (of signatures);

e a functor Senins: Signing — Set (where Set is the category of all sets; Senins gives for any
signature Y. the set Sening(X) of X-sentences and for any signature morphism o: ¥ — X' the
Junction Senins(c): Senins(X) — Senins(X') translating Y-sentences to X'-sentences);

e a functor Modins: Signing — Cat® (where Cat is the category of all categories; Modins
gives for any signature ¥ the category Modins(X) of ¥-models and for any signature morphism
o: Y — Y the o-reduct functor Modins(o): Modins(X') — Modins(X) translating X'-models
to Y-models); and

36

o a satisfaction relation =g s € [Modins(X)| X Senins(X) for each signature ¥.

such that for any signature morphism o: ¥ — X' the translations Modins(o) of models and Senins(o)
of sentences preserve the satisfaction relation, i.e. for any ¢ € Senins(X) and M' € [Modins(X')],

M’ |:INS,E’ SenINs(U)(c,o) < MOdINs(O')(M/) |:INS,E © (Satisfaction condition}

To be useful as the underlying institution of a specification methodology, an institution must provide
some tools for “putting things together”. Thus, we additionally require that the category Sign has
pushouts and initial objects (i.e. is finitely cocomplete) and moreover that Mod preserves pushouts
and initial objects (and hence finite colimits), i.e. that Mod translates pushouts and initial objects
in Sign to pullbacks and terminal objects (respectively) in Cat. For a brief discussion of these
requirements see [ST 86a]. For notational convenience we omit subscripts like INS and ¥ whenever
possible, and for any signature morphism o: ¥ — %’ we denote Sen(c) simply by o and Mod(a) by

All of the logical systems mentioned above fit into the mould of an institution. In particular,

partial first-order logic with equality forms an institution PFOEQ as follows:

® Signppogq is Sign

e For a signature ¥, Senprogrq(X) is the set of partial first-order Y-sentences; for a signature
morphism o: ¥ — Y| Senprorq(c) is the translation of Y-sentences to Y'-sentences, defined

in the obvious way.

e For asignature ¥, Modprorq(Y) is the category PAlg(Y); for a signature morphism o: ¥ — X,
Modprogq(o) is the o-reduct functor _‘g: PAlg(Y') — PAlg(L).

o lor a signature X, Fppogq.y 18 the satisfaction relation as defined in section 2.

The satisfaction condition is just the satisfaction lemma of section 2. Moreover, Signppogq is finitely
cocomplete (as mentioned in section 2) and Modprogq translates finite colimits in Signppogq to
limits in Cat.

It would now be appropriate to repeat the preceeding sections in the context of an arbitrary
institution, generalising from PFOEQ. Of course, we are not going to bore the reader with this —
we will just give a brief summary of how this can be done and where some problems lie.

The contents of section 3 generalises immediately to an arbitrary institution. The definitions and
results there were introduced in [ST 86a] in the framework of an arbitrary institution INS in exactly
the form they appear here (replacing PAlg by Modins, etc.). The examples of specification-building
operations (translate, U) are defined exactly the same way there.

The general concept of a constructor (section 4) may be formulated in an arbitrary institution as
well, again as a specification-building operation determined by a function on models in this institu-
tion. This yields immediately the concept of a constructor implementation for specifications in an

arbitrary institution. Moreover, the vertical composition theorems (theorems 4.14 and 8.3) and the

37

horizontal composition theorem (theorem 8.5) hold without modification. We can directly generalise
to an arbitrary institution the definitions of the constructors derive and extend (the latter requires
the free functors involved to exist, i.e. the institution to be liberal [GB 84a], though) but our defin-
itions of restrict and quotient use “non-institutional” properties of the partial algebra framework.
Fortunately, the definition of a reachable subalgebra may be presented in an institution-independent
way using standard notions of category theory (see [ST 86a], [Tar 85]). This definition may be used to
define the restrict constructor in an arbitrary institution. It is not yet clear to us how the quotient
constructor we have presented here can be generalised to work in an arbitrary institution; it seems
that some of the ideas presented in [Tar 85] may lead to a satisfactory solution of this problem. Next,
it is easy to see that the definitions of the amalgamated union and the translation of constructors are
directly applicable and work as expected in an arbitrary institution. In particular, theorems 4.17 and
4.18 hold in this more general framework.

The notion of an abstractor (section 6) generalises directly to the framework of an arbitrary
institution, where it is determined by an equivalence on the category of models over a given signature.
This immediately yields the notion of abstractor implementation in an arbitrary institution. Moreover,
the vertical composition theorems (theorems 6.8 and 8.7) and the horizontal composition theorem
(theorem 8.9) and its corollary hold under exactly the same assumptions as before. As discussed in
detail in [ST 87a], the most straightforward generalisation to an arbitrary institution of the notion of
observational equivalence with respect to a set of terms (and hence of behavioural equivalence with
respect to a set of observable sorts) is the concept of observational equivalence with respect to a set

of sentences in this institution, already mentioned briefly in section 6.

Definition 9.2 For any signature ¥ € |Signing|, set ® C Senins(X) of Y-sentences and Y-models
A, B € |Modins(X)|, A and B are observably equivalent wrt ®, written A =¢ B, if for all ¢ € ®,

AFinsy ¢ iff B FiNs s ¢

In PFOEQ), for any signature ¥ and set W of ground X-terms, the former observational equivalence
=w 1s the same as observational equivalence with respect to the set of sentences consisting of the
sentence D(t) for each term ¢ in W and the sentence ¢ = t' for each pair ¢, of terms in W of the same
sort. Notice however that the set of observable sentences needed to express behavioural equivalence
varies from one institution to another; in fact, even the basic idea of an observable sort cannot be
expressed directly in an institution-independent way (recall that signatures are arbitrary objects which
do not have to include sorts or operations). Again, the lemmas on how specific constructors preserve
observational equivalence must be examined one at a time. With appropriate reformulation, lemmas
6.10 (for derive), 6.19 (for synthesizing constructors), 6.20 (for amalgamated union) and 6.22 (for
translation of constructors) and all their corollaries still hold in an arbitrary institution. Just as an

example, let us restate and prove lemma 6.19 in this framework:

Lemma 6.19" (synthesize) For any signature morphism o: ¥ — X' constructor k: Spec(X) —
Spec(Y') and sets ® C Sen(X) and &' C Sen(X') of X- and ¥'-sentences respectively, if:

38

e x is observably sufficiently complete (wrt ®,®'), i.e. for any @' € @' there exists ¢ € ® such
that for all M € [Mod(X)|, k(M) Ex ¢ iff (M) s o(); and

e k is observably persistent (wrt ®), i.e. for any p € ® and M € |Mod(Y)|, M Ex ¢ iff
K(M) v (@)

then k™' (=¢/) 2 =¢. Moreover, if in addition ® is a minimal set of sentences such that observable

sufficient completeness holds then k™' (=¢/) = =sg.

Proof Let M1, M2 € |Mod(Y)|. Assume M1 =¢ M2; we prove that k(M1) =¢ £(M2). Let
¢' € ®'; consider p € ® such that for every M € [Mod(X)|, (M) s ¢ iff (M) Es o(¢). Then
(M1) s @ iff £(M1) s o) it M1y ¢ iff M2 |y ¢ iff £(M2) s o(p) iff £(M2) s .
Moreover, if ® is minimal then for any ¢ € ® there exists ¢’ € @' such that for all M € |Mod(Y)],
k(M) s ¢ iff k(M) s o(p) and so M1 =¢ M2 provided that x(M1) =¢ k(M2) by the same

chain of equivalences as above. a

Notice that in this context the condition of observable sufficient completeness with respect to ®, @’
may be relaxed slightly. Namely, for any ¢’ € ®' it is also sufficient to find p € ® such that for all
M € [Mod(X)], &(M) s ¢ iff k(M) s o(p). Referring to our example in section 7, this would
allow us to replace observations of the form count(n, B) > 0 = true by count(n, B) = 0.

Since we did not define the quotient constructor at all, lemma 6.15 cannot be considered. As
for lemma 6.11 (for restrict), it does not hold in general since there are sentences which are not
preserved under submodels (e.g. existential sentences in first-order logic). If however we restrict the
form of observable sentences appropriately (e.g. to infinitary conditional equations as defined in the
framework of so-called abstract algebraic institutions in [Tar 86a]) so that they are preserved under
submodels, the lemma and its corollaries hold.

Summing this up, the notions, results and methodology presented in the previous sections (with the
single exception of the quotient constructor) carry over to the framework of an arbitrary institution.

This generalisation is important not only because it allows us to develop programs from specifica-
tions in different institutions. Even in the process of developing a single program it may be convenient
to use different institutions at different stages of development. After all, we proceed from a high-level
user-oriented specification to a low-level computer-oriented program. It seems natural that differ-
ent logical tools are necessary to express properties at these very different levels. Thus we need a
means of switching from one institution to another during the development process. This problem

was mentioned in [Tar 86b]. The following notion seems adequate for this purpose:

Definition 9.3 For any two institutions INS1 and INS2, a semi-institution morphism from INS1
to INS2, v: INS1 — INS2, consists of:

o a functor Ysign: Sighing; — Sighynga, and

o a nalural transformation v: Modins: = Vsign;:Modinsz, i.e. a natural family of functors
T MOdINSl(Z) — MOdINSZ(’}/Sign(Z)) f07“ by € |Sign1NSl|.

39

Intuitively, v: INS1 — I NS2 translates signatures and models of INS1 to signatures and models of
INS2. Notice that this is not quite an institution morphism as defined in [GB 84a]; an institution
morphism from INS1 to INS2 would additionally translate sentences in INS2 to sentences in INS1
(preserving the satisfaction relation). This is not necessary for our purposes and moreover in many
cases we want to deal with it is unachievable. For example, if we want to specify programs using the
institution PFOEQ and then implement them in an institution PEQ of partial equational logic —
which may be viewed as an applicative programming language — then we could use the trivial semi-
institution morphism v: PEQ — PFOEQ (which is identity on signatures and models) which cannot
be extended to an institution morphism: there would be no way to translate existential quantifiers
into equations, for example.

Any semi-institution morphism ~: INS1 — INS2 determines a constructor which maps specific-
ations in INS1 to specifications in INS2.

Definition 9.4 (change institution) For any X-specification SP (over INS1) and semi-institution
morphism ~: INS1 — INS2, the semantics of the specification change
institution of SP via v (over INS2) is as follows:

Siglchange institution of SP via 7] = vsim ()
Mod[change institution of SP via] = ys(Mod[SP])

The change institution specification-building operations (one for each v: INS1 — INS2 and ¥ €
|Signing1|) are constructors determined by the functors v5: Modinsi(X) — Modinsz2(7sign(X)).

With this definition, we can use change institution just as any other constructor in constructor
implementations. For example, we can implement specifications in INS2 by specifications in INS1.
All of the composition theorems continue to hold in the presence of this constructor.

In order to use change institution in abstractor implementations, we need a way of pushing

abstraction equivalences through it.

Lemma 9.5 (change institution) For any semi-institution morphism v: INS1 — INS2, signature
Y€ |Sign1NSl| and sets ¢1 C SenINs;l(Z) and ®2 C SenIst(’ygign(Z)),
if for any @2 € 2 there exists ¢l € ®1 such that
for all M1 € |Modins1(X)|, ys(M1) |:IN527'VSign(E) ©2 iff M1 Fins1y ¢1,
then ’}/51(5@2) D =g41.
Moreover, if in addition ®1 is a minimal set of sentences which satisfy the assumptions then v5 ' (Z¢2) =

=1 -

Proof Let M1,M1" € Modinsi(X). Assume M1 =¢; M1'; we prove vs(M1) =gy vs(M1).
Let ¢2 € @2, and consider p1 € ®1 such that for every M € Modinsi(2), 7=(M) FiNszqye,. ()
992 it M |:INSLE 991 Then ’yz(Ml) |:IN527751.9”(2) 992 it M1 |:INSLE 991 i Mll |:INSLE 991 i
(M1 FINS2si,n(s) $2. Moreover, if ®1 is minimal then for any p1 € @1 there exists ¢2 € ®2

40

such that for every M € Modinsi(X), v (M) |:INSZ,Wsz'gn(E) 02 iff M Eins1y ¢l and so M1 =¢; M1’
provided s (M1) =42 y2(M1') by the same chain of equivalences. a

In case v: INS1 — INS2 may be extended to an institution morphism, then in the above lemma
®1 may be defined as the translation of sentences from ®2.

To illustrate the above ideas, we now briefly outline a simple example of an abstractor implement-
ation of the BagNat specification (see section 5) by an imperative program over ListNat. Since we
want to implement a specification in PFOEQ by an imperative program, this will involve a change of
institution. We begin with a sketch of an institution of a simple imperative programming language.
The institution IMP will be parameterised by an algebra DT of primitive (built-in) data types and
functions of the language over a (PFOEQ) signature X DT'. The components of IMP pp are as follows:

e Signatures are sets of functional procedure names with types of the form sq,....s, — s where
S1y++., 8,8 are sorts of X DT'. Signature morphisms are maps between these sets of names which

preserve types.
e Sentences over a given signature I are procedure definitions of the form
p(a1: $1,.. 0,200 8,) = while-program; result expr: s

where p: s1,...,8, — §is a procedure name in I, expr is a ¥ DT-term (with variables) of sort s,
and while-program is a statement in a deterministic programming language such as e.g. TINY
[Gor 79] containing expressions of this form. With a bit of additional complication we could

also allow expressions to contain procedure calls.

o A model M over a signature II assigns to each procedure name p: s1,...,s, — s in Il and every
sequence vy, ..., v, of DT values of sorts s1,...,s, respectively a computation M (p)(vy,...,v,)
which is either:

Divergence: an infinite sequence of states (variable valuations);
Unsuccessful termination: a finite sequence of states; or
Successful termination: a finite sequence of states and a value v € |DT;.

It is easy to see that any model M determines, for any procedure name p: s1,...,8, — s in II,
a partial function pps: [DT|s, X -+ x |DT|s, — |DTs.

o Given a signature II, a [I-model M and a Il-sentence ¢ of the form
p(a1: $1,.. 0,200 8,) = while-program; result expr: s

M satisfies ¢ if M(p)(vy,...,v,) is the computation of while-program starting in the state
[¥1 — v1,...,2, — v,], and if the computation terminates successfully in a state in which
expr has a defined value then M(p)(v1,...,v,) contains this value as well. The computations

of while-program are defined by an operational semantics.

41

For any primitive data type DT, there is a semi-institution morphism v: IMP pr — PFOEQ which
maps any IMP pr-signature Il to the PFOEQ signature ¥DT U Il and any Il-model M to the
vsign(I1)-algebra which is the expansion of DT by the partial functions py; associated with procedure
names p in II. (Notice that we cannot hope for translation of PFOEQ sentences to IMP pr-sentences
here so v cannot be extended to an institution morphism.)

Consider IMP built over an initial model of List Nat. Using the same idea as in the implementa-
tions of BagNat by List Nat in sections 5 and 7, we can implement Bag N at by the empty specification
(over the empty signature §) in the institution IMP ;5,4 in three steps:

Synthesize: Sy_p.,: Specyyp, ..., (0) — Specyyp,. . (1) =4
AX: (. procedures nth: nat,list — nat
put: nat,list — list
axioms nth(n: nat, L: list) =
while n>0 and not(null(L)) do
n:=n-1; L:=t1(L) od;
if null(L) then r:=0 else r:=hd(L) fi;
result r: nat
put(n: nat, L: list) =
Li:=nil;
while n>0 and not(null(L)) do
Li:=cons(hd(L),L1);
n:=n-1; L:=t1(L) od;
if null(L) then
v:=0;
while n>0 do
n:=n-1; Lil:=cons(0,L1) od;
else v:=hd(L); L:=t1(L) fi;
L:=cons(succ(v),L);
while not(null(L1)) do
L:=cons(hd(L1),L); L1:=t1(L) od;
result L: list
The idea behind these programs is exactly the same as in the extend step &£r5—pqy of sections

5 and 7.

Changing institutions: Cy_p.,: Specpyp, ., (II1) — Specprorq(Vsign(I11)) =4c
AX: II1. change institution of X via ~

Derive: as before

Dy_.Bay: SPeCPFOEQ(VSz’gn(Hl)) — Spec(Sig|BagNat]) =
AX: vsign(I11). derive from X by o

42

where o renames the sorts and operations in Sig[BagNat] to those in vs;,,(II1) by renaming
bag to list, O to nil, add to put, count to nth and isempty to null and leaving the other names

as they were. Note that hd, ¢t/ and cons are hidden in this step.
Now, similarly as in section 7, we have:

BagNat m@ <®7 ®>

S¢—BagiCp—BagiPp—Bag
and with the addition of a restrict step (as before) we can obtain a constructor implementation here
as well.

The change institution constructor determined by a semi-institution morphism can be used not
only in the development process to implement specifications by specifications in a different institution
as above, but also (like any other specification-building operation) as a tool for building specifications.
In particular, specifications built using change institution may be used as components of other, more
complex specifications. Just as in the case of multiplex institutions [GB 84a] where sentences and
theories in one institution can be included in specifications over another institution, we can move
specifications between institutions connected by semi-institution morphisms. For example, we could
build a specification in the institution PFOEQ in which some parts would be “specified” using while-
programs of the institution IMPpr.

10 Concluding remarks

We have presented a view of the program development process as a sequence of refinement steps leading
from a high-level specification to a program. A key concept here is that of an implementation of one
specification by another. We started by recalling a simple notion of refinement from [SW 83] and used
it to define two more general notions: constructor implementations and abstractor implementations,
which subsume most (if not all) of the notions of implementation in the literature. We proved some
basic facts about these notions, in particular vertical and (modified) horizontal composition theorems,
and studied how they may be used in the practice of program development. The methodology, although
presented in the framework of partial algebras with first-order axioms, was shown to generalise to an
arbitrary logical system (institution). Moreover, we indicated a way of changing institutions in the
course of program development which allows us to formally treat (for example) implementation of
algebraic specifications by imperative programs.

A number of important problems connected with the ideas presented remain to be considered.
First, we do not discuss here any methods for proving correctness of refinements; methods for proving
theorems in specifications, especially in the context of observational abstraction [ST 86a,87a], are
relevant to this problem. This would be especially important in the case of parameterised specifications
since definition 3.3 suggests checking an infinite number of cases, one for each argument specification.
Intuitively, P ~~> P’ should be deducible from the refinement relation between their bodies. However,
since bodies of parameterised specifications in our approach may contain free variables it is not quite

obvious how to define this refinement and some additional techniques are necessary.

43

This is in contrast with a different approach to parameterisation based on pushouts in the category
of specifications as used in [BG 80] and [Ehr 82]. In this approach, a parameterised specification is a
specification morphism P: SP,,, — SP,., including the formal parameter specification into the result
specification. To apply P to an actual parameter specification SP,., we have to provide another
specification morphism which “fits” SP,.,-models into SP,,,-models, o: SP,,, — SP,.. The result of
applying P to SP,. using o, written P(SP,.[0]), is defined (up to isomorphism) as the pushout object

in the category of specifications of P and o:

P
SPpm« SPTes
ag U/
SPact P/ P(SPaCt[O-])

In this approach, given two parameterised specifications P1: SP,,, — SP1,., and P2: SP,,, —
SP2,.s (having the same parameter resp. result signatures), Pl ~~> P2 iff SP1,.; ~ SP2,.s. This
easily follows from the fact that P(SP,.[o]) may be defined as

(translate SP,. by P') U (translate SP,., by o)

which involves SP, s as a “constant” specification. This is in contrast to the approach to parameterisa-
tion we have used, in which the body specification “essentially” involves the parameter. For example,

we can write parameterised specifications like:
AX: Y.restrict (derive from X by o: ¥ —) on sorts(Y')

which is not expressible in the pushout approach. Notice also that the fact that application can be
defined using translate and U as above directly implies that both vertical and horizontal composition
results hold for parameterised specifications using the pushout approach (for the simple notion of
refinement); for constructor implementations the details are yet to be investigated — the notion of
translation of a constructor and its properties seem useful in this context.

Solutions to the problem of horizontal composition of pushout-based parameterised specifications
were given in [Gan 83], [GM 82], [EK 82] among others, for the particular notions of implementation
considered in these papers. These are only examples taken from the large body of technical work in
the literature on different specific notions of implementation. Viewed in our approach, each of these
notions corresponds to a restriction on the choice of constructors and abstractors which may be used.
In this paper we have tried to unify and generalise the many different notions of implementation
in the literature. This quest for generality yields a uniform framework in which we can compare
different approaches. More importantly, we can investigate which of the problems encountered under
different notions of implementation are inherent to the very concept of what an implementation

should be and which are just technicalities caused by the imposed restrictions, and conversely, which

44

results and properties are consequences of such restrictions and which are inherent to the nature of
implementations. We have not yet tried to pursue this line of investigation in a systematic manner.

One issue we have so far omitted is the problem of inconsistent specifications. According to
our definition, any inconsistent specification refines any specification over the same signature. Note,
however, that any program determines a model, and so if we succeed in refining a specification to a
program then the original specification must have been consistent. This means that checking con-
sistency is not necessary to ensure correctness of the development process. However, an inconsistent
specification is a blind alley (worse, it can be refined forever) and so to be cautious it is advisable to
check for consistency at each stage. On the other hand, even a consistent specification may have no
computable model and so we cannot in general avoid blind alleys in program development anyway.

Once we have successfully gone through the program development process starting from a spe-
cification SP, by vertically and horizontally composing all the implementation steps we arrive at
an implementation of the form SP M £i(.. . k1((Xg,0))...). Now the constructor kq;---;,
amounts to a program which realises SP up to the abstraction equivalence corresponding to a. In
what we have presented here, kq,...,k, are just functions rather than actual pieces of programs in
the usual sense. We did not introduce any particular syntax for defining constructors apart from
the one used in examples. It would be interesting to develop a programming language which would
provide facilities for defining and composing constructors (this would probably require restricting the
notion of constructor we use, as implied in section 3). A good starting point seems to be Standard ML
[Mil 85] with modules [MacQ 85], where constructors could be defined as Standard ML functors (i.e.
parameterised modules). For example, the constructor AX: X. derive from X by o: ¥’ — ¥ can be
coded in Standard ML as follows:

functor DERIVE(X : SIG) : SIG’ = X

provided that o is a signature inclusion; if not then the right-hand side must be modified to include

the appropriate renamings. Similarly, the extend constructor Egyy—se: (see section 5)

AX: SiglBagNat]. enrich X by
data opns €: nat,bag — bool
axioms a € B = count(a,B) >0

can be coded as:

functor EXTEND(X : SIGBAGNAT) : SIGBAGNAT’ =
struct
open X;
infix isin;
fun a isin B = count(a,B) > 0O

end;

45

(in general, this only works if the axioms are equational and in the form required by Standard ML).
We have already used Standard ML modules as a structuring mechanism in the Extended ML wide-
spectrum specification /programming language [ST 85b,86b]. It would be interesting to investigate
how the ideas on program development presented in this paper may be applied in Extended ML
where abstractors are always used in a fixed way; especially intriguing is the relation between modules

in Extended ML and their use as constructors as outlined above.
Acknowledgements

Many of the ideas presented in this paper evolved in close collaboration with Martin Wirsing. Our
thanks to Oliver Schoett for many discussions on the subject of this paper, to Hartmut Ehrig for his
criticism which stimulated us to write these ideas down, to an anonymous TAPSOFT referee who
directed our attention to [Lip 83] and to the anonymous Acta Informatica referees whose remarks
helped us to improve the presentation. Thanks to Teresa for (gastronomic) care. This work was

supported by grants from the Alvey Directorate and the Polish Academy of Sciences.

11 References

[AM 75] Arbib, M.A. and Manes, E.G. Arrow, Structures and Functors: the Categorical Imperative.
Academic Press (1975).

[AMRW 85] Astesiano, E., Mascari, G.F., Reggio, G. and Wirsing, M. On the parameterized al-
gebraic specification of concurrent systems. Proc. 10th Colloq. on Trees in Algebra and Pro-

gramming, Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Berlin.
Springer LNCS 185, pp. 342-358 (1985).

[AR 83] Astesiano, E. and Reggio, G. A unifying viewpoint for the constructive specification of
cooperation, concurrency and distribution. Quaderni CNET no. 115, ETS Pisa (1983).

[Bar 74] Barwise, K.J. Axioms for abstract model theory. Annals of Math. Logic 7 pp. 221-265
(1974).

Bau 81a] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrum language for
guag guag
program specification and development. Report TUM-18104, Technische Univ. Miinchen (1981).
See also: The Wide Spectrum Language CIP-L. Springer LNCS 183 (1985).

[Bau 81b] Bauer, F.L. et al (the CIP Language Group) Programming in a wide spectrum language:
a collection of examples. Science of Computer Programming 1 pp. 73-114 (1981).

[BM 81] Bergstra, J.A. and Meyer, J.J. /O computable data structures. SIGPLAN Notices 16, 4
pp. 27-32 (1981).

46

[BBC 86] Bernot, G., Bidoit, M. and Choppy, C. Abstract implementations and correctness proofs.
Proc. Symp. on Theoretical Aspects of Computer Science, Saarbriicken. Springer LNCS 210,
pp. 236-251 (1986).

[BW 85] Bloom, S.L. and Wagner, E.G. Many-sorted theories and their algebras with some applic-
ations to data types. In: Algebraic Methods in Semantics (M. Nivat and J.C. Reynolds, eds.),
Cambridge Univ. Press, pp. 133-168 (1985).

[BMPW 86] Broy, M., Méller, B., Pepper, P. and Wirsing, M. Algebraic implementations preserve
program correctness. Science of Computer Programming 7, pp. 35-53 (1986).

[BrW 82] Broy, M. and Wirsing, M. Partial abstract types. Acta Informatica 18 pp. 47-64 (1982).
[Bur 86] Burmeister, P. A Model Theoretic Approach to Partial Algebras. Akademie-Verlag (1986).

[BG 77] Burstall, R.M. and Goguen, J.A. Putting together theories to make specifications. Proc.
5th Intl. Joint Conf. on Artificial Intelligence, Cambridge, pp. 1045-1058 (1977).

[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of Clear, a specification language. Proc. of
Advanced Course on Abstract Software Specifications, Copenhagen. Springer LNCS 86, pp. 292-
332 (1980).

BG 82] Burstall, R.M. and Goguen, J.A. Algebras, theories and freeness: an introduction for com-
g g
puter scientists. Proc. 1981 Marktoberdorf NATO Summer School. Reidel (1982).

[BMS 80] Burstall, R.M., MacQueen, D.B. and Sannella, D.T. HOPE: an experimental applicative
language. Proc. 1980 LISP Conference, Stanford, pp. 136-143 (1980).

[DLS 87] Dubois, E., Levy, N. and Souquieres, J. Formalising restructuring operators in a specific-
ation process. Proc. ESEC 87, Strasbourg (1987).

deNH 84] de Nicola, R. and Hennessy, M.C.B. Testing equivalences for processes. Theoretical Com-
g
puter Science 34, pp. 83-133 (1984).

[Ehr 81] Ehrich, H.-D. On realization and implementation. Proc. 10th Intl. Symp. on Mathematical
Foundations of Computer Science, Strbske Pleso, Czechoslovakia. Springer LNCS 118, pp. 271-
280 (1981).

[Ehr 82] Ehrich, H.-D. On the theory of specification, implementation, and parametrization of ab-
stract data types. Journal of the Assoc. for Computing Machinery 29 pp. 206-227 (1982).

[EFH 83] Ehrig, H., Fey, W. and Hansen, H. ACT ONE: an algebraic specification language with
two levels of semantics. Report Nr. 83-03, Institut fiir Software und Theoretische Informatik,

Technische Univ. Berlin (1983).

47

[EK 82] Ehrig, H. and Kreowski, H.-J. Parameter passing commutes with implementation of para-
meterized data types. Proc. 9th Intl. Colloq. on Automata, Languages and Programming, Aar-
hus, Denmark. Springer LNCS 140, pp. 197-211 (1982).

[EKMP 82] Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implementation of
abstract data types. Theoretical Computer Science 20 pp. 209-263 (1982).

[EKTWW 80] Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G. and Wright, J.B. Para-
meterized data types in algebraic specification languages (short version). Proc. 7th Intl. Collog.

on Automata, Languages and Programming, Noordwijkerhout, Netherlands. Springer LNCS 85,
pp. 157-168 (1980).

[EM 85] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Specification I: Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science, Springer (1985).

[ETLZ 82] Ehrig, H., Thatcher, J.W., Lucas, P. and Zilles, S.N. Denotational and initial algebra
semantics of the algebraic specification language LOOK. Draft report, IBM research (1982).

[EWT 83] Ehrig, H., Wagner, E.G. and Thatcher, J.W. Algebraic specifications with generating
constraints. Proc. 10th Intl. Colloq. on Automata, Languages and Programming, Barcelona.

Springer LNCS 154, pp. 188-202 (1983).

[FGJM 85] Futatsugi, K., Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Principles of OBJ2.
Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans, pp. 52-66 (1985).

[Gan 83] Ganzinger, H. Parameterized specifications: parameter passing and implementation with

respect to observability. TOPLAS 5, 3 pp. 318-354 (1983).

[GGM 76] Giarratana, V., Gimona, F. and Montanari, U. Observability concepts in abstract data
type specification. Proc. 5th Intl. Symp. on Mathematical Foundations of Computer Science,
Gdansk. Springer LNCS 45, pp. 576-587 (1976).

[Gog 83] Gogolla, M. Algebraic specifications with partially ordered sorts and declarations. Fb. 169,
Abteilung Informatik, Univ. of Dortmund (1983).

[GDLE 84] Gogolla, M., Drosten, K., Lipeck, U. and Ehrich, H.-D. Algebraic and operational
semantics of specifications allowing exceptions and errors. Theoretical Computer Science 3/,

pp. 289-313 (1984).

[GB 80] Goguen, J.A. and Burstall, R.M. CAT, a system for the structured elaboration of correct
programs from structured specifications. Technical report CSL-118, SRI International (1980).

GB 84a] Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of Programming
g g
Workshop (E. Clarke and D. Kozen, eds.), Carnegie-Mellon University. Springer LNCS 164,
pp. 221-256 (1984).

48

[GB 84b] Goguen, J.A. and Burstall, R.M. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and theories. Theoretical

Computer Science 31, pp. 175-210 (1984).

[GB 86] Goguen, J.A. and Burstall, R.M. A study in the foundations of programming methodology:
specifications, institutions, charters and parchments. Proc. Workshop on Category Theory and

Computer Programming, Guildford. Springer LNCS 240, pp. 313-333 (1986).

85] Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Operational semantics for order-sorte

GIM Gog JAJ d, J.-P. and Meseg J. O ional ics f d d
algebra. Proc. 12th Intl. Colloq. on Automata, Languages and Programming, Nafplion, Greece.
Springer LNCS 194, pp. 221-231 (1985).

[GM 82] Goguen, J.A. and Meseguer, J. Universal realization, persistent interconnection and imple-
mentation of abstract modules. Proc. 9th Intl. Collog. on Automata, Languages and Program-

ming, Aarhus. Springer LNCS 140, pp. 265-281 (1982).

[GTW 76] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra approach to the
specification, correctness, and implementation of abstract data types. IBM research report
RC 6487 (1976). Alsoin: Current Trends in Programming Methodology, Vol. /: Data Structuring
(R.T. Yeh, ed.), Prentice-Hall, pp. 80-149 (1978).

[GTWW 77] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. Initial algebra semantics
and continuous algebras. JACM 24, 1 pp. 68-95 (1977).

[Gor 79] Gordon, M.J. Denotational descriptions of Programming Languages. Springer (1979).

[Gut 75] Guttag, J.V. The specification and application to programming of abstract data types.
Ph.D. thesis, Univ. of Toronto (1975).

[GH 83] Guttag, J.V. and Horning, J.J. Preliminary report on the Larch Shared Language. Report
CSL-83-6, Computer Science Laboratory, Xerox PARC (1983).

[Kam 83] Kamin, S. Final data types and their specification. TOPLAS 5, 1 pp. 97-121 (1983).

[Lar 86] Larsen, K. Context-dependent bisimulation between processes. Ph.D. thesis, Dept. of Com-
puter Science, Univ. of Edinburgh (1986).

[Lip 83] Lipeck, U. Ein algebraischer Kalkil fiir einer strukturierten Entwurf von Datenabstrak-
tionen. Ph.D. thesis, Abteilung Informatik, Universitat Dortmund (1983).

[LB 77] Liskov, B.H. and Berzins, V. An appraisal of program specifications. Computation Struc-
tures Group memo 141-1, Laboratory for Computer Science, MIT (1977).

[MacL 71] MacLane, S. Categories for the Working Mathematician. Springer (1971).

49

[MacQ 85] MacQueen, D.B. Modules for Standard ML. Polymorphism 2, 2 (1985). See also: Proc.
1984 ACM Symp. on LISP and Functional Programming, Austin, Texas, pp. 198-207.

[MW 80] Manna, Z. and Waldinger, R. A deductive approach to program synthesis. ACM Trans.
on Prog. Lang. and Systems 2 pp. 92-121 (1980).

[MG 83] Meseguer, J. and Goguen, J.A. Initiality, induction and computability. Algebraic Methods
in Semantics (M. Nivat and J. Reynolds, eds.), Cambridge Univ. Press, pp. 459-541 (1983).

[Mil 78] Milner, R.G. A theory of type polymorphism in programming. Journal of Computer and
Systems Sciences 17, 3 pp. 348-375 (1978).

[Mil 85] Milner, R.G. The Standard ML core language. Polymorphism 2, 2 (1985). See also: A
proposal for Standard ML. Proc. 198/ ACM Symp. on LISP and Functional Programming,
Austin, Texas, pp. 184-197.

[Moo 56] Moore, E.F. Gedanken-experiments on sequential machines. In: Automata Studies (C.E.
Shannon and J. McCarthy, eds.), Princeton Univ. Press, pp. 129-153 (1956).

[Ore 83] Orejas, F. Characterizing composability of abstract implementations. Proc. Intl. Conf.
on Foundations of Computation Theory, Borgholm, Sweden. Springer LNCS 158, pp. 335-346
(1983).

[PB 85] Parisi-Presicce, F. and Blum, E.K. The semantics of shared submodules specifications. Proc.
10th Colloq. on Trees in Algebra and Programming, Joint Conf. on Theory and Practice of
Software Development (TAPSOFT), Berlin. Springer LNCS 185, pp. 359-373 (1985).

[Pep 83] Pepper, P. On the correctness of type transformations. Talk at 2nd Workshop on Theory
and Applications of Abstract Data Types, Passau (1983).

[Plo 77] Plotkin, G.D. LCF considered as a programming language. Theoretical Computer Science
5, pp. 223-255 (1977).

[Rei 81] Reichel, H. Behavioural equivalence — a unifying concept for initial and final specification
methods. Proc. 3rd Hungarian Computer Science Conference, Budapest, pp. 27-39 (1981).

[ST 85a] Sannella, D.T. and Tarlecki, A. Some thoughts on algebraic specification. Proc. 3rd
Workshop on Theory and Applications of Abstract Data Types, Bremen. Springer Informatik-
Fachberichte Vol. 116, pp. 31-38 (1985).

[ST 85b] Sannella, D.T. and Tarlecki, A. Program specification and development in Standard ML.
Proc. 12th ACM Symp. on Principles of Programming Languages, New Orleans, pp. 67-77 (1985).

30

[ST 86a] Sannella, D.T. and Tarlecki, A. Specifications in an arbitrary institution. Report CSR-184-
85, Dept. of Computer Science, Univ. of Edinburgh; to appear in Information and Control. See

also: Building specifications in an arbitrary institution, Proc. Intl. Symposium on Semantics of

Data Types, Sophia-Antipolis. Springer LNCS 173, pp. 337-356 (1984).

[ST 86b] Sannella, D.T. and Tarlecki, A. Extended ML: an institution-independent framework for
formal program development. Proc. Workshop on Category Theory and Computer Programming,

Guildford. Springer LNCS 240, pp. 364-389 (1986).

[ST 87a] Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic specification.
Journal of Computer and Systems Sciences 34, pp. 150-178 (1987). Extended abstract in: Proc.
10th Colloq. on Trees in Algebra and Programming, Joint Conf. on Theory and Practice of
Software Development (TAPSOFT), Berlin. Springer LNCS 185, pp. 308-322 (1986).

[ST 87b] Sannella, D.T. and Tarlecki, A. Toward formal development of programs from algebraic
specifications: implementations revisited (extended abstract). Proc. 12th Collog. on Trees

in Algebra and Programming, Joint Conf. on Theory and Practice of Software Development

(TAPSOFT), Pisa. Springer LNCS 249, pp. 96-110 (1987).

[SW 82] Sannella, D.T. and Wirsing, M. Implementation of parameterised specifications. Report
CSR-103-82, Dept. of Computer Science, Univ. of Edinburgh. Extended abstract in: Proe.
9th Intl. Collog. on Automata, Languages and Programming, Aarhus. Springer LNCS 140,
pp. 473-488 (1982).

[SW 83] Sannella, D.T. and Wirsing, M. A kernel language for algebraic specification and implement-
ation. Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh. Extended abstract
in: Proc. Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden. Springer
LNCS 158, pp. 413-427 (1983).

[Sch 86] Schoett, O. Data abstraction and the correctness of modular programming. Ph.D. thesis,
Univ. of Edinburgh (1986).

[Tar 85] Tarlecki, A. On the existence of free models in abstract algebraic institutions. Theoretical

Computer Science 37 pp. 269-304 (1985).

[Tar 86a] Tarlecki, A. Quasi-varieties in abstract algebraic institutions. Journal of Computer and

Systems Sciences 33 pp. 333-360 (1986).

[Tar 86b] Tarlecki, A. Software-system development — an abstract view. Proc. 10th IFIP World
Computer Congress, Dublin. North-Holland, pp. 685-688 (1986).

[TW 86] Tarlecki, A. and Wirsing, M. Continuous abstract data types. Fundamenta Informaticae 9,
pp. 95-126 (1986). Extended abstract: Continuous abstract data types - basic machinery and

51

results. Proc. Intl. Conf. on Fundamentals of Computation Theory, Cottbus, GDR. Springer
LNCS 199 (1985), pp. 431-441.

[Wand 82] Wand, M. Specifications, models, and implementations of data abstractions. Theoretical
Computer Science 20 pp. 3-32 (1982).

[Wir 86] Wirsing, M. Structured algebraic specifications: a kernel language. Theoretical Computer
Science 42, pp. 123-249.

[Zil 74] Zilles, S.N. Algebraic specification of data types. Computation Structures Group memo 119,
Laboratory for Computer Science, MIT (1974).

52

