
Toward formal development of programs fromalgebraic speci�cations: implementations revisited1Donald Sannella2 and Andrzej Tarlecki3AbstractThe program development process is viewed as a sequence of implementation steps leading from a spe-ci�cation to a program. Based on an elementary notion of re�nement, two notions of implementationare studied: constructor implementations which involve a construction \on top of" the implementingspeci�cation, and abstractor implementations which additionally provide for abstraction from somedetails of the implemented speci�cation. These subsume most formal notions of implementation inthe literature. Both kinds of implementations satisfy a vertical composition and a (modi�ed) hori-zontal composition property. All the de�nitions and results are shown to generalise to the frameworkof an arbitrary institution, and a way of changing institutions during the implementation process isintroduced. All this is illustrated by means of simple concrete examples.1 IntroductionProbably the most exciting potential application of formal speci�cations is to the formal develop-ment of programs by gradual re�nement from a high-level speci�cation to a low-level \program" or\executable speci�cation" as in HOPE [BMS 80], Standard ML [Mil 85] or OBJ2 [FGJM 85]. Eachre�nement step embodies some design decisions (such as choice of data representation or algorithm).If each re�nement step can be proven correct, then the program which results is guaranteed to satisfythe original speci�cation.In order to make this dream a reality, we need at least two things. The �rst is a theory of formalspeci�cations and the second is an adequate notion of re�nement or implementation step. A theory ofspeci�cations may be built upon the pioneering work of [GTW 76], [Gut 75] and [Zil 74] on algebraicspeci�cations. It seems especially important to pay attention to the problem of building speci�cationsin a structured way (as in CLEAR [BG 77,80], CIP-L [Bau 81a], LOOK [ETLZ 82], Larch [GH 83],etc.) and to the possibility of using di�erent logical systems (or institutions [GB 84a,86]) to writespeci�cations (as in CLEAR, ASL [ST 86a] or Extended ML [ST 86b]).There has been a lot of interesting work done on notions of re�nement as well (see e.g. [GTW 76],[GB 80], [Ehr 81], [Ehr 82], [EKMP 82], [EK 82], [SW 82], [GM 82], [Sch 86], [BMPW 82], [Gan 83],[Lip 83], [BBC 86], [Wand 82]). In [SW 83] and then in [ST 85b,87a] we suggested and used a verysimple notion of speci�cation re�nement which seems appropriate for loose speci�cations. Namely, we1An extended abstract of this paper appeared in [ST 87b].2Department of Arti�cial Intelligence, University of Edinburgh and Laboratory for Foundations of Computer Science,Department of Computer Science, University of Edinburgh3Institute of Computer Science, Polish Academy of Sciences, Warsaw1

say that a speci�cation SP re�nes to a speci�cation SP 0, written SP ���>SP 0, if every model of SP 0is a model of SP . This extends to a notion of re�nement of parameterised speci�cations. In order tobe useful for stepwise and modular program development, implementations should compose vertically(i.e. SP ���>SP 0���> SP 00 should imply SP ���> SP 00) and horizontally (i.e. P ���>P 0 and SP ���>SP 0should imply P (SP)���>P 0(SP 0) for parameterised speci�cations P ,P 0) [GB 80]. Our simple notionof re�nement composes both vertically and horizontally.This looks suspiciously oversimpli�ed, especially in comparison with most previous work in thisarea. This is very much in line with our approach to speci�cation languages, however. In [SW 83] and[ST 86a] we presented a set of kernel speci�cation-building operations as a basis for de�ning higher-level and more user-friendly speci�cation languages. In the same sense, the above simple notion ofre�nement is a kernel notion with respect to the concept of implementation. In this paper we elaborateon how it can provide a basis for realistic and non-trivial program development.Roughly speaking, one would expect an implementation of a speci�cation SP by another speci�c-ation SP 0 to consist of a \program" or construction written in terms of SP 0 to compute the functionsspeci�ed in SP . Under a suitable formalisation of the notion of a construction, we say that a spe-ci�cation SP is implemented by a speci�cation SP 0 via a construction � , written SP ����>SP 0, ifSP ���> �(SP 0). That is, SP re�nes not to SP 0 directly, but to a speci�cation consisting of the con-struction � \on top of" SP 0. This is close to the notions of implementation in [Ehr 81] and [Lip 83]and subsumes most previous notions of implementation in the literature, e.g. [GTW 76], [Ehr 82],[EKMP 82] and [SW 82] (since some of these, including that of [Ehr 81], were de�ned as implement-ations of one single algebra by another, and some others, like [BBC 86], were formulated in a moresyntactic, proof-oriented style, it may be more accurate to say that this subsumes the model-theoreticideas behind these notions). It is easy to show that such implementations compose vertically; if weextend this notion of implementation to parameterised speci�cations we obtain a (modi�ed but per-fectly satisfactory) horizontal composition theorem as well. Both composability results hold withoutany further assumptions, which comes from the fact that we do not require (and see no reason torequire) that the composed implementation should take exactly the same form as its componentimplementations in contrast to e.g. [Ehr 82], [EKMP 82], [EK 82] and [SW 82].It may be argued that an implementation SP ����> SP 0 should be correct as long as the construction� yields functions which \behave like" those speci�ed in SP instead of being exactly the same. Thissuggests that ideas concerning behavioural equivalence of algebras as discussed in [GGM 76], [Rei 81],[GM 82], [ST 87a] (and elsewhere) should be explored in the context of implementations. Under asuitable formalization of the notion of an abstraction based on an equivalence on algebras, we saythat a speci�cation SP is implemented by a speci�cation SP 0 with respect to an abstraction � viaa construction �, written SP �����>SP 0, if �(SP)���> �(SP 0). That is, SP 0 implements SP (via �)not \exactly" but only up to the abstraction equivalence associated with �. If this equivalence isthe behavioural equivalence relation then this subsumes the notions of implementation in [GM 82],[Sch 86] and [BMPW 86]; other equivalence relations may be useful as well.Now vertical composition is non-trivial, depending essentially on the requirement that the con-2

structions used preserve the relevant abstraction equivalences. We show that this is the case undercertain conditions for each of the constructions we consider to demonstrate that it is not an unreas-onable requirement. This notion of implementation extends to parameterised speci�cations as before.However, horizontal composition holds only for parameterised speci�cations which preserve the ab-straction equivalence (extended to speci�cations). This turns out to be quite satisfactory in practiceand an example shows that a stronger result cannot really be expected.We present the above ideas in the framework of partial algebras (with �rst-order formulae) [BrW 82].This is mainly to take advantage of the reader's intuition, since all of the main de�nitions and resultsas well as methodological remarks may be directly restated in the framework of an arbitrary institution[GB 84a]. This means that they can be used to develop programs from speci�cations in a wide varietyof logical systems which involve di�erent notions of signature, logical formula, and model (examplesinclude the standard framework of equational logic and total algebras as well as higher-order logics,LCF [Plo 77], error algebras [GDLE 84] and many others). Thus, a user of the presented programdevelopment methodology may choose the logical system which is most suited to his particular task.Moreover, di�erent logical systems may be most suitable at di�erent stages of the development ofeven a single program, for example when developing an e�cient imperative program from a high-levelalgebraic speci�cation. We enable this by allowing speci�cations to be implemented by speci�cationsin a di�erent institution using what we call a semi-institution morphism.The concepts we introduce are illustrated by a running example of the implementation of sets ofnatural numbers.We assume some familiarity with a few notions from basic category theory, although no use ismade of any deep results. See [AM 75] or [MacL 71] for the de�nitions of e.g. category, initial object,pushout, pullback, functor etc. which we omit here.2 Algebraic preliminariesMost of the following de�nitions are more or less standard so we give them without comment ormotivation; for a more detailed presentation see [GTW 76], [BG 82], [EM 85] for total algebras and[BrW 82], [Bur 86] for partial algebras.Notation Throughout this paper we deal with many-sorted sets, functions, relations, etc. (for anyset S, an S-sorted set is just a family X = fXsgs2S of sets indexed by S, and similarly for functions,relations, etc.). We will feel free to use standard set-theoretic notation without explicit use of indices:for example, we write x 2 X rather than x 2 Xs for some s 2 S, and h: X ! Y rather thanh = fhsgs2S and hs: Xs ! Ys for s 2 S, etc.A signature is a pair hS;
i where S is a set (of sort names) and
 is a family of sets f
w;sgw2S�;s2S(of operation names). We write sorts(hS;
i) to denote S, opns(hS;
i) to denote
, and f : w !s to denote w 2 S�, s 2 S, f 2
w;s. A signature morphism �: hS;
i ! hS 0;
0i is a pairh�sorts; �opnsi where �sorts: S ! S 0 and �opns is a family of maps f�w;s:
w;s !
0��(w);�(s)gw2S�;s2S3

where ��(s1; : : : ; sn) denotes �sorts(s1); : : : ; �sorts(sn) for s1; : : : ; sn 2 S. We will write �(s) for �sorts(s),�(w) for ��(w) and �(f) for �w;s(f), where f 2
w;s.The category of signatures Sign has signatures as objects and signature morphisms as morphisms;the composition of morphisms is the composition of their corresponding components as functions.(This obviously forms a category.) Sign is cocomplete (see [GB 84b]); the initial signature is theempty signature �; with no sorts and hence no operations. jSignj denotes the collection of objects ofSign, and we use Sign to denote the collection of its morphisms. We use the same notation for othercategories.Notation The composition of morphisms in any category (in particular, of functions) is denoted bysemicolon and written in the diagrammatic order, e.g. f : A! B and g: B ! C implies f ;g: A! C.Let � = hS;
i be a signature.A (partial) �-algebra A consists of an S-indexed family of carrier sets jAj = fjAjsgs2S and foreach f : s1; : : : ; sn ! s a partial function fA: jAjs1 � � � � � jAjsn ! jAjs. A is called a total algebra ifall of these functions are total. A �-homomorphism from a �-algebra A to a �-algebra B, h: A! B,is a family of (total) functions fhsgs2S where hs: jAjs ! jBjs such that for any f : s1; : : : ; sn ! s anda1 2 jAjs1; : : : ; an 2 jAjsnfA(a1; : : : ; an) de�ned) fB(hs1(a1); : : : ; hsn(an)) de�ned andhs(fA(a1; : : : ; an)) = fB(hs1(a1); : : : ; hsn(an))([BrW 82] would call this a total �-homomorphism).The category of partial �-algebras PAlg(�) has �-algebras as objects and �-homomorphisms asmorphisms; the composition of homomorphisms is the composition of their corresponding componentsas functions. (This obviously forms a category.) In the sequel we identify classes of �-algebras withfull subcategories of PAlg(�) and vice versa.For any signature morphism �: �! �0 and �0-algebra A0, the �-reduct of A0 is the �-algebra A0 �de�ned as follows:� For s 2 S, jA0 �js =def jA0j�(s).� For f : w! s in �, fA0 � =def �(f)A0.Similarly, for a �0-homomorphism h0: A0 ! B 0 where A0 and B 0 are �0-algebras, the �-reduct of h0 isthe �-homomorphism h0 �: A0 � ! B 0 � de�ned by (h0 �)s =def h0�(s) for s 2 S.The mappings A0 7! A0 � and h0 7! h0 � form a functor �: PAlg(�0)! PAlg(�).Notice that in the above we have de�ned a functor PAlg: Sign ! Catop (where Cat is thecategory of all categories; PAlg(�) = �). For the empty signature �; there is exactly one �;-algebra, namely the one with no carriers, which has exactly one (empty) homomorphism on it. Thus,PAlg maps the initial signature to the terminal category. This is a consequence of a more generalproperty: PAlg is cocontinuous (the proof of this fact for total algebras was given in [BW 85]; theproof for partial algebras is essentially the same). In particular, PAlg translates pushouts in Sign topullbacks in Cat, which by the construction of pullbacks in Cat implies the following lemma:4

Lemma 2.1 (amalgamation lemma) Let ��2 �1�0?�2 ?�10-�1 -�20be a pushout in Sign. Then for any �1-algebra A1 and �2-algebra A2 such that A1 �1 = A2 �2, thereexists a unique �0-algebra A0 such that A0 �10 = A1 and A0 �20 = A2. 2A similar fact also holds for homomorphisms.For any signature �, the algebra T� of ground �-terms is de�ned in the usual way, as the (towithin isomorphism) initial total �-algebra, i.e. the carriers jT�j contain terms of the appropriatesorts constructed using the operations of � without variables and the operations in T� are de�nedin the natural way (see for example [GTW 76]). Moreover, for any set X of variables, the �-algebraT�(X) of �-terms with variables X is de�ned as T�(X) � where �(X) is the extension of � by theelements of X as new constants of the appropriate sorts and �: �! �(X) is the signature inclusion.A partial �rst-order �-sentence is a closed �rst-order formula built from �-terms using the logicalconnectives :, ^, _ and), the quanti�ers 8 and 9, and the atomic formulae Ds(t) and t = t0 (strongequality [BrW 82]) for each sort s in � and terms t; t0 2 jT�(X)js (i.e. t; t0 are �-terms of sort s withvariables X).A partial �-algebra A satis�es an atomic formula Ds(t) under a (total) valuation v: X ! jAj,written A j=v Ds(t), i� the value tA(v) of t in A under v is de�ned (we omit the de�nition of the valueof a term in a partial algebra under a valuation; see [Bur 86] for details). If X is empty (i.e. if t is aground �-term) we write tA to denote the value of t in A. A satis�es an atomic formula t = t0 (wheret; t0 2 jT�(X)js for some sort s in �) under a valuation v: X ! jAj, written A j=v t = t0, i�� A 6j=v Ds(t) and A 6j=v Ds(t0), or� A j=v Ds(t) and A j=v Ds(t0) and the values of t and t0 in A under v are the same.Satisfaction of (closed) partial �rst-order �-sentences is de�ned as usual, but note that 8 and 9quantify only over de�ned values. We generalise the satisfaction relation to classes of algebras andsets of sentences in the usual way: C j= � means for all A 2 C and ' 2 �, A j= '. We will omit thesubscript on D when there is no danger of confusion.Let �: �! �0 be a signature morphism. The unique �-homomorphism h: T� ! T�0 � determinesa translation of �-terms to �0-terms. For a ground �-term t of sort s we write �(t) rather thanhs(t). This in turn determines a translation (again denoted by �) of �-sentences to �0-sentences:e.g. �(t = t0) =def �(t) = �(t0) and �(Ds(t)) =def D�(s)(�(t)), etc. This notation extends to sets ofsentences and sets of terms in the obvious way: �(W) = f�(t) j t 2 Wg for any set W of ground�-terms and similarly for sentences. 5

The translations of sentences and of algebras as de�ned above preserve the satisfaction relation inthe following sense:Lemma 2.2 (satisfaction lemma) For any signature morphism �: �! �0, �-sentence ' and �0-algebra A0, A0 � j= ' i� A0 j= �(').Proof This follows from the fact that de�nedness of terms is preserved under change of signature,and by the proof of the analogous lemma for total algebras in [GB 84a]. 2For any signature � and �-algebra A, a (closed) �-subalgebra of A is a �-algebra B such that forany sort s in �, jBjs � jAjs and for any operation f : s1; : : : ; sn ! s in �, for b1 2 jBjs1; : : : ; bn 2 jBjsn,fB(b1; : : : ; bn) is de�ned i� fA(b1; : : : ; bn) is de�ned and then fB(b1; : : : ; bn) = fA(b1; : : : ; bn). Thus wecan identify �-subalgebras of A with subsets of the carrier of A closed under operations as de�ned inA. Notice that the set of �-subalgebras of A is closed under (set-theoretic) intersection.For any signature � and S � sorts(�), we say that a �-algebra A is reachable on S if it containsno proper �-subalgebra with carriers of sorts not in S the same as in A. In other words, every elementof A is reachable from elements of sorts not in S using the operations of � (is the value of a �-termwith variables of sorts not in S, for some valuation). Notice that any �-algebra A contains exactlyone �-subalgebra which is reachable on S and has carriers of sorts not in S the same as in A, denotedRS(A). We omit quali�cation by S in these de�nitions if S = sorts(�).Let A 2 PAlg(�). A congruence on A is an equivalence relation � � jAj � jAj such that forany f : s1; : : : ; sn ! s in � and a1; b1 2 jAjs1; : : : ; an; bn 2 jAjsn, if a1 �s1 b1; : : : ; an �sn bn andfA(a1; : : : ; an) and fA(b1; : : : ; bn) are de�ned, then fA(a1; : : : ; an) �s fA(b1; : : : ; bn).Fact 2.3 If � is a congruence on A, then A=� is a well-de�ned �-algebra, where jA=�js = jAjs=�sand for every f : s1; : : : ; sn ! s in � and a1 2 jAjs1; : : : ; an 2 jAjsn, fA=�([a1]; : : : ; [an]) is de�ned i�fA(b1; : : : ; bn) is de�ned for some b1 �s1 a1; : : : ; bn �sn an and then fA=�([a1]; : : : ; [an]) = [fA(b1; : : : ; bn)].2 For any set E of �-equations and A 2 PAlg(�), let �EA be the least congruence on A such thattA(v)�EAt0A(v) for all equations 8X:t = t0 in E and valuations v: X ! jAj such that A j=v D(t) andA j=v D(t0).We write A=E to denote the quotient algebra A=�EA.3 Speci�cations and re�nementWe are not going to formally de�ne precisely what speci�cations are; they are just �nite syntacticobjects of some kind, where the exact syntax used does not matter here (although it may be extremelyimportant from the pragmatic point of view). What does matter is that every speci�cation describesa certain signature and a class of algebras over this signature (intuitively, the class of algebras which6

satisfy the speci�cation, or perhaps more exactly, which are acceptable realisations of the speci�ca-tion). This semantics is made explicit using two mappings which assign to each speci�cation SP asignature Sig[SP] 2 jSignj and a class Mod[SP] � jPAlg(Sig[SP])j of Sig[SP]-algebras. Algebras inMod[SP] are called models of SP . We call a speci�cation consistent if it has at least one model.This rather general description covers high-level user-oriented loose speci�cations admitting manynon-isomorphic models as well as low-level detailed speci�cations which describe classes of isomorphicalgebras or even programs which for us are just very tight speci�cations describing one particularalgebra. Note that we adopt a purely model-theoretic view here and we stop the analysis of thenotion of a program at this level. Therefore, we do not distinguish between e�cient and ine�cientalgorithms to compute the same functions or even between e�ective and non-e�ective de�nitions. Anyapplication of the methodology we outline here would require some further syntactic constraints onthe notion of a program.De�nition 3.1 For any signature �, Spec(�) denotes the collection of all �-speci�cations, i.e. spe-ci�cations SP such that Sig[SP] = �, preordered by the inclusion of model classes. (This preorder turnsSpec(�) into a category.) For any two speci�cations SP1 and SP2, a speci�cation morphism fromSP1 to SP2 is a signature morphism �: Sig[SP1]! Sig[SP2] such that for any model A2 2 Mod[SP2],A2 � 2 Mod[SP1]. We denote this by �: SP1! SP2.Spec(�) is never empty. We assume that it contains at least basic speci�cations. That is, given asignature � and a (�nite, recursive, recursively enumerable) set � of �-axioms (e.g. partial �rst-order�-sentences), h�;�i is a speci�cation with:Sig[h�;�i] = �Mod[h�;�i] = fA 2 PAlg(�) j A j= �gIf the axioms are all (universally quanti�ed) equations or de�nedness formulae we call h�;�i anequational speci�cation.In any non-trivial application, speci�cations will tend to grow large and unmanageable. To makethem useful, we have to build them in a structured manner and then exploit this structure as aguide in their use and understanding. This is accomplished by use of speci�cation-building operationsto put together little speci�cations in nice ways to make progressively bigger ones [BG 77]. Anyspeci�cation-building operation, given a list of argument speci�cations, yields a result speci�cation.Again, it does not matter for us how this is written; semantically, a speci�cation-building operationis a function on classes of algebras. It maps classes of models (of the argument speci�cations) to theclass of models (over a signature which must be determined as well) of the result speci�cation. Theonly assumption we make about these functions is that they are monotonic with respect to inclusionof classes of algebras; intuitively, less restrictive argument speci�cations yield a less restrictive result.Speci�cation languages like CLEAR [BG 77,80], LOOK [ETLZ 82], ACT ONE [EFH 83], [EM 85],ASL [SW 83], [Wir 86], [ST 86a] and others may be viewed just as sets of such operations plus somesyntactic sugar. 7

To make this more concrete, let us recall two simple examples of speci�cation-building operations(taken from [ST 86a]):Union: Given two speci�cations SP1 and SP2 over the same signature � (i.e. Sig[SP1] = � =Sig[SP2]), SP1 [SP2 is a speci�cation with semantics de�ned as follows:Sig[SP1 [SP2] = �Mod[SP1 [SP2] = Mod[SP1] \Mod[SP2]Translate: Given a speci�cation SP and a signature morphism �: Sig[SP]! �0, the semantics of thespeci�cation translate SP by � is as follows:Sig[translate SP by �] = �0Mod[translate SP by �] = fA0 2 PAlg(�0) j A0 � 2 Mod[SP]gFurther examples will be given in the sequel.Strictly speaking, both union and translate are really families of speci�cation-building operations:[= f[�: Spec(�)� Spec(�)! Spec(�)g�2jSignjand translate = ftranslate�: �!�0 : Spec(�)! Spec(�0)g�2SignThe elements of these families are de�ned in a uniform way which allows us to leave out the subscriptswhen convenient and justi�es us calling them speci�cation-building operations as in the above informalremarks. For any speci�cation-building operation ! we will write !: Spec(�)! Spec(�0) (meaningthat ! takes �-speci�cations to �0-speci�cations) when we want to retain some of the informationlost due to this informality. Since speci�cation-building operations are required to be monotonic,!: Spec(�) ! Spec(�0) is a functor as the notation suggests. Note that we have tacitly assumedthat ! is a unary operation; to simplify the presentation we are going to make the same assumptionthroughout when convenient.Besides providing a certain collection of speci�cation-building operations, a speci�cation languageusually provides a way for the user to de�ne his own speci�cation-building operations, i.e. a mech-anism for constructing parameterised speci�cations. There are di�erent approaches to parameterisedspeci�cations (e.g. [Ehr 82], [BG 80], [EKTWW 80], [Gan 83], [SW 83]); in this paper we use theapproach of [ST 86a].Semantically, any parameterised speci�cation can be viewed as a function taking any speci�cationover a given parameter signature �par to a speci�cation over a result signature �res. Syntactically, wewrite a parameterised speci�cation as a �-expression, �X: �par:SPres[X], where X is an identi�er andSPres[X] is a �res-speci�cation built using speci�cation-building operations which may involve X asa variable denoting a �par-speci�cation. For any �par-speci�cation SP , (�X: �par:SPres[X])(SP) is aspeci�cation with semantics de�ned (essentially as �-conversion) as follows:Sig[(�X: �par:SPres[X])(SP)] = �resMod[(�X: �par:SPres[X])(SP)] = Mod[SPres[SP=X]]8

(we adopt the usual �-calculus convention that E[v=x] denotes the result of substituting v for x inE). This easily extends to multiple arguments | see [ST 86a]. Consistently with our notation forspeci�cation-building operations, we sometimes write (�X: �par:SPres[X]): Spec(�par)! Spec(�res)to indicate the parameter and result signatures explicitly.The programming discipline of stepwise re�nement suggests that a program (which is a speci�ca-tion) be evolved from a high-level speci�cation by working gradually via a series of successively moredetailed lower-level intermediate speci�cations. A formalisation of this approach requires a precisede�nition of the concept of re�nement.In programming practice, proceeding from a speci�cation to a program (by stepwise re�nement orby any other method) means making a series of design decisions. These will include decisions con-cerning the concrete representation of abstractly de�ned data types, decisions about how to computeabstractly speci�ed functions (choice of algorithm) and decisions which select between the various pos-sibilities which the speci�cation leaves open. The following very simple formal notion of re�nement[SW 83], [ST 85b,87a] captures this idea.De�nition 3.2 Given two speci�cations SP and SP 0 such that Sig[SP] = Sig[SP 0], we say that SPre�nes to SP 0, written SP ���>SP 0, if Mod[SP 0] �Mod[SP].Intuitively, SP ���> SP 0 if SP 0 incorporates more design decisions than SP . This simply requires thatany realisation of SP 0 is an acceptable realisation of SP .This notion of re�nement can be extended to parameterised speci�cations:De�nition 3.3 Given two parameterised speci�cations P and P 0 with the same parameter signature�par, we say that P re�nes to P 0, written P ���>P 0, if for any �par-speci�cation SP , P (SP)���>P 0(SP).An important issue for any notion of re�nement is whether re�nements can be composed vertic-ally and horizontally [GB 80]. Re�nements can be vertically composed if the re�nement relation istransitive (SP ���> SP 0 and SP 0���>SP 00 implies SP ���>SP 00) and they can be horizontally composedif the speci�cation-building operations preserve re�nements (i.e. P ���>P 0 and SP ���>SP 0 impliesP (SP)���>P 0(SP 0)). The above notion of re�nement has both these properties since speci�cation-building operations are monotonic. There is also an obvious operation of composition of parameterisedspeci�cations, and it is easy to see that this preserves re�nements as well. These properties allow largestructured speci�cations to be re�ned in a gradual and modular fashion.The development of a program from a speci�cation consists of a series of re�nement stepsSP0���>SP1���> � � � ���>SPn, where SP0 is the original high-level speci�cation and SPn is a program.Vertical composability guarantees the correctness of SPn with respect to its speci�cation SP0. Thisviews each of the speci�cations SP0; : : : ; SPn as a single indivisible entity. If, however, we decomposeany of them using a parameterised speci�cation, say SPk = P (SP), then the further developments ofP and of SP may proceed separately. Horizontal composability guarantees that the results of thesedevelopments may always be combined to give a re�nement of SPk and so of SP0 as well. Of course,these (sub)developments may themselves involve further decomposition.9

4 Constructors and implementationsIn the last section we presented a simple notion of re�nement which is mathematically elegant butperhaps a bit oversimpli�ed from the practical point of view. In this section and those which follow,we will develop notions of implementation built on top of this simple notion of re�nement which aremore suited to practical use. We start with a notion of implementation which involves a constructionfrom the implementing speci�cation to the implemented speci�cation.What is a construction? According to our model-theoretic view, the characteristic feature of aconstruction is that it takes an algebra over one signature and transforms it to yield another algebraover a (possibly di�erent) signature. Thus, we can identify a construction � with a function4 �mapping �-algebras to �0-algebras, �: PAlg(�) ! PAlg(�0). In an obvious way, this determines aspeci�cation-building operation denoted (ambiguously) by the same symbol. We call speci�cation-building operations of this kind constructors.De�nition 4.1 A constructor determined by a function �: PAlg(�) ! PAlg(�0) is a speci�cation-building operation �: Spec(�) ! Spec(�0), where for any �-speci�cation SP , Sig[�(SP)] = �0 andMod[�(SP)] = f�(A) j A 2 Mod[SP]g.We �nd it convenient to view constructors as functions transforming algebras and at the sametime as speci�cation-building operations. It should be stressed that the latter view is, in a sense,superuous. All the following concepts may be introduced and used directly, without assuming thatconstructors are available as speci�cation-building operations, referring to them only as functionstransforming algebras. We do not do this here, though, mainly to be able to highlight the directrelationship between the simple notion of re�nement presented in the previous section and the some-what more complex notions of implementation introduced below. We refrain as much as possible fromdeveloping any convenient notation for syntactic presentation of constructors. This is a very import-ant but nevertheless separate task, which must eventually lead to the development of an appropriateprogramming language with powerful modularisation facilities, which is clearly outside the scope ofthis paper. Similar remarks also apply to the concept of abstractor we introduce in section 6.A few easy facts follow immediately from the de�nition.Fact 4.2 Constructors are monotonic. 2Fact 4.3 Constructors preserve consistency of speci�cations. 2Fact 4.4 Constructors are closed under composition: if both �1: Spec(�1) ! Spec(�2) and�2: Spec(�2) ! Spec(�3) are constructors determined by functions �1: PAlg(�1) ! PAlg(�2)and �2: PAlg(�2) ! PAlg(�3), then the constructor �1;�2: Spec(�1) ! Spec(�3) is determinedby the function �1;�2: PAlg(�1)! PAlg(�3). 24From the category-theoretic point of view, it is natural to assume that this is a functor (all our examples are) butsince we do not use the morphism part in this paper we take this simpli�ed view here.10

Example 4.5 (derive) For any �0-speci�cation SP 0 and signature morphism �: � ! �0, the se-mantics of the speci�cation derive from SP 0 by � is as follows:Sig[derive from SP 0 by �] = �Mod[derive from SP 0 by �] = fA � j A 2 Mod[SP 0]gThe derive speci�cation-building operations (one for each �: �! �0) are constructors determined bythe corresponding reduct functors � (cf. section 2). Intuitively, derive can be used to hide and/orrename some of the sorts and operations of a speci�cation. 2Example 4.6 (restrict) For any �-speci�cation SP and set S � sorts[�] of sorts, the semantics ofthe speci�cation restrict SP on S is as follows:Sig[restrict SP on S] = �Mod[restrict SP on S] = fRS(A) j A 2 Mod[SP]gThe restrict speci�cation-building operations (one for each � and S � sorts[�]) are constructorsdetermined by the corresponding restrict functors RS (cf. section 2). Restrict is used to remove\junk" (unreachable elements) of selected sorts. 2Example 4.7 (quotient) For any �-speci�cation SP and set E of �-equations, the semantics of thespeci�cation quotient SP wrt E is as follows:Sig[quotient SP wrt E] = �Mod[quotient SP wrt E] = fA=E j A 2 Mod[SP]gThe quotient speci�cation-building operations (one for each � and E) are constructors determinedby the corresponding quotient functors =E (cf. section 2). Intuitively, quotient is used to identifythe values of certain terms. 2Example 4.8 (extend) If we have a signature morphism �: �! �0 then constructors from Spec(�)to Spec(�0) will be called synthesizing constructors along �. The intuition is that they just build newstu� on top of the existing algebras without forgetting anything. One standard way to de�ne such asynthesizing constructor is using the free extension.Namely, for any signature morphism �: �! �0 and equational �0-speci�cation SP 0, there is a freefunctor F�: PAlg(�)!Mod[SP 0] (the left adjoint to the reduct functor �: Mod[SP 0]! PAlg(�)).That this functor always exists is a well-known fact | see [GTW 76] (total algebras) and [BrW 82](partial algebras). Now, for any �-speci�cation SP , extend SP to SP 0 via � is a speci�cation de�nedas follows: Sig[extend SP to SP 0 via �] = �0Mod[extend SP to SP 0 via �] = fF�(A) j A 2 Mod[SP]gThe extend speci�cation-building operations (one for each � and SP 0) are constructors determinedby the corresponding free functor F�. 11

In examples, we will use the standard notation enrich SP by data sorts S opns
 axioms �(from CLEAR) to abbreviate extend SP to h�0;�i via � where �0 =def � [hS;
i and �: � ,! �0 isthe inclusion, provided �0 is a signature. Recall (see [BG 80]) that the keyword data is signi�canthere. We will use the notation enrich SP by sorts S opns
 axioms � with a di�erent meaninglater on (see section 5).Note that in the above, SP may be an arbitrary speci�cation, not necessarily equational. In generalF� does not have to preserve all the properties required by SP (� was not required to be a speci�cationmorphism �: SP ! SP 0) although it does preserve ground equations deducible from SP . Notice alsothat this yields the initial algebra construction as a special case (where � = �;). 2Non-example (translate) The translate speci�cation-building operation de�ned in the last sec-tion is not a constructor. Consider for example the signature morphism �: �; ! � which is theinclusion of the empty signature into some non-empty signature �. The (empty) �;-speci�cation ;has exactly one model while translate ; by � has all of PAlg(�) as models, so translate�: �;!�is not determined by a function on algebras. Furthermore, if �0: � ! �0 is a signature morph-ism which is non-injective on sorts (i.e. for some s; s0 2 sorts[�], �0(s) = �0(s0) while s 6= s0),then those models A of the speci�cation h�; ;i for which jAjs 6= jAjs0 will have no correspondingmodels in translate h�; ;i by �0 so translate�0: �!�0 is not determined by a function on algebraseither. Thus, for �: � ! �0 and a �-speci�cation SP , there may be models of SP which give rise tomore than one model of translate SP by � and other models of SP which give rise to no model oftranslate SP by �. 2De�nition 4.9 A synthesizing constructor �: Spec(�) ! Spec(�0) is persistent along a signaturemorphism �: � ! �0, written �: Spec(�) ��!Spec(�0), if �: PAlg(�) ! PAlg(�0) is (strongly)persistent with respect to �, i.e. for any �-algebra A, �(A) � = A.Example 4.10 (amalgamated union)Given two persistent constructors �1: Spec(�) �1�!Spec(�1)and �2: Spec(�) �2�!Spec(�2), let ��2 �1�0?�2 ?�10-�1 -�20be a pushout in Sign. For any �-algebra A, de�ne �(A) to be the unique �0-algebra such that�(A) �10 = �1(A) and �(A) �20 = �2(A). �(A) is well-de�ned by the amalgamation lemma since�1(A) �1 = A = �2(A) �2. Thus, we have de�ned a function �: PAlg(�) ! PAlg(�0). We denotethis function and the corresponding synthesizing constructor (along �1;�10 = �2;�20) by �1 + �2; ifany doubts may arise, we add �1; �2 as subscripts to +. Intuitively, �1 + �2 \puts together" theconstructions �1 and �2. The assumption of persistency guarantees that this is possible. (See thenotion of amalgamated sum in [PB 85] and [EM 85].) 212

Fact 4.11 If �1: Spec(�) �1�!Spec(�1) and �2: Spec(�) �2�!Spec(�2) are persistent constructorsthen �1 + �2: Spec(�) ��!Spec(�0) is a persistent constructor along � =def �1;�10 = �2;�20.Proof For any �-algebra A, (�1 + �2)(A) �1;�10 = ((�1 + �2)(A) �10) �1 = �1(A) �1 = A. 2Example 4.12 (translation of a constructor) There is another operator on constructors connec-ted with the pushout in Sign. Namely, let ��2 �1�0?�2 ?�10-�1 -�20be a pushout in Sign, and suppose �1: Spec(�) �1�!Spec(�1) is a persistent constructor. Thenfor any A2 2 PAlg(�2), de�ne �2(�1)(A2) to be the unique �0-algebra such that �2(�1)(A2) �10 =�1(A2 �2) and �2(�1)(A2) �20 = A2. Thus we have de�ned a function �2(�1): PAlg(�2)! PAlg(�0)which we call the translation of �1 along �2. We use the same notation and terminology to refer tothe corresponding synthesizing constructor (along �20). Notice that �2(�1) is persistent. Intuitively,�2(�1) performs �1 on the \� part" of �2-algebras and leaves the other components unchanged.Notice that the translation of a constructor is a more elementary operation than the amalgamatedunion. Namely, using the notation of example 4.10, �1 + �2 = �2;�2(�1) = �1;�1(�2). 2As promised at the beginning of this section, we are going to use the notion of a constructor togive a more practically useful de�nition of implementation.De�nition 4.13 (constructor implementation) A speci�cation SP is implemented by a speci�ca-tion SP 0 via a constructor �: Spec(Sig[SP 0])! Spec(Sig[SP]), written SP ����>SP 0, if SP ���>�(SP 0).In other words, SP ����>SP 0 if � transforms every model of SP 0 to a model of SP .Intuitively speaking, if we want to evaluate a function in SP , we are able to do this provided wecan evaluate any function in SP 0 since the constructor � puts together functions in SP 0 to obtain allfunctions in SP . In this sense, � may be viewed as a program parameterised by the (possibly not yetexecutable) speci�cation SP 0. The development of an appropriate syntax for such programs � is animportant and interesting but separate task.Notice that, using the constructors introduced in examples 4.5-4.8 above, we can reduce many ofthe notions of implementation in the literature (e.g. [GTW 76], [Ehr 82], [EKMP 82], [SW 82]) to theone above. For example, the implementation notion of [EKMP 82] assumes that � is the compositionof extend, derive, restrict and quotient constructors (in that order). Notice also that constructorimplementation is a proper generalisation of the notion of re�nement of the previous section; ���> isjust id���> (constructor implementation via the identity constructor id).13

Our de�nition of constructor implementation resembles the notion of implementation given in[Ehr 81] for single algebras. In [Ehr 81], A is implemented by B via a construction F ifA is (isomorphicto) a quotient of a subalgebra of F (B). When generalising to loose speci�cations, the requirement thatsome quotient of some subalgebra of F (B) be isomorphic to A may be regarded as a construction onlyif the subalgebra and quotient are taken uniformly on all modelsB of the implementing speci�cation. Ifwe do not require uniformity then this amounts to a non-constructive step which will be fully subsumedby the notion of abstractor implementation de�ned in section 6. There are even closer similaritieswith the notion of implementation of (parameterised) speci�cations in [Lip 83]; see section 8.1 fordetails.As indicated by fact 4.4, we are able to compose constructors, which easily yields the followingimportant theorem:Theorem 4.14 (vertical composition) If SP ����>SP 0 and SP 0 �0���>SP 00 then SP �0;�����>SP 00.Proof By de�nition, Mod[SP 0] � Mod[�0(SP 00)], hence by de�nition Mod[SP] � Mod[�(SP 0)] =�(Mod[SP 0]) � �(Mod[�0(SP 00)]) = Mod[(�0;�)(SP 00)]. 2Notice that since �0;� is an acceptable constructor, there is no reason to require that it has (ormay be transformed to) the same form as either � or �0. In general this will not be the case. However,in some special cases it turns out that such normal form theorems may be obtained, often undersome additional assumptions about the speci�cations involved (see e.g. [Ehr 81], [EKMP 82], [SW 82],[EWT 83], [Ore 83]). It seems to us that the requirement that the composition of constructorsmust be forced into some given normal form corresponds to requiring programs to be written in arather restrictive programming language which does not provide su�ciently powerful modularisationfacilities for the job. In some situations, putting a constructor into a normal form can be viewed asan optimization process.The following simple fact allows us to mechanically strip o� outermost constructors if the speci�c-ation we want to implement happens to be built in this way.Fact 4.15 For any constructor �: Spec(�) ! Spec(�0) and �-speci�cation SP , �(SP) �0 ;�����>SP 0provided that SP �0���>SP 0.Proof By de�nition, �(SP) ����>SP . Then the desired result follows from the vertical compositiontheorem. 2An interesting special case of this is the amalgamated union of speci�cations.De�nition 4.16 For any two speci�cation morphisms �1: SP ! SP1 and �2: SP ! SP2, the am-algamated union of SP1 and SP2, written SP1 + SP2 (decorated with subscripts SP; �1; �2 on + ifnecessary), is a speci�cation with semantics de�ned as follows:Sig[SP1 + SP2] = �0Mod[SP1 + SP2] = Mod[(translate SP1 by �10) [(translate SP2 by �20)]14

where Sig[SP]Sig[SP2] Sig[SP1]�0?�2 ?�10-�1 -�20is a pushout in Sign.In particular, we can form the disjoint union of any two speci�cations SP1 and SP2 by letting �1 and�2 be the inclusions of the empty speci�cation over the empty signature into Sig[SP1] and Sig[SP2]respectively.Notice that according to this de�nition, + is a derived speci�cation-building operation which isde�ned in terms of translate and [.Theorem 4.17 If SP1 �1���>SP and SP2 �2���>SP where both �1: Spec(Sig[SP]) �1�!Spec(Sig[SP1])and �2: Spec(Sig[SP]) �2�!Spec(Sig[SP2]) are persistent constructors, then SP1 + SP2 �1 + �2������>SP .Proof By de�nition, we have to show that for A 2 Mod[SP], (�1 + �2)(A) 2 Mod[SP1 + SP2], i.e.that (�1 + �2)(A) �10 2 Mod[SP1] and (�1 + �2)(A) �20 2 Mod[SP2], which is obvious since by thede�nition of �1+�2, (�1+�2)(A) �10 = �1(A) 2 Mod[SP1] and (�1+�2)(A) �20 = �2(A) 2 Mod[SP2].2This theorem allows us to implement the independent components of a speci�cation separately andthen combine their implementations provided that they do not a�ect the common part.In the above theorem we required �1 and �2 to be persistent on all Sig[SP]-algebras as in thede�nition of the amalgamated union of constructors. Notice that in this context, however, it issu�cient to require that �1 and �2 are persistent only on models of SP (which may be easier toachieve in practice). Of course formally, �1 + �2 is then only a constructor on Mod[SP] rather thanon PAlg(Sig[SP]) since it may be unde�ned on some Sig[SP]-algebras.Theorem 4.18 Let ��2 �1�0?�2 ?�10-�1 -�20be a pushout in Sign, �1: Spec(�) �1�!Spec(�1) be a persistent constructor, and SP1, SP2 be �1-and �2-speci�cations respectively. If SP1 �1���>derive from SP2 by �2, then SP1+SP2 �2(�1)������>SP2.15

Proof ForA2 2 Mod[SP2], by de�nition we have �2(�1)(A2) �20 = A2 2 Mod[SP2] and �2(�1)(A2) �10 =�1(A2 �2) 2 Mod[SP1]. Thus �2(�1)(A2) 2 Mod[SP1 + SP2]. 2This gives another way of decomposing a speci�cation and implementing the components separately.Namely, we implement one component using (a part of) the other and then we can proceed with theimplementation of the other component.Notice that again, in this context the requirement of persistency of �1 may be relaxed to persistencyon �2-reducts of models of SP2.Summing up, the development process using this notion of implementation would consist of asequence of implementation steps SP0 �1���> SP1 �2���> � � � �n���>SPn. Intuitively, SP0, SP1 etc. do not\grow" as happens when we use the simple re�nement notion, where the same development wouldlook like: SP0���> �1(SP1)���> � � � ���> �1(: : : �n(SPn) : : :)Using constructor implementations, we gradually reduce the speci�cation by implementing its parts.Our goal is to end up with an empty speci�cation over the empty signature, i.e. SPn = h�;; ;i.Then according to theorem 4.14, the composition of constructors �n; � � � ;�1 forms a program whichimplements SP0. Of course, usually it is su�cient to stop earlier, when we reach a speci�cationcontaining only de�nitions of types and functions available in the programming language we intendto use.This view of the program development process does not give a recipe for construction of theindividual implementation steps. This is where human invention is required, although research onprogram and speci�cation transformation (e.g. [Bau 81b] and [DLS 87]) o�ers techniques for system-atising some of these steps, and work on program synthesis (e.g. [MW 80]) even suggests that somesteps may be mechanically constructed. Theorems 4.17 and 4.18 above as well as theorem 8.5 ofsection 8.1 suggest ways of developing implementation steps in a structured manner by combiningmore primitive implementation steps.5 Examples of constructor implementationsIn the following examples and those of the sequel we will use the standard speci�cations of the booleanvalues Bool and the natural numbers Nat (which contains Bool because of the presence of operationslike �: nat; nat! bool). We also use the enrich notation of CLEAR, enrich SP by sorts S opns
axioms �, as an abbreviation for (translate SP by �) [hSig[SP][hS;
i;�i, where � is the obvioussignature inclusion. All axioms are implicitly universally quanti�ed over all free variables.We begin with a simple speci�cation of (�nite) sets of natural numbers:SetNat =def restrict (enrich Nat bysorts setopns ;: ! setadd: nat; set! set16

isempty: set! bool2: nat; set! boolaxioms D(;)D(add(a; S))add(a; add(b; S)) = add(b; add(a; S))add(a; add(a; S)) = add(a; S)isempty(;) = trueisempty(add(a; S)) = falsea 2 ; = falsea 2 add(a; S) = truea 6= b) a 2 add(b; S) = a 2 S)on fsetgWe will show below how to implement SetNat by the following speci�cation of bags (multisets)of natural numbers:BagNat =def restrict (enrich Nat bysorts bagopns ;: ! bagadd: nat; bag! bagisempty: bag ! boolcount: nat; bag! nataxioms D(;)D(add(a;B))add(a; add(b;B)) = add(b; add(a;B))isempty(;) = trueisempty(add(a;B)) = falsecount(a; ;) = 0count(a; add(a;B)) = succ(count(a;B))a 6= b) count(a; add(b;B)) = count(a;B))on fbaggThe constructor implementation of SetNat by BagNat proceeds in three steps:Extend: EBag!Set: Spec(Sig[BagNat])! Spec(�BagNat0) =def�X: Sig[BagNat]: enrich X bydata opns 2: nat; bag! boolaxioms a 2 B = count(a;B) > 0Derive: DBag!Set: Spec(�BagNat0)! Spec(Sig[SetNat]) =def�X: �BagNat0: derive from X by �where � renames the sorts and operations in Sig[SetNat] to those in �BagNat0 by renamingset to bag and leaving the other names as they were (note that count is hidden in this step).17

Quotient: QBag!Set: Spec(Sig[SetNat])! Spec(Sig[SetNat]) =def�X: Sig[SetNat]: quotient X wrtf8a: nat; S: set:add(a; add(a; S))� add(a; S)gNotice that any speci�cation-building operation !: Spec(�)! Spec(�0) may be identi�ed with theparameterised speci�cation �X: �:!(X). This allows us to use the syntax of parameterised speci�c-ations to de�ne speci�cation-building operations (constructors in particular) as above.We now have: SetNat EBag!Set;DBag!Set;QBag!Set�����������������������>BagNatThis may be equivalently (and perhaps more directly) presented as a single simple re�nement step.Namely, we have just stated that SetNat re�nes to the following speci�cation:quotientderive fromenrichBagNatby data opns 2: nat; bag! boolaxioms a 2 B = count(a;B) > 0by �wrt f8a: nat; S: set:add(a; add(a; S)) = add(a; S)gWe hope that this makes the notation we used to de�ne EBag!Set, DBag!Set and QBag!Set clear.We prefer the previous formulation of the same implementation step, since it clearly separates theconstructive part of the re�ned speci�cation (EBag!Set;DBag!Set;QBag!Set) from its non-constructive,yet-to-be-implemented part (BagNat).Of course, the claim that BagNat implements SetNat via EBag!Set;DBag!Set;QBag!Set requires aproof. We have to show that given any modelBAG 2 Mod[BagNat],QBag!Set(DBag!Set(EBag!Set(BAG)))is a model of SetNat. In this case the proof is relatively straightforward and easy, albeit tedious,based directly on our de�nitions of the speci�c constructions involved, arguing in terms of how theconstructors transform individual models of BagNat. We omit it here, and we omit similar proofsin the sequel. It should be pointed out, however, that if the methodology we present is to be usedin practice, some systematic and uniform techniques for constructing proofs of this kind must be de-veloped. This task is separate from the development of the general model-theoretic framework whichis the topic of this paper.Next we implement BagNat by the following speci�cation of lists of natural numbers:ListNat =def restrict (enrich Nat bysorts listopns nil: ! listcons: nat; list! listnull: list! bool18

hd: list! nattl: list! listaxioms D(nil)D(cons(a; L))null(nil) = truenull(cons(a; L)) = falsehd(cons(a; L)) = atl(cons(a; L)) = L)on flistgThe constructor implementation of BagNat by ListNat proceeds in three steps. The idea is thata �nite bag is represented by a list containing at the nth position the number of times n occurs in thebag.Extend: EList!Bag: Spec(Sig[ListNat])! Spec(�ListNat0) =def�X: Sig[ListNat]:enrich X bydata opns nth: nat; list! natput: nat; list! listaxioms null(L) = true) nth(n;L) = 0null(L) = false) nth(0; L) = hd(L)null(L) = false) nth(succ(n); L) = nth(n; tl(L))null(L) = true) put(0; L) = cons(succ(0); L)null(L) = false) put(0; L) = cons(succ(hd(L)); tl(L))null(L) = true) put(succ(n); L) = cons(0; put(n;L))null(L) = false) put(succ(n); L) = cons(hd(L); put(n; tl(L)))where �ListNat0 is the extension of Sig[ListNat] by the operation names nth: nat; list! natand put: nat; list! list.Derive: DList!Bag: Spec(�ListNat0)! Spec(Sig[BagNat]) =def�X: �ListNat0: derive from X by �where � renames the sorts and operations in Sig[BagNat] to those in �ListNat0 by renamingbag to list, ; to nil, add to put, count to nth and isempty to null and leaving the other namesas they were. Note that hd, tl and cons are hidden in this step.Restrict: RList!Bag: Spec(Sig[BagNat])! Spec(Sig[BagNat]) =def�X: Sig[BagNat]: restrict X on fbaggIntuitively, this removes from models those bags which cannot be constructed using ; and add,i.e. lists with trailing 0's. This last step is necessary only because we started with the explicitrequirement that models of BagNat (and initially of SetNat) are reachable.19

We now have: BagNat EList!Bag ;DList!Bag ;RList!Bag������������������������>ListNatPutting this together with the previous example using the vertical composition theorem, we get:SetNat EList!Bag;DList!Bag ;RList!Bag ; EBag!Set;DBag!Set;QBag!Set���>ListNatAlthough both of the implementations we composed above are in the form required in [EKMP 82](extend-derive-restrict-quotient) the result implementation is not in this form. In this case theresult may be converted to an implementation of this form but this does not matter in our framework;the implementation is acceptable as it is.6 Abstractors and implementationsIt is often possible to abstract away from some of the details of the user's original speci�cation withoutviolating the real intention behind it. This is the idea behind the speci�cation technique known insoftware engineering as abstract model speci�cation [LB 77], in which the user de�nes in a more orless concrete fashion a model which gives the desired results with the intention that any programgiving the same answers is acceptable. An example (not from software engineering) is in [AMRW 85]where the semantics of a set of basic operations on transition systems (which are su�cient to de�nee.g. SMoLCS [AR 83]) is described by �rst presenting an operational semantics and then abstractingin two di�erent ways to yield the input-output semantics and strong equivalence semantics. Ourspeci�cation of sets of natural numbers in the last section may be regarded in the same way | we donot really care whether an algebra satis�es all the axioms given there. An algebra is an acceptablerealisation of this speci�cation as long as the membership relation behaves properly (i.e. gives theright answers for every choice of argument).This theme has been discussed in [GGM 76], [BM 81], [Rei 81], [GM 82], [Sch 86], [Kam 83],[MG 83], [ST 85a,87a] and elsewhere; the idea goes back (at least) to work on automata theory in the1950's [Moo 56].To formalize these ideas we will consider another class of speci�cation-building operations calledabstractors. Intuitively, any equivalence relation on �-algebras determines a speci�cation-buildingoperation which relaxes interpretation of any �-speci�cation SP by admitting as a model any �-algebra which is equivalent to a model of SP . Seen another way, the abstractor closes the class ofmodels of a speci�cation under this equivalence.De�nition 6.1 An abstractor determined by an equivalence relation � � PAlg(�) �PAlg(�) is aspeci�cation-building operation ��: Spec(�)! Spec(�) where for any �-speci�cation SP ,Sig[��(SP)] = �Mod[��(SP)] = fA 2 PAlg(�) j 9A0 2 Mod[SP]:A � A0gIn the sequel we will omit the subscript � when there is no danger of confusion. Also, if � is knownwe denote the abstraction equivalence which determines it by ��.20

A few easy facts follow immediately from this de�nition.Fact 6.2 Abstractors are monotonic. 2Fact 6.3 Abstractors preserve and reect consistency of speci�cations. That is, for any abstractor�: Spec(�)! Spec(�) and �-speci�cation SP , SP is consistent i� �(SP) is consistent. 2Fact 6.4 Abstractors are idempotent, i.e. for any abstractor �: Spec(�)! Spec(�), �(�(SP)) hasthe same class of models as �(SP). 2Remark In general, abstractors are not closed under composition, i.e. there are abstractors�1: Spec(�)! Spec(�) and �2: Spec(�)! Spec(�) such that the composition �1;�2: Spec(�)!Spec(�) is not an abstractor.Counterexample Let PAlg(�) = C1 [C2 [C3 [C4 where C1; : : : ; C4 are disjoint classes of�-algebras. Consider the equivalences� = (C1 � C1) [(C2 � C2) [(C3 � C3) [(C4 �C4)�1 = �[(C1 � C2) [(C2 � C1) [(C3 � C4) [(C4 � C3)�2 = �[(C2 � C3) [(C3 � C2)��1;��2 is not idempotent, in contradiction to fact 6.4: ��2(��1(C1)) = C1 [C2 [C3 6= PAlg(�) =��2(��1(��2(��1(C1)))). 2This fact is neither surprising nor disturbing; we will not in fact have occasion to compose abstractors.Example 6.5 (observational abstraction) For any �-speci�cation SP and set W of ground �-terms, the semantics of the speci�cation abstract SP wrt W is as follows [SW 83]:Sig[abstract SP wrt W] = �Mod[abstract SP wrt W] = fA 2 PAlg(�) j 9A0 2 Mod[SP]:A �W A0gwhere for any two algebras A;A0 2 PAlg(�), A �W A0 i�:� for all t 2 W , A j= D(t) i� A0 j= D(t), and� for all s 2 sorts(�) and all t; t0 2 Ws, A j= t = t0 i� A0 j= t = t0.Intuitively,W is the set of �-terms which represent computations the user is allowed to perform. Wedo not want to distinguish between algebras in which all these computations give the same results. Asimilar idea in the context of concurrent processes appears in [deNH 84].This can be generalised in two ways. First, instead of a set of �-terms for which we can \observe"de�nedness and equality, we can consider more complicated observations: arbitrary �-sentences. Two21

�-algebras are equivalent with respect to a set of �-sentences if they satisfy exactly the same sentencesfrom this set. This more general notion of observational equivalence was introduced and analysed in[ST 87a] (cf. [Pep 83]). Second, since we have only considered ground terms here, the equivalencetakes into account only reachable subparts of algebras. To take \junk" into account, one can considerequivalence with respect to a set of �-terms (or more generally, �-formulae) with free variables; see[SW 83] and [ST 87a] for details. For simplicity, we discuss only the simplest version of observationalequivalence here. 2Example 6.6 (behavioural abstraction) An important special case of observational abstraction isbehavioural abstraction. For any �-speci�cation SP and set OBS � sorts(�) of sorts, the semanticsof the speci�cation behaviour SP wrt OBS is as follows [SW 83], [ST 86a,87a]:Sig[behaviour SP wrt OBS] = �Mod[behaviour SP wrt OBS] = fA 2 PAlg(�) j 9A0 2 Mod[SP]:A �OBS A0gwhere the equivalence �OBS is just �W for W the set of all ground �-terms of sorts in OBS. Intu-itively, OBS is the set of external sorts, visible to the user. The result of any computation leading toany of these sorts is observable. 2The above considerations indicate that often we are satis�ed with implementing a given speci�ca-tion up to an abstraction equivalence. This leads to the following notion:De�nition 6.7 (abstractor implementation) A �-speci�cation SP is implemented by a �0-spec-i�cation SP 0 wrt an abstractor �: Spec(�) ! Spec(�) via a constructor �: Spec(�0) ! Spec(�),written SP �����>SP 0, if �(SP)���>�(SP 0). In other words, SP �����>SP 0 if � transforms every model ofSP 0 to an algebra which is ��-equivalent to a model of SP .Every constructor implementation SP ����>SP 0 is also an abstractor implementation SP ������>SP 0where � is the identity relation on PAlg(Sig[SP]). Also, if SP ������>SP 0 is an abstractor imple-mentation then so is SP ��0����> SP 0 for any �0 � �.If in the above de�nition, � is behavioural abstraction, then intuitively speaking we are imple-menting the behaviour of SP rather than SP itself. This subsumes the notions of implementation in[GM 82], [Sch 86] and [BMPW 86].The abstractor � cannot be chosen arbitrarily; the choice depends on the speci�cation SP and thecontext in which it is to be used. If � abstracts too much then the implementation will be useless | forexample if � is the total equivalence on PAlg(�) then Mod[��(SP)] = PAlg(�) and so SP ������>SP 0for any SP 0 and constructor �: Spec(Sig[SP 0])! Spec(Sig[SP]).Let us consider now the problem of vertical composability of abstractor implementations. SupposeSP �����>SP 0 and SP 0 �0�0���> SP 00. We would like to be able to conclude that SP ��0;�����> SP 00. Note thataccording to the above argument we assume that � was chosen appropriately for the context in whichSP is to be used and so we do not want to change it even when composing implementations.In general, there is no hope for such a result. If �0 is too \liberal", there is no reason to expectthat � transforms any �0(SP 0)-model to a model of �(SP). However, the following theorem does hold:22

Theorem 6.8 (vertical composition) If SP �����>SP 0 and SP 0 �0�0���>SP 00 then SP ��0;�����>SP 00 provided� preserves the abstraction equivalences, i.e. for any two algebras A1; A2 2 PAlg(Sig[SP 0]) if A1 ��0A2 then �(A1) �� �(A2).Proof By de�nition, �0(SP 0)���> �0(SP 00). Then �(�0(SP 0))���> (�0;�)(SP 00) follows from the mono-tonicity of �. By vertical composability of ���> it su�ces to show that �(SP)���> �(�0(SP 0)), i.e.Mod[�(SP)] � Mod[�(�0(SP 0))] = �(Mod[�0(SP 0)]). Now, for any model A0 2 Mod[�0(SP 0)], there isA10 2 Mod[SP 0] such that A0 ��0 A10. Since � preserves the abstraction equivalences, �(A0) �� �(A10).Now, �(A10) 2 Mod[�(SP)] since SP �����>SP 0 and so �(A0) 2 Mod[�(SP)]. 2A methodological conclusion from this theorem is that the development process should proceedas follows: starting from a speci�cation SP considered in a context for which an abstractor � isappropriate, we (abstractor) implement SP , say SP �����>SP 0. The next step should be to establishthe appropriate abstractor up to which SP 0 may be considered by \pushing �� through �". Namely,from the above theorem it follows that this should be the abstractor determined by the equivalence��1(��) where for A;A0 2 PAlg(Sig[SP 0]), A ��1(��) A0 i� �(A) �� �(A0) (it is trivial to show that��1(��) de�ned in this way is an equivalence). Then, we can proceed with the development of SP 0 inthe context of the abstractor determined by ��1(��). (Actually, any equivalence �ner than ��1(��)will do.) Similar ideas in the context of concurrent processes appear in [Lar 86].Corollary 6.9 If SP0 �1�1���> � � � �n�n���>SPn and ��2 � ��11 (��1) and � � � and ��n � ��1n�1(��n�1) thenSP0 �1�n; � � � ;�1��������>SPn. 2In practice, it is often convenient to use a sharper version of the above results. It is not reallynecessary for constructors to preserve the abstraction equivalences on all algebras; the results hold ifthe constructors preserve the equivalences between models of the appropriate speci�cations (e.g. inthe vertical composition theorem it is su�cient that �(A1) �� �(A2) for any A1 2 PAlg(Sig[SP 0])and A2 2 Mod[SP 0] such that A1 ��0 A2).The requirement in the vertical composition theorem that the constructors preserve abstractionequivalences is just the same as the requirement in [Sch 86] that constructors in implementation steps(which correspond to implementation cells, in his terminology) be stable. A di�erence between theapproach in [Sch 86] and ours is that he considers a �xed abstraction equivalence between all algebrasof a given signature.In the rest of this section, we show that vertical composition and the above methodological remarksmay work in practice. On one hand, the constructors we have introduced do preserve appropriate(observational) equivalences; and on the other hand, we show how to push standard observationalequivalences in a satisfactory way through the constructors we have de�ned. By \in a satisfactoryway" we mean that although in some cases we do not characterise the result of pushing an equival-ence through a constructor exactly, we describe instead a �ner equivalence which is also su�cient asmentioned already. 23

Lemma 6.10 (derive) For any signature morphism �: �1 ! �2 and set W of ground �2-terms,D�1� (�W) = ��(W), where D�: Spec(�2) ! Spec(�1) =def �X: �2: derivefrom X by �. (We justi�ed this notation in the last section.)Proof Recall that D� (viewed as a function) is the reduct functor �: PAlg(�2) ! PAlg(�1).Let A;A0 2 PAlg(�2). We have A ��(W) A0 i�: for all t 2 W , A j= D(�(t)) i� A0 j= D(�(t)) and forall t1; t2 2 Ws, A j= �(t1) = �(t2) i� A0 j= �(t1) = �(t2). By the satisfaction lemma, this is equivalentto: for all t 2 W , A � j= D(t) i� A0 � j= D(t) and for all t1; t2 2 Ws, A � j= t1 = t2 i� A0 � j= t1 = t2,i.e. A � �W A0 �. 2Lemma 6.11 (restrict) For any signature �, S � sorts(�), set W of ground �-terms and �-algebraA, A �W RS(A), where RS: Spec(�) ! Spec(�) =def �X: �: restrict Xon S.Proof Obvious since for any A 2 PAlg(�) and t 2 W , A j= D(t) i� RS(A) j= D(t) and moreoverif A j= D(t) then the values of t in A and in RS(A) are the same. 2The above lemma gives directly a characterisation of the result of pushing observational equivalencethrough restrict constructors. Perhaps more importantly, it directly implies that restrict steps maybe skipped if we use abstractor implementations.Corollary 6.12 Under the assumptions of lemma 6.11, R�1S (�W) = �W . 2Corollary 6.13 Under the assumptions of lemma 6.11, if � is the abstractor determined by �W , thenfor any �-speci�cations SP and SP 0, SP �RS���>SP 0 implies SP �id���>SP 0. 2It is worth pointing out that the above corollary also allows us to throw out restrict steps \inthe middle" of the development process (provided that the intermediate equivalence used in this stepsatis�es the assumptions of lemma 6.11). Namely, given SP ��0;RS ;��������>SP 0, if this implementation canbe decomposed into SP �����> SP1 �0�0;RS������>SP 0 where ��0 � ��1(��) (and, say, SP1 = RS(�0(SP 0)))and ��0 is observational equivalence with respect to a set of ground terms, then SP �����> SP1 �0�0���>SP 0and hence SP ��0;�����>SP 0. This means that corollary 6.12 becomes superuous since instead of usingit to push equivalences through restrict steps we can just skip these steps entirely. This correspondsnicely to standard programming practice. If we happen to produce a data type with some junkelements, we are not forced to remove them before using the data type. Instead, we just use the datatype as usual, pretending that the junk elements are not there.The situation with quotient steps is similar. No program can ever force two di�erent existing datavalues to be the same. At best, we can pretend that they are the same. This is possible only providedthat they exhibit the same observable behaviour. Thus, we can remove quotient steps whenever theydo not glue together elements having di�erent observable behaviour.24

De�nition 6.14 For any signature �, set E of �-equations, set W of ground �-terms and �-algebraA, we say that E is observably trivial on A (wrt W) if A �W A=E. We say that E is observably trivialon a �-speci�cation SP if it is observably trivial on each model of SP . We say that E is behaviourallytrivial on A (resp. SP) wrt a set OBS � sorts(�) of observable sorts if it is observably trivial on A(resp. SP) with respect to the set of all ground terms of sorts in OBS.As for restrict, the above de�nition leads directly to a (trivial) characterisation of the result ofpushing observational equivalence through the quotient constructor in the context of speci�cationswhich guarantee observable triviality of the equations by which we quotient. More importantly,however:Lemma 6.15 (quotient) Under the assumptions of de�nition 6.14, if � is the abstractor determinedby �W and SP; SP 0 are �-speci�cations such that E is observably trivial on SP 0 wrtW and SP �QE���>SP 0where QE: Spec(�) ! Spec(�) =def �X: �: quotient Xwrt E, then SP �id���>SP 0. 2Proof Trivial. 2The above de�nition of observable triviality does not give any hints on how to prove that a set ofequations is indeed observably trivial on a given speci�cation. We do not study this problem here, justas we do not treat techniques for proving implementation steps correct. We formulate the followingeasy lemma to indicate what kind of results may be expected and useful here.Lemma 6.16 Consider a signature �, set E of �-equations, set OBS � sorts(�) of observable sortsand a reachable, total �-algebra A. Let �E be the least congruence on ground �-terms generated byE (i.e. �E =def �ET�). If for any two ground terms t; t0 of an observable sort, A j= t = t0 whenevert �E t0 then E is behaviourally trivial on A wrt OBS.Proof It is easy to see that since A is reachable and all terms have a de�ned value in A,�EA = fhtA; t0Ai j t �E t0g:Hence, by our assumption, the congruence �EA is the identity relation on the carriers of A of observablesorts and thus indeed A �OBS A=E. 2De�nition 6.17 For any signature morphism �: � ! �0, constructor �: Spec(�) ! Spec(�0) andsets W and W 0 of ground �- and ground �0-terms respectively, � is observably su�ciently complete(wrt W;W 0) if for any term t0 2 W 0, either for all A 2 PAlg(�), �(A) 6j= D(t0) or there exists a termt 2 W such that for all A 2 PAlg(�), �(A) j= t0 = �(t).Typically, we will consider sets W and W 0 such that observable su�cient completeness is a weakercondition than su�cient completeness, which corresponds to the case whereW 0 is the set of all ground�0-terms of the sorts �(S) for S =def sorts(�) and W is the set of all ground �-terms.25

De�nition 6.18 For any signature morphism �: � ! �0, constructor �: Spec(�) ! Spec(�0) andset W of ground �-terms, � is observably persistent (wrt W) if for all terms t1; t2 2 W of thesame sort and any A 2 PAlg(�), �(A) j= �(t1) = �(t2) i� A j= t1 = t2 and �(A) j= D(�(t1)) i�A j= D(t1).Notice that observable persistency is a weaker condition than the standard persistency, i.e. that forany A 2 PAlg(�), �(A) � = A. Namely, the satisfaction lemma implies that if � is persistent then itis observably persistent.The following lemma applies to all synthesizing constructors, including for example the extendconstructor.Lemma 6.19 (synthesize) For any signature morphism �: � ! �0 which is injective on sorts,constructor �: Spec(�)! Spec(�0) and sets W and W 0 of ground �- and �0-terms respectively, if �is observably su�ciently complete wrt W;W 0 and observably persistent wrt W then ��1(�W 0) � �W .Moreover, if in addition W is a minimal set such that observable su�cient completeness holds then��1(�W 0) = �W .Proof Let A1; A2 2 PAlg(�). Assume A1 �W A2; we prove that �(A1) �W 0 �(A2).1. For any t0 2 W 0, �(A1) j= D(t0) i� �(A2) j= D(t0): If t0 is de�ned in no algebra �(A) forA 2 PAlg(�) then the equivalence is obvious. Otherwise, let t 2 W be such that for anyA 2 PAlg(�), �(A) j= t0 = �(t). Now �(A1) j= D(t0) i� �(A1) j= D(�(t)) i� A1 j= D(t) (byobservable persistency) i� A2 j= D(t) i� �(A2) j= D(�(t)) i� �(A2) j= D(t0).2. For any t10; t20 2 W 0 of the same sort, �(A1) j= t10 = t20 i� �(A2) j= t10 = t20:\(": If t10 and t20 are unde�ned in �(A2) then they are unde�ned in �(A1) as well by (1) andso �(A1) j= t10 = t20. So assume both t10 and t20 are de�ned in �(A2). Let t1; t2 2 W besuch that for all A 2 PAlg(�), �(A) j= t10 = �(t1) and �(A) j= t20 = �(t2). Since � isinjective on sorts, t1 and t2 are of the same sort. We have �(A2) j= �(t1) = �(t2) henceA2 j= t1 = t2 by observable persistency and so A1 j= t1 = t2 and so �(A1) j= �(t1) = �(t2)which �nally implies �(A1) j= t10 = t20.\)": By symmetry.Moreover, notice that ifW is a minimal set of ground �-terms such that observable su�cient complete-ness holds, then for all t 2 W there exists t0 2 W 0 such that for all A 2 PAlg(�), �(A) j= t0 = �(t);otherwise we could have removed t from W without violating observable su�cient completeness andobservable persistency. We can now prove �(A1) �W 0 �(A2) implies A1 �W A2 using the samearguments as above. 2Notice that although in order for � to be a well-de�ned constructor we require that it is de�nedon all �-algebras, in the development process � will be applied to a particular speci�cation SP in the26

context of an abstractor �. In this situation it is su�cient to show that � is observably su�cientlycomplete and observably persistent only on models of �(SP).As remarked already, constructor implementation using the derive, restrict, quotient and ex-tend constructors subsumes many of the notions of implementation in the literature. The abovelemmas imply that the extension of any of these notions to a corresponding notion of abstractorimplementation goes through smoothly.Lemma 6.20 (amalgamated union) Let �1: Spec(�) �1�!Spec(�1) and �2: Spec(�) �2�!Spec(�2)be persistent constructors, W;W1;W2 be sets of ground �-, �1- and �2-terms respectively such that�1 is observably su�ciently complete wrt W;W1 and �2 is observably su�ciently complete wrt W;W2.Recall that � =def �1 + �2: Spec(�)! Spec(�0), where��2 �1�0?�2 ?�10-�1 -�20is a pushout in Sign, is a persistent synthesizing constructor (along �1;�10 = �2;�20) such that forA 2 PAlg(�), �(A) is the unique �0-algebra such that �(A) �10 = �1(A) and �(A) �20 = �2(A). Underthese assumptions, � is observably su�ciently complete wrt W;W 0 where W 0 =def �10(W1)[�20(W2).Proof Let t0 2 W 0. Suppose t0 = �10(t1) for t1 2 W1 (the case t0 = �20(t2) for t2 2 W2 is symmetric)and that �(A) j= D(t0) for someA 2 PAlg(�). Then also �1(A) j= D(t1) and so, since �1 is observablysu�ciently complete, there exists t 2 W such that for any A 2 PAlg(�), �1(A) j= t1 = �1(t). Nowfor any A 2 PAlg(�), �(A) j= �10(t1) = �10(�1(t)) i� �(A) �10 j= t1 = �1(t) by the satisfactionlemma. However, by the de�nition of �, �(A) �10 = �1(A) and so �(A) j= t0 = �10(�1(t)). 2Notice that we have assumed that �1 and �2 are persistent constructors as required in the de�nitionof �1 + �2. However, as noted in the remarks after that de�nition, the constructor �1 + �2 will inpractice be applied to a particular �-speci�cation SP in which case it is su�cient that �1 and �2 bepersistent and observably su�ciently complete only on models of SP (up to the relevant abstractionequivalence).Corollary 6.21 Under the assumptions of lemma 6.20, ��1(�W 0) � �W .Proof By lemma 6.20, � = �1 + �2 is observably su�ciently complete. Moreover, it is observablypersistent since it is persistent by fact 4.11. The result follows directly by lemma 6.19. 2Lemma 6.22 (translation of a constructor) Let27

��2 �1�0?�2 ?�10-�1 -�20be a pushout in Sign, let W;W1;W2 be sets of ground �-, �1- and �2-terms respectively, and let�1: Spec(�) �1�!Spec(�1) be a persistent constructor. If �1 is observably su�ciently complete wrtW;W1 and �2(W) � W2 then �2(�1): Spec(�2)! Spec(�0) is observably su�ciently complete wrtW2;W 0 where W 0 = �10(W1) [�20(W2).Proof Let t0 2 W 0. If t0 = �20(t2) for t2 2 W2, there is nothing to prove. Otherwise, t0 = �10(t1)for some t1 2 W1. If for some A2 2 PAlg(�2); �2(�1)(A2) j= D(t0) then also �1(A2 �2) j= D(t1) andso, by observable su�cient completeness of �1, there exists t 2 W such that for any A 2 PAlg(�),�1(A) j= t1 = �1(t). Hence, for any A2 2 PAlg(�2), �2(�1)(A2) j= �10(t1) = �10(�1(t)) by thesatisfaction lemma, since �2(�1)(A2) �10 = �1(A2 �2). Now, notice that �20(�2(t)) = �10(�1(t)), andso �2(�1)(A2) j= t0 = �20(�2(t)). Moreover, �2(t) 2 W2. 2Corollary 6.23 Under the assumptions of lemma 6.22, �2(�1)�1(�W 0) � �W2.Proof By lemma 6.22, �2(�1) is observably su�ciently complete. Moreover, it is observablypersistent since it is persistent (see example 4.12 in section 4). The result follows directly by lemma6.19. 2Notice that again in practice it is su�cient to require that �1 be persistent and observably su�cientlycomplete only on (the relevant parts of) models of the speci�cation its translation is applied to in thedevelopment process.7 Examples of abstractor implementationsRecall from section 5 the development of the (constructor) implementation of sets of natural numbersby lists of natural numbers:SetNat EBag!Set;DBag!Set;QBag!Set�����������������������>BagNat EList!Bag ;DList!Bag ;RList!Bag������������������������>ListNatAs argued in the last section, we do not really need an exact implementation of SetNat; all we areinterested in is the behaviour that SetNat determines, i.e. we want to implement the speci�cationbehaviour SetNat wrt fnat; boolg. LetASet: Spec(Sig[SetNat])! Spec(Sig[SetNat]) =def�X: Sig[SetNat]: behaviour X wrt fnat; boolg28

be the abstractor. We then have (trivially):SetNat ASetEBag!Set;DBag!Set ;QBag!Set�����������������������>BagNatWe can now use lemma 6.15 simplify this implementation. Since by lemma 6.16 the equation used inthe quotient step QBag!Set is behaviourally trivial on DBag!Set(EBag!Set(BagNat)) with respect tofnat; boolg (notice that the count operation is no longer available here), we have:SetNat ASetEBag!Set;DBag!Set����������������>BagNatThe way we have arrived at this implementation step is misleading. Ordinarily, we would notproceed by �rst developing a constructor implementation, then upgrading it to an abstractor imple-mentation, and then simplifying the result. Our task from the beginning would be to implementSetNat up to ASet and we would not have to use an explicit quotient at all. On the other hand, theproof that this is an implementation might well involve a quotient construction in order to show thatfor every BAG 2 Mod[BagNat], DBag!Set(EBag!Set(BAG)) is ASet-equivalent to a model of SetNat.We want to proceed further with the development by exploring the possibilities for an abstractorimplementation of BagNat which can be composed with the above. To do this, we need to determ-ine the appropriate abstraction equivalence for BagNat in this context by pushing �ASet throughEBag!Set;DBag!Set.Recall that �ASet is observational equivalence wrt the set WSet of all ground Sig[SetNat]-terms ofsorts nat and bool. By lemma 6.10, D�1Bag!Set(�ASet) is observational equivalence on PAlg(�BagNat0)with respect to the same set of terms (the signature morphism used in this step is the inclusion onoperation names). Notice that this set is strictly included in the set of all ground �BagNat0-termsof sorts nat and bool; for example, it does not contain terms like count(0; ;), count(0; add(0; ;)),count(succ(0); ;), isempty(add(count(0; ;); ;)), etc.The next step is more interesting. To use lemma 6.19 we need (intuitively) to �nd a way ofreplacing each observable term from WSet by a (provably) equal Sig[BagNat]-term. In fact, this willbe su�cient since EBag!Set is persistent (on models of BagNat). There is no trouble with observableSig[Nat]-terms { these will remain unchanged. The same holds for terms of the form isempty(B)where B is (syntactically!) a ground Sig[SetNat]-term of sort set, i.e. a ground Sig[BagNat]-term ofsort bag not containing an occurrence of count. The only other terms in WSet are of the form n 2 Bwhere n is a ground Sig[Nat]-term and B is a ground term of sort bag (to which set was renamedin the previous step). By the construction of EBag!Set, we have that for any BAG 2 Mod[BagNat],EBag!Set(BAG) j= n 2 B = count(n;B) > 0.Thus the appropriate set WBag of observable terms contains all ground Sig[Nat]-terms and allSig[BagNat]-terms of the forms isempty(B) and count(n;B) > 0 where n is a ground Sig[Nat]-termand B is a ground Sig[SetNat]-term of sort set.Now, by lemma6.19, E�1Bag!Set(�WSet) = �WBag (sinceWBag is a minimal set of ground Sig[BagNat]-terms such that EBag!Set is observably su�ciently complete wrtWBag;WSet and EBag!Set is persistent).29

Now our job is to implement BagNat in the context of the abstraction equivalence �WBag . LetABag be the abstractor determined by this equivalence. The constructor implementation developedin section 5 yields the abstractor implementation:BagNat ABagEList!Bag ;DList!Bag ;RList!Bag������������������������>ListNatThe assumptions of corollary 6.12 are satis�ed and so we may eliminate the restrict step:BagNat ABagEList!Bag ;DList!Bag�����������������>ListNatThen similarly as above we can push the abstraction equivalence through DList!Bag and then EList!Bagto obtain a relevant abstraction equivalence for ListNat. In this case, a suitable equivalence turnsout to be �WList where WList contains:� all ground Sig[Nat]-terms,� all terms null(L) where L is a ground Sig[ListNat]-term of sort list such that Mod[ListNat] j=D(L), and� all ground Sig[ListNat]-terms of the form hd(L) > 0 where L is a ground Sig[ListNat]-term ofsort list such that Mod[ListNat] j= D(hd(L)).Notice that although for any ground Sig[ListNat]-term L of sort list, if Mod[ListNat] j= D(L) thenMod[ListNat] j= L = cons(n1; : : : ; cons(nk; nil) : : :) for some ground Sig[Nat]-terms n1; : : : ; nk, thisneed not be the case for algebras which are observably equivalent to models of ListNat wrt WList.What is true in any such algebra A is that for any such term L, either A j= null(L) = true or A j=null(L) = false and in the latter caseMod[ListNat] j= D(tl(L)) andMod[ListNat] j= D(hd(L)). Thisis already su�cient to reduce terms like put(n1; : : : ; put(nk; nil) : : :) to ground Sig[ListNat]-terms ofsort list de�ned in every model of ListNat. As a consequence of this, null(put(n1; : : : ; put(nk; nil) : : :))reduces to null(L) and nth(n; put(n1; : : : ; put(nk; nil) : : :)) > 0 reduces to hd(L0) > 0 for groundSig[ListNat]-terms L and L0, which is our goal.It is easy to see that EList!Bag is persistent on algebras observably equivalent to a model of ListNatwrt WList. Notice however that if we had replaced axioms like null(L) = false) nth(0; L) = hd(L)by nth(0; cons(n;L)) = n then we would lose persistency since in algebras which are observablyequivalent to models of ListNat wrt WList but are not themselves models of ListNat, equations likecons(n;L) = cons(n0; L) may hold even if n 6= n0.By lemma 6.19, (EList!Bag;DList!Bag)�1(�WBag) � �WList. Thus we are interested in implementingListNat in the context of the abstraction equivalence �WList. Let us stress that this is a di�erenttask from just implementing ListNat. By pushing the original abstraction equivalence through theconstructors used in the implementation of SetNat by ListNat we have determined a degree offreedom in implementing ListNat. In fact, it is just because of this that we can implement ListNatusing simply lists of booleans. This is by no means a universally useful implementation of ListNat| it is tailor-made to work in this particular context.30

ListBool =def restrict (enrich Bool bysorts listopns nil: ! listcons: bool; list! listnull: list! boolhd: list! booltl: list! listaxioms D(nil)D(cons(a; L))null(nil) = truenull(cons(a; L)) = falsehd(cons(a; L)) = atl(cons(a; L)) = L)on flistgNow the abstractor implementation of ListNat by ListBool+Nat proceeds in the following two steps:Extend: EListBool!ListNat: Spec(Sig[ListBool+Nat])! Spec(�ListBool0) =def�X: Sig[ListBool+Nat]:enrich X bydata opns cons0: nat; list! listhd0: list! nataxioms cons0(0; L) = cons(false; L)cons0(succ(n); L) = cons(true; L)hd(L) = false) hd0(L) = 0hd(L) = true) hd0(L) = succ(0)Derive: DListBool!ListNat: Spec(�ListBool0)! Spec(Sig[ListNat]) =def�X: �ListBool0: derive from X by �where � renames the sorts and operations in Sig[ListNat] to those in �ListBool0 by renamingcons to cons0 and hd to hd0 and leaving the other names unchanged. Note that this hides theoriginal hd and cons operations on lists of booleans.The idea behind this implementation is that since we do not want to observe the values of elementsof lists but only test whether or not they are greater than 0, we can replace all the non-zero values bytrue and 0 by false.Let AList be the abstractor determined by the abstraction equivalence �WList. We have:ListNat AListEListBool!ListNat;DListBool!ListNat���������������������������>ListBool +NatPutting these three abstractor implementations together (the condition of the vertical compositiontheorem is satis�ed because of the way we developed the implementations) we get:SetNat ASetEListBool!ListNat;DListBool!ListNat ; EList!Bag ;DList!Bag ; EBag!Set;DBag!Set���>ListBool+Nat31

Of course, we could have implemented SetNat by ListBool + Nat in a much more direct way(without going through BagNat and ListNat) but the point of this example was to show the detailsof the intermediate implementations rather than to discover a clever implementation of SetNat.8 Parameterisation and implementationsIn the same way as the simple notion of re�nement on speci�cations gave rise to a notion of re�ne-ment for parameterised speci�cations, the de�nitions of constructor and abstractor implementationin sections 4 and 6 extend to notions of constructor and abstractor implementation for parameterisedspeci�cations. We begin with the former.8.1 Parameterisation and constructor implementationsDe�nition 8.1 For any parameterised speci�cation P : Spec(�par) ! Spec(�res) and speci�cation-building operation !: Spec(�res)! Spec(�), !(P) is a parameterised speci�cation de�ned by !(P) =def�X: �par:!(P (X)): Spec(�par)! Spec(�).De�nition 8.2 (constructor implementation) For any parameterised speci�cations with a com-mon parameter signature P : Spec(�par) ! Spec(�) and P 0: Spec(�par) ! Spec(�0) and con-structor �: Spec(�0)! Spec(�), P is implemented by P 0 via �, written P ����>P 0, if P ���>�(P 0).This subsumes the notion of implementation of parameterised speci�cations in [SW 82]. It re-sembles the one in [Lip 83], where a parameterised speci�cation is a (strongly) persistent functor.According to [Lip 83], P is implemented by P 0 via a construction F (another persistent functor, ob-tained by composing certain speci�cation-building operations) if there is some P 00 and (persistent)natural transformations i: P 00 .!P 0;F and s: P 00 .!P such that i and s are componentwise injectiveand surjective respectively. In our framework, this corresponds roughly to an implementation via thecomposition of a persistent constructor, a restrict step and a quotient step (in that order).Although there are several other de�nitions of implementation of parameterised speci�cations inthe literature (see e.g. [EK 82], [GM 82] and [Gan 83]) it is di�cult to compare them with oursbecause our de�nition extends the de�nition for the non-parameterised case in the usual way thata relation is extended from elements to functions (that is, pointwise). In contrast, [EK 82] de�nesimplementation of parameterised speci�cations by comparing their bodies and then proves that thisimplies our notion of implementation. This is arguably preferable from the point of view of provingcorrectness of implementations (see section 10 for some brief comments on this point) but we preferto adopt the natural de�nition and treat the problem of proving correctness separately.As in the non-parameterised case, vertical composition is easy to show:Theorem 8.3 (vertical composition) For any parameterised speci�cations P;P 0; P 00 with commonparameter signature �par, if P ����>P 0 and P 0 �0���>P 00 then P �0 ;�����>P 00.32

Proof Pointwise, using vertical composition for the non-parameterised case. 2Similarly as in fact 4.15, we can mechanically strip o� outermost constructors from parameterisedspeci�cations:Fact 8.4 For any parameterised speci�cations P and P 0 and constructor � on the result signature ofP , �(P) �0 ;�����>P 0 provided that P �0���>P 0.Proof As for fact 4.15. 2Constructor implementations do not compose horizontally. In fact, the standard formulation ofthe horizontal composition property is not even well-formed in this case. Namely, if P : Spec(�par)!Spec(�res) is a parameterised speci�cation, SP is a �par speci�cation and SP ����> SP 0, then in generalSig[SP 0] 6= �par and so P (SP 0) is not even well-de�ned.The following theorem plays the role of horizontal composition for constructor implementations:Theorem 8.5 (horizontal composition) Given a parameterised speci�cation P with parametersignature �par and a �par-speci�cation SP , if P ����>P 0 and SP ����>SP 0 then P (SP) ����>P 0(�(SP 0)).Proof SP ����> SP 0 means SP ���> �(SP 0), hence since all speci�cation-building operations aremonotonic, by an easy induction on the de�nition of P 0 we can show that P 0(SP)���>P 0(�(SP 0)).Since by de�nition, P ����>P 0 implies P (SP) ����>P 0(SP), the vertical composition theorem for non-parameterised speci�cations implies P (SP) ����>P 0(�(SP 0)). 2Although this is not horizontal composition as formulated in [GB 80], it is perfectly adequate forour purposes. It guarantees that in the case of a speci�cation formed by applying a parameterisedspeci�cation P to a �-speci�cation SP , the developments of P and SP may proceed independently andthe results be successfully combined. If P �1���>P1 �2���> � � � �n���>Pn and SP �1���>SP1 �2���> � � � �m���> SPmthen P (SP) �n ; � � � ;�1��������>Pn((�m; � � � ;�1)(SPm)). We aim at reducing the parameter speci�cation tothe empty speci�cation and the parameterised speci�cation to the identity. If SPm = h�;; ;i andPn = �X: �:X then the composition of constructors �m; � � � ;�1;�n; � � � ;�1 forms a program whichimplements P (SP).8.2 Parameterisation and abstractor implementationsDe�nition 8.6 (abstractor implementation) For any parameterised speci�cations with a com-mon parameter signature P : Spec(�par) ! Spec(�) and P 0: Spec(�par) ! Spec(�0), abstractor�: Spec(�)! Spec(�) and constructor �: Spec(�0)! Spec(�), P is implemented by P 0 wrt � via�, written P �����>P 0, if �(P)���>�(P 0).Vertical composition of abstractor implementations of parameterised speci�cations is just the sameas in the non-parameterised case: 33

Theorem 8.7 (vertical composition) For any parameterised speci�cations P;P 0; P 00 with commonparameter signature �par, if P �����>P 0 and P 0 �0�0���>P 00 then P ��0;�����>P 00 provided that � preserves theabstraction equivalences.Proof Pointwise, using vertical composition for the non-parameterised case. 2Applicability of this result in program development requires proving that the constructors we use pre-serve the appropriate abstraction equivalences. For this, lemmas 6.10-6.22 of section 6 are applicablejust as in the non-parameterised case.Unfortunately, the horizontal composition theorem for abstractor implementations does not holdin general, even in the form suggested by the horizontal composition theorem for constructor imple-mentations. This is shown by the following counterexample:CounterexampleLet � =def sorts p; obsopns a; b:! pc; d: ! obsLet P =def �X: �:enrich X by opns f : p! obsaxioms f(a) = cLet SP =def sorts p; obsopns a; b:! pc; d: ! obsaxioms a = bLet �0obs: Spec(�0) ! Spec(�0) denote the abstractor determined by behavioural equivalenceon �0-algebras with respect to the observable sort obs, where �0 =def � [opns f : p! obs. Let�obs: Spec(�)! Spec(�) denote the abstractor determined by behavioural equivalence on �-algebraswith respect to obs. Then it is easy to see that Mod[�obs(SP)] = PAlg(�), hence SP �obsid�������> h�; ;i.Thus, one would expect that P (SP) �0obsid�0������>P (id�(h�; ;i)) if a horizontal composition theoremwere tohold. Unfortunately this is not the case: Mod[�0obs(P (SP))] 6� Mod[P (h�; ;i)]. To see this, notice thatMod[P (SP)] j= (a = b) ^ (f(a) = c), and hence Mod[P (SP)] j= f(b) = c. Thus Mod[�0obs(P (SP))] j=f(b) = c as well. On the other hand, Mod[P (h�; ;i)] 6j= f(b) = c. 2This example shows that for horizontal composition to hold, parameter speci�cations cannot ingeneral be abstracted from since parameterised speci�cations can make essential use of non-observableparts of the parameter. In the above example, the fact that Mod[SP] j= a = b but Mod[�obs(SP)] 6j=a = b allowed (intuitively) P to distinguish between the abstract and non-abstract form of SP .One way to circumvent this is to restrict attention to parameterised speci�cations which use theirarguments in an abstract way, so that if we change the argument to an equivalent one we get a resultwhich is equivalent. Formally:De�nition 8.8 Let �: Spec(�)! Spec(�) be an abstractor. We say that two �-speci�cations SP1and SP2 are �-equivalent if Mod[�(SP1)] =Mod[�(SP2)].34

Theorem 8.9 (horizontal composition) If P �����>P 0 and SP �0�0���>SP 0 then P (SP) �����>P 0(�0(SP 0))provided that either P or P 0 preserves �0-equivalence, i.e. for any �0-equivalent speci�cations SP1; SP2over the (common) parameter signature of P and P 0, either P (SP1) and P (SP2) are �-equivalent orP 0(SP1) and P 0(SP2) are ��1(��)-equivalent.Proof Since SP �0�0���> SP 0, by monotonicity of �(P 0), �(P 0(�0(SP)))���> �(P 0(�0(SP 0))).If P preserves �0-equivalence then P (�0(SP)) and P (SP) are �-equivalent which implies that�(P (SP))���> �(P (�0(SP))), and since P �����>P 0 entails �(P (�0(SP)))���> �(P 0(�0(SP))), we canindeed conclude �(P (SP))���> �(P 0(�0(SP 0))).If P 0 preserves �0-equivalence then so does �(P 0), i.e. for any two �0-equivalent speci�cationsSP1; SP2 over the parameter signature, �(P 0(SP1)) and �(P 0(SP2)) are �-equivalent (by the de�nitionof ��1(��)). In particular, we have �(�(P 0(SP)))���>�(�(P 0(�0(SP)))) and so trivially�(�(P 0(SP)))���> �(P 0(�0(SP))). Moreover, since P �����>P 0 entails �(P (SP))���> �(P 0(SP)), whichtrivially implies �(P (SP))���>�(�(P 0(SP))), we can conclude that �(P (SP))���> �(P 0(�0(SP 0))). 2The requirement that P preserves �0-equivalence in the above theorem is guaranteed in either ofthe following three cases:1. P is given in the form �X: �:SP1[�0(X)], i.e. P explicitly abstracts from its argument beforeusing it.2. P is built entirely from constructors which preserve the relevant abstraction equivalences.3. The abstractor �0 is trivial, i.e. for any speci�cation SP , Mod[�0(SP)] = Mod[SP].The last case amounts to the following:Corollary 8.10 If P �����>P 0 and SP �0���>SP 0 then P (SP) �����>P 0(�0(SP 0)). 2Recall that a constructor implementation SP �0���>SP 0 is an abstractor implementation SP �0�0���>SP 0where the abstractor �0 is trivial. Notice however that when we push the corresponding equivalence(which is the identity) through �0 and the constructors used in the further implementation of SP 0 (seetheorem 6.8 and subsequent discussion), the resulting abstraction equivalences may determine non-trivial abstractors again and so the use of techniques of abstractor implementations may be essentialfurther on.The other su�cient condition for the horizontal composability of abstractor implementations intheorem 8.9, namely the requirement that the implementing speci�cation P 0 preserves �0-equivalence,seems more important and useful from the point of view of program development methodology.(Thanks to Oliver Schoett for making this point.) Intuitively, P 0 is to be more speci�c and \smal-ler" than P and so it may be easier to formulate it in such a way that it preserves the abstractionequivalence. In particular, suppose that we have managed to implement P entirely constructively(which is, after all, the goal of the development process), i.e. we have P ��n; � � � ;�1��������> �X: �:X (where35

� is the parameter signature of P). Then the requirement that �X: �:X preserves �0-equivalence,as formulated in theorem 8.9, reduces to the requirement that the composite constructor �n; � � � ;�1preserves the corresponding abstraction equivalence on �-algebras. This is a reasonable requirementto impose, as the programming language used to encode constructors should guarantee this anyway(see [Sch 86] for full discussion).The above horizontal composition theorem may be used in modular program development just aspresented for constructor implementations of parameterised speci�cations. We have to ensure howeverthat the constructors used in the implementation preserve the relevant equivalences.9 Institutions and implementationsIn the previous sections we have chosen to present the development of our implementation notions,theorems and methodology in the framework of partial �rst-order logic with equality. This wasmostly in order to take advantage of the reader's intuition; we made use of very few properties ofpartial algebras or the form of sentences. This means that in place of full partial �rst-order logicwith equality we could have used partial equational logic or even some higher-order logic. Moreover,instead of partial algebras we could have used for example total algebras [GTW 76] or continuousalgebras [GTWW 77], [TW 86]. We could even change the notions of signature and of algebra to dealwith errors [GDLE 84], coercions [GJM 85], [Gog 83], or Milner-style polymorphism [Mil 78].The notion of an institution [GB 84a] provides a tool for dealing with any of these di�erent notionsof a logical system for writing speci�cations. An institution comprises de�nitions of signature, model(algebra), sentence and a satisfaction relation satisfying a few minimal consistency conditions. (Fora similar but more logic-oriented approach see [Bar 74].) By basing our de�nitions (of speci�cation,implementation, etc.) on an arbitrary institution we can avoid choosing particular de�nitions of theseunderlying notions and do everything at an adequately general level. We have presented our approachto speci�cations in an arbitrary institution at an intuitive level in [ST 85a] and with full technicaldetails in [ST 86a].De�nition 9.1 An institution INS consists of:� a category SignINS (of signatures);� a functor SenINS: SignINS ! Set (where Set is the category of all sets; SenINS gives for anysignature � the set SenINS(�) of �-sentences and for any signature morphism �: � ! �0 thefunction SenINS(�): SenINS(�)! SenINS(�0) translating �-sentences to �0-sentences);� a functor ModINS: SignINS ! Catop (where Cat is the category of all categories; ModINSgives for any signature � the category ModINS(�) of �-models and for any signature morphism�: �! �0 the �-reduct functor ModINS(�): ModINS(�0)!ModINS(�) translating �0-modelsto �-models); and 36

� a satisfaction relation j=INS;� � jModINS(�)j � SenINS(�) for each signature �.such that for any signature morphism �: �! �0 the translationsModINS(�) of models and SenINS(�)of sentences preserve the satisfaction relation, i.e. for any ' 2 SenINS(�) and M 0 2 jModINS(�0)j,M 0 j=INS;�0 SenINS(�)(') () ModINS(�)(M 0) j=INS;� ' (Satisfaction condition)To be useful as the underlying institution of a speci�cation methodology, an institution must providesome tools for \putting things together". Thus, we additionally require that the category Sign haspushouts and initial objects (i.e. is �nitely cocomplete) and moreover that Mod preserves pushoutsand initial objects (and hence �nite colimits), i.e. that Mod translates pushouts and initial objectsin Sign to pullbacks and terminal objects (respectively) in Cat. For a brief discussion of theserequirements see [ST 86a]. For notational convenience we omit subscripts like INS and � wheneverpossible, and for any signature morphism �: �! �0 we denote Sen(�) simply by � and Mod(�) by�.All of the logical systems mentioned above �t into the mould of an institution. In particular,partial �rst-order logic with equality forms an institution PFOEQ as follows:� SignPFOEQ is Sign� For a signature �, SenPFOEQ(�) is the set of partial �rst-order �-sentences; for a signaturemorphism �: � ! �0, SenPFOEQ(�) is the translation of �-sentences to �0-sentences, de�nedin the obvious way.� For a signature �,ModPFOEQ(�) is the category PAlg(�); for a signature morphism �: �! �0,ModPFOEQ(�) is the �-reduct functor �: PAlg(�0)! PAlg(�).� For a signature �, j=PFOEQ;� is the satisfaction relation as de�ned in section 2.The satisfaction condition is just the satisfaction lemma of section 2. Moreover, SignPFOEQ is �nitelycocomplete (as mentioned in section 2) and ModPFOEQ translates �nite colimits in SignPFOEQ tolimits in Cat.It would now be appropriate to repeat the preceeding sections in the context of an arbitraryinstitution, generalising from PFOEQ. Of course, we are not going to bore the reader with this |we will just give a brief summary of how this can be done and where some problems lie.The contents of section 3 generalises immediately to an arbitrary institution. The de�nitions andresults there were introduced in [ST 86a] in the framework of an arbitrary institution INS in exactlythe form they appear here (replacing PAlg byModINS, etc.). The examples of speci�cation-buildingoperations (translate, [) are de�ned exactly the same way there.The general concept of a constructor (section 4) may be formulated in an arbitrary institution aswell, again as a speci�cation-building operation determined by a function on models in this institu-tion. This yields immediately the concept of a constructor implementation for speci�cations in anarbitrary institution. Moreover, the vertical composition theorems (theorems 4.14 and 8.3) and the37

horizontal composition theorem (theorem 8.5) hold without modi�cation. We can directly generaliseto an arbitrary institution the de�nitions of the constructors derive and extend (the latter requiresthe free functors involved to exist, i.e. the institution to be liberal [GB 84a], though) but our de�n-itions of restrict and quotient use \non-institutional" properties of the partial algebra framework.Fortunately, the de�nition of a reachable subalgebra may be presented in an institution-independentway using standard notions of category theory (see [ST 86a], [Tar 85]). This de�nition may be used tode�ne the restrict constructor in an arbitrary institution. It is not yet clear to us how the quotientconstructor we have presented here can be generalised to work in an arbitrary institution; it seemsthat some of the ideas presented in [Tar 85] may lead to a satisfactory solution of this problem. Next,it is easy to see that the de�nitions of the amalgamated union and the translation of constructors aredirectly applicable and work as expected in an arbitrary institution. In particular, theorems 4.17 and4.18 hold in this more general framework.The notion of an abstractor (section 6) generalises directly to the framework of an arbitraryinstitution, where it is determined by an equivalence on the category of models over a given signature.This immediately yields the notion of abstractor implementation in an arbitrary institution. Moreover,the vertical composition theorems (theorems 6.8 and 8.7) and the horizontal composition theorem(theorem 8.9) and its corollary hold under exactly the same assumptions as before. As discussed indetail in [ST 87a], the most straightforward generalisation to an arbitrary institution of the notion ofobservational equivalence with respect to a set of terms (and hence of behavioural equivalence withrespect to a set of observable sorts) is the concept of observational equivalence with respect to a setof sentences in this institution, already mentioned briey in section 6.De�nition 9.2 For any signature � 2 jSignINSj, set � � SenINS(�) of �-sentences and �-modelsA;B 2 jModINS(�)j, A and B are observably equivalent wrt �, written A �� B, if for all ' 2 �,A j=INS;� ' i� B j=INS;� '.In PFOEQ, for any signature � and set W of ground �-terms, the former observational equivalence�W is the same as observational equivalence with respect to the set of sentences consisting of thesentence D(t) for each term t in W and the sentence t = t0 for each pair t; t0 of terms inW of the samesort. Notice however that the set of observable sentences needed to express behavioural equivalencevaries from one institution to another; in fact, even the basic idea of an observable sort cannot beexpressed directly in an institution-independent way (recall that signatures are arbitrary objects whichdo not have to include sorts or operations). Again, the lemmas on how speci�c constructors preserveobservational equivalence must be examined one at a time. With appropriate reformulation, lemmas6.10 (for derive), 6.19 (for synthesizing constructors), 6.20 (for amalgamated union) and 6.22 (fortranslation of constructors) and all their corollaries still hold in an arbitrary institution. Just as anexample, let us restate and prove lemma 6.19 in this framework:Lemma 6:190 (synthesize) For any signature morphism �: � ! �0, constructor �: Spec(�) !Spec(�0) and sets � � Sen(�) and �0 � Sen(�0) of �- and �0-sentences respectively, if:38

� � is observably su�ciently complete (wrt �;�0), i.e. for any '0 2 �0 there exists ' 2 � suchthat for all M 2 jMod(�)j, �(M) j=�0 '0 i� �(M) j=�0 �('); and� � is observably persistent (wrt �), i.e. for any ' 2 � and M 2 jMod(�)j, M j=� ' i��(M) j=�0 �(')then ��1(��0) � ��. Moreover, if in addition � is a minimal set of sentences such that observablesu�cient completeness holds then ��1(��0) = ��.Proof Let M1;M2 2 jMod(�)j. Assume M1 �� M2; we prove that �(M1) ��0 �(M2). Let'0 2 �0; consider ' 2 � such that for every M 2 jMod(�)j, �(M) j=�0 '0 i� �(M) j=�0 �('). Then�(M1) j=�0 '0 i� �(M1) j=�0 �(') i� M1 j=� ' i� M2 j=� ' i� �(M2) j=�0 �(') i� �(M2) j=�0 '0.Moreover, if � is minimal then for any ' 2 � there exists '0 2 �0 such that for all M 2 jMod(�)j,�(M) j=�0 '0 i� �(M) j=�0 �(') and so M1 �� M2 provided that �(M1) ��0 �(M2) by the samechain of equivalences as above. 2Notice that in this context the condition of observable su�cient completeness with respect to �;�0may be relaxed slightly. Namely, for any '0 2 �0 it is also su�cient to �nd ' 2 � such that for allM 2 jMod(�)j, �(M) j=�0 '0 i� �(M) 6j=�0 �('). Referring to our example in section 7, this wouldallow us to replace observations of the form count(n;B) > 0 = true by count(n;B) = 0.Since we did not de�ne the quotient constructor at all, lemma 6.15 cannot be considered. Asfor lemma 6.11 (for restrict), it does not hold in general since there are sentences which are notpreserved under submodels (e.g. existential sentences in �rst-order logic). If however we restrict theform of observable sentences appropriately (e.g. to in�nitary conditional equations as de�ned in theframework of so-called abstract algebraic institutions in [Tar 86a]) so that they are preserved undersubmodels, the lemma and its corollaries hold.Summing this up, the notions, results and methodology presented in the previous sections (with thesingle exception of the quotient constructor) carry over to the framework of an arbitrary institution.This generalisation is important not only because it allows us to develop programs from speci�ca-tions in di�erent institutions. Even in the process of developing a single program it may be convenientto use di�erent institutions at di�erent stages of development. After all, we proceed from a high-leveluser-oriented speci�cation to a low-level computer-oriented program. It seems natural that di�er-ent logical tools are necessary to express properties at these very di�erent levels. Thus we need ameans of switching from one institution to another during the development process. This problemwas mentioned in [Tar 86b]. The following notion seems adequate for this purpose:De�nition 9.3 For any two institutions INS1 and INS2, a semi-institution morphism from INS1to INS2, : INS1! INS2, consists of:� a functor Sign: SignINS1 ! SignINS2, and� a natural transformation : ModINS1 .! Sign;ModINS2, i.e. a natural family of functors�: ModINS1(�)!ModINS2(Sign(�)) for � 2 jSignINS1j.39

Intuitively, : INS1! INS2 translates signatures and models of INS1 to signatures and models ofINS2. Notice that this is not quite an institution morphism as de�ned in [GB 84a]; an institutionmorphism from INS1 to INS2 would additionally translate sentences in INS2 to sentences in INS1(preserving the satisfaction relation). This is not necessary for our purposes and moreover in manycases we want to deal with it is unachievable. For example, if we want to specify programs using theinstitution PFOEQ and then implement them in an institution PEQ of partial equational logic |which may be viewed as an applicative programming language | then we could use the trivial semi-institution morphism : PEQ! PFOEQ (which is identity on signatures and models) which cannotbe extended to an institution morphism: there would be no way to translate existential quanti�ersinto equations, for example.Any semi-institution morphism : INS1! INS2 determines a constructor which maps speci�c-ations in INS1 to speci�cations in INS2.De�nition 9.4 (change institution) For any �-speci�cation SP (over INS1) and semi-institutionmorphism : INS1 ! INS2, the semantics of the speci�cation changeinstitution of SP via (over INS2) is as follows:Sig[change institution of SP via] = Sign(�)Mod[change institution of SP via] = �(Mod[SP])The change institution speci�cation-building operations (one for each : INS1 ! INS2 and � 2jSignINS1j) are constructors determined by the functors �: ModINS1(�)!ModINS2(Sign(�)).With this de�nition, we can use change institution just as any other constructor in constructorimplementations. For example, we can implement speci�cations in INS2 by speci�cations in INS1.All of the composition theorems continue to hold in the presence of this constructor.In order to use change institution in abstractor implementations, we need a way of pushingabstraction equivalences through it.Lemma 9.5 (change institution) For any semi-institution morphism : INS1! INS2, signature� 2 jSignINS1j and sets �1 � SenINS1(�) and �2 � SenINS2(Sign(�)),if for any '2 2 �2 there exists '1 2 �1 such thatfor all M1 2 jModINS1(�)j, �(M1) j=INS2;Sign(�) '2 i� M1 j=INS1;� '1,then �1� (��2) � ��1.Moreover, if in addition �1 is a minimal set of sentences which satisfy the assumptions then �1� (��2) =��1.Proof Let M1;M10 2 ModINS1(�). Assume M1 ��1 M10; we prove �(M1) ��2 �(M10).Let '2 2 �2, and consider '1 2 �1 such that for every M 2 ModINS1(�), �(M) j=INS2;Sign(�)'2 i� M j=INS1;� '1. Then �(M1) j=INS2;Sign(�) '2 i� M1 j=INS1;� '1 i� M10 j=INS1;� '1 i��(M10) j=INS2;Sign(�) '2. Moreover, if �1 is minimal then for any '1 2 �1 there exists '2 2 �240

such that for everyM 2ModINS1(�), �(M) j=INS2;Sign(�) '2 i�M j=INS1;� '1 and soM1 ��1 M10provided �(M1) ��2 �(M10) by the same chain of equivalences. 2In case : INS1! INS2 may be extended to an institution morphism, then in the above lemma�1 may be de�ned as the translation of sentences from �2.To illustrate the above ideas, we now briey outline a simple example of an abstractor implement-ation of the BagNat speci�cation (see section 5) by an imperative program over ListNat. Since wewant to implement a speci�cation in PFOEQ by an imperative program, this will involve a change ofinstitution. We begin with a sketch of an institution of a simple imperative programming language.The institution IMP will be parameterised by an algebra DT of primitive (built-in) data types andfunctions of the language over a (PFOEQ) signature �DT . The components of IMPDT are as follows:� Signatures are sets of functional procedure names with types of the form s1; : : : ; sn ! s wheres1; : : : ; sn; s are sorts of �DT . Signature morphisms are maps between these sets of names whichpreserve types.� Sentences over a given signature � are procedure de�nitions of the formp(x1: s1; : : : ; xn: sn) = while-program; result expr: swhere p: s1; : : : ; sn ! s is a procedure name in �, expr is a �DT -term (with variables) of sort s,and while-program is a statement in a deterministic programming language such as e.g. TINY[Gor 79] containing expressions of this form. With a bit of additional complication we couldalso allow expressions to contain procedure calls.� A model M over a signature � assigns to each procedure name p: s1; : : : ; sn ! s in � and everysequence v1; : : : ; vn of DT values of sorts s1; : : : ; sn respectively a computation M(p)(v1; : : : ; vn)which is either:Divergence: an in�nite sequence of states (variable valuations);Unsuccessful termination: a �nite sequence of states; orSuccessful termination: a �nite sequence of states and a value v 2 jDT js.It is easy to see that any model M determines, for any procedure name p: s1; : : : ; sn ! s in �,a partial function pM : jDT js1 � � � � � jDT jsn ! jDT js.� Given a signature �, a �-model M and a �-sentence ' of the formp(x1: s1; : : : ; xn: sn) = while-program; result expr: sM satis�es ' if M(p)(v1; : : : ; vn) is the computation of while-program starting in the state[x1 7! v1; : : : ; xn 7! vn], and if the computation terminates successfully in a state in whichexpr has a de�ned value then M(p)(v1; : : : ; vn) contains this value as well. The computationsof while-program are de�ned by an operational semantics.41

For any primitive data type DT , there is a semi-institution morphism : IMPDT ! PFOEQ whichmaps any IMPDT -signature � to the PFOEQ signature �DT [� and any �-model M to theSign(�)-algebra which is the expansion of DT by the partial functions pM associated with procedurenames p in �. (Notice that we cannot hope for translation of PFOEQ sentences to IMPDT -sentenceshere so cannot be extended to an institution morphism.)Consider IMP built over an initial model of ListNat. Using the same idea as in the implementa-tions of BagNat by ListNat in sections 5 and 7, we can implementBagNat by the empty speci�cation(over the empty signature ;) in the institution IMPListNat in three steps:Synthesize: S;!Bag: SpecIMPListNat(;)! SpecIMPListNat(�1) =def�X: ;: procedures nth: nat; list! natput: nat; list! listaxioms nth(n: nat; L: list) =while n>0 and not(null(L)) don:=n-1; L:=tl(L) od;if null(L) then r:=0 else r:=hd(L) fi;result r: natput(n: nat; L: list) =L1:=nil;while n>0 and not(null(L)) doL1:=cons(hd(L),L1);n:=n-1; L:=tl(L) od;if null(L) thenv:=0;while n>0 don:=n-1; L1:=cons(0,L1) od;else v:=hd(L); L:=tl(L) fi;L:=cons(succ(v),L);while not(null(L1)) doL:=cons(hd(L1),L); L1:=tl(L) od;result L: listThe idea behind these programs is exactly the same as in the extend step EList!Bag of sections5 and 7.Changing institutions: C;!Bag: SpecIMPList(�1)! SpecPFOEQ(Sign(�1)) =def�X: �1: change institution of X via Derive: as beforeD;!Bag: SpecPFOEQ(Sign(�1))! Spec(Sig[BagNat]) =def�X: Sign(�1): derive from X by �42

where � renames the sorts and operations in Sig[BagNat] to those in Sign(�1) by renamingbag to list, ; to nil, add to put, count to nth and isempty to null and leaving the other namesas they were. Note that hd, tl and cons are hidden in this step.Now, similarly as in section 7, we have:BagNat ABagS;!Bag ;C;!Bag ;D;!Bag������������������������> h;; ;iand with the addition of a restrict step (as before) we can obtain a constructor implementation hereas well.The change institution constructor determined by a semi-institution morphism can be used notonly in the development process to implement speci�cations by speci�cations in a di�erent institutionas above, but also (like any other speci�cation-building operation) as a tool for building speci�cations.In particular, speci�cations built using change institutionmay be used as components of other, morecomplex speci�cations. Just as in the case of multiplex institutions [GB 84a] where sentences andtheories in one institution can be included in speci�cations over another institution, we can movespeci�cations between institutions connected by semi-institution morphisms. For example, we couldbuild a speci�cation in the institution PFOEQ in which some parts would be \speci�ed" using while-programs of the institution IMPDT .10 Concluding remarksWe have presented a view of the program development process as a sequence of re�nement steps leadingfrom a high-level speci�cation to a program. A key concept here is that of an implementation of onespeci�cation by another. We started by recalling a simple notion of re�nement from [SW 83] and usedit to de�ne two more general notions: constructor implementations and abstractor implementations,which subsume most (if not all) of the notions of implementation in the literature. We proved somebasic facts about these notions, in particular vertical and (modi�ed) horizontal composition theorems,and studied how theymay be used in the practice of program development. The methodology, althoughpresented in the framework of partial algebras with �rst-order axioms, was shown to generalise to anarbitrary logical system (institution). Moreover, we indicated a way of changing institutions in thecourse of program development which allows us to formally treat (for example) implementation ofalgebraic speci�cations by imperative programs.A number of important problems connected with the ideas presented remain to be considered.First, we do not discuss here any methods for proving correctness of re�nements; methods for provingtheorems in speci�cations, especially in the context of observational abstraction [ST 86a,87a], arerelevant to this problem. This would be especially important in the case of parameterised speci�cationssince de�nition 3.3 suggests checking an in�nite number of cases, one for each argument speci�cation.Intuitively, P ���>P 0 should be deducible from the re�nement relation between their bodies. However,since bodies of parameterised speci�cations in our approach may contain free variables it is not quiteobvious how to de�ne this re�nement and some additional techniques are necessary.43

This is in contrast with a di�erent approach to parameterisation based on pushouts in the categoryof speci�cations as used in [BG 80] and [Ehr 82]. In this approach, a parameterised speci�cation is aspeci�cation morphism P : SPpar ,! SPres including the formal parameter speci�cation into the resultspeci�cation. To apply P to an actual parameter speci�cation SPact, we have to provide anotherspeci�cation morphism which \�ts" SPact-models into SPpar-models, �: SPpar ! SPact. The result ofapplying P to SPact using �, written P (SPact[�]), is de�ned (up to isomorphism) as the pushout objectin the category of speci�cations of P and �:SPparSPact SPresP (SPact[�])?� ?�0-P -P 0In this approach, given two parameterised speci�cations P1: SPpar ,! SP1res and P2: SPpar ,!SP2res (having the same parameter resp. result signatures), P1���> P2 i� SP1res���> SP2res. Thiseasily follows from the fact that P (SPact[�]) may be de�ned as(translate SPact by P 0) [(translate SPres by �0)which involves SPres as a \constant" speci�cation. This is in contrast to the approach to parameterisa-tion we have used, in which the body speci�cation \essentially" involves the parameter. For example,we can write parameterised speci�cations like:�X: �:restrict (derive from X by �: �0 ! �) on sorts(�0)which is not expressible in the pushout approach. Notice also that the fact that application can bede�ned using translate and [as above directly implies that both vertical and horizontal compositionresults hold for parameterised speci�cations using the pushout approach (for the simple notion ofre�nement); for constructor implementations the details are yet to be investigated | the notion oftranslation of a constructor and its properties seem useful in this context.Solutions to the problem of horizontal composition of pushout-based parameterised speci�cationswere given in [Gan 83], [GM 82], [EK 82] among others, for the particular notions of implementationconsidered in these papers. These are only examples taken from the large body of technical work inthe literature on di�erent speci�c notions of implementation. Viewed in our approach, each of thesenotions corresponds to a restriction on the choice of constructors and abstractors which may be used.In this paper we have tried to unify and generalise the many di�erent notions of implementationin the literature. This quest for generality yields a uniform framework in which we can comparedi�erent approaches. More importantly, we can investigate which of the problems encountered underdi�erent notions of implementation are inherent to the very concept of what an implementationshould be and which are just technicalities caused by the imposed restrictions, and conversely, which44

results and properties are consequences of such restrictions and which are inherent to the nature ofimplementations. We have not yet tried to pursue this line of investigation in a systematic manner.One issue we have so far omitted is the problem of inconsistent speci�cations. According toour de�nition, any inconsistent speci�cation re�nes any speci�cation over the same signature. Note,however, that any program determines a model, and so if we succeed in re�ning a speci�cation to aprogram then the original speci�cation must have been consistent. This means that checking con-sistency is not necessary to ensure correctness of the development process. However, an inconsistentspeci�cation is a blind alley (worse, it can be re�ned forever) and so to be cautious it is advisable tocheck for consistency at each stage. On the other hand, even a consistent speci�cation may have nocomputable model and so we cannot in general avoid blind alleys in program development anyway.Once we have successfully gone through the program development process starting from a spe-ci�cation SP , by vertically and horizontally composing all the implementation steps we arrive atan implementation of the form SP ��j+1 ; � � � ;�n���������> �j(: : : �1(h�;; ;i) : : :). Now the constructor �1; � � � ;�namounts to a program which realises SP up to the abstraction equivalence corresponding to �. Inwhat we have presented here, �1; : : : ; �n are just functions rather than actual pieces of programs inthe usual sense. We did not introduce any particular syntax for de�ning constructors apart fromthe one used in examples. It would be interesting to develop a programming language which wouldprovide facilities for de�ning and composing constructors (this would probably require restricting thenotion of constructor we use, as implied in section 3). A good starting point seems to be Standard ML[Mil 85] with modules [MacQ 85], where constructors could be de�ned as Standard ML functors (i.e.parameterised modules). For example, the constructor �X: �: derive from X by �: �0 ! � can becoded in Standard ML as follows:functor DERIVE(X : SIG) : SIG' = Xprovided that � is a signature inclusion; if not then the right-hand side must be modi�ed to includethe appropriate renamings. Similarly, the extend constructor EBag!Set (see section 5)�X: Sig[BagNat]: enrich X bydata opns 2: nat; bag! boolaxioms a 2 B = count(a;B) > 0can be coded as:functor EXTEND(X : SIGBAGNAT) : SIGBAGNAT' =structopen X;infix isin;fun a isin B = count(a,B) > 0end; 45

(in general, this only works if the axioms are equational and in the form required by Standard ML).We have already used Standard ML modules as a structuring mechanism in the Extended ML wide-spectrum speci�cation/programming language [ST 85b,86b]. It would be interesting to investigatehow the ideas on program development presented in this paper may be applied in Extended MLwhere abstractors are always used in a �xed way; especially intriguing is the relation between modulesin Extended ML and their use as constructors as outlined above.AcknowledgementsMany of the ideas presented in this paper evolved in close collaboration with Martin Wirsing. Ourthanks to Oliver Schoett for many discussions on the subject of this paper, to Hartmut Ehrig for hiscriticism which stimulated us to write these ideas down, to an anonymous TAPSOFT referee whodirected our attention to [Lip 83] and to the anonymous Acta Informatica referees whose remarkshelped us to improve the presentation. Thanks to Teresa for (gastronomic) care. This work wassupported by grants from the Alvey Directorate and the Polish Academy of Sciences.11 References[AM 75] Arbib, M.A. and Manes, E.G. Arrow, Structures and Functors: the Categorical Imperative.Academic Press (1975).[AMRW 85] Astesiano, E., Mascari, G.F., Reggio, G. and Wirsing, M. On the parameterized al-gebraic speci�cation of concurrent systems. Proc. 10th Colloq. on Trees in Algebra and Pro-gramming, Joint Conf. on Theory and Practice of Software Development (TAPSOFT), Berlin.Springer LNCS 185, pp. 342-358 (1985).[AR 83] Astesiano, E. and Reggio, G. A unifying viewpoint for the constructive speci�cation ofcooperation, concurrency and distribution. Quaderni CNET no. 115, ETS Pisa (1983).[Bar 74] Barwise, K.J. Axioms for abstract model theory. Annals of Math. Logic 7 pp. 221-265(1974).[Bau 81a] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrum language forprogram speci�cation and development. Report TUM-I8104, Technische Univ. M�unchen (1981).See also: The Wide Spectrum Language CIP-L. Springer LNCS 183 (1985).[Bau 81b] Bauer, F.L. et al (the CIP Language Group) Programming in a wide spectrum language:a collection of examples. Science of Computer Programming 1 pp. 73-114 (1981).[BM 81] Bergstra, J.A. and Meyer, J.J. I/O computable data structures. SIGPLAN Notices 16, 4pp. 27-32 (1981). 46

[BBC 86] Bernot, G., Bidoit, M. and Choppy, C. Abstract implementations and correctness proofs.Proc. Symp. on Theoretical Aspects of Computer Science, Saarbr�ucken. Springer LNCS 210,pp. 236-251 (1986).[BW 85] Bloom, S.L. and Wagner, E.G. Many-sorted theories and their algebras with some applic-ations to data types. In: Algebraic Methods in Semantics (M. Nivat and J.C. Reynolds, eds.),Cambridge Univ. Press, pp. 133-168 (1985).[BMPW 86] Broy, M., M�oller, B., Pepper, P. and Wirsing, M. Algebraic implementations preserveprogram correctness. Science of Computer Programming 7, pp. 35-53 (1986).[BrW 82] Broy, M. and Wirsing, M. Partial abstract types. Acta Informatica 18 pp. 47-64 (1982).[Bur 86] Burmeister, P. A Model Theoretic Approach to Partial Algebras. Akademie-Verlag (1986).[BG 77] Burstall, R.M. and Goguen, J.A. Putting together theories to make speci�cations. Proc.5th Intl. Joint Conf. on Arti�cial Intelligence, Cambridge, pp. 1045-1058 (1977).[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of Clear, a speci�cation language. Proc. ofAdvanced Course on Abstract Software Speci�cations, Copenhagen. Springer LNCS 86, pp. 292-332 (1980).[BG 82] Burstall, R.M. and Goguen, J.A. Algebras, theories and freeness: an introduction for com-puter scientists. Proc. 1981 Marktoberdorf NATO Summer School. Reidel (1982).[BMS 80] Burstall, R.M., MacQueen, D.B. and Sannella, D.T. HOPE: an experimental applicativelanguage. Proc. 1980 LISP Conference, Stanford, pp. 136-143 (1980).[DLS 87] Dubois, E., Levy, N. and Souquieres, J. Formalising restructuring operators in a speci�c-ation process. Proc. ESEC '87, Strasbourg (1987).[deNH 84] de Nicola, R. and Hennessy, M.C.B. Testing equivalences for processes. Theoretical Com-puter Science 34, pp. 83-133 (1984).[Ehr 81] Ehrich, H.-D. On realization and implementation. Proc. 10th Intl. Symp. on MathematicalFoundations of Computer Science, Strbske Pleso, Czechoslovakia. Springer LNCS 118, pp. 271-280 (1981).[Ehr 82] Ehrich, H.-D. On the theory of speci�cation, implementation, and parametrization of ab-stract data types. Journal of the Assoc. for Computing Machinery 29 pp. 206-227 (1982).[EFH 83] Ehrig, H., Fey, W. and Hansen, H. ACT ONE: an algebraic speci�cation language withtwo levels of semantics. Report Nr. 83-03, Institut f�ur Software und Theoretische Informatik,Technische Univ. Berlin (1983). 47

[EK 82] Ehrig, H. and Kreowski, H.-J. Parameter passing commutes with implementation of para-meterized data types. Proc. 9th Intl. Colloq. on Automata, Languages and Programming, Aar-hus, Denmark. Springer LNCS 140, pp. 197-211 (1982).[EKMP 82] Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implementation ofabstract data types. Theoretical Computer Science 20 pp. 209-263 (1982).[EKTWW 80] Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G. and Wright, J.B. Para-meterized data types in algebraic speci�cation languages (short version). Proc. 7th Intl. Colloq.on Automata, Languages and Programming, Noordwijkerhout, Netherlands. Springer LNCS 85,pp. 157-168 (1980).[EM 85] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Speci�cation I: Equations and InitialSemantics. EATCS Monographs on Theoretical Computer Science, Springer (1985).[ETLZ 82] Ehrig, H., Thatcher, J.W., Lucas, P. and Zilles, S.N. Denotational and initial algebrasemantics of the algebraic speci�cation language LOOK. Draft report, IBM research (1982).[EWT 83] Ehrig, H., Wagner, E.G. and Thatcher, J.W. Algebraic speci�cations with generatingconstraints. Proc. 10th Intl. Colloq. on Automata, Languages and Programming, Barcelona.Springer LNCS 154, pp. 188-202 (1983).[FGJM 85] Futatsugi, K., Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Principles of OBJ2.Proc. 12th ACM Symp. on Principles of Programming Languages, NewOrleans, pp. 52-66 (1985).[Gan 83] Ganzinger, H. Parameterized speci�cations: parameter passing and implementation withrespect to observability. TOPLAS 5, 3 pp. 318-354 (1983).[GGM 76] Giarratana, V., Gimona, F. and Montanari, U. Observability concepts in abstract datatype speci�cation. Proc. 5th Intl. Symp. on Mathematical Foundations of Computer Science,Gdansk. Springer LNCS 45, pp. 576-587 (1976).[Gog 83] Gogolla, M. Algebraic speci�cations with partially ordered sorts and declarations. Fb. 169,Abteilung Informatik, Univ. of Dortmund (1983).[GDLE 84] Gogolla, M., Drosten, K., Lipeck, U. and Ehrich, H.-D. Algebraic and operationalsemantics of speci�cations allowing exceptions and errors. Theoretical Computer Science 34,pp. 289-313 (1984).[GB 80] Goguen, J.A. and Burstall, R.M. CAT, a system for the structured elaboration of correctprograms from structured speci�cations. Technical report CSL-118, SRI International (1980).[GB 84a] Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of ProgrammingWorkshop (E. Clarke and D. Kozen, eds.), Carnegie-Mellon University. Springer LNCS 164,pp. 221-256 (1984). 48

[GB 84b] Goguen, J.A. and Burstall, R.M. Some fundamental algebraic tools for the semanticsof computation. Part 1: Comma categories, colimits, signatures and theories. TheoreticalComputer Science 31, pp. 175-210 (1984).[GB 86] Goguen, J.A. and Burstall, R.M. A study in the foundations of programming methodology:speci�cations, institutions, charters and parchments. Proc. Workshop on Category Theory andComputer Programming, Guildford. Springer LNCS 240, pp. 313-333 (1986).[GJM 85] Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Operational semantics for order-sortedalgebra. Proc. 12th Intl. Colloq. on Automata, Languages and Programming, Nafplion, Greece.Springer LNCS 194, pp. 221-231 (1985).[GM 82] Goguen, J.A. and Meseguer, J. Universal realization, persistent interconnection and imple-mentation of abstract modules. Proc. 9th Intl. Colloq. on Automata, Languages and Program-ming, Aarhus. Springer LNCS 140, pp. 265-281 (1982).[GTW 76] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra approach to thespeci�cation, correctness, and implementation of abstract data types. IBM research reportRC 6487 (1976). Also in: Current Trends in Programming Methodology, Vol. 4: Data Structuring(R.T. Yeh, ed.), Prentice-Hall, pp. 80-149 (1978).[GTWW 77] Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B. Initial algebra semanticsand continuous algebras. JACM 24, 1 pp. 68-95 (1977).[Gor 79] Gordon, M.J. Denotational descriptions of Programming Languages. Springer (1979).[Gut 75] Guttag, J.V. The speci�cation and application to programming of abstract data types.Ph.D. thesis, Univ. of Toronto (1975).[GH 83] Guttag, J.V. and Horning, J.J. Preliminary report on the Larch Shared Language. ReportCSL-83-6, Computer Science Laboratory, Xerox PARC (1983).[Kam 83] Kamin, S. Final data types and their speci�cation. TOPLAS 5, 1 pp. 97-121 (1983).[Lar 86] Larsen, K. Context-dependent bisimulation between processes. Ph.D. thesis, Dept. of Com-puter Science, Univ. of Edinburgh (1986).[Lip 83] Lipeck, U. Ein algebraischer Kalk�ul f�ur einer strukturierten Entwurf von Datenabstrak-tionen. Ph.D. thesis, Abteilung Informatik, Universit�at Dortmund (1983).[LB 77] Liskov, B.H. and Berzins, V. An appraisal of program speci�cations. Computation Struc-tures Group memo 141-1, Laboratory for Computer Science, MIT (1977).[MacL 71] MacLane, S. Categories for the Working Mathematician. Springer (1971).49

[MacQ 85] MacQueen, D.B. Modules for Standard ML. Polymorphism 2, 2 (1985). See also: Proc.1984 ACM Symp. on LISP and Functional Programming, Austin, Texas, pp. 198-207.[MW 80] Manna, Z. and Waldinger, R. A deductive approach to program synthesis. ACM Trans.on Prog. Lang. and Systems 2 pp. 92-121 (1980).[MG 83] Meseguer, J. and Goguen, J.A. Initiality, induction and computability. Algebraic Methodsin Semantics (M. Nivat and J. Reynolds, eds.), Cambridge Univ. Press, pp. 459-541 (1983).[Mil 78] Milner, R.G. A theory of type polymorphism in programming. Journal of Computer andSystems Sciences 17, 3 pp. 348-375 (1978).[Mil 85] Milner, R.G. The Standard ML core language. Polymorphism 2, 2 (1985). See also: Aproposal for Standard ML. Proc. 1984 ACM Symp. on LISP and Functional Programming,Austin, Texas, pp. 184-197.[Moo 56] Moore, E.F. Gedanken-experiments on sequential machines. In: Automata Studies (C.E.Shannon and J. McCarthy, eds.), Princeton Univ. Press, pp. 129-153 (1956).[Ore 83] Orejas, F. Characterizing composability of abstract implementations. Proc. Intl. Conf.on Foundations of Computation Theory, Borgholm, Sweden. Springer LNCS 158, pp. 335-346(1983).[PB 85] Parisi-Presicce, F. and Blum, E.K. The semantics of shared submodules speci�cations. Proc.10th Colloq. on Trees in Algebra and Programming, Joint Conf. on Theory and Practice ofSoftware Development (TAPSOFT), Berlin. Springer LNCS 185, pp. 359-373 (1985).[Pep 83] Pepper, P. On the correctness of type transformations. Talk at 2nd Workshop on Theoryand Applications of Abstract Data Types, Passau (1983).[Plo 77] Plotkin, G.D. LCF considered as a programming language. Theoretical Computer Science5, pp. 223-255 (1977).[Rei 81] Reichel, H. Behavioural equivalence { a unifying concept for initial and �nal speci�cationmethods. Proc. 3rd Hungarian Computer Science Conference, Budapest, pp. 27-39 (1981).[ST 85a] Sannella, D.T. and Tarlecki, A. Some thoughts on algebraic speci�cation. Proc. 3rdWorkshop on Theory and Applications of Abstract Data Types, Bremen. Springer Informatik-Fachberichte Vol. 116, pp. 31-38 (1985).[ST 85b] Sannella, D.T. and Tarlecki, A. Program speci�cation and development in Standard ML.Proc. 12th ACM Symp. on Principles of Programming Languages, NewOrleans, pp. 67-77 (1985).50

[ST 86a] Sannella, D.T. and Tarlecki, A. Speci�cations in an arbitrary institution. Report CSR-184-85, Dept. of Computer Science, Univ. of Edinburgh; to appear in Information and Control. Seealso: Building speci�cations in an arbitrary institution, Proc. Intl. Symposium on Semantics ofData Types, Sophia-Antipolis. Springer LNCS 173, pp. 337-356 (1984).[ST 86b] Sannella, D.T. and Tarlecki, A. Extended ML: an institution-independent framework forformal program development. Proc. Workshop on Category Theory and Computer Programming,Guildford. Springer LNCS 240, pp. 364-389 (1986).[ST 87a] Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic speci�cation.Journal of Computer and Systems Sciences 34, pp. 150-178 (1987). Extended abstract in: Proc.10th Colloq. on Trees in Algebra and Programming, Joint Conf. on Theory and Practice ofSoftware Development (TAPSOFT), Berlin. Springer LNCS 185, pp. 308-322 (1986).[ST 87b] Sannella, D.T. and Tarlecki, A. Toward formal development of programs from algebraicspeci�cations: implementations revisited (extended abstract). Proc. 12th Colloq. on Treesin Algebra and Programming, Joint Conf. on Theory and Practice of Software Development(TAPSOFT), Pisa. Springer LNCS 249, pp. 96-110 (1987).[SW 82] Sannella, D.T. and Wirsing, M. Implementation of parameterised speci�cations. ReportCSR-103-82, Dept. of Computer Science, Univ. of Edinburgh. Extended abstract in: Proc.9th Intl. Colloq. on Automata, Languages and Programming, Aarhus. Springer LNCS 140,pp. 473-488 (1982).[SW 83] Sannella, D.T. and Wirsing, M. A kernel language for algebraic speci�cation and implement-ation. Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh. Extended abstractin: Proc. Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden. SpringerLNCS 158, pp. 413-427 (1983).[Sch 86] Schoett, O. Data abstraction and the correctness of modular programming. Ph.D. thesis,Univ. of Edinburgh (1986).[Tar 85] Tarlecki, A. On the existence of free models in abstract algebraic institutions. TheoreticalComputer Science 37 pp. 269-304 (1985).[Tar 86a] Tarlecki, A. Quasi-varieties in abstract algebraic institutions. Journal of Computer andSystems Sciences 33 pp. 333-360 (1986).[Tar 86b] Tarlecki, A. Software-system development | an abstract view. Proc. 10th IFIP WorldComputer Congress, Dublin. North-Holland, pp. 685-688 (1986).[TW 86] Tarlecki, A. and Wirsing, M. Continuous abstract data types. Fundamenta Informaticae 9,pp. 95-126 (1986). Extended abstract: Continuous abstract data types - basic machinery and51

results. Proc. Intl. Conf. on Fundamentals of Computation Theory, Cottbus, GDR. SpringerLNCS 199 (1985), pp. 431-441.[Wand 82] Wand, M. Speci�cations, models, and implementations of data abstractions. TheoreticalComputer Science 20 pp. 3-32 (1982).[Wir 86] Wirsing, M. Structured algebraic speci�cations: a kernel language. Theoretical ComputerScience 42, pp. 123-249.[Zil 74] Zilles, S.N. Algebraic speci�cation of data types. Computation Structures Group memo 119,Laboratory for Computer Science, MIT (1974).

52

