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Abstract

A set of operations for constructing algebraic specifications in an arbitrary logical
system is presented. This builds on the framework provided by Goguen and
Burstall’s work on the notion of an institution as a formalisation of the concept of a
iogical system for writing specifications. We show how to introduce free variables
into the sentences of an arbitrary institution and how to add quantifiers which bind
them. We use this foundation 1o define a set of primitive operations for building
specifications in an arbitrary institution based icosely on those in the ASL kernel
specification language. We examine the set of operations which results when the
definitions are instantiated in an institution of first~order logic and compare these
with the operations found in existing specification languages. The result of
instantiating the operations in an institution of partial first-order logic is aiso
discussed.

1 introduction

Much work has been done on algebraic specifications in the past ten years. Although
much has been accomplished, there is still no general agreement on the definitions of many
of the basic concepts, e.g. signature and algebra, and on which kinds of axioms should be
used. The disagreement arises partly because different definitions are required to treat
various special issues in specification, such as errors [Gog 77. GDLE 821. coercions [Gog 78]
and partial operations [BrW 82]. partly because some specification methods such as the initial
algebra approach [ADJ 78] only work under certain restrictions on e. g. the form of axioms in
specifications: and partly because of disagrsements over matters of style or taste, These
fundamental differences lead to difficulty in comparing the results achieved by differant
approaches and in building upon the work of others.

The notion of an institution I(GB 831 provides a tool for unifying all these different
approaches to speclfication by formalising the concept of a logical system for writing
specifications. An institution comprises definitions of signature. model, sentence (i.e.
axiom) and satisfaction which obey a few internal consistency conditions (details in section
2). Aithough it is often not obvious, much of the work which has been done on algebraic
specification turns out to be independent of the particular definitions of these four notions. in
such cases it would be highly desirable to make the generality explicit by basing everything on
an arbitrary institution. This was done in the semantics of the Clear specification language
{BG 801 (where an institution was called a "language"). Sometimes additional assumptions
abgout the base institution are necessary, as in Clear where use of the Initial aigebra approach
requires the assumption that the institution is liberal (forgetful functors induced by theory
morphisms have left adjoints). Instantiating the base institution in different ways (and
changing the iow~ievel syntax accordingly) yields a family of specification languages:
equational Clear. error Clear, continuous Clear and so on,

In early work on algebraic specification (e.g. [ADJ 76]) it was shown how a collection of

*On leave from Institute of Computer Sci , Polish Academy of Sciences, Warsaw,
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algebras could be specified by a theory. i.e. a signature together with a set of axioms. For
smali specifications such an approach is adequate. but it is more convenient to build large
and complex specifications in a structured way by putting together small specifications.
Several specification janguages In addition to Clear support such a structured approach to
specification. These include CIP-L [Bau 81], LOOK [ZLT 82, ETLZ 82], ASL

[Wir 82, SW 83, Wir 831 and the constraint language of [EWT 83]. None of these other
languages were based on an arbitrary institution (although the possibility of a similar such
generatisation was considered in [SW 83} and [EWT 831 and so they are not general in the
sense that Clear is. However, since they include features which seam desirable but which
are not included in Clear, they are more useful as tools for writing specifications in the
particular institutions they treat. Most useful of alf would be an institution~based specification
tool which incorporates the good ideas of ail these languages. That is the goal of this paper.
We define a set of general specification—building operations based loosely (but not
exclusively) on those in ASL.

One novel feature of ASL is a specification—buiiding operation abstract which can be used
to behaviourally abstract from a specification, closing its collection of modsls under
behavioural equivalence [GGM 76, Rei 811. This allows abstract model specifications
(LB 771, cf. [Suf B2] in which the desired behaviour is described in some concrete way. 6.g.
by giving a simpie model which exhibits it. Such an operation is a necessary ingredient in an
algebraic specification tanguage (as discussed in [San 83)) since the specification of 8.g. an
abstract data type is supposed to describe a behaviour (an input/output relation) without
regard to the particular representation used and therefore all algebras which realise the
desired behaviour should be permitted as models. Furthermore, using conventional
specification languages which lack operations like abstract. it is in general difficuit (as in
Cisar) or impossible (as in the initial algebra approach of [ADJ 78] and the final algebra
approach of [(Wand 79]) to describe collections of models which are closed under behavioural
equivalence since such a collection may contain a wide range of non-isomorphic algebras.
However, this operation was defined in [SW 83] in such a way that it is not obvious how to
generalise it to an arbitrary institution. (There are some remarks in [SW 83] which suggest
how this might be done. but the proposed generalisation does not fit smoothly into the
institutional framework and anyway the technical details are wrong.) The discussion of
abstract in the general case is the main contribution of this paper.

The key to the institution-based definition of abstract turns out to be the introduction of
free variables into the sentences of the institution. We show in section 3 how this may be
accomplished. Free variables are necessary because they provide a way of naming
unreachable elements of models which cannot be referired to using the operations of the
maodel alone. Such elements play an important role in the definition of behavioural
abstraction. Having introduced free variables into the sentences of an institution, we digress
in the second part of section 38 and show how to add quantifiers which bind them. This gives
a construction for introducing quantified variables into the sentences of an arbitrary
institution.

Building on this foundation. we then define a set of primitive operations for building
specifications in an arbitrary institution (section 4). The set of operations we provide is
based on those present in ASL —— however, there are a number of significant differences.
These derive both from difficulties in generalising some of the operations of ASL to an
arbitrary institution (for example. since we cannot easily form the union of signatures in this
general setting the + operation is not generalised directly) and from extensions which arose
naturaily in the process of generalisation. One gap here (mainly due 1o space limitations) is
the absence of a mechanism for defining or applying parameterised specifications, aithough
an appropriate parameterisation mechanism shouid not be difficult to generalise to an arbitrary
institution. A feature of ASL which remains is the expressive power and flexibility necessary to
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provide a kernel for building high-levs! specification languages. The convenient-to—-use
specification-buiiding operations of the high-levei ianguage wouid be defined by composing
these low~lavel operations. It would be natural for such a high-level language to hide some
of the raw power of the primitives from the user.

In section 5 we examine the set of operations which results when the general definitions
are instantiated in an institution of first-order logic with equality as the only predicate. Thesse
operations are compared with those found in existing specification languages. in particular,
the operations of ASL can be expressed easily in terms of the operations we obtain. but not
vice versa. The result of instantiating the operations in an institution of partial first-order
logic is considered in section 6. The resulting set of operations is compared with the
operations of the early version of ASBL in [Wir 821 which also used partial aigebras.

We assume some familiarity with a few notions from basic category theory, although no
use is made of any deep results. See [AM 75] or [Macl 71] for the definitions which we omit
here.

2 institutions

Following [GB 83] we introduce institutions to formalise the notion of a logical system for
writing specifications. An institution consists of a collection of signatures together with for
any signature L a set of Z-sentences. a coliection of Z-models and a satisfaction relation
between L~models and L-sentences. Note that signatures are arbitrary abstract objects in
this approach. not necessarily the usual "algsbraic” signatures used in many standard
approaches to algebraic specification (see e.g. [ADJ 76D . The only "semantic” requirement
is that when we change signatures, the induced translations of sentences and models
preserve the satisfaction relation. This condition expresses the intended independence of the
meaning of a specification from the actual notation. Formally:

Def [GB 831: An institution INS consists of:
- A category Sign,yg (of signatures)

- A functor Sen,.: Sign,.~> 8et (where Set is the category of all sets; Sen, gives
for any signature L the set of L-sentences and for any signature morphism
o: L~ L' the function Sonyg(0): Seny (L)~ Seny (L) translating L-sentences to
L'~sentences)

= A functor Mod g Signg,s~ Cat% (where Cat is the category of all categories: *
Mod, o gives for any signature L the category of Z~-models and for any signature
morphism 0: I>Z' the O-reduct functor Modg(0) : Mod,g () ~> Modyg ( )
translating LZ’'-models to LZ-models)

- A satisfaction relation #2 ,Ns_C_iMod,Ns(Z) IX8eny« (L) for each signature I,

such that for any signature morphism 0. Z> L’ the translations Mod, . () of models and
Seny, o (0) of sentences preserve the satisfaction relation, i.e. for any ¢€Senms(2) and
M’elMod,NS(Z')I

Ml’:i‘.'. insSeNg(0) () Iff  Mod)s(0) (M") kz' ns?® (Satisfaction condition)

To be useful as the underlying institution of a specification language, an institution must
provide some tools for “putting things together”. Thus, in this paper we additionally require

*Of course, some foundational difficuities are ted with the use of this category, as discussed in [MacL 71].
We do not discuss this point here, and we disregard other such foundational issues in this paper; in particular, we
use the term “collection™ throughout to denote “'sets" which may be too large to really be sets.
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that the category Sign has pushouts and initial objects (1. e. is finitely cocomplete) and
moreover that Mod preserves pushouts and initial objects (and hance finite colimits) ., |. e.
that Mod translates pushouts and initial objects in Sign to pulibacks and terminal objects
(respectively) in Cat.

in [GB 83} the category Sign is not required to be cocomplete. but this is required there of
any institution to be used as the basis of a specification language (as in Clear [BG 801). Mod
is not required there to preserve colimils. however we feel that this is a natural assumption to
make the semantics of specification-building operations consistent with our intuitions. A
similar but (apparently) stronger condition is required in [EWT 83]. Note that both of these
requirements are entirely independent of the "logical” part of the institution, i. e. of sentences
and the satisfaction relation. and the fact.that ali examples of institutions we can think of
(including all those in [GB B83]) satisfy them indicates that they are not very restrictive in
practice.

The work of [Bar 741 on abstract model theory is similar in intent to the theory of
institutions but the notions used and the conditions they must satisfy are more restrictive and
rute out many of the exampies we would like to deal with.

Notational conventions
~ The subscript INS is omitted when there is no danger of confusion.
-~ We will write F instead of l=z when L is obvious,

~ For any signature morphism 0. Z~L’, Sen(0) is denoted just by 0 and Mod(0) Is
denoted by _|, (i.e. for peSen(L), o(#) stands for Sen(0) ($), and e.g. for
M’ €lMod (L") |, M’Io stands for Mod(0) (M"}).

For any signature L. ®SSen(L) and M€IMod(X) |, we write ME® to denote that
ME® for all g€,

Example: the institution GEQ of ground egquations

An algebraic signature is a pair <5, where 8 is a set (of sort names) and 1 is a family
of sets {(} Ywes* seg (Of operation names). We write fw> s to denote wed . s€8, feﬂw s

W, §
An algebraic signature morphism 0: <8 =<5’ {1 is a pair <O ... aopgs) where O, 18>8

and oopns is a family of maps (Uw,s: nw,s_;né)*(w),O(s))WGS*,SES whera 0 (s1...., sn) derlotes
(s), g(w) for 0" (w)

Gsods(sl) ..... Osorts(sn) for s1..... sn€S. We will write 0(s) for O

and o(f) for C’w,s(f)' where fenw's.

sorts

The category of algebraic signatures AlgSig has algebraic signatures as objects and
algebraic signature morphisms as morphisms; the composition of morphisms is the
composition of thelr corresponding components as functions. (This obviously forms a
category. )

Let Z=<S.{»> be an aigebraic signature.

A L-algebra A consists of an S—indexed family of carrier sets |Al = tAL) .o and for sach

fist, ..., sn=s a function AL X, . XIAl AL A Z~homomorphism from a L-aigebra A to
a L-algebra B. h:A=B, is a family of functions (hJ o where h,!|AI =Bl such that for any
fisl..... sn=s and a;€lAlg,. ..., a,€lAl,, h (i ta,. ... a)) = fathg(ap). . ... h(a,)3.

The category of L-algebras Alg(L) has L-algebras as objects and Z-homomorphisms as
morphisms: the composition of homomorphisms is the composition of their corresponding
components as functions. (This obviously forms a category.)

For any algebraic signature morphism 0: Z- L’ and L'-algebra A’, the O-reduct of A’ is

the L-algebra A"o defined as follows:

- For s€S, IA'IC,Is = det IA'IO(S).
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- For f:w=s in L, fA"o =qet O(D ar

Simiiarly, for a Z'~homomorphism h’: A’>B’ where A’ and B’ are L'-algebras. the 0-reduct of
h* is the Z-homomorphism h'| ;: A’'[ ;2 B’|; defined by (h'| ) =4o¢ () TOr SES.

The mappings A'+—A’|; . h'*—h’|, form a functor from Alg(Z’) to Alg(L).

For any algebraic signature L. AIg(L) contains an initial object Ty which is (to within
isomorphism) the algebra of ground I~terms, i.e. the carriers Tyl contain terms of the
appropriate sorts which are constructed using the operation symbois of L (without variables)
and the operations in T)-_- are defined in the natural way (see o.g. [ADJ 761). A ground
IZ-equation is a palr <t,t> (usually written as t=t') where t.t' are ground L-terms of the same
sort. i.e. t.U'€[Tyl; for some sort s of L.

By definition, for any L-algebra A there is a unique Z—-homomorphism h: TE—’A. For any
ground term teszls (for s in the sorts of L) we write t, rather than h (1) to denote the vaiue
of tin A, For any I-algebra A and ground L-equation 1=t' we say that t=t’ holds in A (or A
satisfies t=t') written AFt=t", if 1=,

Let 0: X L' be an algebraic signature morphism. The unique I—-homomorphism
h: TZ")TZ'IU determines a translation of L-terms to L'-terms. For a ground Z—-term t of sort s
we write O(1) rather than h (. This in turn determines a translation (again denoted by 0) of
ground L-equations to ground L'-equations: O(t=t') =, o(D=0(t").

All the above notions combine to form the institution of ground equations GEQ:
- Signgeq I8 the category of algebraic signatures AlgSig.

~ For an aigebraic signature L, SenGEQ(Z) is the set of all ground L-equations. for
an algebraic signature morphism o: L2 L', Sengeq(9) maps any ground
L-equation t=t’ to the ground L’-equation O(t) =0(t').

- For an algebraic signature L, ModGEQ(Z) is Alg(Z) : for an algebraic signature

morphism 0: Z= L', Modge,(® is the functor ._faz Alg(Z ) ~>Alg( Ly,

~ For an algebraic signature Z, I=z' Geq IS the satisfaction relation as defined above,
It is easy to check that GEQ is an institution (the satisfaction condition is a special case of the
Satisfaction Lemma of [BG 80D . The category AlgSig is finitely cocomplete (see [GB 78]
Prop. 5) and Modge,: AlgSig— Cat®f translates finite colimits in AlgSig to finite limits in Cat
(se0 [BW 82]) .

For some further examples of institutions see [GB 83].

3 Free variables in institutions

In logic., formulae may contain free variables (such formulae are calied open). To
interpret an open formula, we have to provide not only an interpretation for the symbols of the
underlying signature (a model) but also an interpretation for the free variables (a valuation of
variables into the model). This provides a natural way to deal with quantifiers. The need for
open formulae aiso arises in the study of specification languages. In fact, we will need them
1o define one of the specification—building operations (abstract) in the next section. But for
this we need institutions in which sentences may contain free variables.

Fortunately we do not have to change the notion of institution -- we can provide open
formulae in the present framework (this idea was influenced by the treatment of variables in
[Bar 741). Note that we use here the term “formula® rather than "sentence”, which is +
reserved for the sentences of the underlying institution.

Consider the institution GEQ of ground equations. Let Z=<S.f1> be an algebraic signature.
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For any S-indexed family of sets, X=(XJ, o . define L(X) to be the extension of L by the
elements of X as new constants of the appropriate soris.

Now, any sentence over L(X) may be viewed as an open formula over L with free
variables X. Given a Z-algebra A. to determine whether an open L-formula with variables X
holds in A we have first to fix a valuation of variables X into JA|l. Such a valuation corresponds
exactly to an extension of A to a L(X)-algebra. which additionally contains an interpretation of
the constants X.

Given a translation of sentences along an algebraic signature morphism 0: I L we can
extend it to a translation of open formulae. Roughly. we translate an open L-formula with
variables X, which is a L(X) ~sentence, to the corresponding L'(X') -sentence, which is an
open L'-formula with variables X'. Here X’ results from X by an appropriate renaming of soris
determined by O (we also have to avoid unintended "clashes" of variables and operation
symbols) .

The above ideas generalise to an arbitrary institution INS,
Let L be a signature.

Any pair <p, 8>, where 8: I—L’ is a signature morphism and ¢€Sen(L’), is an open
Z-formula with variables "L’'-6(Z)*. (Note the quotation marks -- since L'-6(Z) makes no
sense in an arbitrary institution. it is only meaningful as an aid to our intuition.) When we
use open formulae in specifications we will omit 8 if it is obvious from the context.

It M is a Z-model, Me(Mod(Z)|, then a valuation of variables "%'-8(Z)" Into M is a
L'-mode! M'€iMod(L’) | which Is a f-extension of M. i.e. M'|g=

Notse that in the standard logical framework there may be no valuation of a set of variables
into a2 modse! containing an empty carrier. Similarly. here a valuation need not always exist
(although thers may be more reasons for that). For example. in GEG if € is not injective
then some models have no 9-extansion.

If o0: XX is a signature morphism and <¢. 8 is an open L-formula then we define the
translation of <4, 6> along O as 0(<p, 8>) =, <0'(9), 6", whare

]

L ——> v

T
L m—> L]

g

is a pushout in the category of signatures.

There is a rather subtie problem we have to point out here: pushouts are defined only up
to isomorphism, so strictly speaking the translation of opan formulae is not welli-defined.
Fortunately. from the definition of an institution one may easily prove that whenever
t:L£31*» L1 is an isomorphism in Sign with inverse t™7 then Sen( t):Sen(L1")~>Sen(L1"") is a
bijection. Mod{( L) Mod(Z1")>Mod(L1") is an isomorphism in Cat and moreover for any
L1'-sentence ¥€Sen(L1’) and any L1'-model M1’ €IMod(Z1")|

M1 By iff M1'| LD
This shows that (at least for semantic analysis) we can pick out an arbitrary pushout to define
the translation of open formulae and so we may safely accept the above definition of
transiation.

Note that sometimes we want to restrict the class of signature morphisms which may be
used (as second components) to construct open formulae. In fact, in the above remark
sketching how free variables may be introduced into GEQ we used only algebraic signature
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inclusions t: I~ L, where the only new symbols in L’ were constants. To guarantee that the
translation of open formulae is defined under such a restriction, we consider only restrictions
to a collection M of signature morphisms which is closed (at least) under pushing out along
arbitrary signature morphisms, i.e. for any signature morphism 0: Z-L1 if 6: 3L’ €M then
there is a pushout in Sign

'

L — 17

ot
L—=1
g

such that 8'€ M.

Exampies of such coliections M in AlgSig include: the collection of ail algebraic signature
inclusions, the restriction of this to inclusions 8: I~ L' such that L' contains no new sorts, the
further restriction of this by the requirement that L' contains new constants only (as above) .
the collection of all algebraic signature morphisms which are onto w.r.t. sorts, the collection
of all identities and the coliection of all morphisms. Note that most of the above permit
variables denoting operations or even sorts.

In the rest of this section we briefly sketch how to universally close the open formulae
introduced above (the construction is based on the notion of a syntactic operation in
[Bar 741D . It is therefore peripheral to the main concern of this paper but we wouid like to
add some logical meat to our treatment of free variables.

Let M be a collection of signature morphisms which is closed under pushing out along
arbitrary morphisms in Sign. Let Z be a signature and let <¢, & be an open L-formula such
that @€ M. Consider the universal closure of <p, 8>, written V<, 8>, as a new L-sentence.
The satisfaction relation and the translation of sentences V<9, 8> along a signature morphism
are defined in the expected way:

- A I-model satisfies V<@, 6> if each of its 6-extensions satisfies ¢. i.e. for any
MeiMod(Z) |

MEV<, 8> iff for any M'€[Mod(Z’)| such that M’[g=M. M'E®.

- For any signature morphism 0:Z->L1, 0(Y<p, 0) =, VO(<p,8>), where
g(<p. @>)=<0'($), 8" is the translation of <¢, 8> as an open L-formula (with
g'emM .

Note that in the above we have extended our underiying institution INS. Formally, we can
define the extension of INS by universal closure w.r.t. M. INSY(IM) . to be the following
institution:

- Sign is Sign

insY (M) INS®

- For any signature L, Sen,Nsv(M)(Z) is the disjoint union of Sen'Ns(Z) with the
collection of ail universal closures Y<¢, 8> of open L-formulae. where 6€M; for a
signature morphism 0: I L] Senlev(u)(O) is the function induced by Sen, (0)
on SenINs(Z) and by the notion of translation of universally closed open formuiae

as defined above.

- Mod Is Modms.

iNs¥ (M)

- The satisfaction relation in INSY (M) is induced by the satisfaction relation of INS
for INS-sentences and the notion of satisfaction for universally closed open
formulae as defined above.

The foliowing theorem guarantees that INSY (M) is in fact an Institution.
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Theorem For any signature morphism 0: X L1, open L~formula <¢, 8 and L1-model
M1€iMod(Z )}
M]}OPV<¢,9> iff  MIEO(V<o, 8>)

Example Let I be the collection of morphisms t: XL’ in AlgSig such that L is an
algebraic signature inclusion and L’ contains new constants only. The institution GEQY(I) is
the institution of universally quantified equations (cf. [GB 83]), If we additionally aliow L' to
contain new operation names (not just constants) then quantification along morphisms in I
leads to a version of second~order logic.

Obviously, other quantifiers (there exists, there exist infinitely many. there exists a
unique. for almost all ...) may be introduced to institutions in the same manner as we have
just introduced universal quantifiers. It is also worth mentioning that one may similariy
introduce logical connectives (cf. [Bar 74D . Note that by iterating this idea we can. for
example, derive the institution of first-order logic from the institution of ground atomic
formulae.

4 Specification—building operations

in this section we describe a set of simple operations for building specifications in an
arbitrary institution. Our intention is to provide low-lavel operations which collectively give
sufficient power and flexibility to constitute a kernel for building high—level specification
languages in any institution. We intentionally do not define a formal specification language
but only the specification—-building operations behind such a language. The difference is
mainly one of syntax. although we provide a suggestive notation for our operations. this is not
a complete syntax yet because without fixing a particular institution the syntax of signatures
and sentences cannot be fixed. This attitude admits certain informality in the presentation
beiow. Howaver, we do take care to formally define the semantics of all our operations.

Let INS be an arbitrary institution. fixed throughout this section.

A specification describes a collection of models of the same signature. To formalise this.
for any specification SP we define its signature SigISPl€iSigni and the coliection of ils models
ModISPICIMod(SIgISPD{. It is more usual to define the sermantics of spscification-building
operations in terms of theorles in the underlying (or an extended) institution rather than in
terms of collections of models (as in e, g. Clear). But this is not an option here —~ most of
the operations defined below cannot be naturaily viewed on this level. If SigISPI=L then we
call SP a L-spacification.

The operations we provide are the foliowing:

- Form a basic specification given a signature L and Z-sentences ®. This specifies
the collection of Z-models that satisfy .

- Form the union of two Z-specifications SP and SP’, specifying the collection of
Z-modeis satisfying both SP and SP’.

- Translate a Z-specification to another signature L' along a signature morphism
a:Z—» L', This together with union allows large specifications to be built from
smaller and more or less independent specifications.

- Derive a L'~gpecification from a richer Z-specification using a signature morphism
o: L' 5. This allows detalls of a constructive specification 1o be hidden while
essentially preserving its collection of models.

~ Given a L-specification restrict modsels to only those which are minimal extensions
of their O-reducts for a given 0: 'L This imposes on the models of a
specification the additional constraint which exciudes models which are “larger”
than necessary.

~ Abstract away from certain detalis of a specification, admitting any models which
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are equivalent to a model of the specification w.r.t. some given set of properties
(defined using sentences of the institution) .

- Close the collection of models of a specification under isomorphism.

Here is a more formal description of the above operations (we discuss their instantiations
in a typlcal institution at a more intuitive level in section 5):

A basic specification is a pair <L.®, where L€|Sign] Is a signature and PCSen(L) is a set
of L-sentences. We define:

Sigl«kL, ) = L
Mod[<ZL, ] = { M€jMod(L)| | MED)

Given two L-specifications SP and 8P’ (i.e. SigiSPI=SigISP'}=L) their union SP USP’ is
defined as follows

SigISP U 8P = £
ModISP U SP’] = ModISPI N ModISP']

(where N denotes set-theoretic intersection). Note that if SP and SP’ are basic
specifications <L, @ and <L, ®"> then their union has the same collection of models as
<L, QUD"> (this time U denotes the usual set-theoretic union) .

If 8P is a I-specification and 0: I~ L' is a signature morphism then we define the
translation of SP along 0, translate SP by 0, by:

Sigltranslate SP by o] = L’
Modltranslate SP by O] = { M’ €i{Mod(L")| | M’loeMod[SP] }

If SP is a basic specification <Z,® then translate SP by O has the same collection of models
as <L’ 0(®)>, where O(®) is the image of ¥ under O (i.e. Sen(U) here).

Note again that using union we can only "put together” specifications with the same
signature. To combine specifications with different signatures we have to form a "union
signature” (renaming some of the signature symbols if necessary), translate the
specifications into this "union signature’ (using translate w.r.t. appropriate signature
injections) and then form the union of the translated specifications. All this may be combined
into one operation using an appropriate category of "signature inclusions” to form the “union
signature” as a coproduct (R. Burstall. private communication, cf. also a remark in [GB 83}
section 6. 1). However. we decided to keep two simple, more elementary operations (which
gives slightly more flexibility) rather than provide a single higher-level operation.

if 0: L~ L is a signature morphism then from any L-specification SP we can derive a
L'~specification, derive from SP by o:

Sigiderive from SP by 0] = L’
Modl(derive from SP by o] = { MIO | M€ModISP] }

For ®C8en( L), Modlderive from <Z, 4> by 01C Modi<L’, 0-1(®)>], where 0-1(®D) is the
coimage of ® under O (i.e. Sen(0)). Note however that this inclusion may be proper. since
sometimes not all the properties of models of the derived specification are expressible using
just Z'-sentences. The right—hand side of this inclusion corresponds to the definition of the
derive operation in Clear [BG 80].

To define restriction to the minimal models of a specification we need the following notion:

Let 0: XX be a signature morphism and CSIMod(X) | be a collection of Z-models. We
say that a mode! M is 0-minimal in C if MEC and if M contains (to within isomorphism) no
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proper submodel from C with an isomorphic O~reduct, which we formaiise as follows: for
every M1€C. any monomorphism m: M1-M (in Mod{(Z)) such that m{c is an isomorphism
from M‘llo to M{G (in Mod(Z‘)) is in fact an isomorphism (in Mod(X)).

Now, for any signature morphism 0: L= L and L-specification SP, minimal SP wrt ©
specifies the modeis of SP which are minimal extensions of their O-reducts, i.e.:

Siglminimal SP wrt 0] = L
Modiminimal SP wrt 6} = { M | M is O-minimal in Mod[SP] }

To dascribe the next specification-building operation we need some further definitions:

For any signature L., set of L-sentences $#CSen(L) and L-modsis M1, M2€iMod(Z) |, we
say that M1 is ®-gquivalent to M2 if for any ¢e®, MI1E® iff M2k,

Then. for any signature morphisms 8: L- L, 0: L' L' and models M€IMod(I) |,
M’ €IMod (L") |, we say that M’ is a O-full O-extension of M if it is a @-extension of M, 1. e.
M‘[e--M, and its O-reduct is reachable. i.e. M“a is ty.—minimal in IMod(L") |, where for any
signature L1 we use the notation tyq 10 denote the unique morphism from the initial object in
Sign to L1 (the “inclusion" of the "empty signature" into L1).

For any signature morphisms 8:Z-*XL’ and 0: L"'—L’, set ®'CSen(Z) of open Z-formulae
with variables "Z'~8(L)" and Z-models M1, M2€|Mod(L)|, we say that M1 is ®'-equivalent to
M2 via € on O if there are O-full @-extensions M1‘, M2’ €]Mod(Z')| of M1 and M2, respectively,
such that M1’ is ®'-equivalent to M2’. (For an intuitive description of the meaning of this
definition in a typical situation see section 5.3

Now. for any Z-specification SP, signature morphisms 6: L= L and 0: L= L’ and set
d'CSen(L’) of open L-formulae with variables "L'-8(X) ", the specification
abstract SP wrt &' via @ on O (intuitively) ignores the properties specified in SP as much as
possible without affecting @ where O determines which elements of models must be
considered when inmterpreting @', i.e. it admits any modei ®'-equivalent via & on 0 to a model
of SP:

Siglabstract SP wrt ' via 6 on 0] = L
Modiabstract SP wrt @ via € on 0] =
{ M1€iMod(L)| | M1 is ¥ ~equivalent to M2 via @ on O for some M2€ModISP} }

Note that a mode!l of SP need not. in general, be a model of abstract 8P wrt &’ via @ on 0.
In fact, itis if and only If it has a o-full 8-extension.

Finally, for any L-specification SP. the specification iso close SP is defined by:

Sigliso close SP] = L
Modliso close SPl = { MEIMod(L)| | M is Isomorphic to some model M1€ModISP] }

Observe that there is no guarantee in the definition of an institution that the satisfaction
relation is preserved under isomorphism of modeis. Thus. even the coliection of modelis of a
basic specification nead not be closed under isomorphism. Also note (see section 5) that
the collection of modelis of derive from SP by U need not be closed under isomorphism even if
the coliection of modeis of SP is. However, the remaining operations do preserve closure
under isomorphism.

5 A standard case

The definitions of the specification—building operations we gave in the last section werg so
general that they may be difficult to understand. We will now consider what the operations do
in the familiar context ~- the institution FOEQ of first-order logic with equality as the only
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predicate symboi —— and compare them with operations in existing specification languages.

We define this institution as follows:

= 8ignggeq is AlgSig (i.e. Signge, . the category of aigebraic signatures and their
morphisms) .

- MOdeneq 18 Modge, (. @, for any algebraic signature I, Modgoeq(E) is the
category of L-algebras and for any algebraic signature morphism o: L= L,
Mode,eq(9) s the O-reduct functor from Modpgeq(Z) to Modpqaea (L)) .

- For any algebraic signature L, SenFOEQ(E) is the set of closed first—order
formulae with operation symbois from L and the equality as the only predicate
symbol: for any algebraic signature morphism 0: L2 L', Sengpeq(0) Is the
transiation of Z-formulae to Z'~formulae defined in the natural way.

~ The satisfaction relation is determined by the standard notion of satisfaction of
first-order sentences.

This clearly forms an institution (details in [GB 831). Moreover, our assumptions that the
category of signatures is finitely cocomplete and that Modg, transiates finite colimits in
Signggeq to limits in Cat obviousily hold here too: in fact, these parts of the institution are
exactly the same as in GEQ.

In the following we analyse the specification-building operations defined in section 4 in the
framework of the above Institution of first-order logic.

There is hardly anything to be said about basic specifications. All specification languages
provide a syntactic tool for listing a set of axioms over a given signature, aithough usually they
differ in which formulae are acceptable. First~order equational axioms are relatively powerfuyl
compared with e.g. equations in [ADJ 78] or universal Horn axioms in [ADJ 801.

In examples we use a syntax corrasponding to that of Clear:

Bool = sorts bool
opns true,faise: —bool
not: bool=bool

or: bool, booi—>bool
axioms Yx. true or x = true not(true) = faise
Vx. false or x = x not(false) = true

Vx. x=true Vv x=false
(Of course. or and v are formaily not the samse here.)

The union operation differs from the corresponding operation in other specification
languages (e.g. + in Clear or ASL) in that it works only faor specifications of the same
signature. and so it provides no direct way for putting together specifications over different
signatures. To do this, we have to use union together with the translate operation, which
introduces new sorts and operation symbols to a specification (and renames old ones) .

The sum of two specifications (as defined in ASL) may now be expressed as follows:

8P + 8P’ =, (translate SP by () U (transiate SP* by (")

where (:L>IUL' and t': L'>LUL’ are the inclusions of £ and L', respectively. into their set-
theoretic union LZUL’. To avoid unintended confusion of symbols with the same names in L
and I’, instead of using the inclusions t and L' we need injections which rename the
common symbols as required (as in Ciear).

An operation similar to enrich in Clear (identical when there are no symbol clashes) may
be defined in terms of the union and the basic specification operations:

enrich SP by sorts S opns  axioms ® =, SP + <<sorts(SP) US, opns(SP) U, &>
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Note that the translate operation corresponds directly to the TRA operator of [EWT 831

The derive operation is. in a sense, dual to translate. It may be used to rename and to
hide some of the sorts and operation symbols of a specification. it is exactly the same as
derive in ASL [SW 83, short version onlyl and corresponds directly to the reflection (REF)
operator in [EWT 88]. The intention is the same as that of derive in Clear, but the meaning is
slightly different as mentioned in section 4.

Note that the collection of modeis of derive from SP by O need not to be closed under
isomorphism even If ModISP] is. This phenomenon occurs whan ¢ is not injective on sorts.
When for two sorts s and s’ 0(s)=0(s’), derlve from SP by ¢ reguires the carriers of sorts s
and 5’ to be identical rather than only isomorphic. (See below for some further discussion on
this point.)

The minimal operation restricts the modeis of a specification SP to only those algebras
which contain (to within isomorphism) no proper subalgebra which is a model of SP with the
same O-reduct. In particular. in the institution of first~order iogic the definition of minimal as
given in section 4 states that if an algebra A is a model of the specification minimal SP wrt ©
then A is a model of SP and whenever B is a modsl of SP which is a subaigsebra of A such
that chr:Alo . then A=B. Moreover, if ModISP] is closed under isomorphism then the
converse of this implication is true as weil. In general. however, this need not be the case.

The minimal operation is similar to the GEN operator of [EWT 83] rather than to the
reachable operation of ASL [SW 83] or the use of finitely generated algebras in CIP-L
[Bau 811. in fact, minimality does not guarantee reachability (and hence. for example. the
induction principle need not hold in minimal algebras) although reachability does imply
minimality:
NN = sorts nat
opns zero. —*nat

succ: nat>nat
axioms 3x, succ(x) = x

Nat

o = minimal NN wrt LSig[NN]

(Recall that LSigINN] is the inclusion of the empty signature into SigI(NNI. ) Models of NN
contain (up to isomorphism) seither a finite segment of natural numbers N, {0..... n} with
succ(n)=n and an arbitrary unreachable part or eise NN togsether with an arbitrary unreachable
part containing at least one element x such that succ(x}=x, The only models of Nat, are (up
to isomorphism) finite segments of N, {0..... n} with succ(n)=n and all elements reachable.
or else N together with exactly one unreachable element W such that succ(W)=w.

An operation which is like reachable in ASL [SW 83] may be defined in terms of minimal as
follows:

reachable 8P wrt ¢ =, . SP + minimal <Sig[SP], ¢> wrt 0

The reachable operation of ASL is in fact a special case of the above:
reachable SP on S =, reachable SP wrt L

where L is the inclusion of the signature <sorts(SP)-8. #> into SigISP].

Nat-seg = reachabie NN wrt LsigINN] = reachable NN on {nat}

Now. the only models of Nat-seg are (up to isomorphism) finite segments of N. {C.....n}
with sucein)=n and all elements reachable.

Our specification-building operations do not provide the possibility to require initiality or
freeness (unless axioms like data constraints [GB 83] are aiready present in the underlying
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institution) . We could easily add such an operation. In practice. however. this requires a
serious restriction on the underlying institution which in the standard case excludes axioms
more powerful than universal Horn formulae (see IMM 83}, also {Tar 83D although note that
formatly it is possible to give a semantics for data constraints without this restriction [Tar 841
Anyway. we do not consider such an operation necessary: see [SW 838l for further discussion
on this point.

The derive operation allows one to hide some of the sorts and operation symbols of a
specification. This also causes some of the properties of its modeis to be hidden. since they
cannot be expressed using the remaining operations. However. this is not real abstraction
yet since the structure induced by the hidden operations remains. To do reai abstraction we
can pick out a set of properties we would like to preserve and then use the abstract operation.

The properties we would like to preserve must be expressed as sentences of the underlying
institution. However, to deal properly with unreachable elements of modeis (dubbed "junk" in
[BG 81)) we have to use open formulae rather than (closed) sentences. Why not just forbid
junk? Aithough unreachable elements seem to be of no consequence. there is an example
Unfinite-Set) in [SW 83) which shows how an unreachable element in a2 modsl of SP can
become reachable and useful in enrich SP by opns ... . Furthermore. junk naturally arises
when we “forget” operations using derive., which corresponds to the situation where an
algebra which is reachable when viewed from a iow level becomes non-reachable when viewed
from a higher level of abstraction.

The most natural way one may view abstract In the institution of first~order logic Is, we
think, the following (this gives a direct generalisation of abstract in ASL ~~ see below) :

Given a L-specification SP. extend L by as many variables X as necessary to name ali the
elements of algebras you would like to deal with. Then give the set ® of properties which are
to be preserved under abstraction. These properties must be expressed as L(X)~sentences.
The abstraction of SP with respect to ® is given by the specification
abstract SP wrt @ via ¢t on ('’ where t:Z>L(X) is the algebraic signature inclusion and
L: X L(X) is the inclusion into Z(X) of the algebraic signature X with sorts
{s€sorts(L) | X, is non—-empty} and constants X as the only operations. This specifies
(roughly) the coilection of Z-aigebras which satisty the same formulae of @ as modeis of SP.
More formally, a Z~algebra A satisfies abstract SP wrt @ via L on '’ if and only if there is a
Z-algebra B which satisfies SP and variable vailuations v, X2 1Al and v X~>1B] which are
surjective on soris in which X is non-empty such that for any formula ¢€®, ¢ hoids in A under
the valuation v, if and only if  holds in B under the valuation vy .

Consider the following example:

Nat = minimal < I, { ¥x. O#succ{x), ¥x.y. (succ(x)=succ(y) = x=y)} } > wrt ty

where L = sorts nat opns 0. 2nat suce: nat*nat
Nat-even = enrich Bool+Nat by opns  even: nat—>bool
axioms even(0) = true oven{succ(0)) = faise

Vx: nat. even{succ(succ(x)) = gven{(x)

All modeis of Nat are Isomorphic to the standard model of the natural numbers. (Note that
for this specification minimality guarantees reachability.) Each model of Nat-sven is the
combination of a model of Nat with a model of Bool (see above) with an extra operation even.
We can abstract from Nat-even preserving only the properties of booleans and the behaviour
of even as follows:
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Nat-mod = abstract Nat-even wrt @ via L on L’

where: X is a set of variables with thzti) and at least two elements of sort bool,
L L= LX) and ' x> L(X) are algebralc signature inclusions, and
&= { t=t' | 1,1 are L-terms of sort bool with variables X },
where L = SigiNat~even] and X is derived from X as above.

All models of Nat—-mod are isomorphic either to the natural numbers modulo n, for some
n€{2.4,86....) or to N itself with arbitrary junk of sort nat in both cases.

Observe that the above condition means that thers are "corresponding parts” of A and B in
which exactly the same formulae of ® hold. This is not the same as the requirement that
exactly the same formulae of ® hold in all of A and B. Namely,. if two algebras are
$-equivalent via L on U’ then (assuming that ® is cicsed under renaming of variables) they
are equivalent w.r.t. the set of formulae which results from universally closing all ¢€®, but
not vice versa: here is an example:

Suppose L = sorts s opns f:s=s and A, B are L-aigebras such that jA|=tBi,={0, 1,2},
f,(0) =M (0) =1, f, (D) =fg(1)=0, f,(2)=2 but fz(2)=1.
A: 04_____' 1 2\9 B: 0 "1 «—————— 2
Then A and B8 are equivaient w.r.t. the formula VYx. f(x) =x because neither A nor B satisfies
it. but they are not equivalent w.r. t. the set of formulae {f(x1)=x1. f(x2)=x2. ...} because
for any surjective variable valuation A satisfies at least one of the formulae in this set while B
satisfies none of them.

The idea of comparing algebras w.r.t. a set of formulae also appeared in [Pep 83]. The
difference is that there only closed formulae were considered. The two approaches are
equivaitent if one allows his closed formulae to be infinitary. In fact. two L-algebras are
equivalent in our sense w.r.t. a set ® of L(X)~sentences (with ¢t and L’ as above) if and
only if they are eguivalent w.r.1. the following closed L-sentence:

X (AN (Yyis. Viy=x | x€XJ) | s€sorts(L) & X.#9 ) & A\®))

whers \/ and /\ denote infinitary disjunction and conjunction, respectively. Note that the
size of X depends on the cardinality of the algebras we would like to deal with. so even in the
standard case of countable aigebras L, ., logic may not be sufficient.

1

We can further specialise our abstract operation to get the abstract operation of ASL.
Namely, whenever WC[Tg(X)| Is a set of terms (Ty(X) is the Z-aigebra of I-terms with
variables X, see e.g. [ADJ 76]) then the ASL specification abstract SP wrt W is equivalent to
our abstract SP wrt EQ(W) via t on t', where EQ(W) is the set of ali equations t=t’ such that
t and t' are terms of the same sort which beiong to W and L and L’ are as above.

The abstract operation may be used to relax the interpretation of a spscification to ali
modeis which are behaviourally equivalent to a modsel of the specification (this is calied
behavioural abstraction in ASL [SW 83] ~- see this paper for examples).

Suppose that L is an algebraic signature and IN and OUT are subsets of the sorts of L.
Now, consider all computations which take input from sorts iN and give output in sorts QUT;
this set of computations corresponds to the set ITZ(XW) toyr of L-terms of sorts QUT with
variables of sorts IN. Two algebras are equivalent in our sense with respect to the set of
equations EQ(ITZ(X,N) loyy) if they are behaviourally equivalent. that is they have matching
input/output relations. Note that this covers the notions of behavioural equivalence with
respect to a single set OBS of observable sorts which appear in the literature. For example.
in [Rei 811 and [GM 821 we have IN=sorts(L), QUT=0BS; in [Sch 82], [SW 83] and [GM 83]
IN=OUT=088: and in [GGM 76]. [BM B1] and [Kam 83] IN=¢% and OUT=0BS.
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The abstract operation usually does not appear explicitly in specification languages (the
only exception we know about is ASL) | instead. it is somehow included in the notion of
implementation of one specification by another. The inclusion of abstract as an explicit
specification-building operation allows us to use a very simpie and slegant definition of
implementation (see [SW 83] for details). On the other hand. abstract makes inference mors
compiex because it is not monotone (at the level of theorias) in the sense that things true in
SP need not be true in abstract SP wrt . ..

The iso close operation closes the collection of models of a specification under
isomorphism. The only situation which the collection of models of a specification may not be
closed under isomorphism already is when the specification contains a use of
derive from ... by O where O is not injective on sorts. it would be sasy to "fix" derive by
changing the definition so that the resuit is automatically closed under isomorphism (this was
the alternative adopted in ASL [SW 83, long version]). Another possible "solution", which
turns out to yield exactly the same sxpressive power, is to restrict derive by allowing only
signature morphisms which are injective on sorts. We prefer, howsever, to adopt neither
solution. retaining both derive (as it is defined now) and iso close. This is consistent with
our policy of providing operations which are as elemsentary as possible. It aiso leaves open
the possibility of specilying collections of models which are not closed under isomorphism;
despite the welli-known arguments that closure under isomorphism is naturai, we feel that
there is no harm in providing such flexibility.

6 A partial case

A good 1est for the general definitions in section 4 is to consider their instantiation in
several significantly different institutions. In this section we discuss the result of instantiating
in an institution of partial first-order logic. This Is an interesting case to examine because
the category of partial Z~algebras as defined beiow is sufficiently different from the category of
total L-algebras discussed in sections 2 and 5 that the definitions of operations (like minimal
and abstract) which depend on the structure of this category are put to a non-trivial test.

Let Z=<S.(> be an algebraic signature. A partial L-algebra is just like a (total) Z-algebra
except that some of its operations may be partiai. Formaily. a partial Z-algebra consists of
an S-indexed family of sets |Al = (Al g and for each f:s1....,sn™>s a possibly partial
function f,: 1Al X. . . XJAl, 2 [Al,. A (weak) L-homomorphism from a partial L-aigebra A to a
partial Z-aigebra B, h: A-=B, is a family of (total) functions {hdseg Where h Al —>1Bl, such

that for any fis1,....sn>s and a,€lAl,. ... . a,€lAl
talay. ... .8y defined =% fy(h,(ap).. ... hy.(a,)) defined and
helfalay. ... a)) = fglhg(ay. ... . h,(a))

(IBrw 82] would call this a total Z-homomorphism). if moreover h satisfies the condition
falhgtap. ... hg(a))) defined = f(a,..... a,) defined
then h is called a strong L~homomorphism.

The category of partial Z-aigebras PAIg(L) has partial Z-algebras as objects and strong
Z-homomorphisms as morphisms; the composition of homomorphisms Is the composition of
thelr corresponding components as functions. (This obviously forms a category. )

The definition of the O-reduct functor ,,fc,: PAIg(Z )~ PAIg(L) where 0: L L' is an
algebraic signature morphism is exactly the same as in the total case. see. section 2.

A partial first~order L-sentence is a closed first-order formula built from L-terms using
the logical connectives 1, A. VvV and =%, the quantiflers V and 3. and the atomic formulae
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D (1) and t=t' (strong equality {Brw 821) for each sort s in L and terms LUETR (X, (. e.
t.t' are L-terms of sort s with variables X),

Suppose A is a partial Z-algebra. Then A satisfies an atomic formula D(t) under a
valuation v: X~*|A]l, written AF, D (). iff the value of { in A under v is defined (we omit the
definition of the value of a term in a partial algebra under a valuation. see [Bur 821 or [Rei 84]
for details) . A partial Z-algebra A satisfies an atomic formuia t=t' (where t,t'G{TZ(X) Iy for
some sort 5 in L) under a (total) valuation v: X-*{A[l, written Al t=t’, iff

AF, D (1) and AR, D (1), or
AFvDs(t) and AF,D (1) and the values of t and t' in A under v are the same.

Satisfaction of (closed) partial first~order L-sentences is defined as usual, but note that v
and 3 quantify only over defined values,

The above definitions amount in the obvious way to an institution PFOEQ of partial first—
order logic. The satisfaction condition follows from the fact that FOEQ is an institution and
that definedness of terms is preserved under change of signature. Moreover, Signgc,eo Is
finitely cocomplete (as mentioned in sections 2 and 5) and Modpoeq transiates finite colimits
in 8ignpgagq to Himits in Cat.

The result of instantiating the general definitions of section 4 in PFOEQ gives a set of
operations which in some respects resemble those in the early version of ASL described in
[Wir 821 defined in the context of partial algebras (call this language "partial ASL", but note
that it is significantly different from the ASL described in [SW 831). One difference. however,
is that in partial ASL the collection of models of any specification was closed under renaming
of sorts and operations, i.e. if SigiSPI=L and L=XL’', then ModISF] contains partial
I'~algebras as well as partial Z-algebras. This feature could be obtained by changing the
definition of ModPFOEQ and FZ,PFOEQ but we prefer to omit it.

The comments regarding basic specifications and the operations U. transiate, derive and
iso close (and how to define + in terms of U and transiate) in section 5 apply without change
here. More interesting are the operations minimal and abstract.

Iintuitively speaking. the minimal operation gives rather unexpected results. One would
axpect that minimal SP wrt 0 should give the least-defined and smallest (wrt @) models of
SP, but instead it gives the smallest (wrt U) models of SP in each class of equally-defined
models. There seems to be no way to restrict to the minimally-defined partial algebras in a
collection of models using the operations we have since strong homomorphisms cannot relate
algebras unless they are equally defined. This means that there is no way to express the
mdef operation of partial ASL, which restricts a collection of partial algebras to the ones
which are minimally defined and reachabie (and which satisfy true#faise). We can define an
operation which restricts to reachabie models

reachable SP wrt 0 =, . SP U minimal <SigISP],  wrt
which at least gives the possibility of performing proofs by structural induction.

Abstract works in a way similar to that described in section 5. The use of abstract for
behavioural abstraction is slightly different, since the properties to be preserved must inciude
definedness of the results of "observable’ computations. If L is an algebraic signature and
IN, OUT are subsets of the sorts of L as in section 5§, behavioural equivaience in the context
of partial algebras becomes equivalence in our sense with respect to the set of formulae
EQUT (X loyup? Y { DD 1 telTe (X0, for s€0UT J . Partial ASL includes no operation
similar to abstract.

We could get minimal to work as expected by changing the institution PFOEQ. The changse
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needed is to use weak L~homomorphisms as the morphisms of PAIg(L) in place of strong
Z-nomomorphisms. Then mdef as in partial ASL can be expressed, albeit in a rather
unsatisfactory way:

mdef SP =, (SP U minimal <SigiSP]. D> wrt Lsig[SP}) + Bool

where D = { Dy(1) | tis a ground SigiBPl-term of sort s and MED () for all MeModISP] }
and Bool is a specification of the booleans including the axiom true#false.

But now abstract does not work as expected (note that its definition uses the notion of
L-reachabllity =, minimality in IMod(Z) |, which changes when the morphisms of PAIg(X) are
changed ~- now only totally undefined partial L~algebras are L-reachable).

There is yet another possibility which makes both minimal and abstract work as expected in
the partial case. Namely, we can view (some of) the definedness axioms of a specification
as a part of its signature. (Although this might seem like a strange mixture of syntax with
semantics, similar mixtures have appeared eisewhere ~- [BR 83] inciudes equations in
signatures which define the domains of operations. and [GDLE 82] includes information in
signatures regarding which operations may produce serror values.) More formally. we can
use an institution IPFOEQ of partial first-order iogic where the category of signatures is the
category of theories in PFOEQ containing only definedness axioms. Thus, a signature in
IPFOEQ is a pair <L, D> where L is an algebraic signature and D is a set of definedness
formulae over %: a signature morphism 0:<Z, D> <L’, D" in IPFOEQ is an aigebraic signature
morphism O: I= L' which preserves the definedness axioms, i.e. If d€D then O(d) €D’; for
any signature <L, D>, ModeOEQHZ. D>) is the category of all partial Z-algebras which satisfy
(at least) D with weak homomorphisms as morphisms. Sen and satisfaction are as in
PFOEQ.

PFOEQ

Now the minimal operation works in the intended way, as in the institution PFOEQ with
weak homomorphisms. Observe that for any signature <&, D», a <%, D>-reachable modei (i.e.
a L(}:'D}—minima! model in ModEFOEQUZ, D>)) s a minimally~-defined model with no
unreachable elements. as intended. This means that abstract as defined in section 4 works
nicely too. But note that to abstract with respect to a set of formulas with variables X we now
have 1o abstract via a signature inclusion which extends the signature <Z, D> to
<L(X),D VU D(X)>, where D(X) =gof { Dg(X) | s€s0rts(L), x€X, ) states that all "constants” X
have defined values.

Note that in the above we started from the institution of partial first-order logic. identified
in it a "subinstitution” of "static® sentences and then used theories of this subinstitution as the
signatures of another institution. This seems to be an interesting way of building a new
institution from an old one which perhaps deserves a more careful investigation.

7 Concluding remarks

In this paper we attempted to define a set of primitive and general specification-building
operations which when instantiated in any institution provide a powerful but low-level tool for
specification. We tested the institution—based general definitions of these operations by
examining the result of instantiating them in two different ways: in an institution of total first~
order equational iogic (section 5) and in an institution of partial first-order logic (section 6) .
In formulating the definitions we also considered the result of instantiating them in two other
institutions —— an error institution based on [Gog 771 and an institution of continuous algebras
based on [ADJ 771 - but due tc space limitations we are unabls to present the detalls of
these investigations here.

The question of whether the definitions we have given are really general naturally arises;
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maybe there is some institution which we have not considered in which the operations we have
defined work in an unexpected way. Indeed. whenever one generalises on the basis of a
small collection of exampies one must choose between all the generalisations which are
different in general but which coincide in the particular examples one has at hand. For
example. in the definition of the minimal operation. to represent the concrete notion of
injective homomorphisms we used just monomorphisms rather than say equalisers or extremal
monomorphisms (or more generally we could parameterise our definition by an image
factorisation system as in [Tar 841). All of these possibilities work equally well in each of our
axample institutions. We can try to test our generalisations by comparing them with other
available general definitions. So for example we can show that —— under certain not very
restrictive conditions —— minimal corresponds to "generated” as defined in (GB 83] (note
however that the definition of [GB 83] works only in liberal institutions, and this is a strong
rastriction) .

Another natural question concerns our decision to allow the specification of collections of
models which are not closed under isomorphism and our careful treatment of models
containing unreachable elements. We chose this course because we cannot see any really
compelling reason. either pragmatic or technical. for assuming that ali useful coliections of
models are closed under isomorphism or that only reachabie models are worth considering.
On the other hand. we also know of no compelling reason why these assumptions (especially
the former) are unreasonable. By leaving the choice to the specifier (or to the designer of a
high-level speacification language which builds upon our kernel operations) we provide the
freedom to explore all possibilities without unnecessary restrictions.

Although the reader might have the impression that we have been carried away in our
pursuit of generality, we tried to resist the urge to throw in unnecessary generalisations. So
for example, it is clear that iso close can be generalised to give an operation which can close
under different classes of morphisms. and not just under isomorphism. ‘This generalisation
might even be useful. note that closure under (sources of) monomorphisms gives closure
under subalgebras. and closure under (targets of) epimorphisms gives closure under
quotients. We do not claim to offer every possible operation on collections of modeis., only a
few interesting ones which we know are useful. This is also part of our justification for
omitting an operation which restricts to the initial or final elements in a collection of models.

We are not completely satisfied with our definition of abstract. It seems just too
complicated. although its complexity stems directly from the difficulty of correctly generalising
an important detail in the definition of abstract in ASL. Woe are actively investigating
alternative definitions; the most promising one at the moment seems to be the following:

Siglabstract SP wrt @ via 61 = L
Modiabstract SP wrt &’ via 6] =
{ M1€IMod (L)} | M1 is @' -equivaient to M2 via @ for some M2€Mod(SP] }

where M1 is ®'-equivalent to M2 via @ if for any 8~extension of M1 there is a ¥'-equivaient
8-aextension of M2 and vice versa. Unfortunately, we just do not know yet exactly how this
definition relates to the definition of abstract in ASL and whether it is powerful enough to
express behavioural abstraction.

One problem which we have not touched on is the provision of a institution-based
parametarisation mechanism. We do not anticipate that this would be very difficuit; the
macro-~like parameterisation mechanism in ASL should generalise without problems.
Parameterisation mechanisms based on the idea that specifications are just theories which
use the pushout in the category of theories to define application (such as those in Clear,
LOOK and other languages) would be more difficult to generalise, although probably this could
be done.
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It would be interesting to try to bulld a high-level specification language on top of the
kernel which we define here. Such a high-level language most likely would not lend itself to
the genarality of an arbitrary institution, since there are probably useful operations on
specifications which could only be defined in a particular institution or in a restricted class of
institutions.
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