
Interfaces and Extended MLStefan Kahrs� Donald Sannellay Andrzej TarleckizAbstractThis is a position paper giving our views on the uses and makeup of module inter-faces. The position espoused is inspired by our work on the Extended ML (EML)formal software development framework and by ideas in the algebraic foundationsof speci�cation and formal development. The present state of interfaces in EML isoutlined and set in the context of plans for a more general EML-like framework withaxioms in interfaces taken from an arbitrary logical system formulated as an insti-tution. Some more speculative plans are sketched concerning the simultaneous useof multiple institutions in speci�cation and development.1 Interfaces in generalModularisation mechanisms in programming languages such as C++ [Str86] and Stand-ard ML (SML) [MacQ86] provide useful tools for coping with the complexity inherent inlarge software systems. A central ingredient of such schemes is the use of interfaces to me-diate module interconnection. A module interface is a description of the facilities that themodule makes available for use by the rest of the system. The amount of detail recorded inthis description is generally less than that of the implementation provided by the modulebody; it glosses over (i.e. abstracts away from) some of the arbitrary choices made in theimplementation. This loss of information serves at least two purposes, corresponding totwo vantage points: that of the other modules of the system; and that of the module itself.From the former point of view, the interface highlights the essential features of the modulerather than burying them within a morass of unimportant details. From the latter pointof view, omitting information that should be of concern only to the implementor of themodule enables implementation details to be changed later without a�ecting the rest of�smk@dcs.ed.ac.uk; Laboratory for Foundations of Computer Science, Edinburgh University. Thisresearch was supported by SERC grant GR/J07303.ydts@dcs.ed.ac.uk; Laboratory for Foundations of Computer Science, Edinburgh University. Thisresearch was supported by SERC grants GR/J07303 and GR/J07693, a SERC Advanced Fellowship, andthe COMPASS Basic Research working group.ztarlecki@mimuw.edu.pl; Institute of Informatics, Warsaw University, and Institute of ComputerScience, Polish Academy of Sciences. This research was supported by SERC grant GR/H76739, an EC-funded COST fellowship, and KBN grant 2 P301 007 04.1



the system. These are two sides of one coin: the interface de�nes what the module can bedepended on to provide, without constraining the means used to provide it.In a programming language, interfaces record the names and (usually) types of modulecomponents. This is exactly the information about a module required for the (separate)compilation of subsequent modules that depend on it. However, this \static" informationis not su�cient when the objective is proving correctness of a modular system with respectto some speci�cation of its required behaviour; in this case, it is necessary to add \logical"information about the properties of module components. This, in turn, is exactly theinformation about a module required for the (separate) veri�cation of subsequent modulesthat depend on it.Interfaces containing such logical information play a central role in frameworks forspeci�cation and formal development of modular systems such as Extended ML (EML)[ST85]. Formal development of a module involves proceeding from such an interface to amodule body that is a provably correct implementation of the interface. Here, interfacesmediate proofs of correctness; a module is proved to correctly implement its interfaceon the basis of those properties of modules on which it depends that are recorded intheir interfaces. As a result, it is possible to prove that a module is correct even beforethe modules on which it depends have been fully implemented. This enables work onthe development of modules of a large system to be carried out top-down (or \inside-out") rather than bottom-up, and enables work to proceed simultaneously on relatedmodules without danger of con
ict. In order for interfaces to be of much use in formaldevelopment and veri�cation, they have to have a formally de�ned meaning; otherwiseproofs of properties of modules are out of the question.This is a position paper setting out our views on the uses and makeup of moduleinterfaces. Section 2 outlines the syntax, semantics and role of interfaces in the EMLformal software development framework. Section 3 describes how the present state of EMLrelates to our plans for a general EML-like framework with axioms in interfaces taken froman arbitrary logical system; the semantic basis for this is Goguen and Burstall's concept ofinstitution. Section 4 concludes with a sketch of some more speculative ideas concerningthe simultaneous use of multiple logical systems in the speci�cation and development of\multi-paradigm" systems built from heterogeneous components, and of ordinary \uni-paradigm" systems.2 Interfaces in Extended MLEML is a framework for the formal development of modular SML software systems from spe-ci�cations of their required behaviour. The long-term goal of work on EML is to provide apractical framework for formal development together with an integrated suite of computer-based speci�cation and development support tools and completemathematical foundationsto substantiate claims of correctness. Although considerable progress has been made, thisgoal is still a long way o�; see [ST89], [ST91], [San91], [KST93a] and [KST93b] for thedetails that are omitted in the brief and very informal presentation below.The EML speci�cation language is a simple extension of SML whereby axioms are2



permitted both in module interfaces to specify the properties of module components, andin place of SML code in module bodies. As in SML, ordinary non-parameterised modulesare called structures, and parameterised modules (taking structures as parameters) arecalled functors. Probably the most commonly-cited example of a functor is a packagefor sorting lists containing values of an arbitrary type with respect to some arbitraryorder relation on values of that type; here, the parameter de�nes the particular type andorder relation of interest, and application of the functor to that parameter yields therequired sorting program. A structure has a single interface (called a signature) specifyingits components, while a functor has both an input signature to specify requirements onpermissible structure parameters, and an output signature to specify the components ofthe structure which results when the functor is applied. In contrast to SML, interfacesin EML are opaque, meaning that only the information recorded in a module's interface(or interfaces, in the case of a functor) is available externally. With transparent interfacesas in SML, information about the representation of type components of a module canbe exploited by subsequent modules; this is sometimes convenient, but it has the veryunfortunate consequence that changing to a di�erent representation may cause code inother modules to stop working.In SML, when one module (structure or functor) uses components from another module,when a functor is applied to a structure, or when a module is declared as having a givensignature, the system automatically checks for type compatibility. The main mechanismhere is that of signature matching, i.e. comparing interfaces to ensure that what is requiredis in fact supplied. The same goes for EML, except that signature matching has to beextended to take account of axioms in signatures as well. The language of EML axioms(see below) is far too powerful to enable such checks to be carried out automatically, sosignature matching gives rise to proof obligations which need to be discharged (i.e. theproofs need to be carried out) in order to guarantee compatibility [San93].Axioms specify the functional behaviour of module components, in the tradition of thealgebraic speci�cation paradigm. Any expression of type bool may be used as an axiom,which amounts to an assertion that the expression evaluates to the value true; that is,the built-in datatype bool is identi�ed with the type of logical values in the logic. Thebasic logical connectives are those of SML (andalso, orelse, not) with the additionalconnective implies. Universal and existential quanti�cation is provided over all types,including function types and polymorphic types. A \logical" equality predicate ==, whichcan be used to compare values of any type, complements the \computational" equality =provided by SML which can only be used for values of a so-called equality type. Logicalequality is extensional equality on function types as well as with respect to exceptions andnon-termination: exp==exp is true even if exp raises an exception or fails to terminate.Two additional predicates are provided: one tests if evaluation of an expression terminatesor not, and the other tests if evaluation raises an exception. The design of a language ofaxioms that is rich enough to cope with SML raises a number of interesting technicalproblems; see [KST93a] for relevant discussion.EML covers all of SML, with the exception of references (pointers), but including poly-morphic types, non-terminating computations, exceptions, user-de�ned types and higher-3



order functions. References are omitted for the sake of simplicity, but it would not be toodi�cult to treat them once it is decided what the existing logical constructs should meanin the presence of side e�ects. For example, should exp==exp 0 mean just that the valuesof exp and exp 0 are identical, or does it also require the side e�ects of evaluating exp andof evaluating exp 0 to coincide?Formal development of a software system from a speci�cation of requirements (con-sisting of a single signature in the case of a structure, or pair of signatures in the caseof a functor) proceeds top-down by stepwise re�nement and modular decomposition. Inthe latter, the problem is decomposed into a number of simpler problems by specifyinga number of new modules and de�ning the module at hand as a composition of these.Providing a body for each of these new modules is a self-contained task; these tasks can betackled separately in any order, precisely because the signature(s) of each required modulede�nes exactly what it needs to know about the outside world and what the outside worldrequires it to do.3 Extended ML in an arbitrary institutionThe basic ideas underlying EML do not actually depend on the particular features of theSML language or of the logical notation used to write axioms. What is essential is SML'smodule system (with the use of opaque interfaces as described above): the concepts ofsignature, structure and functor, and the manner in which they can be de�ned and used.This module system can be adapted for use with a wide variety of programming languages;for example, see [SW92] for an SML-inspired module system for Prolog. In a similar way,it is possible to adapt EML for use with di�erent programming languages. Even in a givenprogramming language, it is possible to use di�erent logical systems for writing axiomsdescribing the behaviour of module components. In early work on EML ([ST85], [ST86],[ST89]), we explicitly aimed for a framework with this degree of 
exibility. More recently,we have been concentrating on the speci�c case of SML and the language of axioms sketchedin Section 2, but the foundations underlying the EML formal development methodologysupport much more than this special case.The semantic basis for this 
exibility is Goguen and Burstall's concept of an institution[GB92], which is a particular formulation of the intuitive concept of a logical system. Insimple terms, an institution INS comprises a notion of signature and, for each signature, acollection of semantic models over that signature, a collection of well-formed axioms overthat signature, and a satisfaction relation de�ning which models satisfy which axioms. Thisgives a basic framework in which axioms can be used to specify classes of models; when themodels correspond to software modules, such a speci�cation amounts to a description ofthe permissible implementations of a module interface. In the institution appropriate forthe EML framework as described in the previous section, semantic models correspond tostructures in SML and signatures correspond to signatures in SML. The language of axiomsand what it means for a model to satisfy an axiom is as described earlier. An institutionsimilar to the one required is de�ned in [Kaz92]. Given an arbitrary institution INS , anEML signature amounts to a signature of INS together with a set of axioms of INS that4



are well-formed in the context of that signature, and the meaning of the axioms is givenby the satisfaction relation of INS . See [ST86] for a sketch of a semantics for EML in thecontext of an arbitrary institution, and see [ST89] for a justi�cation of the soundness ofthe EML formal development methodology that is applicable in a similar setting.Instantiating EML to give a speci�cation and formal development framework for a givenprogramming language requires �rst that an SML-like module system be added to the lan-guage, and then that an institution be formally de�ned having signatures correspondingto signatures of modules, semantic models corresponding to structures, and axioms ap-propriate for specifying the components of such structures, with the meaning of axiomsde�ned by the satisfaction relation. Not all of the features of the SML module system needto be present for this to work; for instance, EML-style formal development still works in amodule system lacking the concept of a functor.None of this makes sense in the absence of a formal semantics for the programminglanguage at hand (for SML, see [MTH90] and [MT91]): it must be completely clear exactlywhich structures (containing code written in that language) correspond to which models ofthe institution. Furthermore, de�ning a language of axioms in institutional terms involvesde�ning exactly when models satisfy axioms; again, the key is a formal de�nition. But notethat the language of axioms is unconstrained; in particular, it is not restricted to assertionsabout functional behaviour. Axioms of any kind are permissible, provided that it is possibleto give an unambiguous de�nition of when a structure satis�es an axiom. So for example,this approach encompasses interface speci�cations containing e�ciency constraints, sinceit is possible (in principle at least) to spell out exactly when such a constraint is satis�ed.On the other hand, it probably does not encompass interface speci�cations containingthe requirement that a module be \maintainable" or \reliable"; this is not because ofany philosophical beliefs concerning the usefulness of such speci�cations, but because itis di�cult to see how to give a reasonable de�nition of exactly when such a constraint issatis�ed.Although the foundations underlying EML happen to be based on institutions, the samepoints would apply if they were based on some other formulation of the intuitive conceptof \logical system", including both algebraic-style competitors to institutions (e.g. [Poi89],[EBO93], [SS93]) and type-theoretic formulations like the Edinburgh Logical Framework[HHP93]. Our point is that the de�nition of the logical system used must be explicitand the correspondence between programs and this logical system must be clear; beyondthis, anything goes as far as we are concerned. Parameterizing a speci�cation frameworkby an arbitrary institution gives the ability to use di�erent logical systems and di�er-ent programming languages in the same framework without the need to re-build it fromscratch.4 Extended ML in multiple related institutionsThe possibility of using a single speci�cation and formal development framework withdi�erent institutions has been mentioned above. But even in the process of developinga single software system it may be convenient to use di�erent institutions at di�erent5



stages of development. After all, we proceed from a high-level user-oriented speci�cationto low-level computer-oriented code; it seems only natural that di�erent logical tools arenecessary to express properties at these very di�erent levels. Another reason why wemight want to use multiple institutions in the construction of a single system is in the caseof so-called multi-paradigm systems built from heterogeneous components. For example,a di�erent institution would be suitable for specifying and reasoning about a concurrentsubsystem (say, Hennessy-Milner logic [HM85]) than for developing a module implementedusing a logic programming language (say, �rst-order equational logic). This includes alsothe development of mixed hardware/software systems, which would involve the use of aninstitution suitable for hardware description (say, higher-order logic [Gor86]).When multiple institutions are applied in the construction of a single system, someway of relating the institutions to each other is required. There are several ways of re-lating institutions; the one that seems most relevant for this purpose is the concept ofinstitution semi-morphism [ST94] (cf. semi-institution morphisms in [ST88]). Informally,an institution semi-morphism maps the models of one institution to those of another; thedirection of the map is from the \richer", more detailed institution to the \poorer", lessdetailed and hence more abstract one. This model translation map may be thought of as aprojection function which strips away aspects of the model that are irrelevant in the poorerinstitution. Since the signatures provided by the two institutions may di�er, the modeltranslation map is accompanied by a translation of signatures going in the same direc-tion. No relation between the axioms of the two institutions nor between their satisfactionrelations is required; this is the reason why this is called an institution semi -morphism.(The concept of institution morphism in [GB92], which also includes a translation of ax-ioms, is too restrictive for use in the present context.) One may wish to view institutionsemi-morphisms as interfaces between logical systems, but that is a topic for a di�erentpaper!When di�erent institutions, related by institution semi-morphisms, are used in thedevelopment of a single system, the various model translation maps are used to makesense of the relationship between descriptions of the same module at di�erent stages ofdevelopment, and to mediate interconnections involving modules of di�erent kinds. Aninteresting aspect of the latter is that a model translation map can serve to hide irrelevantdetails of a module implementation which are an artefact of the paradigm used. Forexample, the communications between components of a concurrent subsystem are hiddenfrom view when all we are interested in is regarding it as a particular way of implementinga collection of functions.The ideas sketched in this �nal section are speculative and somewhat half-baked. Thefoundations exist, but little thought has gone into putting them into practical use. Inparticular, we have not yet considered how these ideas may be incorporated into a concreteEML-like framework for speci�cation and formal development.References[EBO93] H. Ehrig, M. Baldamus and F. Orejas. New concepts of amalgamation and extension for a6



general theory of speci�cations. Proc. 8th Workshop on Speci�cation of Abstract Data Types,Dourdan. Springer LNCS 655, 199{221 (1993).[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for speci�cation and program-ming. Journal of the Association for Computing Machinery 39:95{146 (1992).[Gor86] M. Gordon. Why higher-order logic is a good formalism for specifying and verifying hardware.Formal Aspects of VLSI Design (G. Milne and P.A. Subrahmanyam, eds.). North Holland(1986).[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. Journal of the Asso-ciation for Computing Machinery 40:143{184 (1993).[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal ofthe Association for Computing Machinery 32:137{161 (1985).[KST93a] S. Kahrs, D. Sannella and A. Tarlecki. The semantics of Extended ML: a gentle introduction.Proc. Intl. Workshop on Semantics of Speci�cation Languages, Utrecht. Springer Workshopsin Computing, to appear (1993).[KST93b] S. Kahrs, D. Sannella and A. Tarlecki. The de�nition of Extended ML. Draft report, Univ.of Edinburgh (1993).[Kaz92] E. Kazmierczak. Model theory for Extended ML. Draft report, Univ. of Edinburgh (1992).[MacQ86] D. MacQueen. Modules for Standard ML. In: Report ECS-LFCS-86-2, Univ. of Edinburgh(1986).[MT91] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press (1991).[MTH90] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML. MIT Press (1990).[Poi89] A. Poign�e. Foundations are rich institutions, but institutions are poor foundations. Proc. Intl.Workshop on Categorical Methods in Computer Science with Aspects from Topology, Berlin.Springer LNCS 393, 82{101 (1989).[SS93] A. Salibra and G. Scollo. A soft stairway to institutions. Proc. 8th Workshop on Speci�cationof Abstract Data Types, Dourdan. Springer LNCS 655, 310{329 (1993).[San91] D. Sannella. Formal program development in Extended ML for the working programmer.Proc.3rd BCS/FACS Workshop on Re�nement, Hursley Park. Springer Workshops in Computing,99{130 (1991).[San93] D. Sannella. Static and logical correctness conditions in formal development of modular pro-grams. Draft report, Univ. of Edinburgh (1993).[ST85] D. Sannella and A. Tarlecki. Program speci�cation and development in Standard ML. Proc.12th ACM Symp. on the Principles of Programming Languages, 67{77 (1985).[ST86] D. Sannella and A. Tarlecki. Extended ML: an institution-independent framework for formalprogram development. Proc. Workshop on Category Theory and Computer Programming,Guildford. Springer LNCS 240, 364{389 (1986).[ST88] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraic speci�c-ations: implementations revisited. Acta Informatica 25:233{281 (1988).7



[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations andmethodology. Proc. Joint Conf. on Theory and Practice of Software Development, Barcelona.Springer LNCS 352, 375{389 (1989).[ST91] D. Sannella and A. Tarlecki. Extended ML: past, present and future. Proc. 7th Workshop onSpeci�cation of Abstract Data Types, Wusterhausen. Springer LNCS 534, 297{322 (1991).[ST94] D. Sannella and A. Tarlecki. Foundations of Algebraic Speci�cations and Formal ProgramDevelopment. Cambridge Univ. Press, to appear (1994).[SW92] D. Sannella and L. Wallen. A calculus for the construction of modular Prolog programs.Journal of Logic Programming 12:147{177 (1992).[Str86] B. Stroustrup. The C++ Programming Language. Addison-Wesley (1986).

8


