
J. LOGIC PROGRAMMING 1992:12:147-177 147

A CALCULUS FOR THE CONSTRUCTION
OF MODULAR PROLOG PROGRAMS*

D. T. SANNELLA AND L. A. WALLEN

D We present a module language for PROLOG based on the theory of
modularity underlying the Standard ML module system. The language
supports the construction of hierarchically structured programs from
parametrized components and provides a form of structural data abstrac-
tion. A formal semantics is given for the system which translates modular
programs into conventional programs. a

1. INTRODUCTION

Module systems and data abstraction are powerful methods for managing the
complexity of large programs. Most standard PROLOG systems lack both facili-
ties. As efficient implementations of PROLOG become widely available, the lack
of such facilities becomes a serious hurdle to the use of the language for large
projects. The majority of previous proposals for module systems in a logic pro-
gramming context require significant extensions of the PROLOG language and
heavily modified interpreters/compilers (see, e.g., [9,4]).

In this paper we present a module system for the standard PROLOG language
that also supports structural data abstraction. In its role as a metalanguage, the
module system is almost completely decoupled from the underlying PROLOG
language, a separation which facilitates its implementation within existing
PROLOG systems. What interaction there is occurs, as expected, via the extralogi-
cal predicates and the method of referencing predicate and function constants.
The language supports the construction of programs from generic, or parametrized,
components, and provides a notion of program well-formedness which correctly
excludes many common PROLOG programming errors. The integration of
PROLOG’s extralogical facilities into the module system supports a hierarchical
view of the PROLOG database.

Address correspondence to Dr. L. A. Wallen, Computing Laboratory, University of Oxford, Oxford
OX1 3QD, England, U.K.

*Research supported in part by SERC grants GR/D/44874 and GR/D/44270.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1992
655 Avenue of the Americas, New York, NY 10010 0743-1066/92/$3.50

148 D. T. SANNELLA AND L. A. WALLEN

The module language is based on the theory of modularity underlying the
Standard ML module system [7]. A deliberate effort has been made to maintain
consistency with that system for the following (positive) reasons:

The theory of modularity on which the system is based is practically indepen-
dent of the underlying programming language; to instantiate the theory for a
particular language we need only decide on the ways in which programs in
that language can interact. (This we do for PROLOG in Section 1.3.)

Program development methods based on the module language have been
extensively investigated (e.g., [14]). Such methods are deliberately couched so
as not to prescribe the underlying programming language and logic [3,13]. As
a consequence, this work is directly applicable to the modular PROLOG
language presented here, and this fact justifies the use of the term “calculus”
for the language presented below.

The module system for ML has been implemented and is well liked.

Since the language encourages the construction of programs in a hierarchical
manner, an approach must be formulated for the sharing of common subcompo-
nents. The approach outlined here is based on MacQueen’s notion of a sharing
specification.

In the rest of this introduction we present the functional approach to modular-
ity on which the module language is based and introduce some PROLOG-specific
terminology. We also discuss the choice of the appropriate program unit to form
the basic component of PROLOG programs in the large. The second section
contains details of the module language and examples.

While the PROLOG language itself is not a pure logic programming language,
interest in the language stems from its proximity to this ideal. It is important
therefore that any notion of module preserve the logical interpretation of a
program. In Section 3 (and in the appendix) we give a translation semantics for our
system by showing how a structured program written using the module language is
equivalent to a unstructured program. Such a semantics stresses the metalogical
nature of the module language and, perhaps more importantly, leads directly to an
implementation. Moreover, any logical semantics given to programs in the unstruc-
tured PROLOG language lifts via this translation to a semantics for structured
programs.

Finally, in Section 4, we integrate PROLOG’s extralogical predicates into the
proposed module system.

1.1. A Functional Approach to Modularity

A standard technique for managing complexity arising from interaction is func-
tional abstraction: a component is abstracted from concrete contexts by providing a
specification of its

requirements: the components it requires in order to function correctly, and its

results: the components it produces when supplied with the components it
requires.

The internal details of the abstracted component are defined in terms of the
components declared in the requirement specification.

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 149

The most obvious example of this technique in operation is of course in the
design of functional programming languages, where such abstractions form the
basic program unit. The function body defines how to compute the output (results)
in terms of the input (requirements). Typed programming languages increase the
power of the language available for specifying requirements and results.

For programming “in the large”, the program units that we might consider
abstracting are collections of primitive program components: predicate definitions
in the case of PROLOG, functions and types in the case of ML, procedures and
global variables in the case of Pascal, etc. Such abstractions are in effect program-
valued functions. When applied to program units that satisfy their input specifica-
tion (imports), they result in a program unit that satisfies their output specification
(exports). Large programs can be constructed in stages by applying these program-
valued functions successively to previously constructed program units. The coher-
ence of the resulting program is ensured by the requirement that the arguments
supplied to such functions satisfy the input specification of the function.

It is important to realize that this approach to complexity management is
functional in essence, irrespective of the internal nature of the program units
themselves. Following MacQueen [7], we shall call abstracted program units
functors, parameter/result specifications signatures, and the results of functor
applications structures.

A program therefore is a structure. Functors are parametrized structures used
to manage the dynamics of program construction. Provided that its parameter
signature contains sufficient information about the class of structures to which a
functor may be correctly applied, the functor may even be compiled separately
(e.g., [6]). The application of the compiled functor then performs the job of linking
the components of the input structures into the compiled functor body.

1.2. Terminology

We adopt standard logical terminology to refer to various PROLOG constructs.
Since the module language draws a distinction between predicate and function
constants, we cannot safely use the PROLOG terminology which confuses the two.

A predicate constant consists of a predicate symbol and a natural number called
an arity. Similarly for function constants. We write such constants as symbol : arity.
A term is a variable, or a function constant together with a sequence of terms. The
length of the sequence must equal the arity of the constant for the term to be well
formed. An atom is a predicate constant together with a sequence of terms. Again
the length of the sequence must equal the arity of the constant for the atom to be
well formed. A program clause consists of a head and a body. The head is an
atom. The body is a finite sequence of atoms. A predicate definition is a finite
sequence of program clauses the heads of which have the same predicate constant.
A program is a finite set of predicate definitions.

1.3. Well-Formed PROLOG Programs

In this section we choose the basic component of a PROLOG program “in the
large”, and decide on the ways in which such components may legitimately

150 D. T. SANNELLA AND L. A. WALLEN

2. THE

interact. As we mentioned above, this is the step of instantiating the general theory
of modularity to a concrete programming language. The particular choices we
make are designed to:

prevent certain PROLOG programming errors that are common in the program
development cycle;

support structural data abstraction, and

maintain a logical interpretation of the program component.

Interactions in PROLOG programs arise by means of references to predicate
and function constants. References to predicates are made within the bodies of
program clauses. References to functions are made within individual atoms for the
purposes of unification.

The key to managing such interactions and limiting the possibility of error lies
in controlling the language (set of constants) available for writing program clauses.
There are two elements to this language: the predicate language and the function
language. We consider that large PROLOG programs are formed from individual
components, or structures, each of which consists primarily of a set of predicate
definitions. A structure is well formed with respect to predicates if every predicate
constant used within the bodies of predicate definitions in the structure are either
declared within that structure or “imported” via the mechanisms of the module
language. In effect, we are building cross-referencing facilities into the environ-
ment. Use of the module language catches spelling and arity errors earlier than
postprocessing systems.

We also introduce an explicit function constant declaration which extends the
function language available for writing program clauses. This gives the structural
data abstraction we have referred to above. The program clauses within a structure
are forbidden to reference individual function constants for the purposes of
explicit unification unless those constants are declared within the structure or
“imported” via the mechanisms of the module language. If programmers wish to
hide the representation details of data structures, they refrain from exporting the
particular function constants used from the defining structure. The mechanisms
available to achieve this effect are discussed below.

MODULE LANGUAGE

In this section we introduce the major elements of the module language for pure
PROLOG programs. A more formal definition of syntax and semantics can be
found in the next section. In Section 4 we describe the integration of the
extralogical predicates of PROLOG with the module language. The details of the
PROLOG module system differ slightly from the corresponding constructs in
the ML system [7], but the overall feel is the same. Consequently, [5] provides a
good introduction to the actual use of the module language.

Structures form the basic program unit of PROLOG programs in the large.
They may be organized hierarchically and consist of encapsulated sets of predicate,
function, and substructure declarations. Signatures are specifications of structures
and serve as interfaces. They specify the constants a structure provides for the
outside world. Ahtractions are a special kind of structure; they are formed by

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 151

hiding some of the contents of a structure, declaring the structure with a smaller
signature than it would otherwise have had. Finally functors are parametrized
structures with explicit interfaces; they are structure-valued functions.

It is important to realize that sensibly structured programs will be written
almost exclusively using functors. A functor enables a programmer to isolate a
component of his or her program and provide an explicit interface indicating the
environments in which the component will function correctly, and how it enhances
that environment. A concrete program is constructed by applying functors to
suitable parameters to build the program in stages. This is the process of linking,
similar to “consulting” in current PROLOG terminology. If a debugged compo-
nent can be relinked successfully, the module language ensures that the changes
made did not render the overall program incoherent.

Another point to note is that functors (program-valued functions), structures
(programs), and signatures (interfaces) can all be declared and explicitly named.
The names are considered as residing in a global environment. This is in contrast
to the hierarchy of encapsulated name spaces in which function and predicate
constant reside. This global name space should be compared with the filestore
from which PROLOG programs are currently constructed using cons u 1 t and
r e c 0 n s u 1 t operations.

Although modules are for constructing large programs, we are forced (due to
space limitations) to use small examples to get the ideas across. We beg our
readers’ indulgence and hope that they can see how the same principles work in
the large.

2.1. Primitive Declarations

The module language admits two primitive declaration forms: function constant
declarations and predicate constant declarations. Function declarations come in
two flavors: one for introducing new function constants, and one for defining a new
function constant in terms of an existing constant (renaming); e.g.,

fun leaf :O.

fun tree:3.

declares the nullary function constant L e a f : 0 and the function constant t r e e : 3
to be available within the scope of the declaration. (These may be interpreted as
data constructors for labeled binary trees.) We can introduce two new constants by
renaming the above constants using declarations of the form

fun nutttree:O= Leaf.

fun node:3=tree.

Such declarations are allowed within the scope of the previous declarations. The
new constants are considered identical to the old ones for purposes of unification.
The arity specification can also be omitted provided no ambiguity arises. Natural
abbreviations are supported such as

fun teaf:O, tree:3.

As mentioned above, function constant declarations determine the language avail-

152 D. T. SANNELLA AND L. A. WALLEN

able for the terms occurring within predicate definitions. They may be viewed as
data constructors.

Predicate constants are declared by their definitions. For example, the program
clauses

isleafcleaf).

isnode(tree(_,_,_)).

serve to declare the predicate constants i s Leaf : 1 and i snode : 1 for use within
the current structure.

2.2. Structures

Structures are the basic building blocks for programs in the large. They consist of
an encapsulated set of declarations which define the language available within the
structure and which the structure makes available to the outside world. The
encapsulation limits the scope of the primitive declarations.

Structures are named with declarations of the form

structureS=(structexpr).

There are four types of structure expression:

encapsulated declarations,

structure names (possibly qualified),

(structure, signature) pairs, and

functor applications.

As an example of the first form, here is a structure implementing some operations
on labeled binary trees:

structure BtreeDataO =

struct

fun leaf:O, tree:3.

isleafcleaf).

isnode(tree(_,_,_)).

mkleafcleaf).

mknode(A, Left, Right, tree(A,Left,Right)).

Label(tree(A,_,_), A).

leftchild(tree(_,Left,_), Left).

rightchild(tree(_,_,Right), Right).

end.

The s t r u c t...end are simply brackets. Such brackets should be compared with
the use of [user 1 within existing PROLOG systems. Ignoring the function
constant declarations, the major difference is that the environment to which the
definitions are added can be explicitly named (in this case B t r e e Da t a 0). Struc-
ture names are considered global.

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 1.53

Structure declarations may appear inside other structures. This represents an
explicit dependence of one structure on another and is the mechanism by which
hierarchically structured programs are formed. Structure names are used to
reference existing structures. For example, the following structure extends the
previous one by defining a membership relation over binary trees:

structure BtreeMemO =

struct

structure B = BtreeDataO.

member(A, B/tree(A,_,_)).

member(A, B/tree(_,Left,_)) :-

member(A, Left).

member(A, B/tree(_,_,Right)) :-

member(A, Right).

end.

Constants in the substructure B t r e e D a t a 0 are referenced via qualified names
such as B / t r e e. This structure is well formed because B t r e e Data 0 does

contain a function constant of the appropriate arity. A substructure declaration is
considered to make all qualified names accessible to the outer structure. So for
instance, the predicates isleaf:l, isnode:l, mkleaf:l, mknode:4,

label:2, Leftchild:2, and rightchiLd: may be used to define new
predicates within B t r e eM em0. They are referenced via the qualified names
B/ isleaf etc. BtreeMemO is said to be a derived structure.

The qualifications serve to distinguish different instances of the same constants
which in the case of predicate constants could have different definitions associated
with them. In the absence of any possibility of confusion, the declaration

open BtreeDataO.

could have been used. This makes the constants of B t r e e Da t a 0 directly accessi-
ble within the derived structure, i.e., no qualification is required.

2.3. Signatures

Signatures specify the contents of structures. They achieve this via a specification
of the language declared within structures. For example, the language declared
within the structure B t r e e Da t a 0 is the following:

sig

fun leaf:O, tree:3.

pred isteaf:l, isnode:l, mkLeaf:l, mknode:4,

Labet:2, Leftchild:2, rightchitd:2.

end.

Again, the s i g . . . end are merely brackets. Signatures can be inferred from a
well-formed structure declaration in an obvious way. Let us call this signature

154 D. T. SANNELLA AND L. A. WALLEN

B T R E E DATA 0. The signature inferred from the derived structure B t r e eM e m 0 is

sig

structure B:BTREEDATAO.

pred member: 2.

end.

indicating the dependence on a structure specified in turn by the signature
BT RE E DATAO. Indeed B t r eeMem0 could have been declared explicitly with a
signature S I G thus:

structure BtreeMemO:SIG =

struct

. . .

end.

Such a declaration is well-formed provided the signature inferred from the
structure matches the explicit signature s I G. A signature matches another when
the former is a superset (i.e., superlanguage) of the latter. In case the inferred
signature of the structure is larger than the explicit signature; the additional names
are hidden in the resulting structure.

The syntax of signatures should be obvious. Signatures are named and manipu-
lated in a similar manner to structures. For example,

signature BTREEDATAI =

sig

pred isleaf:l, isnode:l, mkleaf:l, mknode:4,

label:2, leftchild:2, rightchi ld:2.

end.

declares a signature that specifies structures containing the predicate constants
mentioned. Notice (for future reference) that this signature is a specification of
structures that do not necessarily contain the function constants 1 ea f : 0 and
t r e e : 3. This should be compared with the signature BT R E E DATA 0. Again,
signature names exist in a global name space.

2.4. Information Hiding and Abstraction

Data abstraction is a powerful method of limiting the interactions between
program components and easing program development. PROLOG sorely lacks an
environmentally supported facility along these lines.

Notice that the structure B t r e eMem explicitly references the function con-
stants used as data constructors for the implementation of binary trees provided by
its substructure B t r e e Da t a 0. Any alteration to the function constants in B t r e e-

Da t a 0 will require alteration to the predicate definitions in B t r e eMem for the
latter to be coherent. We can ensure that all structures that make use of our data
implementation do not make such assumptions about the underlying representa-
tion of binary trees by using an

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 155

The declaration

abstraction BtreeDatal:BTREEDATAl =

struct

fun Leaf:O, tree:3.

isleaf(leaf).

isnode(tree(_,_,_)).

mkleaf(leaf).

mknode(A, Left, Right, tree(A,Left,Right)).

label(tree(A,_,_), A).

leftchild(tree(_,Left,_), Left).

rightchild(tree(_,_,Right), Right).

end.

results in a structure with signature B T R E E DATA 1 rather than B T R E ED AT A 0 as

before. (Recall that B T R E E DA T A 1 does not contain the function constants, whereas
BT R E E DATA 0 does.) The implementation details of the data structure have been
effectively hidden from the rest of the program.

If we now try to define our membership structure in the same way as
before-namely,

structure BtreeMemO =

struct

structure B = BtreeDatal.

member(A, B/tree(A,_,_)).

. . .

end.

-the resulting structure is not well formed, since the language available for
writing clauses within the structure does not include the function constants
B / 1 e a f : 0 and B / t r e e : 3. The following declaration is well formed:

structure BtreeMeml =

struct

structure B = BtreeDatal.

member(A, Tree) :-

B/Label(Tree, A).

member(A, Tree) :-

B/LeftchiLd(Tree, Left),

member(A, Left).

member(A, Tree) :-

B/rightchild(Tree, Right),

member(A, Right).

end.

156 D. T. SANNELLA AND L. A. WALLEN

The a b s t r a c t i on construct is not a separate construct; it can be derived via a
special use of functors. (See Section 3.2.)

2.5. Structure Equality

We consider structure expressions to be generutiue, i.e., the declaration of the
same structure expression twice gives two different structures. Structure declara-
tion is therefore like a cons u 1 t as opposed to a r e c on s u L t, except that the
constants of one instance are not considered identical to the constants of the
other. One reason for this is that we want to formalize and support the process of
program construction. If the definitions within a structure are altered (e.g.,
debugged), the changes must be reflected in the rest of the program. Functors
(Section 2.6) enable this rebuilding to be effected with a minimum of effort. The
new structure is simply linked in by repeating the functor applications. Only those
parts of the program that depend on the updated structure need be relinked.

The equivalent of the r e con s u I t operation is considered to be an implemen-
tation level operation. In some circumstances it is possible to replace a substruc-
ture of a program without affecting the code which depends on it. (This is made
easier by liberal use of the a b s t r a c t i on operation.) In such circumstances a
more efficient implementation of relinking can be achieved which is equivalent to a
reconsult.

2.6. Parametrized Structures and Functors

The dependence of the derived structure B t r e e M e m 1 on the structure B t r e e-

Da t a 1 is explicitly represented by the fact that the latter is a substructure of the
former. Although we have insulated the membership code from dependence on
the actual PROLOG data structure used to implement trees, we have built in a
particular implementation nonetheless. This is because the representation is in-
cluded in a substructure (and because structure declarations are generative). If our
program utilized two different representations of binary trees, we would have to
write the membership code twice, once for each representation.

We really want to be able to define the membership code so that it works
correctly on any implementation of binary trees that provides the predicates
Label:2, Leftchild:2, and rightchild:2. We can then obtain two in-
stances of the code by applying such an abstraction twice, once to each representa-
tion, rather than actually writing the code twice.

We lambda-abstract the body of the structure B t r e e Me m 1 on its substructure
to form a structure-valued function called a functor. The functor may be applied
to another structure that contains the predicates on which the (now abstract) code
depends(i.e.,l.abeL:2, LeftchiLd:2,and rightchild:2).

To ensure that such an application results in well-formed code, we need to be
able to specify the class of parameters the fun&or accepts. Signatures, of course,
provide us with just this sort of specification. Functors are thus “typed” structure-
valued functions, signatures being the types.

Returning to our example, we can abstract the structure defining m em be r : 2

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 157

t r e eMem by the functor declaration

functor AbsBtreeMem(X:BTREEDATAl) =

struct

structure B = X.

member(A, Tree) :-

B/Label(Tree, A).

member(A, Tree) :-

B/LeftchiLd(Tree, Left),

member(A, Left).

member(A, Tree) :-

B/rightchiLd(Tree, Right),

member(A, Right).

end.

A b s B t r e e M e m takes as a parameter any structure which matches its parameter
specification and returns a structure with the appropriate elements of the parame-
ter “linked” in.

The functor application

AbsBtreeMemCBtreeDatal).

produces a structure that contains an implementation of member : 2 over the
particular binary tree data structure implemented by B t r e e D a t a 1. In order to
obtain an implementation of me m be r : 2 which works over some different imple-
mentation, say B t r ee Da t a 2, we simply apply the functor to the alternative
structure thus:

AbsBtreeMemCBtreeDataZ).

The coherence of the resulting structure is ensured by requiring the actual
parameter to the functor to match the parameter signature.

The signature of the structure resulting from the application of the functor
AbsBtreeMem to anystructurewith signature BTREEDATAI is

sig

structure B:BTREEDATAl

pred member:2

end.

As with structure declarations, the functor could have been declared with an
explicit result signature. The signature inferred from the application would then
have been required to match this signature. Such explicit specification of structures
is a sort of coherency check and is a useful form of documentation. Names not
mentioned in the explicit result signature are effectively hidden.

If we do not wish the parameter structure to be inherited by the resulting
structure, we refrain from declaring it explicitly within the body of the functor.

158 D. T. SANNELLA AND L. A. WALLEN

2.7. Sharing

Interactions between program components occur via common substructures. For
example, here is a functor implementing equality over labeled binary trees:

functor AbsBtreeEqCX:BTREEDATAlI =

struct

structure C = X.

eqtreeCTree1, Tree.21 :-

C/isleafCTreel),

CIisLeafCTreel).

eqtreeCTree1, Tree2) :-

C/LabeLCTreel, Label),

C/LabeLCTree2, Label),

C/LeftchiLdCTreel, Leftl),

C/LeftchiLdCTreeZ, Left21,

C/rightchitdCTreel, Rightl),

CIrightchiLdCTree2, Right21,

eqtreeCLeft1, LeftZ),

eqtreeCRight1, Right2).

end.

If B T R E EM E M 1 and BT R E E E Q are the respective result signatures of the declara-
tions

AbsBtreeMemCBtreeDatal).

AbsBtreeEqCBtreeDatalI.

then a functor parametrized over such an equality structure and membership
structures can be defined as follows:

functor AbsBtreeUtiLCX:BTREEMEMl, Y:BTREEEQ) =

struct

structure U = X.

structure V = Y.

foobarCELem, Treel, Tree2) :-

. * .

U/memberCELem, Treel),

V/eqtreeCTreel, Tree21,

. . .

. . .

end.

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 159

Suppose we build our program in the following way:

structure BtreeMem = AbsBtreeMemCBtreeDatal).

structure BtreeEq = AbsBtreeEqCBtreeData2).

structure BtreeUtiL = AbsBtreeUtilCBtreeMem,BtreeEq).

where B t r e e D a t a 2 is, as before, a different representation of binary trees from
that implemented in B t r e e D a t a 1. Clearly the membership and equality predi-
cates, used in the definition of f oo ba r : 3 in A b s B t r e eU t i I, are supposed to
work over the same data structure. However, they are defined using different
representations (or versions) of binary trees.

We wish to classify the program built as above as being ill formed. To do this,
following MacQueen [71, we use a so-called sharing specification. In the case of
PROLOG, sharing specifications are equalities (or path equations) between sub-
structures in the parameters of functors. For example, our parametrized tree utility
structure should be written as follows.

functor AbsBtreeUtiLCX:BTREEMEM,Y:BTREEEQ sharing

X/B=Y/C) =

struct

structure U = X.

structure V = Y.

foobar(Elem, Treel, Tree21 :-

. . .

U/memberCELem, Treel),

V/eqtreeCTreel, TreeZ),

. . .

. . .

end.

The path equation X / B = Y / B indicates that the named substructures of the
parameters must be identical. (Recall that structure expressions are generative.)
Consequently, with this new functor, our previous attempt will be recognized as ill
formed, whereas the following construction, using a single representation of binary
trees, is well formed:

structure BtreeMem = AbsBtreeMemCBtreeDatal).

structure BtreeEq = AbsBtreeEqCBtreeDatal).

structure BtreeUtiL = AbsBtreeUtiLCBtreeMem,BtreeEq).

2.8. Restrictions

To enable static checking of well-formedness and sharing constraints (see Section
2.7) and to ensure decoupling of the module system from the underlying PROLOG
language, a number of restrictions on structure, signature, functor (and abstrac-

160

tion) declarations are imposed. These are as follows (read either “structure”,
“signature”, “functor”, or “abstraction” for “module construct” below):

1. Declaration before use: a module construct must be declared before any
reference to it is made.

2. No dynamic declarations: the declaration of a module construct may not
appear in the body of a predicate definition.

The first restriction is not strictly necessary, since a two pass compiler could
resolve references. We impose it for simplicity and to avoid recursive structure
definitions. In addition, such a restriction enables the compiler to dereference
qualified names at declaration time when structures are defined interactively.

The second restriction is crucial to minimize the impact of the module system
on the standard language. It is possible to lift this restriction also and allow
programs that dynamically construct and manipulate new module constructs. The
result will of course be a new programming language, which will contain some of
the facilities of object-oriented languages, a structure being viewed as the analogue
of an object. Although this would be an interesting avenue for further research, it
fails the criteria we set out in the introduction that the module system must be
easily implementable on top of existing PROLOG systems; hence the restriction.

3. SYNTAX AND SEMANTICS

In this section we give a BNF syntax of the module constructs introduced in the
preceding sections. Appendix A contains a complete formal semantics which
explains in detail how to convert a program written in modular PROLOG into a
program in ordinary PROLOG. Only PROLOG programs which do not make use
of the predicates discussed in Section 4 are considered. The semantics is denota-
tional in style; the denotation assigned to a program is a sequence of PROLOG
clauses together with an environment which allows subsequent goals to be trans-
lated into ordinary PROLOG goals. A semantics for Standard ML including
module constructs is given in [8]; it is presented in the form of a “natural”
semantics.

3.1. Core Syntax

PROGRAMS PrOg

prog ::= dec

SIGNATURE BINDINGS sigb
sigb :I= atid = sigexpr

FUNCTOR BINDINGS funb
funb I:= atid(plist) = strexpr
plist ::= a tid 1 : sigexpr 1, . . . , a tid, : sigexpr,

[sharingpatheq, and . . . andpatheq,] n 2 0, m 2 1
patheq ::= id, = 1 . . = id,, n2l

STRUCTURE BINDINGS strb
strb :I= atid = strexpr

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 161

SIGNATURE EXPRESSIONS SigeXlw

sigexpr ::= atid
sig spec end

spec :I= p r ed atid : nat.
fun atid: nat.
structure specstrb, and . . . and specstrb,

[sharingpatheq,and . . . andpatheq,]. n21,mZl
spec spec’

specstrb I:= atid : sigexpr

STRUCTURE EXPRESSIONS strexpr
strexpr :: = id

struct dec end

strexpr : sigexpr
atid(strexpr,, . . . , strexpr,) n2O

DECLARATIONS dec
dec :I= atidcterm,, . . . , term,)[:- atom,,..., atom,,,]. (a PROLOG clause)

f u n atid : nat.
fun atid:nat = id.
open id.
structurestrb, and . . . andstrb,. n21
signaturesigb, and . . . andsigb,. n21
functor funb, and . . . and funb,. nT1
dec dec’

Brackets enclose optional items. The symbol atid denotes an atomic identifier
(one which does not contain slashes), while id denotes an identifier in modular
PROLOG, that is id ::= atid 1 atid/id.

3.2. Derived Forms

The functor binding

atid(plist) : sigexpr = strexpr

is equivalent to

atid(plist) = strexpr : sigexpr

The structure binding

atid : sigexpr = strexpr

is equivalent to

atid = strexpr : sigexpr

The declaration

inherit atid

is equivalent to

structure atid = atid

162 D. T. SANNELLA AND L. A. WALLEN

The specification

predatid,:nat,,...,atid,:nat,.

is equivalent to

pr ed atid, : nat,.

. . .

pred atid,:nat,.

The declaration

fun atid = id.

is equivalent to

funatid:n =id.

provided that id unambiguously refers to a function constant with arity n.
The specification

funatid,:nat ,,..., atid,:nat,.

is equivalent to

fun atid, : nat,.

. . .

f u n atid, : nat,.

and equivalently for declarations of this form.
Evaluating a query (in the top-level “structure”) after compiling the program

dec

abstraction atid:sigexpr = strexpr.

dec’

is equivalent to compiling the program

dec

functor F(atid:sigexpr) = struct dec’ end.

where F is an unused functor name, and then evaluating the query in the structure
FCstrexpr >.

4. RUN TIME MANIPULATION OF PROGRAMS

Practical PROLOG programs make use of various extralogical built-in predicates.
In this section we propose an interface between the module language presented
above and these predicates. Apart from completing the design of the module
system, these proposals result in natural facilities for structuring the PROLOG
database. This increases the natural appeal of the PROLOG language for use in
advanced database applications.

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 163

4.1. Structure References and Constants

The module language draws a distinction between function and predicate con-
stants. In addition, it introduces a distinct construct, the structure reference, which
is a pointer or database reference to a structure.

4.1.1. Predicate and Function Constants. Constants are (Symbol, Arity) pairs
from a logical point of view. Operationally however they are triples (Symbol,
Arity, Ref >, where Ref is a structure reference. Qualified names present in the
source code are translated into such constructs at the time a structure is built
(either explicitly, by means of an encapsulated declaration, or via a functor
application).

Consequently, the construction of predicate and function constants is also
affected by the module language. We replace the usual f u n c t o r : 3 with

p r e d i c a t e (?Atom, ?Symbol, ?Arity)

?Atom is an atom with predicate constant (?Symbol, ?Arity, Ref), where Ref
is a reference to the current structure.

p r e d i c a t e (?Atom, ?Symbol, ?Arity, ?Ref 1
?Atom is an atom with predicate constant (?Symbol, ?Arity, ?Ref).

Similarly for functions, namely: f u n c t i on : 3 and f u n c t i on : 4. These predi-
cates have the usual restrictions as to which combinations of arguments may be
uninstantiated.

Errors result if the constant is not part of the language of the referenced
structure. The a r g : 3 construct is unchanged.

4.1.2. Structure Names and References. Structure names are strings (or possibly
terms) of the form A / B / . . . which can be used dynamically as relative references
to structures. We propose the following built-in predicates to enable run time
construction and manipulation of structure names and references:

current_structure(?Ref)

?Ref is the reference of the current structure.

structure(?Ref, +Str)
?Ref is the reference for the name +Str relative to the current structure.

structure(?Ref, +Str,+Ref)
?Ref is the reference for the name +Str relative to the structure +Ref.

4.2. Manipulation of Predicate Definitions

The extralogical predicates (in the family of) as se r t : 2 and r e t r a c t : 2 enable
the run time construction and manipulation of predicate definitions. In the
terminology of the module language: they can alter the content of structures. The
restrictions on functor, signature, and structure declarations ensure that the
structure of the program “in the large” cannot be altered at run time. The ability
to manipulate predicate definitions is however an extremely useful facility for
database applications and the like.

164 D. T. SANNELLA AND L. A. WALLEN

The predicates c a 1 L : 1 and c 1 au s e : 2 do not manipulate the program explic-
itly, but nevertheless interact with the module language in a similar manner. The
only issue is to determine which predicate constant is being referred to within a
given call of such a primitive.

For that purpose we introduce new versions of each of the above predicates
with an extra argument which can contain a structure reference. We illustrate
using cat 1 and assert:

ca 1 L (+Afom)
calls +Atom in the current structure.

c a IL (+ Atom, +Ref)
calls +Atom within the structure + Ref.

assert (+ Clause)
asserts +Clause into the current structure.

assert (+ Clause, +Ref)
asserts + Clause into the structure +Ref.

So, for instance, the sequence of goals

structure(Ref,a/b), caLl(pred(fun),Ref)

is “equivalent” to a goal of the form

catt(a/b/pred(a/b/fun))

in the current structure. Predicates of the second form are more powerful, since
the path to the structure referenced may not be expressible as a structure name
from the current structure.

Run time errors arise if the atom (or clause) is not expressible within the
language declared in the structure referenced.

The PROLOG database can therefore be viewed as a hierarchy of databases,
communication being facilitated by the assertion and retraction primitives.
Database names can be manipulated explicitly by programs, and specific predicates
that are defined in these databases manipulated by c a 1 L ing (a s se r ting, etc.)
them in the usual way.

4.3. Errors: Further Declaration Forms

In the above we have specified that errors occur if an attempt is made to construct
constants or manipulate program clauses within a structure that are outside the
language of that structure. This is of course a very conservative position. It is taken
in the interests of maintaining the well-formedness of the program throughout
execution.

We can relax these restrictions in many interesting ways. In this section we shall
mention a few that come to mind. The most appropriate methods may become
more obvious through experience.

4.3.1. Predicates with No Source Code Definition. To declare predicates without
associating a definition with them in the source code, one can provide an explicit
declaration form similar to the declaration form for functions. This is in the spirit

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 16.5

of cross-reference systems that allow users to declare that certain constants are
being treated specially by the program (a s se r ted dynamically perhaps).

4.3.2. Assertions about Structures. Alternative declaration forms can be pro-
vided for structures to assert that any constant within a particular range (e.g.,
alphanumeric, any arity) should be considered part of the language of the struc-
ture. This is useful if the program is interacting with a user typing data. In this
manner a few “anarchic” program modules need not effect the utility of the
module system for structuring the rest of the program.

Another form of useful assertion about a structure is to assert that it exists and
has a given signature. Such a declaration can be used to provide virtual structures
in order to run a partially formed program. The behavior on attempting to prove a
goal expressed in the virtual language can be user-controlled as in existing
PROLOG implementations.

5. RELATED WORK

Other authors have investigated modularity in the setting of logic programming in
general,, and PROLOG in particular.

The functional approach to modularity on which the above module system is
based is similar to that of O’Keefe [lo]. His bricks correspond to our structures.
O’Keefe’s mechanisms for (nonrecursive) abstraction correspond to the result of a
functor declaration and application. O’Keefe’s algebra is “untyped”, however, in
the sense that no restrictions are placed on the arguments to such functors. Here
of course signatures play the role of “types”. In addition, O’Keefe concentrates on
predicate constants, whereas we extend the scope of the module language to
function constants as well. This is not strictly necessary, but prevents certain types
of programming errors as well as providing a form of structural data abstraction.

Miller [9] presents a theory of modularity for a logic programming language
based on nested implication. Again only predicate constants are managed by the
theory; function constants are considered global. A module consists of a named set
of clauses similar to our notion of structure. A limited form of parametrization on
predicate constants is possible, but this is not captured naturally within his system.
Dependence between modules (the substructure relation) is represented in his
system by nested implication. Miller’s aim is to give a logical semantics to various
programming notions. A semantics for the language presented above could be
given along the lines suggested by Miller by viewing a structure as a theory. This
should be clear from the translation semantics presented. We have chosen
the latter form to illuminate possible implementation methods within existing
PROLOG environments.

Goguen and Meseguer 141 also present a theory of modularity based on the
Clear specification language for a (sorted) logic programming language of Horn
clauses with equality. Their motivation is similar in many ways to ours, and their
approach, like ours, comes equipped with a theory of formal program develop-
ment. A technical difference which may be methodologically important is that their
parametrization mechanism, based on the notion of “pushout” from category
theory, does not permit functors in which the parameter structure is not inherited

166 D. T. SANNELLA AND L. A. WALLEN

by the structure which results from functor application. Another difference is that
their approach is not formulated for the standard PROLOG language, and hence
requires significant extensions to the interpreter.

Quintus PROLOG (Release 2.0) [12] is a practical PROLOG implementation
equipped with a notion of module. The Quintus system can be seen as a simplified
version of the system proposed here. The simplifications are as follows:

1. The Quintus system provides no parametrization constructs (i.e., no func-
tars);

2. it manages the predicate structure of a program only (i.e., function con-
stants are global);

3. it is nonhierarchical (i.e., no substructures).

The Quintus module system is seen mainly as a means of avoiding name clashes in
large programs. The size of a typical module is assumed to be quite large. We take
the view that a module system should actively support the construction of pro-
grams by managing the interactions between its components and ensuring a high
degree of internal coherence.

Fitting [2] presents a semantic basis for logic programming modules based on
recursion-theoretic enumeration operators. Each operator is a function that takes
relations as input and returns relations as output. An operator represents a
module. A small collection of basic operators and a set of operations (composition,
product, etc.) are provided under which the class of enumeration operators is
closed. Fitting’s operators can be seen as a semantic counterpart to our functors.
Functor application may then be interpreted via Fitting’s composition operation.
Indeed the semantics we have given to this operation (see Appendix A) closely
follows Fitting’s definition except that he uses an explicit “linking” clause, whereas
we make use of an environment and rename constants. A simplified version of the
calculus presented here can, we believe, be construed as a “proof theory” for
Fitting’s semantics in the concrete case of PROLOG. The semantics would need to
be extended in order to provide a suitable interpretation for the full language
presented here (e.g., to allow local function constants etc.). Our calculus is
therefore quite complementary to Fitting’s (and O’Keefe’s) semantic prescriptions.

6. CONCLUSIONS

Most standard PROLOG systems lack a notion of module and mechanisms for
data abstraction. This brings into question the utility of PROLOG for large,
multiprogrammer projects. We have presented a module system for PROLOG
based on a functional theory of modularity. The system supports the construction
of large PROLOG programs from parametrized components and provides facilities
for data abstraction. The system induces a notion of program well-formedness
which correctly excludes many common PROLOG programming errors. The
proposed interface to the extralogical facilities of PROLOG (Section 4) supports a
hierarchical view of the PROLOG database. MacQueen’s version of the module
system for Standard ML is developed for a strongly typed language. The theory
presented here could be extended trivially to apply to a typed PROLOG in the
sense of [ll].

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 167

Crucially though, with all these advantages, the module system requires minimal
alteration of the existing PROLOG language. The system is a metalanguage, not a
new programming language. We have provided a formal semantics that indicates
how to translate a program written in modular PROLOG into its unstructured
equivalent.

A word must be said about implementation. The semantics provided leads
directly to an implementation on top of existing PROLOG systems via specialized
con s u 1 t and r e c on s u t t operations. In such an implementation multiple appli-
cations of a functor result in multiple copies of its body in the resulting program.
This is not intolerable, since without the module system either the code would
have to be present the same number of times (but with different predicate names)
or predicate parameters and explicit c a 1 1 s would have to be employed. The latter
solution is not widely employed in our experience (except perhaps for sorting), and
is conceptually inelegant. The number of applications of a given functor is unlikely
to be large. The advantage of functors is that they may be reused in different
programs. A partial implementation along these lines has been constructed by
Andrew Bowles, who has also investigated the integration of environmental tools
(such as debugging aids) with the module language [l].

Such implementation problems can be overcome by appropriate separate compi-
lation facilities, another tremendously important feature that existing PROLOG
systems lack. Functors, which give a sound and elegant interpretation for the
operation of relinking, can provide a basis for such facilities for PROLOG as they
have done for Standard ML [6].

We have employed the same theory of modularity that underlies the Standard
ML module system [7]. Consequently, the basis of our design is not original, and
very little of the underlying theory is PROLOG-specific. This was intentional, and
is seen as an advantage, since standard theories of program development employ-
ing this notion of module then apply directly to modular PROLOG [14]. These
theories are deliberately couched in terms that do not proscribe the underlying
programming language and logic [3,13]. Our contribution has been to show how to
instantiate the general theory to the PROLOG language in an interesting way so
as to provide it with state of the art modules and data abstraction.

APPENDIX A. SEMANTICS

A. 1. Values

Conuention. We use the term “constant” to refer to both predicate constants and
function constants when the distinction is unimportant.

We assume that there is an infinite supply of names available which are not
accessible to the user (e.g. because they are not acceptable to the lexical analyser).
These will be used as “internal” names of structures and constants.

168 D. T. SANNELLA AND L. A. WALLEN

A signature expression is denoted by a triple sig = (substrs, preds, funs) (called
a signature), where:

substrs : substructure names + “internal” structure names,

preds : predicate constants -+ “internal” predicate names,

funs : function constants + “internal” function names.

All of these functions are finite maps (association lists). A predicate/function
constant is a (name, arity) pair.

A structure (the denotation of a structure expression) is a pair str =
(timestamp, sig > where:

timestamp is the “internal” name of this structure,

sig is the signature.

The structure pervasives contains the pervasive constants (such as the function
constants . : 2 and C 1: 0 and the predicate constants = : 2 and t rue : 0). These
are automatically a part of every signature and structure.

The structure component timestamp and the signature component substrs are
needed to deal with structure sharing and the generative aspect of structure
declaration. Since each elaboration of an encapsulated structure declaration or
functor application creates a distinct structure, each structure must carry a distinct
timestamp to distinguish it from structures which are identical but created sepa-
rately. This also provides a means by which structures which are really the same
can be identified. The component substrs gives the correspondence between
substructure names and their timestamps; if a structure A in the structure environ-
ment has a timestamp t, then

struct
. .

structure B = A

end

creates a structure (with its own timestamp) where the substructure name B is
associated with the timestamp t. Thus in a structure, substrs indicates the extent to
which substructures share with each other and with external structures and
substructures. In a signature, substrs only reflects internal substructure sharing,
since sharing with external structures/substructures is not possible.

The signature components preds and funs are needed to deal with sharing of
predicates constants and function constants. Each constant is mapped to an
internal name which uniquely identifies it. This is the name which will be used in
the code which the semantics produces as part of the denotation of a program. If
two constants have the same internal name, then they are the same (they share). A
single predicate constant will have multiple names when it belongs simultaneously
to multiple substructures of a given structure; then it might have names A / n and
B / C / n, say. The same may happen with function constants; in addition, the
construct

funatid:nat =id.
can be used to give a new name to a function constant.

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 169

A signature includes constants defined at “top level” within the signature/
structure as well as constants belonging to substructures. Constants belonging to a
substructure A have names of the form A /n; furthermore, every type or value
having a name of this form is regarded as a part of A.

This is not the only possible way of representing signature/structure values,
although any alternative representation must take proper account of the complica-
tions mentioned above (generative structure declarations, structure sharing, and
multiple names for a single constant).

A functor is a 6-tuple fun = (params, sig, strexpr, p, $, T) where:

params is the atid list (the formal parameter names),

sig is the signature (combined formal parameters with sharing taken into
account),

strexpr is the structure expression (the body of the functor),

p, $, rr are the structure, signature, and functor environments at the point of
declaration.

The structure, signature, and functor environments are finite maps p : atid +
structure, I/J : atid + signature, and r : atid -+ functor. Functors are treated as
macros which are expanded in the declaration time environment.

The structure environment includes bindings of structures occurring earlier than
the construct currently being elaborated, as well as (if the current construct is a
structure) bindings of its substructures. The latter is necessary because in a nested
context a substructure of the current structure is just like a previously defined
structure.

A. 2. Semantic Operations

A.2.1. Fitting a Structure to a Signature. Fit(str, sig) checks if the candidate
structure str matches the target signature sig; if it does, then the structure which
results from restricting str to sig is returned. The third and fourth error checks
may be relatively expensive in a naive implementation, since they involve examin-
ing every pair of predicate constants and function constants in sig. However, if two
structures A and B share, then every pair of constants A /n, B /n shares. This
means that if the second error check succeeds, then some of the pairs of constants
in sig need not be checked:

fit : structure X signature -+ structure

fit((tag, (substrs, preds, funs)), (substrs’, preds’, funs’)) =
let tag’ be an unused internal structure name in

(tag’, (substrs r dom(substrs’), preds r dom(preds’), funs r dom(funs’)))
error if dom(substrs’) p dom(substrs), dom(preds’) g dom(preds),

or dom(funs’) g dom(funs)
or if 3n, m E dom(substrs’).substrs’(n) = substrs’(m) and substrs(n) # substrs(m)
or if 3n, m E dom(preds’).preds’(n) =preds’(m) and preds(n) #preds(m)
or if 3n, m E dom(funs’).funs’(n) =funs’(m) and funs(n) # funs(m)

170 D. T. SANNELLA AND L. A. WALLEN

A.2.2. Generating New Internal Names for Constants. Tag(sig) is the signature
which results from changing the internal names of nonpervasive constants and
substructures in sign to make them distinct from all other internal names. This is
necessary to ensure that undesired sharing does not arise:

tag : signature + signature

tag((substrs, preds, funs >> =
let (psubstrs, ppreds, pfuns > = pervasives in
let subtag = {tag ++ tag’ 1 tag E range(substrs) - range(psubstrs)

and tag’ is a (different) unused internal structure
name for each tag)

u (tag ++ tag 1 tag E range(psubstrs 1) in
let predtag = (tag H tag’ 1 tag E rangecpreds) - range(ppreds)

and tag’ is a (different) unused internal predicate
name for each tag}

u (tag M tag 1 tag E range(ppreds)) in
let funtag = {tag ++ tag’ 1 tag E range(funs> - range(pfuns)

and tag’ js a (different) unused internal function
name foPeach tag}

U (tag e tag 1 tag E range(pfuns>l in
(substrs . subtag, preds .predtag, funs . funtag >

A.2.3. Identifying Substructures in a Signature. Identifycid, id’, sig) is the signa-
ture which results from identifying the internal names of the substructures named
id and id’. A new internal name is chosen for the substructure in the result. All
of the corresponding constants in these substructures are also identified.
Identify(((id,, id;), . . . , (id,, id,!,)}, sig> is just

identify(id,, id;, identifi(id,, id;, . . ., identifi(id,,id,:, sig). . .));

note that the order here is immaterial.

identify : id x id X signature + signature

identifycid, id’, (substrs, preds, funs>) =
let tag be an unused internal structure name in
let ppairs = {(id/p, id’/p) lid/p E dom(preds)) in
let fpairs = ((id/f, id’/f > lid/f E dom(funs>) in
let joinsub = {tag’ e tag’1 tag’ E range(substrs)l

[substrs(id) r) tag, substrs(id’) * tag1 in
identify-preds(ppairs, identify-funs(fpairs, (substrs . joinsub, preds, funs>))
error if (id/p E dom(preds)j f {id’/p E dom(preds)}

or if (id/f E dom(fi.ms)) + (id’/f E dom(funs)}

Identify-preds and identify-funs are defined similarly.

A.2.4. Extracting a Substructure from a Signature / Structure. Substruc-
ture(id, sig> is the structure corresponding to the substructure id of sig. The

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 171

structure substructure(id, str) is just substructure(id, sig[strl).

substructure : id X signature + structure

substructure(id, (substrs, preds, funs)) =
let substrs’ = {n ++ tag 1 (id/n t-) tag) E substrsl in
let preds’ = {n +B tag 1 (id/n +, tag) l preds} in
let funs’ = (n ++ tag)(id/n H tag) E funs) in
(substrscid), (substrs’, preds’, funs’))

A.2.5. Adding New Substructures to a Structure / Signature. Addsub-
strs({(atid,, str,), . . . , (atid,, str,)}, sig) is the signature which results from adding

the structure str,, . . . , str,, to sig as substructures named atid,, . . . , atid, respec-

tively. Addsubstrs(S, str) is the structure (tag, addsubstrs(S, sig[strI)), where tag is
an unused internal structure name. Finally, addsubstrs({(atid,, sig,),
. . . ,(atid,, sig,)}, sig) is just

addsubstrs(((atid,,(tag,,sig,)),...,(atid,,(tag,,sig,))),sig)

where tag,, . . . , tug, are unused internal structure names.

addsubstrs : (atid X structure)-set X signature + signature

addsubstrs(((atid,, (tag,, (substrs,, preds,, funs,))), . . . ,
(atid,, (tag,, (substrs,, preds,, funs,)))),

(substrs, preds, funs)) =
let substrs’ = {atid, +, tag,, . . . , atid, e tag,)

u U i ~ ,Iatid,/id H tag 1 (id ++ tag) E substrs,} in

let preds’ = U i ~ ,{atid,/id ++ tag 1 (id ++ tag) E preds,) in

let funs’ = U is ,Iatid,/id e tag) (id ++ tug) E funsi) in
(substrs u substrs’, preds u preds’, funs U funs’)

error if atid, E dom(substrs) for some i

A.3. Semantic Functions

Prog : prog
+ structure-environment --j signature-environment + functor-environment
+ (structure X code)

Sigb : sigb
+ signature-environment
+ (atid x signature)

Funb : funb
j structure-environment + signature-environment + functor-environment
+ (acid x functor)

Plist : plist
+ signature-environment
j (atid-list x signature)

Patheq : patheq
+ signature
+ (id X id)-set

172 D. T. SANNELLA AND L. A. WALLEN

Strb : strb
+ signature
-+ structure-environment + signature-environment -3 functor-environment
+ (atid x structure x code)

Sigexpr : sigexpr
+ signature-environment
--j signature

Spec : spec
-+ signature
--f signature-environment
-3 signature

Specstrb : specstrb
+ signature
+ signature-environment
-+ (atid X signature)

Strexpr : strexpr
-+ structure-environment + signature-environment + functor-environment
+ (structure x code)

Dee : dec
-+ signature
+ structure-environment + signature-environment + functor-environment
--+ (signature X structure-environment X signature-environment

X functor-environment X code)
Fun : id

+ nut
+ signature
+ structure-environment
--f internal function name

A. 4. Semantic Equations

The result of Prog is a structure containing all the (top-level) bindings introduced
by the program, together with the code (a sequence of Horn clauses) produced by
structure declarations and top-level clauses in the program. To compile a program
prog in the initial environment (pO, I&,, CT,,) and then evaluate a goal:

compute Prog[prog]pO$Or,,, obtaining a structure str and some PROLOG
code;

compile the code in PROLOG;

translate the goal by replacing each constant with its internal name according to
preds[str] and funs[str]; and

evaluate the resulting goal using PROLOG.

The semantics below gives an error if a constant is used without ever being
defined. (Note that there is no requirement that constants be defined before use.)

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 173

In practice it might be desirable to relax this rule so that using top-level predicate
constants which are not defined results in failure at execution time (in case that
predicate constant is encountered during an attempt to satisfy a goal) rather than
at compile time, which is what happens in PROLOG at present. It is not so clear
whether such a relaxed rule should apply to function constants as well.

Prog[dec]lp+z-= Strexpr[struct dec end]p$rr

Sigb[atid = sigexprl$ = (atid, Sigexpr[sigexpr]I$)

Functors are treated as marcros in this semantics, in the sense that the body of
a functor is kept as a syntactic object rather than as some sort of parametrized
structure. However, the parameter declaration is processed at definition time, and
the functor body is checked to ensure that it is well formed and that any
application will produce a valid structure. The environment at declaration time
must be saved for use at application time so that identifiers in the functor body can
be interpreted.

A functor with several parameters is treated as a functor with a single parame-
ter having a substructure of the appropriate name for each of the several parame-
ters. In checking whether applications of the functor will produce valid structures,
the functor body is elaborated in a structure environment augmented by binding
the formal parameter names to the parameter signatures. Note that the signature
of the final result of this process differs from the declared signature (if any) in that
it shares constants with the parameter signature in a way which reflects the
references which the functor body makes to the formal parameters.

Funb[atid(plist) = strexpr]Ip@r =
let (atid, . . . atid,, sig > = Plist [I plist 1 I) in
(atid, (atid,. . . atid,, sig, strexpr, p, $,T))

error if Strexpr[[strexprnp’*T fails
where p’ = p[atid, c* substructure(atid,, sig), . . . , atid, ++ substruc-

turecatid,, sig)]

Plist[atid, : sigl,. . . , utid,:sig,, [sharingpatheq, and . . . andpatheq,]n$=
let sig=Spec[structure atid,:sig, and . . . and atid,:sig,

[sharingpatheq, and . . . a n d patheq,]~sig[peruasiues]~ in
(atid,... atid,, sig)

Patheq[id, = . *. = id,Jsig = {(id,, idj) 12 5 j in}
error if id, P substrs[sig] for some i

A structure binding

atid = strexpr

has the effect of adding a substructure called atid to the current signature (by
adding bindings of all the constants in strexpr, with their names prefixed by atid)
as well as to the structure environment. The result of Strb is the identifier atid, the
structure to which it is to be bound and the code generated while elaborating
strexpr. There must not be a constant in the current signature with a name of the

174 D. T. SANNELLA AND L. A. WALLEN

form atid In, since this would cause it to be regarded as a part of the new
substructure.

Strb[atid = strexpr]Isig ~$7 =
let (str, code) = StrexprI[strexprlp4r in
(atid, str, code)

error if atid E dam(p)

Sigexpr[atid]$ = $(atid)
error if atid @ dam($)

Sigexprbs i g spec end]@ = Spec[spec]sig[pervasives]$

Spec[pr ed atid : nut .](substrs, preds, funs>+ =
let tag be an unused internal predicate name in
(substrs, preds U {(atid, nut) - tug}, funs)

error if (atid, nut > E dom(preds)

Spec[f un atid : nut .I(substrs, preds, funs>+ =
let tag be an unused internal function name in
(substrs, preds, funs U ((atid, nut > - tag})

error if (atid, nut > E domCfuns)

Constants declared in a structure binding contribute to the current environ-
ment, with names prefixed by the name of the (subjstructure in which they appear.

SpecUstructure specstrb, and . . . and specstrb,J sig I)=
let (atid,,sig,) ,..., (atid,,sig,) =

Specstrb[specstrb,]sig $, . . . , Specstrb[[specstrb,JJsig rC, in

addsubstrs(((atid,, sig,), . . . , (atid,, sig,)}, sig)
error if atid, = atidj for some i z j

or if atid, E dom(substrs[sig I) for some i

SpecUstructure specstrb, and . . . and specstrb,
sharingpatheq, and . . . andpatheq,]sig I)=

let sig’=Spec[structure specstrb, and . . . and specstrb&ig +!I in
identifi(Patheq[patheq,]sig’ U *. . U Patheq[patheq,]sig’, sig’)

Spec [spec spec ‘1 sig (cr =
let sig’ = Spec[spec]sig * in
Spec[Ispec’nsig’ *

A structure binding in a signature context of the form

atid : sigexpr

adds a substructure called atid containing the constants in sigexpr to the current
environment. These are forced to be distinct from all the constants already
present, with the exception of pervasive constants. That this is necessary is shown
by the example declaration

structureA:sigexpr and B:sigRupr

since A /n is not expected to share with B /n for a constant n in sigexpr (unless

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 175

e.g. n= true:O).

Specstrblatid : sigexpr]sig * = (atid, tug(SigexprUsigexprlIICI))
error if utid E domCsubstrs[sigl)

Strexpr[atidJp$5- = (p(Utid), @>
error if utid @dam(p)

Strexpriutid /id]lp$~ = CsubstructureCid, p(utid)), @>
error if utid P dam(p)

Strexpr [strexpr : sigexpr j p *la =
let (str, code) = Strexpr[strexprnp$r in
(fit(str, Sigexpr[sigexpr{$), code)

Strexpr[struct dec end]p$r=

let (sig, p’, $‘, T’, code) = Dec[decnsig[peruusiveslp$x in
let tug be an unused internal structure name in

let code’ be the result of translating code by replacing each constant with
its internal name (according to predsfsigl and funs[sigI) in

((tug,sig),code’)
error if some previously untranslated predicate symbol in code is not in

preds[sig]
or if some previously untranslated function symbol in code is not in fundsigl

The result of applying a functor to a list of actual parameters is obtained by
elaborating the body of the functor in the declaration time environment aug-
mented by binding the parameter names to the actual parameters (after fitting
them to the formal parameter signatures).

Strexpr[atid(strexpr,,. ..,strexpr,)]lp+~=
let (utid, . . . utid,, sig, strexpr, p’, $‘, 7~‘) = rr(utid) in
let (str,,code,) ,..., (strn,code,) =

Strexpr[strexpr,np@, . . . , Strexpr[strexpr,np*7r in
let str =fit(uddsubstrs(((atid,, str,), . . . , (utid,, str,)}, peruasiues), sig) in
let (str’, code) = Strexpr[strexprnp’[utid,, . . . , - substructure(atid,, str), . . . ,

atid, c) substructure(utid,, str)I$“~’ in
(str’, code,.code,.code)

error if utid E dam(r)
or ifn #m

Dec[atid(term,,...,term,)[:-atom,,. . . , utom,].]l(substrs, preds, funs)pt,!tr =
if (utid, n) E domtpreds)
then ((substrs, preds, funs), p, ~4, rr,

(utid (term,, . . . , term.) [:- atom,, . . . , atom,].))
else let tag be an unused inernal predicate name in

((substrs, preds u ((atid, n> e tag), funs), p, I+!J, T,
IutidCterm, ,..., term,)[:-utom ,,..., atom,].))

Dec[f un utid : nut .]I(substrs, preds, funs)pt+!Jr =
let tug be an unused internal function name in
((substrs, preds, funs U {(atid, nut) +-+ tug)), p, l(i, T, 1)

error if (utid, nut > E dom(funs)

176 D. T. SANNELLA AND L. A. WALLEN

Dec[f un atid : nut = id .](substrs, preds, funs)pt,h =
((substrs, preds, funs U ((atid, nut) -

Fun[id]lnat(substrs,preds, funs)p)>,p, $,~,8)
error if (atid, nut > E dom(funs)

Dec[open id]sigp$r =
let ((tag’, sig’), code’) = Strexpr[id]pqh in

(sig ” sig’Y P ” u otid Edom(subsfrs[sig’]) (atid +-+ substructure(atid, sig’)), +, 7, @ >
error if dam(p) n dom(substrs[sig’I) # fl

or if sig and sig’ have substructure or (nonpervasive) constant names in
common

Constants declared in a structure binding contribute to the environment of
current bindings. The newly declared structure also contributes to the structure
environment for the benefit of nested encapsulated structure declarations, to
which it appears as a previously defined structure. Sharing constraints are not
permitted in structure contexts; sharing in a structure arises by construction rather
than by declaration.

Decustructure strb, and . . . and strb,lsigp@=
let (atid,,str,,code,) ,..., (atid,,str,,code,) =

Strb[strb,]sigp$r,. . . , Strb[strb,] sig ~$7 in
(ada!substrs(((atid,,str,), . . . , (atid,,str,)), sig>,
p u (atid, - str,, . . . , atid, * str,,), t+h, T, code,. * - * .code,)
error if atid, = atidj for some i #j

or if atid, E dam(p) for some i

Decusignature sigh, and . . . and sigbJsigpqh=
let (atid,,sig,),..., (atid,, sig,) = Sigb[sigb#,. . . , Sigb(sigb,J$ in
(sig, p, rC, U {atid, - sig,, . . . , atid, - sig,}, r, fl>

error if atid, = atidj for some i f j
or ifatid, E dam($) for some i

Decufunctor funb, and . . . andfunb,Jsigp@r=
let (atid,, funI >, . . . , (atid,, fun,) = Funbl[funbJp@, . . . , Funb[funb,]p@
in
(sig, p, t,h, T U {atid, -funI,. . . , atid, ++fun,),$)

error if atid, = atidj for some i #j
or if atid, E dam(r) for some i

Dec[dec dec’nsig ~$7 =
let (sig’, p’$‘, r’, code’) = Dec[decnsig p$a in
let (sign, p”, I,V’, T”, code”) = Dec[dec’nsig’ p’ljl’~’ in
(sig”, p”, t,h”, TT”, code’.code”)

The function Fun is used to interpret a function names. It returns the internal
name of the function constant referenced.

Fun[atid]Inat(substrs,preds,fins)p =funs((atid, nut))
error if (atid, nut) e dom(funs)

CONSTRUCTION OF MODULAR PROLOG PROGRAMS 177

Fun[atid / id]nat sig p =
let (subs&s’, preds’, funs’> = p(atid) in
funs’((id, nut)I

error if atid @ do&r)
or if (id, nut) @ dom(fum’)

Thanks to David MacQueen for developing the module system for Standard ML on which the system

we describe in this paper is based. Thanks to James Harland for helpful comments on a draft of this

paper, and to Ralph Hasselgren for correcting some errors in an earlier version of the semantics.

REFERENCES

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Bowles, A., Enhancing Prolog Programming Environments, Master’s Thesis, Univ. of
Edinburgh, 1987.

Fitting, M. C., Enumeration Operators and Modular Logic Programming, J. Logic
Programming 4:11-21 (1987).

Goguen, J. A. and Burstall, R. M., Introducing Institutions, in: Proceedings ofthe Logics
of Programming Workshop, Carnegie-Mellon, Lecture Notes in Comput. Sci. 164, 1984,
pp. 221-256.

Goguen, J. A. and Meseguer, J., Eqlog: Equality, Types and Generic Modules for Logic
Programming, in: DeGroot and Lindstrom feds.), Functional and Logic Programming,
Prentice-Hall, 1985.

Harper, R., Introduction to Standard ML, Report ECS-LFCS-86-14, Dept. of Computer
Science, Univ. of Edinburgh, 1986.

Harper, R., Modules and Persistence in Standard ML, Report ECS-LFCS-86-11, Dept.
of Computer Science, Univ. of Edinburgh, 1986.

Harper, R., MacQueen, D., and Milner, R., Standard ML, Report ECS-LFCS-86-2,
Dept. of Computer Science, Univ. of Edinburgh, Mar. 1986.

Milner, R., Tofte, M., and Harper, R., The Definition of Standard-ML, MIT Press, 1990.

Miller, D. A., A Theory of Modules for Logic Programming, in: IEEE Symposium on
Logic Programming, 1986.
O’Keefe, R. A., Towards an Algebra for Constructing Logic Programs, in: IEEE
Symposium on Logic Programming, 1985, pp. 152-160.

O’Keefe, R. A. and Mycroft, A., A Polymorphic Type System for Prolog, Artif. Zntell.
23(3):295-307 (Aug. 1983).

Quintus Prolog User’s Guide, Mountain View, Calif., version 10 ed., 1987.

Sannella, D. T. and Tarlecki, A., Extended ML: An Institution-Independent Frame-
work for Formal Program Development, in: Proceedings of the Workshop on Category
Theory and Computer Programming, Guildford, Springer Lecture Notes in Comput. Sci.
240, Springer-Verlag, 1985, pp. 364-389.

Sannella, D. T. and Tarlecki, A., Program Specification and Development in Standard
ML, in: 12th ACM Symposium on Principles of Programming Languages, ACM, 1985, pp.
67-77.

