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A b s t r a c t  

The purpose of a logical framework such as LF is to provide a language for defining logical 
systems suitable for use in a logic-independent proof development environment. In previous work 
we have developed a theory of representation of logics in a logical framework and considered the 
behaviour of structured theory presentations under representation. That work was based on 
the simplifying assumption that logics are characterized as families of consequence relations on 
"closed" sentences. In this report we extend the notion of logical system to account for open 
formula, and study its basic properties. Following standard practice, we distinguish two types 
of logical system of open formulae that differ in the treatment of free variables, and show how 
they may be induced from a logical system of closed sentences. The technical notions of a logic 
presentation and a uniform encoding of a logical system in LF are generalized to the present 
setting. 

1 Introduct ion  

The Logical Framework (LF) [HHP87] is a language for defining formal systems. The language is a 
three-level typed A-calculus with H-types, closely related to the AUTOMATH type theories [dBS0, 
vD80]. A formal system is specified by giving an LF signature, a finite list of constant declarations 
that  specifies the syntax, judgement forms, and inference rules of the system. All of the syntactic 
apparatus of a formal system, including proofs, are represented as LF terms. The LF type system 
is sufficiently expressive to capture the uniformities of a large class of logical systems of interest 
to computer science, including notions of schematic rules and proofs, derived rules of inference, 
and higher-order judgement forms expressing consequence and generality. Throughout this paper 
we assume a reasonably good acquaintance with the concepts and formalism of LF as presented in 
[HHP87]. 

In [HST89] we have studied a notion of representation of a logical system in LF. A logical system 
(or logic) is formalized in [HST89] as a family of consequence relations between sentences of the 
logical system uniformly defined over signatures of the system. To represent such an object logic/ :  
in LF, a uniform presentation of/ : -s ignatures as extensions of an LF signature is required. Then, 
for each signature, /:-sentences over this signature are mapped to closed LF types of a specified 
form in such a way that this yields a full and faithful embedding of the consequence relation F ~: 
in the consequence relation F -z~= of LF. (The consequence relation of LF is given by considering 
inhabitat ion assertions, as in NuPRL [Con86].) By focusing on the embedding of logical systems, 
LF may be viewed as a "universal metalogic" in which all inferential activity is to be conducted: 
object logics exists (for the purposes of implementation) only insofar as they are encodable in LF. In 
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[HST89] we have studied in detail the issues concerned in lifting inferential activity in object logics to 
LF via their representations. In particular we studied the problems of inference in theories presented 
in a structured way, much as in [SB83]. 

In our earlier work on logic representation [HST89] we focused on the notion of a logical system 
as a family of simple consequence relations [Avr87] satisfying certain natural closure conditions. For 
the sake of simplicity we considered only logics of "closed" sentences (referred to in this paper as 
ground logical systems), taking no explicit account of the behaviour of variables in a logic. Although 
it is difficult to say in general what are "closed" sentences, this assumption is perhaps best explained 
by noting that in our notion of representation, the sentences of a logical system are naturally (com- 
positionally) encoded in LF as closed types. The purpose of this work is to remove this simplifying 
assumption by considering a notion of logical system that includes an explicit treatment of open 
formulae, and to consider the representation of such systems in a logical framework. It should be 
stressed that we are still making the simplifying assumption that logics are presented as consequence 
relations. In future work we intend to consider not just consequence, but also proofs. 

Open formulae are not just a fancy feature we wish to add to our framework for laughs. First 
of all, an important motivation for our work is to adequately model logical concepts as described 
and used in mathematical logic, and open formulae certainly occur there. More specifically and 
perhaps even more importantly, open formulae are necessary to adequately study standard finite 
presentations of some common mathematical theories. For example, the usual presentation of Peano 
arithmetic includes the following axiom schema (induction schema): 

P(O) A Vn.(P(n) D P(suec(n))) D Vn.P(n) 

This is schematic in P,  which should not be interpreted as ranging over all closed sentences "with 
holes for n" only. For instance, the associativity of +,  Vk, n, m. k + (n + m) = (k + n) + m, is 
not derivable from such closed instances of the induction schema. It may be proved, however, "by 
induction on m" using an instance of the schema with k and n free. 

This paper is organized as follows. In Section 2 we recall from [HST89] the definition of a ground 
logical system as a family of consequence relations indexed by signatures that  satisfies a certain 
uniformity condition with respect to change of signature. This resembles the formalization of a 
logical system as an institution from [GB84]; the crucial difference is that institutions present a 
model-theoretic view of logical systems while our formulation is centered directly on the notion of 
a consequence relation. (See also [FS88], which is based on the notion of a closure operation, and 
[Mes89], which encompasses both model-theoretic and proof-theoretic points of view.) The sorts 
of consequence relations that we consider are motivated by the strictures of encoding in LF, and 
thus are limited to one-sided consequence relations that are closed under weakening, permutation, 
contraction, and cut, and which satisfy compactness. Generalizing the methodology of [HHP87], we 
introduce the notion of a representation of one logical system in another, taking account of variability 
in signatures. 

In Section 3 we generalize these ideas and introduce the concept of a logical system of open 
formulae. Roughly, to each signature of the logical system is associated a category of contexts and 
substitutions (cf. [Car86]), and then to each signature and context over this signature is associated 
a set of formulae over this signature and context. Every formula is always considered with an 
explicit indication of its context. Hence, the consequence relation associated with each signature of a 
logical system of open formulae is defined on pairs consisting of a context (over this signature) and a 
formula built in this context. Of course, this consequence relation is required to satisfy the uniformity 
condition induced by the morphism structure of the category of signatures. In mathematical logic two 
types of consequence relations on open formulae are usually considered. Validity-type consequence 
relation rely on an implicit universal quantification of the free variables in each open formula. Truth- 
type consequence relations universally quantify free variables "globally" in the whole consequence 
statement. We characterize the two types of logical systems of open formulae by imposing appropriate 
structural conditions on their consequence relations. 
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In Section 4 we show how open formulas may be introduced to ground logical systems. This 
follows the view in abstract model theory that variables are uninterpreted constants (cf. [Bax74]), 
explored in a similar way in the theory of institutions in [Tar86], [ST88]. We try to justify the formal 
construction of Section 4 using a model-theoretic view provided via the ~heory of institutions in 
Section 5. 

In Section 6 we introduce the metalogic of interest, LF, and view it as a logical system of open 
formulae in two different ways, guided by the validity and truth interpretations of LF contexts. We 
then define the notion of a logic presentation. A logic presentation is essentially an LF signature 
equipped with an indication of which LF contexts encode contexts of the object logic and which 
LF types encode the judgements of the object logic. Such a presentation induces again t~vo logical 
systems: one of validity type, the other of truth type. A uniform encoding of an object logic in LF is 
a representation of the object logic in a logic presented in LF satisfying certain additional conditions 
ensuring adequacy of the encoding of the syntax. We also indicate that all the methodological 
suggestions on constructing logical systems in a structured way via structuring their presentations as 
suggested in [HST89] for ground logical systems carry over to this more general framework as well. 

Finally, in Section 7 we suggest directions for future research. We stress once more that the 
current paper is just a report on work very much in progress. Thus, most of these suggestions are in 
fact research obligations to round off the technical ideas presented here. 

2 Consequence relations and ground logical systems 

In this section we recall the basic definitions used in [HST89] to capture the concept of a ground 
logical system and of a representation of one ground logical system in another. We start with some 
categorial preliminaries. 

By a category with inclusions we "mean any category/C with a "wide" preorder subcategory of 
morphisms, which will be referred to as inclusions, such that the identity map on each object A E I/CI 
is the (unique) inclusion of A into itself. Inclusions are designated by ~ : A ~ B. When convenient 
we will write the target object B as B', and sometimes even identify the inclusion with its target 
(when the source is clear from the context). For any two objects A, B E I/C[, we say that A is 
included in B, written A ~-* B, if there is an inclusion c : A ¢--* B. In many particular cases that we 
study, morphisms are functions of some kind; in such cases we will normally assume without explicit 
mention that the inclusions are inclusions in the usual sense. 

We will also assume that each category with inclusions/C has canonical pushouts along inclusions, 
i.e., whenever f : A --, A ~ and L : A ~-~ A" are morphisms of/C, the pushout of f and t exists, and, 
moreover, the morphism opposite the inclusion in the pushout diagram is itself an inclusion: 

A'C" ~* . f ' A "  

f ]p( f ,A")  

A C ' A" 
L 

We require a canonical choice of p(f ,  A") (and f 'A")  which is funetorial in f ,  i.e., p(f; f',.4") = 
p(f ,  A");p(f ' ,  f 'A" )  (dually to contextual categories, cf. [Car86]). 

For any two morphisms f : A --* B and f~ : A' ~ B' in a category with inclusions/C, we say that 
f '  is an extension of f if there are inclusions ~A : A ~ A' and LB : B ~ B' such that ~t;f '  = f;~a- 
A family of morphisms fi : A~ ~ B~, i = 1 , . . . ,  n, is compatible if for all { i1, . . .  , i k } C { 1 , . . . ,  n }, 
for all objects A such that for l = 1, . . .  ,k, A "--* A~, there is a morphism f : A ---, B (for some B) 
such that for l = 1 , . . . ,  k, f~ is an extension of f.  
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Throughout this paper, all functors between categories with inclusions will be assumed to preserve 
inclusions. The category of all categories with inclusions and inclusion-preserving functors will be 
denoted by ICa t .  

For any category with inclusions K:, the category offunctors into IC, Funcicat(/C),  is defined as 
follows (cf. [TBG] where a similar category of diagrams in a given category is defined via an indexed 
category using the Grothendieck construction): 

objects: axe pairs (2-, F)  consisting of a category with inclusions :T and a functor F : 2- --* K:. 

morphisms: from (Z, F)  to (if,  G) are pairs # = (td, #2) where #1 : Z --* ff  is a functor and #2 : 
F - ~  #I;G is a natural transformation of functors in E--* K:. 

composition: is defined by1: 

Our treatment of logical systems centers on consequence relations (see [Avr87] for a survey). We 
take a consequence relation to be a binary relation between finite subsets and elements of a set of 
"sentences" satisfying three conditions to be given below. We use ~o and ¢ to range over sentences, 
¢ to range over arbitrary sets of sentences, and A to range over finite sets of sentences. We write 
A, A t for union, and write ~o, A for {~}, A. If s : ¢1 ~ ¢2 is a function, then the extension of s to 
subsets of ¢1 is denoted by s as well. Function application will often be denoted by juxtaposition, 
e.g., s~ stands for s(~v). 

D e f i n i t i o n  2.1 A consequence relation (CR) is a pair (S, F) where S is a set of sentences and 
k- C Fin(S) x S is a binary relation such that 

1. (Reflexivity) ~v b ~; 

2. (Transitivity) I r A  ~- ~ and ~ ,A '  F ¢,  then A , A '  F ¢.  

3. (Weakening) I r A  k- ¢,  then ~v, A k- ¢. 

I f  S t C S, then (S, k-) IS' is defined to be the consequence relation (S', b N (Fin(S t) x S')). 

The choice of conditions on consequence relations is motivated by our intention to consider encodings 
of logical systems in LF (in a sense to be made precise below.) 

D e f i n i t i o n  2.2 A morphism of consequence relations (CR morphism) s : ($1, I-1) --* ($2, b2) is a 
function s : $1 --* $2 (the translation of sentences) such that if  A k- 1 ~, then sA b 2 s~o. The CR 
morphism s is conservative i f  A k-1 ~ whenever sA  ~-2 s~o. C R  is the category with inclusions whose 
objects are consequence relations and whose morphisms are CR morphisms. Identity, composition 
and inclusions are inherited from the category of sets. By I--] : C R  --~ Set  we denote the functor 
which maps each consequence relation to its underlying set of sentences. 

CLEAR-like techniques for structuring theory presentations are based on the separation between 
the language of-a theory and the set of axioms that generates it [BG80]. We therefore consider a 
logical system to be a family of consequence relations indexed by a collection of signatures which 
determine the language of a theory. Moreover, it is important for the development that  consequence 
be preserved under variation in signature (for example, renaming constants or replacing constants 
by terms over another signature). This leads to the following definition: 

1We use ";" to denote not only composition in a category (e.g., the usual composition of functions and functors), 
written in diagrammatic order, but also both vertical composition of natural transformations and the composition of 
a natural transformation with a functor so that 2 1. 2 (#1;(~1,#2))A = (~2)A;(~2)p](A)" 
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Def in i t i on  2.3 A ground logical system, or ground logic, is a functor G : Siga --4 C R  where Sig¢ 
is a category with inclusions and ~ is an inclusion-preserving functor. 2 . 

The category Siga is called the category of  signatures of g, with objects denoted by E and morphisms 
by a : E i --, E 2. A signature morphism a : Ei -~ E2 is to be thought of as specifying a "relative 
interpretation" of the language defined by E 1 into the language defined by E2. Writing G(E) = 
(IgI~, t-~), the definition of logical system implies that if a :  Ei  --~ E2 and A 1-~ ~o, then ~(cr)(A) ]-~2 
G(a)(~o). The function I~l(a) underlying the CR morphism is called the translation function induced 
by a (we write IGI for the composition g;I--1 : Siga -* Set) .  To simplify notation, we write cr(~) for 
g(a)(~o) and a(A)  for g (a ) (A)  when no confusion is likely. 

Def in i t ion  2.4 The category of ground logical systems, ( ;Log ,  is defined as F u n c l c a t ( C R  ). Hence, 
a morphism of ground logics 7 : G "-' g '  is a pair (Tsiu, 7 oR) where 7sO : Sig g --+ Siga is a functor 
and V ¢n : ~ -~ 7s~g;~ ' : Sig g --~ C R  is a natural transformation. 

A morphism of ground logics is to be thought of as an "encoding" of one logical system in another 
in such a way that consequence is preserved. Let 7 : G -~ G' be a morphism of ground logics. To 
simplify notation, we write 7(~) for 7s~u(E), and 7(~o) for 7svn(~o) (for appropriate choice of E). 

Def in i t ion  2.5 A ground logic morphism 7 : g -* ~' is a representation i f  Tsig is an embedding and 
each 7~  R is conservative. A representation is surjective i f  each 7g  R is surjective as a function on 
the underlying sets. 

We refer to [HST89] for simple examples of ground logics and their representations. 

3 Logical systems of open formulae 

In the previous section we studied ground logical systems, where the logical sentences considered 
are closed (intuitively, built entirely out of the symbols given in the signature). These may perhaps 
be best characterized by referring to model theory: the truth of a closed sentence is unambigously 
determined by an interpretation of the symbols in the signature (i.e., a model over this signature). 
In many logical systems studied in mathematical logic, however, logical formulae may additionally 
contain "free variables". To determine the truth of such a formula, an interpretation must be provided 
not only for the symbols in the signature, but also for the free variables (i.e., not only a model, but 
also a "valuation" of the free variables in the model must be given). The free variables of an 
open formula, usually together with information on their typing, form the "context" in which the 
formula is built. We will avoid the sloppiness of leaving implicit the context in which an open 
formula is built, and always consider formulae over a given signature together with an explicitly 
indicated context. Moreover, where for ground logical systems we have assumed that signatures 
form a category and that  signature morphisms induce translation of sentences, here we deal as well 
with a category of signatures, where signature morphisms induce translations of both contexts and 
formulae. Furthermore, the contexts over each signature axe assumed to form a category (with 
morphisms which may be thought of as substitutions of terms for variables) and context morphisms 
then induce a translation of formulae. As usual, the translations induced are assumed to be mutually 
consistent. 

Thus, the formulae of a logical system of open formulae axe given by a functor 

: Sig -~ Func ica t (Se t ) .  

The functor 9 r ,  for each signature E E ISigl, yields a functor ~ ( E )  : Ctxtv.  --, Se t ,  where Ctxtv.  is 
a category of E-contexts with inclusions. Then, for any E-context F E ICtxt~.[, the set ~(E)(F)  is a 

2Of course this definition captures only one aspect of what is usually meant by the informal notion of "logical 
system." 
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set of E-formulae in context F. As mentioned before, we will always consider open formulae together 
with the context they are built  in, and so we in fact will be dealing with the following set of open 
E-formulae: 

Form~(E) = { (r, ~) I r e ICtxt~. h ~ • Y(E)(F) }. 

The functor ~" also determines translations of contexts and formulae as mentioned above: for any 
signature morphism a : E --* E', 9V(a) is a morphism in F u n c I c a t ( S e t )  from 5r(E) : Ctxt~. ~ Se t  
to 9c(E ') : Ctxtr . ,  ~ Set.  By definition (cf. Sec. 2), we thus have a functor 5r(a) 1 : C t x t ~  
Ctxt~ ,  and a natural  transformation } ' (a)  2 : 5r(E)-~ 9r(a)l;gr(E'),  and hence for each E-context F, 
a function } '(a)~ : ~ ' (E)(F) --+ 9r(E')(Sr(a)l(F)). When no confusion is likely, we will write a(F)  for 
~ ' (a ) l (F)  (for any r • [Ctxtn[) ,  ar(~)  for 5r(a)2r(~O ) (for any r • [Ctxtn[  and ¢p • J-'(E)(F)) and 
7(~o) for ~'(E)(7)(~o) (for any E-context morphism 7 :  F --* F' and ~0 • 9c(E)(F)). 

This in turn  induces a natural  extension of the map E ~-~ Formy(E)  to a functor 

Form~= : Sig - ,  Set  

where for any signature morphism a : E ---, E', for any (r,~o) e Form~(E),  Form~(~ ) ( ( r ,~ ) )  = 
(o(r), o~(~)). 

D e f i n i t i o n  3.1 A logical system of open formulae (or, a logic of open formulae, or simply a logic) 
£ consists of 

• a functor ~'£ : Sig £ --* F u n c i c a t ( S e t ) ,  called the formula functor of £, and 

• a ground logical system Cz : Sig z --* CR,  called the consequence functor of £ ,  

such that the underlying sentence functor IC/:[ : Sig z ~ Set  of the consequence functor of f~ coincides 
with the functor Formj:~ : Sig L: --. Set  as determined by the formula functor of £.  

E x a m p l e  3.2 As a simple example of a logic of open formulae we present first-order logic. Since 
this is very standard and well known, we will omit many standard definitions and refer to the reader's 
intuition. 

A first-order, signature is a set of operation and predicate names with indicated arities (>_ 0). A 
first-order signature morphism maps operation names to terms of the same arity and renames pred- 
icate names preserving their arities. This defines the category Sig ~=° of first-order logic signatures. 

For any first-order signature E, E-contexts are finite sets of variables, and so the category C t x t ~  ° 
of E-contexts has finite sets (of variables) as contexts and substi tutions of terms with variables Y for 
variables X as morphisms from X to Y. Any first-order signature morphism a : E ~ E' determines 
an obvious functor from C t x t ~  ° to Ctxt~ ,  o, which is the identity on objects (sets of variables). 

Finally, for any first-order signature E and E-context X,  the set of first-order formulae is defined 
in the usual way; these are first-order formulae over E with all free variables in X.  Any context mor- 
phism (substitution) determines the usual translation of first-order formulae, as does any signature 
morphism. 

All this defines the formula functor 9r~=o : S i g  r °  ~ F u n c i c a t ( S e t  ). The consequence relation of 
first-order logic may be defined model-theoretically as follows. 

For any first-order signature E, a first-order E-structure A consists of a non-empty carrier set [A[ 
and an interpretation of operation names in E as functions on ]A[, and of the predicate names in 
E as relations on [A[, of the arity indicated in E. Let S t rY°(E)  be the collection of all first-order 
E-structures (this forms a category with E-homomorphisms as morphisms). 

Consider now a E-structure A E StrY°(E) ,  a set of variables X and a valuation v : X --~ [A[. For 
any E-formula with free variables in X,  ~o E ~ 'yo(E)(X) ,  the satisfaction of 7' in A under v, written 
Air] ~ o  ~o, is defined in the usual way. 

This standard notion of satisfaction may be used to determine consequence relations over the set 
of first-order formulae in two different ways. One possibility is to consider free variables as always 
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implicitly universally quantified. This leads to the following family of validity consequence relations: 
for each first-order signature E, sets Xi of variables and open first-order formulae ~al E ~'~o(~.)(Xi), 
i = 0 , . . . , n ,  

{ (X~,~) }~1 t-~o" (X0,~0) if and only if for all A E StrXO(E), A[v0] ~ o  ~0 for all valuations 
Vo: X 0 --* IAI whenever AIv, l ~ o  ~o, for i = 1 , . . . , n ,  for all valuations v, : X, -~ ]A]. 

This yields the logical system ~ ' 0  * of open formulae of first-order logic under the validity interpreta- 
tion. Prom the point of view of proof theory, the usual Hilbert-type presentations of first-order logic 
present the same validity consequence relation. 

Another possible view is to consider open formulae as truly open, and hence to identify occurrences 
of the same variable in different formulae. This leads to the following family of truth consequence 
relations: for each first-order signature E, sets Xl of variables and open first-order formulae to~ G 

i = o , . . . ,  n, 

{ (X~, ~o,) },~1 t-~ ° '  (X0, 9o) if and only if for all A E Str~°(~),  for all valuations v, : X~ --* IAI, 
i = O,. . . ,n,  such that for all { i l , . . .  ,ik } C_ { O, . . . ,n  } the vit coincide on X = n~=l xi, ,  
A[v0 ] ~ o  to 0 whenever A[v~] ~ x o  t0i for i = 1 , . . . ,n .  

This yields the logical system YO* of open formulae of first-order logic under the truth interpretation. 
Natural-deduction-style presentations of first-order logic present the truth consequence relation via 
the notion of derivation under hypotheses. [] 

The above example illustrates two different views of the rSle of free variables in open formulae. 
The first option is to assume that free variables in an open formula are "local" to the formula, 
and so open formulae are always implicitly universally closed. This corresponds to so-called validity 
consequence relations, determined by a model-theoretic satisfaction relation according to the scheme: 

• I -~ 9 if and only if in every model, if • holds under every valuation then ~o holds under every 
valuation as well. 

A characteristic structural property of such consequence relations is that its conclusion (the formula 
on the right) may be instantiated, and its premises (formulae on the left) may be generalized. 

DeflIiition 3.3 A logic of open formulae £. is of validity type if its consequence relations admit 
instantiation on the right, i.e., for any signature E E ISig£t and open E-formulae A C_ Form~:~(~) 
ann e Form AE), whenever 

then for any E-context morphism 7 : F -* F I, 

a F~ <r', 7(~)>. 

P ropos i t ion  3.4 I f  £ is a logical system of validity type then its consequence relations admit gen- 
eralisation on the left, i .e . , /or any signature E E ISig~I and open formulae (F~,~) E Formy~(~), 
i = O,. . . ,  n, whenever 

F 

then/or any T-context morphisms 7~ : F~ -* F~ and formulae ~ e ~(E)(F~)  such that ~ol = 7~(to~), 
i = 1 , . . . , n ,  

{ (q,  ¢,) (r0, 

P r o o f  Using instantiation on the right, we get /F~ ,,~ .. i,~.i~ t-~ (F~,to~) for i = 1, . ,n.  The conclusion 
then follows by the transitivity of the consequence relation F~. [] 
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P r o p o s i t i o n  3.5 I f  f~ is a logical system of validity type then its consequence relations admit re- 
namings, i.e., for any signature E E ISig~l and open formulae (ri ,  ~i) • Form~(~ . ) ,  i = 0 , . . .  ,n ,  
whenever 

F { ( ,, ~,) },=1 ~ (r0, ~o) 
then for any E-context isomorphisms r~ : F~ --~ F~, i = 0 , . . . ,  n, 

r ,  r n { ( ,, ,(~,)) },=1 ~ (r~, r0(~0)). 

P r o o f  Use instantiat ion on the right w.r.t, r0 : F0 ~ F~ and generalisation on the left w.r.t. 
ri -~ : r~ ~ r~. [] 

P r o p o s i t i o n  3.6 I f  f~ is a logical system of validity type then its consequence relations admit elimi- 
nation o / d u m m y  variables on the left and introduction of dummy variables on the right, i.e., for  any 
signature E • ISig~l and open formulae (r~, ~o~) • Formy~(E), i = 0 , . . . ,  n, whenever 

then for any E-contexts F~ ~-* r ,  such that ~o, • ~'£(E)(F~), i = 1 . . . .  , n, and r 0 ~ F~, 

FI n 

P r o o f  Use instantiat ion on the right and generalisation on the left w.r.t, the context inclusions. [] 

It  is worth emphasizing that validity consequence relations need not admit introduction of dummy 
variables on the left, nor elimination of dummy variables on the right. 

A different view of free variables in open formulae is that  they denote an arbitrary but  (in some 
sense) fixed value throughout all the formulae they occur in. Consequently, occurrences of the same 
variable on both sides of the consequence relation are assumed to denote the same value. This 
corresponds to so-called truth consequence relations, determined by a model-theoretic satisfaction 
relation according to the scheme: 

¢ ~-" ~o if and only if in every model under every valuation, if ¢ holds then ~o holds as well. 

A characteristic structural property of such consequence relations is that  any variable may be in- 
stantiated at the same time on both sides of the consequence relation. 

D e f i n i t i o n  3.7 A logic of open formulae £ is of t ruth-type i f  its consequence relations admit global 
instantiation, i.e., for  any signature E • ]Sig £] and open formulae (F~, ~a~) • Formy~(E),  i = 
O,.. •, n, whenever 

{ (r,, ~,) },~ ~ (r0, ~0) 
then for any compatible family orE-context  morphisms V~ : Fi --~ F~, i = 0 , . . .  ,n ,  

P r o p o s i t i o n  3.8 I f  £ is a logical system of the truth type then its consequence relations admit 
introduction of dummy variables on the left and on the right, i.e., for any signature E • ISig £] and 
open formulae (r , ,  ~o,) • Form~:~ (E), i -- 0 , . . . ,  n, whenever 

( (r,, ~,) },"=~ ~ (r0, ~o) 
then for  any E-contexts F~ such that Fi ~-* F~ for  i = 0 , . . . ,  n,  

{ (r~, ~,) },~ ~ (r~, ~0). 

P r o o f  This is a particular instance of global instantiation; just  notice that  any family of inclusions 
is compatible. [] 
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It  is important  to realize that  t ru th  consequence relations in general do not admit  elimination of 
dummy variables, neither on the left nor on the right. 

Turning now to morphisms of logical systems, let us note tha t  formula functors, as functors 
into the category ~kmCicat (Set ) ,  come natural ly equipped with a notion of morphism. Given two 
functors ~ : S ig  --, F u n c x c a t ( S e t  ) and 5 r~ : Sig '  --* F u n c i c a t ( S e t ) ,  a morphism # : .T" ---* ~-t 
consists of a functor ~1 : S ig  ~ Sig ~ and a natural  t ransformation #2 : ~-_~#l;y-~. The latter,  
in turn, is a family of morphisms in F u n c i c a t ( S e t ) ,  consisting for each E • ISig[ of a functor 
(#2)1 : C t x t ~  ~ Ctxt'i,~(~ ) and a natural  transformation (#2)2 : J- ' (E)-~ (#2)l;hv~(#l(E)). Finally, 

2 2 (#2)2 is a family indexed by }]-contexts F of functions (#~)r  : .T'(E)(F) --~ ~ t (# I (E) ) ( (#2) I (F) ) .  
When no confusion is likely, for any ~ • ISigl, F • ICtxt~]  and ~ • ~ ' (E)(F) ,  we write # (~) ,  #~ ( r )  
and #s , r (~)  for #I(E) ,  (#~)I(F)  and (#2)2r(~), respectively. Notice also tha t  any such morphism 
# : ~" --* ~'~ defines a morphism fi : Form~ --* Form~,, where/21 : S ig  ~ Sig  ~ is simply #1 and the 
natural  transformation fi~ : Formy:-~ #l;Formy=, between functors in S ig  ~ Se t  is given by: for each 

• ISigl and ( r ,  ~o) • Form~:(~), f i2((r ,  ~/)  = (#~( r ) ,#~ , r (~) ) .  

D e f i n i t i o n  3.9 Consider two logical systems of open formulae f. and 1: J. A logic morphism # : / :  ---* 
~ is a morphism between their formula functors # : J:z --* .~z' such that fi : Formy~ --* Form~,  is 
a ground logic morphism/~ : C z ---, g~:,. Log  is the category of logical systems of open formulae and 
their morphism (it is easy to see that a composition of logic morphisms is a logic morphism). 

Just  as for ground logical system, logic morphisms are a bit too crude to model the informal notion 
of logic representation. 

D e f i n i t i o n  3.10 A logic morphism # : f~ ~ £~ is a representation if/2 : gz -* gz, is a ground logic 
representation, i.e., if for each E • ]SigL:[, /22 : Formy:~(E) --* F o r m ~ , ( # l ( E ) )  is a conservative 
morphism of consequence relations/22 : gz (~)  ---* gz (# l (E) ) ,  and all the funetors #2 : C t x t ~  --* 
Ctxt~l(~)  for ~ • ]Sig~l are injective. A logic representation # : f~ ~ £' is exact /f in addition all 

the functors , 2  : C t x t n  --~ C t x t t  1(~) for ~ • [Sig~[ are surjective and f~ : C£ --, gz., is a surjective 
ground logic representation. 

4 From closed sentences  to open  formulae 

The t reatment  of variables in abstract  model theory [Bar74] suggests that  at  least in many typical 
cases the complete structure of a logical system of open formulae is in a sense redundant,  since it 
may be recovered from a corresponding ground logical system of closed sentences. We have used the 
ideas of [Bar74] to develop a concept simulating open formulae in an arbi t rary  institution in [Tar86], 
[ST88]. Here we apply the same technique to construct a logical system of open formulae out of a 
ground logical system. 

In the example of first-order logic sketched in the previous section, for any first-order signature 
E and E-context (set of variables X) ,  the open ~,-formulae built in context X are exactly the closed 
sentences over the signature E(X)  defined as the extension of E by the variables in X as new constants 
(0-ary operation names). Moreover, given any E-structure A, a valuation of X in IAI corresponds 
to an expansion of A to a E(X)-s t ructure  which indeed additionally determines an interpretat ion of 
the new constants, i.e., a valuation of variables. Then, an open first-order E-formula ~ with free 
variables in X holds in a structure A under a valuation v : X ~ IAI if and only if ~a viewed as a 
closed E(X)-sentence holds in the expansion of A to a E(X)-s t ructure  determined by v. Hence, a 
consequence relation on open E-formulae with variables X may be recovered from the satisfaction 
relation on closed E(X)-sentences,  and (much less directly) from the consequence relation on closed 
sentences. This idea readily generalizes to an arbi t rary  ground logical system. Notice that  the 
"global" view of logical systems as uniformly-defined families indexed by a category of signatures is 
crucial here. 
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Consider an arbi trary ground logical system G : S ig  g ~ C R ,  fixed throughout  this section. 
Given the category Sig ¢ of signatures (with inclusions), we define contexts as signature extensions. 

More formally, for each E E Isiggl,  the category C t x t ~  of E~contexts is the full subcategory of the 
slice category E~Sig g determined by inclusions L : E ~-, E'. That  is, C t x t ~  has as objects  pairs 
consisting of a signature E t and a signature inclusion ~ : E ~-* Et; and a E-context morphism from 
L1 : E --* E 1 to  ~2 : E ~ E 2 is a signature morphism 7 : E1 ~ E2 such tha t  ~1;7 = ~2. As 
before, we will denote contexts by F; the target  signature of the extension is then wri t ten as E r ,  
and the inclusion E ~-~ E r is then determined unambigously. This  allows us to  identify contexts 
with signature inclusions or even with their  target  signatures when no confusion is likely. Notice 
tha t  for any signature E, the identity on E, which is a signature inclusion, is the "empty c011text" 
() e ICtx t~ l .  This is the least object in ICtx t~ l  w.r.t, the inclusion ordering. 

The map  E ~-~ C t x t ~  extends to a functor C t x t  6 : S ig  ~ --, I C a t  using the canonical pushout  
construction in S ig  ~. Namely, for any signature morphism a : E --, E',  C t x t ~ ( a )  : C t x t ~  --~ Ctxtg~, 
is defined on objects  as follows: for any F e ICtxtg~l, Ctxta(a)(r) = 1 ~ .  

E'  ~ a*E r 

a tp(a , E r)  

E c ,,F ...... E r 

This extends to context morphisms using the pushout property. 
The open formulae determined by G are given by the functor 

~ : S i g  ¢ - ,  F u n c i c a t ( S e t  ) 

defined as follows: 

• for each E e ]Sigg], ~ '¢(E) : C t x t ~  ~ Se t  is defined by: 

- for each P e C t x t ~ ,  9r~(E)(F) = I~I(E r)  

- for each 7 :  F ~ F'  in C t x t ~ ,  i.e., 7 :  Er  ~ Er '  in S ig  ¢, ~ '¢(E)(7)  = [QI(7) 

• for each a : E --, E'  in S ig  ¢ 

- ~ 'g (a ) l  : Ctxtg~ --~ C tx t~ ,  is the functor C t x t g ( a )  as defined above 

- for each r e iCtx t~[ ,  Y'~(a)2r : [GI(E r )  --, tG l (Ctx t¢ (a ) ( I ' ) )  is the function [g[(p(a, E r ) ) :  

I t  is easy to  see tha t  everything is well-defined here; in par t icular  tha t  all the functoriali ty and 
natura l i ty  requirements follow. 

As before, .Tv : S ig  ¢ ~ F u n c i c a t ( S e t  ) determines open formulae of the logics we derive from 
Q. The functor Formy¢ : S ig  ¢ ~ Se t  is defined as in Sec. 3. We have yet to  define the consequence 
relations of the system. This  may be done in two different ways, depending on whether  we consider 
the validity or the t ru th  interpretat ion of consequence relations on open formulae. 

D e f i n i t i o n  4.1 The validity logic £~(~) of open formulae determined by the ground logic Q : S ig  ¢ --~ 
C R  consists of the formula functor 

~ g  : S i g  ~ -- ,  F u n c i c a t ( S e t  ) 
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and the consequence functor 
Cz.(¢) : Sig ~ ~ Cl:t 

where for each E • [Slgg], the consequence relation ~-~(g) on Form~-~(E) is defined as follows: for 
any F, • ICtxt~I and ~v, • ~-¢(E)(F,) (i = O, . . . ,n ) ,  

{ (Fi, ~,) } i~  ~_~'(6) (F0, ~o0) if and only if for some { i~, . . . , i~ } C { 1 , . . . ,  n } there exist E-context 
morphisms 7~ : F~, ---, F0, l =  1, . . . ,  k, such thaP{ 7~(~vi,)}~=~ t-~r. g ~o 0. 

In the above definition, i~,. . .  ,i~ are not assumed to be distinct: we may use premises in many 
different ways. 

P r o p o s i t i o n  4.2 £~(G) as defined in Def. 4.1 is indeed a logical system of open formulae of validity 
type. 

P r o o f  

• For each E E ]Sig¢l, ~-~'(g) is indeed a consequence relation: 

Reflexivity and weakening follow directly from the definition. Transitivity follows from the 
fact that the consequence relations of ~ axe preserved under translations induced by signature 
morphisms, which applies to context morphisms in £~(G) as well since they axe in fact signature 
morphisms in G, and from the transitivity of the consequence relations of 9. 

• For each a : E --* E', F-~ ~(g) is preserved under the translation of formulae induced by a. 

This again follows from the fact that the consequence relations of G axe preserved under transla- 
tions induced by signature morphisms. Here are some details: let F~ E [Ctxt~[, ~ • ~'g(E)(F~), 

F i = 0 , . . . ,  n, be such that { ( ,, W,) },=~ ~-~°(g) (r0, ~0)- We have to prove that 

n t_£~(g) { (,,.Er,, ~(p(,~, r: ,))(~,))  ),=~ . .  ( , :r:o,  ~(p(o, r:o))(~o) ). 

By definition, there axe { i l , . . .  , i k } C { 1 , . . . ,  n } and E-context morphisms Vl : F~, --* F0, 
l = 1 , . . . , k ,  such that { ~'¢(E)(Vt)(~% ) }~=1 ~'~ro g ~0- 

Since F-~r0 is preserved by translation of formulae induced by p (a ,E  r0) : E r0 --* a*E r°, it 
follows that 

{ ~(P(~, r:°))(~(rO(7,)(~, ,))  } ,~ :~.~o ~(P(a, r :°)) (~0) .  

For l = 1 , . . . , k ,  by the pushout property of a*Er% there is a ]~t-context morphism 7~ : 
a*Er~ --~ a*E r0 such tha~ 

p(a, Er',);7~ = 7~;p(a, Er°). 

Then, for l = 1 , . . . ,  k, 

~(p(~,r:0))(y~(~)(~)(~, , ) )  = a(~:p(~,r:o))(~, ,)  
= ~(p(o, ~r,,);~)(~,,) 
= ~ ( r : ) ( ~ ) ( g ( p ( ~ ,  ~,,)(~,,)). 

Thus: 
{ ~( r : ) ($ ) (v (p(~ ,  sr,,))(~,,)) 1~=1 ~-¢.~:0 g(p(~, ~.r°))(v0) 

which completes the proof. 

3We are using freely the notational conventions introduced in Sec. 3. In particular, 7t(~oi,) is really ~0(~)(7t)(~o/1). 
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• For each E • ISig¢l, F-~ ~(g) admits  instantiat ion on the right: 

This again follows from the fact tha t  the consequence relations of ~ are preserved under trans- 
lations induced by signature morphisms. 

Let r,  • [Ctxt~l  , ~o, • ~-¢(E)(F,),  i = 0 , . . . , n ,  be such tha t  { (Fi,~oi)},~=1 t-~ "(¢) (Fo, ~o). 
Consider a E-context morphism 7 : Fo --~ P~. By definition, there are { i1 , . . .  , i~ } C.C_ { 1 , . . . ,  n } 
and E-context morphisms 7t : F~I --* Fo, l = 1 , . . . ,  k, such tha t  

{~'g(E)('7",)(cP,,) }~=1 I-g~ro ~0" 

Then also 

from which it follows tha t  

{ (r,, ~,)},"--1 ~°(~) (r~,~:a(E)(7)(~o)). 

As a special case of the closure condition embodied in the above definition we have the following 
"rule of universal closure" and "rule of universal elimination. 

C o r o l l a r y  4.3 Let g : Sig  ¢ ~ C R  be any ground logic, let E • ISig ¢] be any signature of g, and 
let F • IC tx tg l  be any E-context of ~. 

1. For any formulae ~, • 5re(E)(()) ,  i = 1 , . . . ,  n, and ¢ • J--¢(E)(F), i f  { ~o, },"--1 F~r ¢ then 

2. For any formula ~o • Y~(E) ( r )  and any context morphism 7 :  F --+ 0 ,  (F, ~o) I-~ "(g) ((), 7(~o)). 

D e f i n i t i o n  4 .4  The t ru th  logic £t(G) of open formulae determined by the ground logic G : S ig  ¢ --* 
C R  consists of the formula functor 

5 t~  : Sig g --, F u n c z c a t ( S e t  ) 

and the consequence functor 
Cc,(¢) : S i g  ¢ ~ C R  

where for each E • ISigal, the consequence relation ~-~'(~) on Form~o(E) is defined as the transitive 
closure~of the relation defined as follows: for any F, • ICtxt~l and ~, e ~ :g (E) ( r , )  (i--0,... ,n ) ,  

{ (r,, ~,) },-__, ~'(~) (ro, ~o) i f  and only i f  for  some { i l , . • .  , ik } c_ { 1,.•• ,n } there is a E-context, 
F • IC tx tg l  such that F "--+ Fi, for l = 1 , . . • ,  k and F '--* F0, and for some formulae el • 
9rg(E)(F),  l = 0 , . . . ,  k, such that 

g 
* ~ t  ~-~.r~l ¢l for I = 1 , . . . ,  k 

• { Cz }~=1 ~ r  ¢0 
• ¢0 ~-gro ~0 

If all the contexts are the same, say Fi = F for i = 0 , . . . ,  n, then the condition s ta ted in the definition 
amounts  to the requirement that  

{ ~oi }in_--i I-gr ~0 0. 

Moreover, the relation defined in such a way is a consequence relation between formulas with a fixed 
context• 

4i.e., the least relation containing the relation defined below and satisfying the transitivity condition of Def. 2•1. 
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P r o p o s i t i o n  4.5 £ ' ( 6 )  as defined in Def. 4.4 is indeed a logical system of open formulae of truth 
type. 

P r o o f  

• For each E E ISigOI, b-~ '(g) is indeed a consequence relation: 

Transit ivity follows directly from the definition. Reflexivity and weakening obviously hold for 
the generating relation, and it is easy to see that  they are preserved by the transit ive closure. 

• For each a : E -* E',  F~ *(¢) is preserved under the translat ion of formulae induced by a.  

It is enough to show that  the generating relation is preserved. Consider: Fi E ICtxtg~l, 

~o, E 3rg(E)(Fi), i = 0,...,n, such that { (Fi,~oi)}i~l }-~'(g) (Fo,~ao) and such that for some 
{ i l , . . . , i k }  C_ {1 . . . .  , n }  there is a E-context F • [Ctx t~l  such tha t  F '--+ F,, for l = 1 , . . . , k  
and F ,--* F0, and there exist formulae ¢1 • Yg(E)(F) ,  l = 0 , . . . ,  k, such tha t  

g 
-- ~Oi, ~-i;r~ ¢1 for l = 1 , . . . ,  k 

t ~1=1 I-Er ¢0 

- ¢0 I-~o ~,o 

Then a*F is a E'-context such that  a*F ~-~ a*Fi, for l = 1 , . . . ,  k and a*F ~ a*F 0. Moreover, 

- a (p(a ,  Er ' , ) ) (~, , )  F~,:cr,, G(p(a, Er ) ) (¢ , )  for l =  1 , . . .  ,k  

- { a(p(a, Er) ) (¢ l )  }~=1_ ~'g~.~r a(p(a, Er))(¢0) 

- a(~(~, Er))(¢0) ~-~.~o ~(p(o, Er°))(~o) 

Thus indeed: 

l_wc'(g) 
{ < ~*E~'' ~(P(a '  Er ' ) ) (~ , ) )  }~=1 -~ '  < ~*E~°, ~(P(a, Er ' ) ) (~o))  

• For each E E ]Siggl, }-~'(¢) admits  global instantiation.  

Again, it is enough to prove this for the generating relation. Consider: F i E ICtxt~l ,  ~oi E 

5rg(E)(F,) ,  i = 0 , . . .  ,n,  such that  { <r,, ~o,)},~1 F~ '(¢) (P0, ~0) and such tha t  for some set 
{ i l , . . - , i ~ }  C {1 . . . .  , n }  there is a E-context F e ICtx t~ l  such tha t  r ~ r,, for l = 1 , . . . , k  
and F ~-* F0, and for some formulae ¢1 E ~ '¢(E)(F) ,  l = 0 , . . . ,  k, such that  

- 7~i, F-~rl, ¢1 for l = 1 , . . . ,  k 

¢0 0 
- I-sr ° iOo 

Let then 7i : Fi -* F~, i = 0 , . . . ,  n be a compatible family of E-context morphisms. By 
definition, there is a E-context morphism 7 : F --+ F '  such tha t  for i -- 0 , . . . ,  n, 7~ is an 
extension of 7. In part icular  this implies tha t  for i = 0 , . . . ,  n, F '  '--+ F~. Since the consequence 
relations of G axe preserved under translations induced by signature (and hence E-context) 
morphisms, we have: 

- 7~(E)(~, , ) (~, , )  b~r, ~:~(E)(7)(¢, ,)  for l = 1 , . . . ,  k 

- { ~(E)(~)(¢,,) }~=1 ~r, ~(E)(~)(¢0) 
- ~(E)(~)(¢0) ~ J:~(E)(~0)(~0) 
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Thus, as required 

{ (r',, ~(r .)(~,)(~,))  },%~ ~'(~) (r~, ~(E)(~)(~0)) .  

D 

The simplest case (and the most typical for considerations on truth consequence relations) is when 
the context of open formulae used in a deduction sequence is fixed. The closure property embodied 
in the condition in Def. 4.4 then amounts to the following: 

Proposition 4.6 For any ground logic ~ : Sig ¢ --~ CR,  any signature E • ISigg[, Z-context F • 

ICtxtgmi and formulae ~o i • ~¢(E)(F), i =  O, . . . ,n ,  if {~i}i~l I-gmr ~°0 then {(F,~i) }i~l ~-~'(¢) 
<r, ~0). 

5 Logical systems and institutions 

One justification for the definitions we gave in Section 4 may be sought in model theory. The theory 
of institutions (cf. [GB84]) provides a framework to study this issue at a sufficiently abstract level. 

Definition 5.1 An institution I consists of: 

• a category Sig z (of signatures); 

• a functor SenZ:Sig J --~ Set (Sen z gives for any signature E the set SenZ(E) orE-sentences and 
for any signature morphism a:E ~ E' the function SenX(a):SenX(E) --. SenX(E ') translating 
E-sentences to El-sentences); 

• a functor ModZ:Slg ~ --* Cat  ~p (where Cat  is the category of all categories; M o d  z gives for 
any signature E the category ModZ(~) of Z-models and for any signature morphism a:E --+ E ~ 
the a-reduct functor ModZ ( a ):ModZ ( E ') ~ ModZ(E) translating E'-models to E-models); 
and 

• a satisfaction relation ~z,~ C IModZ(E)l × SenZ(E) for each signature E. 

such that for any signature morphism a:E --* E ~ the translations ModZ(a) of models and SenZ(a) 
of sentences preserve the satisfaction relation, i.e. for any ~ E SonS(E) and M' • IModZ(E')l, 

M'  ~z,~, Sen~(a)(~o) ¢==~ ModZ(a)(M ') ~x,s ~o (Satisfaction condition) 

In the following we will assume in addition that the institutions we consider have categories of 
signatures with inclusions and that the sentence functors Sen z preserve inclusions. For any signature 
morphism a : E ~ E ~, the function SenZ(a) will be written simply as a and the reduct functor 
ModZ(a) as _l~. Moreover, for any signature inclusion ~ : E ~-~ E', the reduct functor --I '  will be 
written as _ l  r.- 

Defini t ion 5.2 An institution Z determine~ a ground logical system 

g(E) : Sig z -~ CR 

where I~(Z)I : Sig z --* Set is just Sen z : Sig z ~ Set and for each E • ISigZi, for ~o i • SenZ(E), 
i = O, . . . ,n ,  

{ ~o~ }~=1 t-gin (z) ~°o i] and only if for all models M e IModZ(~)l, M ~z,~ ~o0 whenever M ~z,~ ~o~ for 
i =  l , . . . , n .  
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Proposition 5.3 For any insitution Z, the logical system Q(Z) given by Definition 5.2 is indeed a 
ground logical system. 

D e f i n i t i o n  5.4 Let iT be an institution. By a ground logic sound for iT we mean any ground logic 
Q : S ig  z --+ C R  such that ]GI = S enz  and for each E E [SigZl and ~i E SenZ(E) ,  i = 0 . . . .  ,n, 
if { ~, }~=z t-g~ ~°o then { ~, },~=1 t-g~ (z) ~o. If  the opposite implication holds as well, we say that Q is 
complete for iT. 

The sentence part  of any insti tution iT may be used to determine open formulae in this insti- 
tut ion in exactly the same way as in Section 4 for ground logics, giving a functor .~SenZ : S i g  "T --~ 

F u n c i c a t ( S e t  ). To use the model-theoretic satisfaction relation of 27 to determine consequence rela- 
t ions on open formulae, we need an "institutional" version of the notion of a valuation. This may be 
introduced in a rather straightforward way: for any signature E e ]SigZh E-context F (a signature 
extension), and model M e IModZ(E)l ,  a valuation of context F in the model M is any expansion 
of M to a Er-model ,  i.e., a model M' E M o d Z ( E  r) such tha t  M'I~ = M.  

D e f i n i t i o n  5.5 Let iT be an arbitrary institution. The validity logic £~(iT) of open formulae deter- 
mined by Z consists of the formula functor ~'SenZ : S ig  z --~ F u n c i c a t ( S e t  ) with the consequence 
relations on open formulas defined as follows: for each signature E • ISigZl, E-contexts Pi and 
formulae ~o~ • .TSenZ(~)(F,) for i = 0, . . .  ,n  

{ ( r i ,  ~i) }~=1 ~-/'r(Z)~, (F0, ~o) if and only if for each model M • ]ModZ(E)h  M 0 ~ . r0  in0 for all 
M 0 • IModZ(~.r)l  such that Molt. = M whenever for all i = 1 , . . . , n ,  M i ~r.r0 ~ for all 
M i • IModz (Er ) l  such that M~I ~ = M. 

P r o p o s i t i o n  5.6 For any institution iT, the logical system f.~(iT) as defined in Def. 5.5 is indeed a 
logical system of open formulae of validity type. 

D e f i n i t i o n  5.7 Let iT be an institution and f~ be a logic of open formulae. We say that F. is sound 
for iT under the validity interpretat ion if 

• £. is of validity type 

• For all signatures E • ISigZl, ~-eontexts Fi and formulae ~, • 9CSenZ(E)(F,), i = 0 , . . . , n ,  if 

( (r,, v,) }n=l [-~ (ro, ~o) then ( (r,, v,) }in=l ~-~ v('T) (ro, ~o). 
If  the implication opposite to the one in the last condition holds as well, we say that f~ is complete 
for 2- under the validity interpretation.  

P r o p o s i t i o n  5.8 If a ground logical system ~ is sound for an institution iT, then fd(G) is sound for 
iT under the validity interpretation. 

P r o o f  Consider any E • ISigZh ~-contexts  Fi and formulae ~i • "T'SenZ(E)(Fi), i = 0 , . . . , n ,  

such tha t  { (P,,~o,) }~=1 [-~'(g) (F0,~a0)" Then, for some { i , , . . . , i k  } _C { 1 , . . . , n  } there exist E- 
context morphisms ~h: F,, Po, l 1 , . . . , k ,  such that  { ~z(~i,) }~=l o ---* = t-~r0 ~0. The soundness of 

G implies that  { Q(7,)(~,,)}~=1 F-O(z) _ ~.r0 ~0, i.e., for every M 0 • IModz(Er0) l  , M 0 ~z,~r0 ~o0 whenever 
M0 ~z,~r0 S~n~(~,)(~,,) for all l = ~,..., ~. 

Consider now M • IModZ(g) l  such that  for all i = 1 , . . . , n ,  for all M i • IModz(Er , ) l  such 
tha t  M~[ s = M,  M~ ~z,~r, !P,. Let then M0 • IModz(Er°) l  be such tha t  M01~. = M. Then for 

l -- 1 , . . . ,  k, since ModZ(Tt)(M0)l~ ---- MoIr. -- M, the satisfaction condition implies tha t  M 0 ~z,~.r0 

SenZ(Tt)(~o,,). Hence, M 0 ~z,~ro ~o 0 as well, and we conclude 

( (r,, ~,) },~ ~-~°(~) (ro, ~o) 
[] 
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Completeness, as usual, is much more difficult. In general, £:~(~) need not be complete for Z 
under the validity interpretation even if G is complete for Z. We are working on natural conditions 
on the institution Z that would ensure this to be the case. 

We can, however, ensure so-called weak completeness: if G is weakly complete for 27, i.e. all 
theorems (consequences of the empty set of premises) of Z are theorems of G, then £ ' (G) is weakly 
complete for 27 under the validity interpretation. 

To introduce the logic of open formulae of an institution with the truth interpretation, we need 
one more technical concept. 

Definit ion 5.9 Let 27 be an institution. Consider ~ 6 [Siffz[ and Z-contexts Fi, i = 0 , . . . ,  n. We 
M. " [Modz(Er,)l for i O , . . . , n ,  is compatible if  for all say that a family of models { i }i=0, Mi 6 = 

j , k  6 {0, . . .  ,n},  for all E-contexts F such that F ~ F i and F ~-~ F/c, Mj[~3r = Mk[~r. 

Definit ion 5.10 Let 27 be an arbitrary institution. The truth logic £ t ( I )  of open formulae deter- 
mined by Z consists of the fo~nula functor 5VSenZ : Sig T --4 FunCicat(Set ) with the consequence 
relations on open formulas defined as follows: for each signature E 6 [SlgZ[, ~-contexts Fi and 
formulae ~ e 7 s . . , ( E ) ( r , )  for i = o , . . .  ,n  

{ (F,, ~,) }~=I F~ *(z) (F0, ~°0) i f  and only i f  (for each model M 6 IModZ(E)[) for every compatible 
family of models { M i 6 [Modz(Er')t }~=o (such that M¢[n = M for any i = 0 , . . .  , n )  M o ~nro 
~o o whenever Mi ~nro ~ol for all i = 1 , . . .  ,n.  

OOPS!  Unfortunately, in general this is not well-defined, since the relations t-~ *(z) as specified above 
need not be transitive. The (lack of) existence of valuations for intermediate contexts causes the 
problem. 

Defini t ion 5.11 An institution Z is regular i f  for any signature ~,  family of ~-contexts rl ,  i = 
O, . . . , n ,  and compatible family { M~ 6 [Modz(Er,)[ }~=1 there exists a model M o 6 [Modz(Er0)[ 
such that the family { M~ 6 IModz(~r,)[ }~=0 is compatible. 

In the most typical situations (or more abstractly, under some additional assumptions on the inclusion 
ordering of the collection of signatures) the requirement of regularity is equivalent to the condition 
that all reduct functors induced by signature inclusions are surjective. For example, the usual 
institution of first-order logic where the structures are assumed to have non-empty carriers satisfies 
this requirement. There are, however, numerous natural institutions which are not regular. 

P ropos i t ion  5.12 I f  Z is a regular institution then £t(Z) as defined in Def. 5.10 is indeed a logical 
system of open formulae of truth type. 

• • • £ ' ( z )  • . 

P r o o f  The only problem is to prove the traasmwty of t-s , whmh follows m a rather straightforward 
way when regularity is assumed, t::] 

Definit ion 5.13 Let Z be an institution and £ be a logic of open formulae. We say that £ is sound 
for 27 under the truth interpretation i f  

• £ is of truth type 

• For all s ignatures  E 6 ISigZl, r,-contexts r ,  and formulae V, • 2-s . .~ ( r ' ) ( r~ ) ,  i = 0 , . . .  , n ,  i f  

r - <r,, - ~ ' ( ~ ) ( r 0 , ~ 0 ) .  { < i' Vi) }i=1 ~-~ ( FO' VO) then { ~94) }4=1 

I f  the implication opposite to the one in the last condition holds as well, we say that f~ is complete 
for 27 under the truth interpretation. 
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Proposition 5.14 I f  a ground logical system ~ is sound for a regular institution Z then :-~(~) is 
sound for 2- under the truth interpretation. 

P r o o f  Consider any ~. e [SigZl, Z-contexts r~ and formulae ~i E ~-SenZ(~)(F~), i = 0, . . .  ,n, such 

that { (F~, ~o~) }~1 P~'(¢) (F0, ~0). It is enough to prove the soundness for the generating relations of 

[_~'(0). So, we can assume that for some { i l , . . . , i~  } _C { 1 , . . . ,  n } there is a Z-context r such that 
F ~ r~t for 1 = 1 , . . . ,  k and F ~-+ F0, and there exist formulae ¢~ E SenZ(r.r), l = 0 , . . . ,  k, such that 

• ~% ~-#sr,t Cz for I = 1, . . . ,  k 

• ¢0 ~-~o ~Oo 
Since ~ is sound for E, we have 

.~(z) Cz for l = 1, k • ~Oit ~ r  h . . . ,  

-p.r ¢o 

o/, L-g(z) 
• ',~0 ~ . r o  ~ 0  

Consider now any compatible family of models { Mi ~ IModx(Er,)[ }?=o such that for i -- 1 , . . . ,  n, 
Mi ~zr.r~ ~oi. Then for l = 1, . . . ,  k, Mit ~z,sr~, ~ and hence by the satisfaction condition 
Mi, Isr ~z,sr ¢,. This implies (by the compatibility of the family { Mi }~=o) that Molsr ~z,r.r ~o 
and hence, again by the satisfaction condition, M o ~z,sro ~o. Thus, M o ~z, sro ~Oo, which proves 

i_£~(:r) { <r,, ~,) },=~ .~. <ro, ~o) [] 

In general, completeness is not preserved in the case of the truth interpretation either. However, 
if G is complete for Z, then the logic £:~(G) is complete for 2- under the truth interpretation relative 
to the restriction of the consequence relations to formulae with the same context. 

6 L o g i c a l  s y s t e m s  a n d  L F  

In order to discuss representations of logical systems in LF, we first recall from [HST89] the logical 
system associated with the LF type theory. The basic form of assertion in this logic is that a closed 
type is inhabited. We then remove the restriction to closed types and define two logical systems of 
open formulae determined by the LF type theory, one of validity type, the other of truth type. 

Definition 6.1 An LF signature morphism a : E --* E' is a function a mapping constants to closed 
terms such that i f  c:A (c:K) occurs in E, then t-r., a(c) : a lA  (~-~, a(c) : aJK) .  (The function aJ is 
the natural extension of  a to L F  terms.) Sig ~y is the category with inclusions of L F  signatures and 
LF-signature morphisms, with composition defined in the obvious way. 

Proposition 6.2 I f  cr : ~.. --~ ~; and ~-r. a,  then ~-~, a~a for  each assertion a of  the L F  type system. 

Definition 6.3 Let ~.. be an L F  signature, g£.~(~,) is the pair (Types~., F~y) where Typesr. = { A [ 
~-r. A : Type } and 

A 1 , . . . , A  n f-~7 A if f  x l :A1, . . . , x ,~:A~ F~. M : A 

for  some M and any pairwise distinct variables Xl, . . . ,  x,~. 

This consequence relation has a straightforward Gentzen-style axiomatization similar to that used 
in NuPRL [Con86]. 
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Defini t ion 6.4 The ground logic of LF is a functor ~£~" : Sig c~ --* C R  which is the extension of 
the map E ~-~ ~f~J:(E) defined by taking ~f..~(a), for a : E --* E', to be a~ ~ Types~., the restriction 
of a~ to closed E-types. 

Logical systems of open formulae axe determined by the LF type theory in much the same style. 
We have already defined the category of signatures. Contexts axe just LF contexts with substitutions 
of terms for variables as morphisms: 

Defini t ion 6.5 For any LF signature E E [Sigr? I and any E-contexts F and F I, an LF context 
morphism 7 : F --* F t is a function 7 mapping variables to terms such that for each declaration x : A 
in F, F' Fz 7(x):TnA. (The function 7~ is the obvious extension of 7 to LF terms.) The category 
Ctx t~  ? of LF E-contexts and their morphisms is defined in a straightforward way. 

Open formulae of the systems we define are just LF types: 

Def ini t ion 6.6 For any LF signature E E ISig~Yl and LF context F E ICtxt~?l,  E-formulae in 
context F are LF types formed over signature E in context F, 

~ ? ( E ) ( F )  = { A I F t-~ A:Type } 

Defini t ion 6.7 The £J= formula functor ~'~: : Sig ~? ~ Funcica t (Set  ) is the obvious extension of 
the mappings defined in Definitions 6.5 and 6.6 to a functor: for any signature morphisms a, ~zx(a)  
is essentially given by the natural translation of LF terms induced by a; for any signature E and a 
E-context morphism 7, 5r'£?(E)(7) is again the natural translation of LF terms induced by 7. 

Propos i t i on  6.8 There is an obvious, componentwise inclusion morphism 

s ~ .  : .r,.~ ---+ & r .  

where J:~:~ is the formula functor determined by the ground logical system of LF, ~f~.~, as in 
Section 4. The inclusions are proper at the context level: LF contexts used in 3:£~: are extensions 
of signatures by object constants (constants of a type), which excludes extensions by type constants 
(constants of a kind). 

Definition 6.9 The validity LF logic £.T ~ is the logic of open formulae with the formula functor 
j r ?  : Sig~= ~ Funcicat (Set  ) and, for each LF signature E • ISig~?l, with the consequnce relation 
on Form&,(E)  given as follows: for any E contexts Fi and A i such that Fi t-~ Ai:Type, for i = 
0 , . .  • ~ n ,  

{ (Fi, A,} },~1 t-~ ~ (r0, A0) 

if and only if 
Xl:IIF1.A1,... , x~:IIF,.A~ ~-~ M:IIF0.A 0 

for some mutually distinct variables x l , . . . ,  xn and term M. (We use the informal notation IIFi.A ~ 
]or the type obtained by H-closure orAl w.r.t, the variables in the context F~. ) 

Propos i t ion .6 .10  / ~ T  as defined in Def. 6.9 is indeed a logical system of open formulae of the 
validity type. 

Definition 6.11 The truth LF logic £Y~ is the logic of open formulae with the formula functor 
~'~? : Sig z'r ~ Funcioat(Set  ) and, ]or each LF signature E e ]Sigr'X], with the consequnce relation 
on Form&,(E)  defined as the transitive closure of the relation given as follows: for any E-contexts 
Fi and types Ai such that Fi ~-~. Ai:Type ]or i = 0, . . .  ,n, 

{ (F,, A,) } ,~  F ~  (F0, A0) if and only if for some { i t , . . .  , i~ } C { 1 , . . . ,  n }, there exists a E-context 
F and types A~, l = 1 , . . . .  k, such that for l = 1 , . . . ,  k, F t-~. A~:Type and moreover 
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• Fit,x:Ail F~ MI:A ~ for l = 1,. . .  , k ,  for some variable x and term M i 

• F, x l :A~, . . .  , xk:A' k t-s M:A'  o for some mutually distinct variables x l , . . .  , x k and term M 

• F0, x:Ato ~'~ M 0 : A  0 

R e m a r k  6.12 I f  all contexts in Def. 6.11 are the same, say F i = F for i = O , . . . , n ,  then the 
condition on the generating relation given in the definition is equivalent to the requirement that for 
some mutually distinct variables x l , . . . ,  x ,  and term N ,  

F, x l :A1, . . .  , x~:An Ft. N :A  o. 

Moreover, the relation defined in this way is already transitive on the formulae built in the same 
context. 

Propos i t i on  6.13 £:5 rt as defined in Def. 6.11 is indeed a logical system of open formulae of truth 
type. 

Propos i t i on  6.14 The inclusion morphism Sc~= : ~ z y  -* ~ g z y  is a logic morphism 

A reasonable question at this point is whether SLy is a logic representation between £jrt and 
£~(~£.J:) (and/or between L9 r~ and £'(G£~')).  Unfortunately, this is not the case in general; in 
most cases it seems that £ t (~£ j : )  (resp. £~(G£Jr)) is somewhat too weak. This topic needs further 
study. 

For the purposes of encoding a logical system £, we are interested in "specializations" of the logical 
system determined by the LF type theory obtained by fixing a "base" signature E~ specifying the 
syntax, assertions, and rules of £: [HHP87]. The signatures of £ axe then represented as extensions to 
Ec, and signature morphisms are represented as LF signature morphisms on these extensions leaving 
Ez fixed. 

Defini t ion 6.15 Let E be an LF signature. The category of extensions of E, written Sig~ y, is the 

full subcategory of the slice category E~Sig Ly determined by the inclusions t : E "--* E~. 

Every LF signature induces logical systems based on that signature as follows: 

Defini t ion 6.16 Let E be an LF  signature. 

. £~. 
• The validity logical system presented by E, £ . ~ ,  is the restriction o f £ 7  to Slg~.. 

• £ y  
• The truth logical system presented by E, £:~t-~, is the restriction o f£v~  t to Slg~ . 

An encoding of a logical system £ in LF consists not only of an LF signature Ec, but also of 
an "internal type family" distinguishing the basic judgements of £: in the encoding [lIST89]. For 
example, in the encoding of first-order logic given in [HHP87], the constant true of kind o ---* Type 
represents the basic judgement form of first-order logic. The significance of true for the encoding 
becomes apparent in the statement of the adequacy theorem: terms of type true(~) in a context with 
variables xi of type true(~i) represent proofs of ~o from the ~oi's. Similarly, we also indicate which 
LF contexts are used to represent C-contexts. In the encoding of first-order logic given in [HHP87], 
first-order contexts are represented by LF contexts with variables of type L (a distinguished type of 
individuals). This methodology is formalized in our setting as follows. 
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Defini t ion 6.17 An internal type family of E is a term F such that t-z F : K for some kind 
K .  (Note that if  ~-~. K,  then K has normal form IIxl:A1 . . . . .  IIxk:A~.Type for some x l , . . . ,  xk and 
A1 , . . . ,  Ak.) The range of an internal type family F of E in a E-context F is defined to be the set 

a n g r ( F )  = { F M1.  . . M k I F I-z F M1.  . . Mk : Type}, 

(where terms are identified up to f~-conversion.) I f  J is a set of internal type families of E, then 

pmgr(fl)  = U Rngr(F)  • 
F E J  

Defini t ion 6.18 A logic presentation is a triple (E, T,  J )  where E is an LF signature and T and 
J are finite sets of internal type families of E. 

Defini t ion 6.19 Let (E, T ,  J )  be a logic presentation. 
The validity (truth, respectively) logical system presented by (E, T, J ) ,  7~'(E, T, J )  (7~t(E, T, J ) ,  

respectively) is the restriction of L:~'~ (LJ:'ts, respectively): 

• to signatures and signature morphisms in Sig~ ~, 

• S i  ~ n  for each signature E' E g~ , to Er-contexts of the form (xl:A1,...  ,x~:A~) where A~ E 
<~x:Ax,...,=~-~:n,-~) T Rng~, ( ) for i = 1 , . . . , n ,  

• for each signature E' • ISlg~ I and E'-context F (satisfying the above requirement), to the 
formulae that are types in R n g r ( j ) .  

Defini t ion 6.20 A logical system is uniformly validity-encodable (uniformly truth-encodable, re- 
spectively) in LF if there exists a logic presentation (EL, T£, Jc )  and a surjective exact representation 
Pc : L --, P~(E~, Jc )  (Pc : L --* Pt(E~, J~), respectively). The tuple (Ec, J~, Pc) with an indication 
of the type of the system L is called a uniform encoding of L in LF. 

The word "uniform" reflects the fact that we require a "natural" (or "compositional") encoding of 
the entire family of consequence relations of L in LF, rather than a signature-by-signature encoding 
as is suggested by the account in [HHP87]. The requirement of exactness ensures that T accurately 
describes the images of g-contexts in LF. The requirement of surjectivity ensures that J accurately 
describes the images of L-sentences in LF. For example, in the encoding of first-order logic in [HHP87], 
only proofs of true(M) in contexts with variables of type ~ (in addition to those labelling assumptions) 
are considered, for otherwise a complete correspondence with first-order logic cannot in general be 
expected. 

All the methodological consequences of the notions presented above, as described in [HST89] for 
ground logical systems, carry over to the present framework of logical systems of open formulae, their 
presentations and encodings in LF. We refer to that paper, as well as to [HHP87] and [AHM87] for 
examples of logic encodings in LF that may be readily adapted to the framework we have introduced 
here. 

The following technicalities indicate that the ideas on presenting logics in a structured way using 
the pushout construction suggested in [HST89] carry over as well. 

Def ini t ion 6.21 A logic presentation morphism a : (E, T,  J )  --, (E', T ' J ' )  is a signature morphism 
a : E --* E' in Sig ~ such that for every F • T (F • J ,  respectively) with 

F s F : IIxl:Aj . . . . .  xk:Ak.Type, 

there exists F ~ • T '  (F' • J~, respectively) such that 

a~ F =~, ~xl :a~ A1 . . . . .  xk:aP Ak.F' ( M1, . . . , M~) 

for some M1, . . . ,  M n of suitable type. LogPres  is the category of logic presentations and logic 
presentation morphisms. 
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P r o p o s i t i o n  6.22 The assignments (~,, T ,  i f)  ~ 7~( ~, T ,  i f )  and (~, T ,  i f)  ~ 5v~(~, T, ,7") extends 
to functors Pv : LogPre s  --~ Log and 7 ~ : LogPre s  ---+ Log, respectively. 

Ske tch  of  c o n s t r u c t i o n  Consider a presentation morphism a : (~1,T1,`71) --+ (~2,T2,J2). The 
logic morphism P~(0(a) : P . (0(~I ,  T2, J1) ~ P'(0(~'2, T2, J2) may be defined as follows: 

. £ ~ "  . £ ~ "  
• ~Dv(t)(cr)Sig : SlgE1 ~ SlgE2 is defined on objects using the canonical pushout construction: 

P~(0(a)Slg(rl : Z1 ~-+ Z~) = (r2 : Z2 ~-~ ~ )  where ~ .  = a*Z~ and r2 : ~'2 ¢-~ a*~,~ is the 
inclusion morphism to the pushout of a and rl in Sig z:~:. This extends to morphisms using 
the co-universal property of pushouts. 

• a '  : E~ ~ ~ in the construction above induces the translation (a')~ of LF terms over ~.~ 
to LF terms over Z~ and of Z~-contexts to Z~-contexts. Moreover, for any Z~-context r~, 

rl u~.(~')s(r~)i~r~ --, ILng(~')t(rl)I~ ~ (This (a')D : Rngs~(Tx) ~ "~ss~ ~,~2J and similarly (a,)a : Rngri(`71) s~ ~ 2/- 
uses the fact that a is a logic presentation morphism.) It is easy to see that this translation 
preserves consequence relations as required. 

We propose to use colimits in the category of logic presentations to build logics in a structured 
fashion. Although the category of logic presentations is not finitely co-complete, it may be shown 
that a diagram in LogPre s  has a colimit iff its projection to Sig cy has a colimit. The most pertinent 
case is that of pushouts along inclusions: 

P r o p o s i t i o n  6.23 LogPre s  is a category with inclusions, where a logic presentation morphism 
: (~, 7-, ,7) ~ (~', T ~, ,7') is an inclusion if ~ : ~ ~ ~' is an inclusion, 7" C T ~ and f l  C_ if ' .  In 

particular, LogPre s  has pushouts along inclusions. 

A LogPre s  inclusion can be seen as a parameterized logic presentation where the pushout of 
this morphism with a "fitting" morphism amounts to instantiation, by analogy with parameterized 
structured theory presentations. Small examples of this are given in [HST89] for ground logical 
systems, and may be generalized to the framework of logics of open formulae we present here. Let us 
just stress here once again that the category LogPre s  of logic presentations, not the category Log 
of logics, seems appropriate for "putting logics together" 

7 Direc t ions  for further  research 

The paper presents only a sketch of some of the technicalities necessary to adequately grasp the 
notion of a logical system of open formulae and of a representation of such systems in a universal 
logical framework like LF. 

An obvious technical gap in the presentation flow of this paper may be found in Section 5 where 
we try to connect a formal construction on logics with model theory as given by the theory of 
institutions. Clearly, the issue of (in)completeness of the construction needs more study. A less 
evident but equally important problem is how to understand (introduce?) a notion of logic encoding 
in LF via model theory of the encoded logic on one hand and of LF on the other. It seems to us at 
the moment that there may be some intrinsic difficulties there, as the model theory and proof theory 
offer inherently different views of logical systems. 

A closely related point is to study situations in which a validity-type logical system £ may be 
viewed as £v(G) for the associated ground logical system G obtained by restricting L: to closed 
sentences (and similarly for truth-type logical systems). It seems that in most cases the two con- 
structions given in given in Section 4 do not yield the original logical system, but rather a somewhat 
weaker logic of the appropriate type. In particular, the validity logic of LF cannot be characterized 
as the validity-type extension of the ground LF logic to open types (due to the presence of binding 
operators). 



271 

Problems with general truth-type logical systems as presented here (the natural truth-type "con- 
sequence relations" are not transitive, cf. Sections 4 and 5) indicate that perhaps we should adopt 
a different formalisation, where a "truth context" is fixed throughout a deduction process, rather 
than being attached to individual formulae (as in this paper, and in the most straightforward view of 
first-order logic with open formulae, where a reasonable effect like the transitivity of the consequence 
relation is only due to the implicit assumption' that structure carriers are never empty). Conse- 
quently, in truth-type logics consequence relations would be defined separately not only for each 
signature but also for each context over any signature as well. This would also allow us to combine 
the two types of logical systems (validity and truth) by considering a notion of a logic where for each 
signature ~ and for each context F over ~, we would have a validity-type consequence relation on 
formulae built in the (truth) context P extended by a (validity) context which is explicitly indicated 
in the formula. 

Part of the motivation for studying open formulae was to enable an adequate treatment of ax- 
iom schemes. We believe that the framework presented (or its alternative version mentioned in the 
previous paragraph) provides an appropriate basis for such treatment - -  but this remains to be inves- 
tigated in detail. Finally, the issues of structured logic presentations need further study. Although 
the definitions in this paper provide the possibility of presenting a greater variety of logics than those 
in [HST89], concrete examples which exploit this increased flexibility have not yet been worked out. 
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