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Abstract. Various formalizations of the concept of “refinement step” as
used in the formal development of programs from algebraic specifications
are presented and compared.

1 Introduction

Algebraic specification aims to provide a formal basis to support the system-
atic development of correct programs from specifications by means of verified
refinement steps. Obviously, a central piece of the puzzle is how best to formal-
ize concepts like “specification”, “program” and “refinement step”. Answers are
required that are simple, elegant and general and which enjoy useful properties,
while at the same time taking proper account of the needs of practice. Here I
will concentrate on the last of these concepts, but first I need to deal with the
other two.

For “program”, I take the usual approach of algebraic specification whereby
programs are modelled as many-sorted algebras consisting of a collection of sets
of data values together with functions over those sets. This level of abstraction is
commensurate with the view that the correctness of the input/output behaviour
of a program takes precedence over all its other properties. With each algebra
is associated a signature Σ which names its components (sorts and operations)
and thus provides a basic vocabulary for making assertions about its properties.
There are various definitions of signature and algebra but the details will not be
important here. The class of Σ-algebras is denoted Alg(Σ).

For “specification”, it will be enough to know that any specification SP deter-
mines a signature Sig(SP) and a class [[SP ]] of Sig(SP)-algebras. These algebras
(the models of SP) correspond to all the programs that we regard as correct
realizations of SP . Algebraic specification is often referred to as a “property-
oriented” approach since specifications contain axioms, usually in some flavour
of first-order logic with equality, describing the properties that models are re-
quired to satisfy. But again, the details of what specifications look like will not
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concern us here. Sometimes SP will tightly constrain the behaviour of allowable
realizations and [[SP ]] will be relatively small, possibly an isomorphism class or
even a singleton set; other times it will impose a few requirements but leave the
rest unconstrained, and then [[SP ]] will be larger. We allow both possibilities;
in contrast to approaches to algebraic specification such as [EM85], the “initial
model” of SP (if there is one) plays no special rôle.

The rest of this paper will be devoted to various related formalizations of the
concept of “refinement step”. I use the terms “refinement” and “implementation”
interchangeably to refer to a relation between specifications, while “realization”
is a relation between an algebra or program and a specification. An idea-oriented
presentation of almost all of this material, with examples, can be found in [ST97]
and this presentation is based on that. See [ST88], [SST92], [BST99] and the ref-
erences in [ST97] for a more technical presentation. Someday [ST??] will contain
a unified presentation of the whole picture and at that point everybody reading
this must immediately go out and buy it. Until then, other starting points for
learning about algebraic specification are [Wir90], [LEW96] and [AKK99].

2 Simple refinement

Given a specification SP , the programming task it defines is to construct an
algebra (i.e. program) A such that A ∈ [[SP ]]. Rather than attempting to achieve
this in a single step, we proceed systematically in a stepwise fashion, incorporat-
ing more and more design and implementation decisions with each step. These
include choosing between the options of behaviour left open by the specification,
between the algorithms that realize this behaviour, between data representation
schemes, etc. Each such decision is recorded as a separate step, typically con-
sisting of a local modification to the specification. Developing a program from a
specification then involves a sequence of such steps:

SP0∼∼∼> SP1∼∼∼> · · ·∼∼∼> SPn

Here, SP0 is the original specification of requirements and SP i−1∼∼∼> SP i for any
i = 1, . . . , n is an individual refinement step. The aim is to reach a specification
(here, SPn) that is an exact description of an algebra.

A formal definition of SP ∼∼∼> SP ′ must incorporate the requirement that
any realization of SP ′ is a correct realization of SP . This gives [SW83,ST88]:

SP ∼∼∼> SP ′ iff [[SP ′]] ⊆ [[SP ]]

which presupposes that Sig(SP) = Sig(SP ′). This is the simple refinement rela-
tion.

Stepwise refinement is sound precisely because the correctness of the final
outcome can be inferred from the correctness of the individual refinement steps:

SP0∼∼∼> SP1∼∼∼> · · ·∼∼∼> SPn A ∈ [[SPn]]
A ∈ [[SP0]]



In fact, the simple refinement relation is transitive:

SP ∼∼∼> SP ′ SP ′∼∼∼> SP ′′

SP ∼∼∼> SP ′′

Typically, the specification formalism will contain operations for building
complex specifications from simpler ones. If these operations are monotonic w.r.t.
inclusion of model classes (this is a natural requirement that is satisfied by almost
all specification-building operations that have ever been proposed) then they
preserve simple refinement:

SP1∼∼∼> SP ′1 · · · SPn∼∼∼> SP ′n
op(SP1, . . . , SPn)∼∼∼> op(SP ′1, . . . , SP ′n)

This provides one way of decomposing the task of realizing a structured spec-
ification into a number of separate subtasks, but it unrealistically requires the
structure of the final realization to match the structure of the specification. See
Sect. 4 below for a better way.

3 Constructor implementation

In the context of a sufficiently rich specification language, simple refinement is
powerful enough to handle all concrete examples of interest. However, it is not
very convenient to use in practice. During stepwise refinement, the successive
specifications accumulate more and more details arising from successive design
decisions. Some parts become fully determined, and remain unchanged as a part
of the specification until the final program is obtained.
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It is more convenient to separate the finished parts from the specification, pro-
ceeding with the development of the unresolved parts only.
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It is important for the finished parts κ1, . . . , κn to be independent of the par-
ticular choice of realization for what is left: they should act as constructions



extending any realization of the unresolved part to a realization of what is being
refined.

Each κi amounts to a so-called parameterised program [Gog84] with in-
put interface SP i and output interface SP i−1, or equivalently a functor in
Standard ML. I call it a constructor, not to be confused with value construc-
tors in functional languages. Semantically, it is a function on algebras κi :
Alg(Sig(SP i)) → Alg(Sig(SP i−1)). Intuitively, κi provides a definition of the
components of a Sig(SP i−1)-algebra, given the components of a Sig(SP i)-algebra.

Constructor implementation [ST88] is defined as follows. Suppose that SP
and SP ′ are specifications and κ is a constructor such that κ : Alg(Sig(SP ′))→
Alg(Sig(SP)). Then:

SP κ∼∼∼> SP ′ iff κ([[SP ′]]) ⊆ [[SP ]]

(Here, κ([[SP ′]]) is the image of [[SP ′]] under κ.) We read SP κ∼∼∼> SP as “SP ′

implements SP via κ”.
The correctness of the final outcome of stepwise development may be inferred

from the correctness of the individual constructor implementation steps:

SP0 κ1
∼∼∼> SP1 κ2

∼∼∼> · · · κn∼∼∼> SPn = EMPTY
κ1(κ2(. . . κn(empty) . . .)) ∈ [[SP0]]

where EMPTY is the empty specification over the empty signature and empty
is its (empty) realization. Again, the constructor implementation relation is in
fact transitive:

SP κ∼∼∼> SP ′ SP ′
κ′
∼∼∼> SP ′′

SP
κ ◦ κ′∼∼∼∼∼> SP ′′

4 Problem decomposition

Decomposition of a programming task into separate subtasks is modelled using
a constructor implementation with a multi-argument constructor [SST92]:

SP κ∼∼∼> 〈SP1, . . . , SPn〉 iff κ([[SP1]]× · · · × [[SPn]]) ⊆ [[SP ]]

where κ : Alg(Sig(SP1))×· · ·×Alg(Sig(SPn))→ Alg(Sig(SP)) is an n-argument
constructor. Now the development takes on a tree-like shape. It is complete once
a tree is obtained that has empty sequences (of specifications) as its leaves:

SP κ∼∼∼>
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SP1 κ1
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SPn κn
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SPn11 κn11
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Then an appropriate instantiation of the constructors in the tree yields a real-
ization of the original requirements specification. The above development tree
yields the algebra

κ(κ1(), . . . , κn(κn1(κn11()), . . . , κnm())) ∈ [[SP ]].

The structure of the final realization is determined by the shape of the devel-
opment tree, which is in turn determined by the decomposition steps. This is in
contrast to the naive form of problem decomposition mentioned earlier, where
the structure of the final realization is required to match the structure of the
specification.

5 Behavioural implementation

A specification should not include unnecessary constraints, even if they happen
to be satisfied by a possible future realization, since this may prevent the de-
veloper from choosing a different implementation strategy. This suggests that
specifications of programming tasks should not distinguish between programs
(modelled as algebras) exhibiting the same behaviour.

The intuitive idea of behaviour of an algebra has received considerable atten-
tion, see e.g. [BHW95]. In most approaches one distinguishes a certain set OBS
of sorts as observable. Intuitively, these are the sorts of data directly visible to the
user (integers, booleans, characters, etc.) in contrast to sorts of “internal” data
structures, which are observable only via the functions provided. The behaviour
of an algebra is characterised by the set of observable computations taking ar-
guments of sorts in OBS and producing a result of a sort in OBS , i.e. terms of
sorts in OBS with variables (representing the inputs) of sorts in OBS only. Two
Σ-algebras A and B are behaviourally equivalent (w.r.t. OBS ), written A ≡ B,
if all observable computations yield the same results in A and in B.

It turns out to be difficult to write specifications having model classes that
are closed under behavioural equivalence, largely because of the use of equality
in axioms. One solution is to define [[·]] such that [[SP ]] always has this property,
but this leads to difficulties in reasoning about specifications. Another is to take
account of behavioural equivalence in the notion of implementation.

Behavioural implementation [ST88] is defined as follows. Suppose that SP
and SP ′ are specifications and κ is a constructor such that κ : Alg(Sig(SP ′))→
Alg(Sig(SP)). Then:

SP ≡
κ∼∼∼> SP ′ iff ∀A ∈ [[SP ′]].∃B ∈ [[SP ]].κ(A) ≡ B

This is just like constructor implementation except that κ applied to a model of
SP ′ is only required to be a model of SP modulo behavioural equivalence.

A problem with this definition is that stepwise refinement is unsound. The
following property does not hold:

SP0
≡
κ1
∼∼∼> SP1

≡
κ2
∼∼∼> · · · ≡κn∼∼∼>SPn = EMPTY

∃A ∈ [[SP0]].κ1(κ2(. . . κn(empty) . . .)) ≡ A



The problem is that SP0
≡
κ1
∼∼∼> SP1 ensures only that algebras in [[SP1]] give rise

to correct realizations of SP0. It says nothing about the algebras that are only
models of SP1 up to behavioural equivalence. But such algebras may arise as
well because SP1

≡
κ2
∼∼∼> SP2.

The problem disappears if we modify the definition of behavioural implemen-
tation SP ≡

κ∼∼∼> SP ′ to require

∀A ∈ Alg(Sig(SP ′)).(∃A′ ∈ [[SP ′]].A ≡ A′)⇒ (∃B ∈ [[SP ]].κ(A) ≡ B)

but then it is very difficult to prove the correctness of behavioural implementa-
tions. There is a better way out, originally suggested in [Sch87]. Soundness of
stepwise refinement using our original definition of behavioural implementation
is recovered, as well as transitivity of the behavioural implementation relation,
if we assume that all constructors used are stable, that is, that any constructor
κ : Alg(Sig(SP ′))→ Alg(Sig(SP)) preserves behavioural equivalence:

Stability assumption: if A ≡ B then κ(A) ≡ κ(B)

We could repeat here the tree-like development picture of Sect. 4 — develop-
ments involving decomposition steps based on behavioural implementations with
multi-argument (stable) constructors yield correct realizations of the original re-
quirements specification.

There are two reasons why stability is a reasonable assumption. First, re-
call that constructors correspond to parameterised programs which means that
they must be written in some given programming language. The stability of
expressible constructors can be established in advance for this programming
language, and this frees the programmer from the need to prove it during the
program development process. Second, there is a close connection between the
requirement of stability and the security of encapsulation mechanisms in pro-
gramming languages supporting abstract data types. A programming language
ensures stability if the only way to access an encapsulated data type is via the
operations explicitly provided in its output interface. This suggests that stabil-
ity of constructors is an appropriate thing to expect; following [Sch87] we view
the stability requirement as a methodologically justified design criterion for the
modularisation facilities of programming languages.

6 Refinement steps in Extended ML and CASL

The presentation above may be too abstract to see how the ideas apply to the
development of concrete programs. It may help to see them in the context of a
particular specification and/or programming language.

Extended ML [San91,KST97] is a framework for the formal development of
Standard ML programs from specifications. Extended ML specifications look
just like Standard ML programs except that axioms are allowed in “signatures”
(module interface specifications) and in place of code in module bodies. As noted
above, constructors correspond to Standard ML functors. Extended ML functors,



with specifications in place of mere signatures as their input and output inter-
faces, correspond to constructor implementation steps: the well-formedness of
functor F(X:SP):SP ′ = body in Extended ML corresponds to the correctness
of SP ′ F∼∼∼> SP . There is a close connection with the notion of steadfast program
in [LOT99]. Extended ML functors are meant to correspond to behavioural im-
plementation steps and the necessary underlying theory for this is in [ST89],
but the requisite changes to the semantics of Extended ML are complicated
and have not yet been satisfactorily completed. The Extended ML formal de-
velopment methodology accommodates stepwise refinement with decomposition
steps as above, generalized to accommodate development of functors as well as
structures (algebras).

Casl, the new Common Algebraic Specification Language [CoFI98], has been
developed under the auspices of the Common Framework Initiative [Mos97] in
an attempt to consolidate past work on the design of algebraic specification
languages and provide a focal point for future joint work. Architectural speci-
fications in Casl [BST99] relate closely to constructor implementations in the
following sense. Consider SP κ∼∼∼> 〈SP1, . . . , SPn〉 where κ is a multi-argument
constructor. The architectural specification

arch spec ASP = units U1:SP1; . . . ; Un:SPn result T

(where T is a so-called unit term which builds an algebra from the algebras
U1, . . . , Un) includes SP1, . . . , SPn and κ = λU1, . . . , Un.T but not SP . Its se-
mantics is (glossing over many details) the class κ([[SP1]]× · · · × [[SPn]]). Thus
SP κ∼∼∼> 〈SP1, . . . , SPn〉 corresponds to the simple refinement SP ∼∼∼> ASP. Casl

accommodates generic units so it also allows development of parameterised pro-
grams.

7 Higher order extensions

Algebraic specification is normally restricted to first-order. There are three or-
thogonal dimensions along which the picture above can be extended to higher-
order.

First, we can generalize constructor implementations by allowing construc-
tors to be higher-order parameterised programs. If we extend the specification
language to permit the specification of such programs (see [SST92,Asp97]) then
we can develop them stepwise using the definitions of Sect. 3, with decompo-
sition as in Sect. 4. Both Extended ML and Casl support the development
of first-order parameterised programs. In both cases the extension to higher-
order parameterised programs has been considered but not yet fully elaborated.
Higher-order functors are available in some implementations of Standard ML, cf.
[Rus98]. To apply behavioural implementation, one would require an appropriate
notion of behavioural equivalence between higher-order parameterised programs.

Second, we can use higher-order logic in axioms. Nothing above depends
on the choice of the language of axioms, but the details of the treatment of



behavioural equivalence is sensitive to this choice. The treatment in [BHW95]
extends smoothly to this case, see [HS96].

Finally, we can allow higher-typed functions in signatures and algebras.
Again, the only thing that depends on this is the details of the treatment of
behavioural equivalence. Behavioural equivalence of such algebras is character-
ized by existence of a so-called pre-logical relation between them [HS99]. If con-
structors are defined using lambda calculus then stability is a consequence of the
Basic Lemma of pre-logical relations [HLST00].
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[LOT99] K.-K. Lau, M. Ornaghi and S.-Å. Tärnlund. Steadfast logic programs.
Journal of Logic Programming 38:259–294 (1999).

[LEW96] J. Loeckx, H.-D. Ehrich and M. Wolf. Specification of Abstract Data Types.
Wiley (1996).

[Mos97] P. Mosses. CoFI: The Common Framework Initiative for algebraic speci-
fication and development. Proc. 7th Intl. Joint Conf. on Theory and Prac-
tice of Software Development, Lille. Springer LNCS 1214, 115–137 (1997).

[Rus98] C. Russo. Types for Modules. Ph.D. thesis, report ECS-LFCS-98-389,
Dept. of Computer Science, Univ. of Edinburgh (1998).

[San91] D. Sannella. Formal program development in Extended ML for the work-
ing programmer. Proc. 3rd BCS/FACS Workshop on Refinement, Hursley
Park. Springer Workshops in Computing, 99–130 (1991).

[SST92] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of
programs from algebraic specifications: parameterisation revisited. Acta
Informatica 29:689–736 (1992).

[ST88] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: implementations revisited. Acta Informatica
25:233–281 (1988).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Proc. 3rd Joint Conf. on Theory and Prac-
tice of Software Development, Barcelona. Springer LNCS 352, 375–389
(1989).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing 9:229–269
(1997).

[ST??] D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications and
Formal Program Development. Cambridge Univ. Press, to appear.

[SW83] D. Sannella and M. Wirsing. A kernel language for algebraic specification
and implementation. Proc. 1983 Intl. Conf. on Foundations of Computa-
tion Theory, Borgholm. Springer LNCS 158, 413–427 (1983).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Program-
ming. Ph.D. thesis, report CST-42-87, Dept. of Computer Science, Univ.
of Edinburgh (1987).

[Wir90] M. Wirsing. Algebraic specification. Handbook of Theoretical Computer
Science (J. van Leeuwen, ed.). North-Holland (1990).


