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Abstract. The problem of testing modular systems against algebraic
specifications is discussed. We focus on systems where the decomposition
into parts is specified by a Casl-style architectural specification and
the parts (units) are developed separately, perhaps by an independent
supplier. We consider how to test such units without reference to their
context of use. This problem is most acute for generic units where the
particular instantiation cannot be predicted.

1 Introduction

Formal testing is concerned with deriving test cases from formal specifications
and checking whether programs satisfy these test cases for a selected finite set of
data, as a practical alternative to formal proof. Much work has focused on test
case selection and (automatic) interpretation of test results. Testing from alge-
braic specifications has been investigated, focusing on both “flat” specifications
[Ber89,Gau95,LA96,Mac99] and structured specifications [LA96,Mac00b,DW00].
It is often assumed that the structure of the specification matches the structure
of the program [LeG99,DW00] although it is possible to take specification struc-
ture into account without making this strong assumption [Mac00b].

Tests are not interesting unless we can interpret their results in terms of
correctness. Oracles are decision procedures for interpreting the results of tests.
The oracle problem arises whenever a finite executable oracle cannot be defined;
this may stem e.g. from the semantic gap between specification and program
values. Guaranteeing correctness by testing requires tests covering all possible
interactions with the system, usually an infinite and impractical activity. When
only finite sets of interactions are considered, successful testing can accept incor-
rect programs and unsuccessful testing can reject correct programs. The latter
must be avoided since the costs of finding and fixing errors are too high to waste
effort on non-errors. Accepting incorrect programs is not a problem as long as
test coverage is adequate, since testing is not expected to guarantee correctness.

This paper addresses testing of modular systems where parts are developed
independently from Casl-style architectural specifications [ABK+03,BST02]. In
this context, the problem reduces to that of testing units independently in such a
way that their integration can be checked in a cost-effective way. An architectural
specification consists of a list of unit declarations, naming the units (components)



that are required with specifications for each of them, together with a unit term
that describes the way in which these units are to be combined.

When testing modular systems and their parts, different perspectives need
to be considered. From a supplier’s point of view, units have to be checked inde-
pendently of their contexts of use. Checking generic units poses special problems
since the particular instantiation is unknown in general, and the set of all pos-
sible instantiations is almost always infinite. In this paper, we present styles of
testing non-generic and generic units that address these problems. The main
novelty is in the case of generic units. Integration testing is left to future work.
A extended version of this paper with examples demonstrating most of the main
definitions and results is available as an Edinburgh technical report.

2 Preliminary definitions

Algebraic Specifications. We assume familiarity with basic concepts and notation
of algebraic specification, where programs are modelled as algebras. Each signa-
ture Σ = (S, F,Obs) is equipped with a distinguished set Obs⊆ S of observable
sorts. Sign is the category of signatures. We consider specifications with axioms
of first-order equational logic, and write Sen(Σ) for the set of all Σ-sentences.
We restrict to algebras with non-empty carriers, and write Alg(Σ) for the class
of all such Σ-algebras. [A] denotes the reachable subalgebra of A ∈ Alg(Σ).
Behavioural Equality. For a non-observable sort, it is not appropriate to as-
sume that equality on values is the usual set-theoretical one. Equality on values
of a Σ-algebra A can be interpreted by an appropriate behavioural equality,
a partial Σ-congruence ≈A = (≈A,s)s∈S with Dom(≈A) = {a | a ≈A a}.
The partial observational equality ≈Obs,A= (≈Obs,A,s)s∈S is one example of a
behavioural equality, where related elements are those that cannot be distin-
guished by observable computations.3 A Σ-behavioural equality is defined as
≈Σ = (≈Σ,A)A∈Alg(Σ), one behavioural equality for each Σ-algebra A.
Approximate Equality. Behavioural equality can be difficult to test. Consider
e.g. observational equality on non-observable sorts, defined in terms of a set of
contexts that is usually infinite. One approach involves the use of approximate
equalities [Mac99,Mac00c] which are binary relations on values of the algebra.
An approximate equality is sound with respect to a behavioural equality if all
values (in Dom(≈A)) that it identifies are indeed equal, or complete if all equal
values are identified. Any contextual equality ∼C,A defined from a subset C of the
observable computations4 is complete with respect to observational equality, al-
though it need not be a partial congruence. The set-theoretical equality is sound
– in programming terms, this is equality on the underlying data representation.
3 Let CObs be the set of all Σ-contexts TΣ(X ∪{zs}) of observable sorts with context

variable zs of sort s. Then values a and b of sort s are observationally equal, a ≈Obs,A,s
b, iff a, b ∈ [A] and ∀C ∈ CObs· ∀α : X → [A] · α#

a (C) = α#
b (C), where αa, αb :

X ∪ {zs} → [A] are the extensions of α defined by αa(zs) = a and αb(zs) = b.
4 Let C ⊆ CObs. Values a and b are contextually equal w.r.t C iff a, b ∈ [A] and
∀C ∈ C·∀α : X → [A]·α#

a (C) = α#
b (C). Obviously, if C = CObs, then ∼C,A = ≈Obs,A.



Families of Equalities. The signature of different parts of a structured specifica-
tion may differ, and the interpretation of equality (e.g. observational equality)
may depend on the signature. So, to deal with structured specifications, we use
families of equalities indexed by signatures. Let ≈ = (≈Σ )Σ∈Sign be a family
of behavioural equalities and let ∼ = (∼Σ)Σ∈Sign and l = (lΣ )Σ∈Sign denote
arbitrary families of approximate equalities. The family ∼ is complete (sound)
w.r.t. ≈ if ∼Σ is complete (sound) w.r.t. ≈Σ for all Σ. The reduct of ∼Σ by
σ : Σ ′ → Σ is (∼Σ)|σ = ((∼Σ,A)|σ)A∈Alg(Σ) where (∼Σ,A)|σ = ((∼Σ,A)σ(s))s∈S′;
then the family ∼ is compatible with signature morphisms if for all σ : Σ ′ → Σ
and all A ∈ Alg(Σ), ∼Σ′ ,A|σ = (∼Σ,A)|σ. For the results below having com-
patibility as a condition, it is enough to consider the signatures arising in the
structure of a given specification (for a normalized specification, this includes
intermediate signatures arising during normalization). Compatibility may fail if
these signatures have different sets of observers for the same sort. The family of
set-theoretical equalities is always compatible, but it is easy to check that the
family of observational equalities is not compatible in general. One may restrict
the introduction of new observers to avoid this problem, see e.g. [BH99].

3 Formal Testing from Algebraic Specifications

Testing from algebraic specifications boils down to checking if axioms are satis-
fied by programs [Gau95]. Oracles are usually active procedures which drive the
necessary tests and interpret the results. Test cases are extracted from specifi-
cations together with test sets defined at specification level and associated with
axioms. Then, oracles are defined for each test case or group of test cases. A
test obligation combines a test case, test data, a test oracle and a program to be
tested. When there is no chance of confusion, this is referred to simply as a test.
Test Cases and Test Data. For simplicity, each axiom is regarded as a separate
test case. Techniques exist to simplify test cases or make them more practical,
but this is a separate topic. Test data sets are usually defined from specifications
rather than from programs. Here, test sets will be taken to be sets of ground
terms [Gau95,Mac99] corresponding to sets of values in the program under test.
Test Oracle Design. The oracle problem often reduces to the problem of compar-
ing values of a non-observable sort for equality; when equality is interpreted as
behavioural equality, e.g. observational equality, it may be difficult or impossi-
ble to decide. Quantifiers ranging over infinite domains make the oracle problem
more difficult. An approach to defining oracles that addresses these problems is
presented in [Mac99], where equality is computed using two approximate equal-
ities, one sound and one complete. These equalities are applied according to the
context in which equations occur, positive or negative5. To handle the quantifier
5 A context is positive if it is formed by an even number of applications of negation

(e.g. φ is in a positive context in both φ ∧ ψ and ¬¬φ). Otherwise, the context
is negative. Note that φ is in a negative context and ψ is in a positive context in
φ ⇒ ψ since it is equivalent to ¬φ ∨ ψ. A formula or symbol occurs positively (resp.
negatively) in φ if it occurs in a positive (resp. negative) context within φ.



problem, restrictions are placed on the contexts in which they can occur. An
approximate oracle is then a procedure that decides whether a given axiom is
satisfied by a program or not. Such an oracle computes a “testing satisfaction”
relation (given below) which differs from the standard one in the way equality
is computed and also because quantifiers range only over given test sets.

Definition 3.1 (Testing Satisfaction). Let Σ be a signature, T ⊆ TΣ be a
Σ-test set, ∼,l be two Σ-approximate equalities, A be a Σ-algebra and α : X →
Dom(≈A) be a valuation. Testing satisfaction |=T

∼,l is defined as follows.

1. A,α |=T
∼,l t = t′ iff α#(t) ∼A α#(t′);

2. A,α |=T
∼,l ¬ψ iff A,α |=T

l,∼ ψ does not hold;
3. A,α |=T

∼,l ψ1 ∧ψ2 iff both A,α |=T
∼,l ψ1 and A,α |=T

∼,l ψ2 hold;
4. A,α |=T

∼,l ∀x:s · ψ iff A,α[x 7→ #(t)] |=T
∼,l ψ holds for all t ∈ Ts

where α[x 7→ v] is the valuation α superseded at x by v. Satisfaction of formulae
involving ∨, ⇒, ⇔, ∃ is given using their definitions in terms of ¬, ∧, ∀. Note
that ∼ is always applied in positive contexts and l is always applied in negative
contexts: the approximate equalities are reversed when negation is encountered.

The following theorem relates testing satisfaction to usual behavioural satis-
faction (|=≈), where equality is interpreted as behavioural equality (≈) and
quantification is over all of Dom(≈).

Theorem 3.2 ([Mac99]). If ∼ is complete, l is sound, and ψ has only pos-
itive occurrences of ∀ and negative occurrences of ∃, then A,α |=≈ ψ implies
A,α |=T

∼,l ψ. ut
The restriction to positive ∀ and negative ∃ here and in later results is not a
problem in practice, since it is satisfied by most common specification idioms.

4 Testing from Non-Generic Unit Specifications

This section discusses testing non-generic program units against specifications
without considering the internal modular structure of the units. The styles of
testing presented can be used to test the individual units of a modular system.

Good practice requires units to be checked independently of their contexts
of use. For formal (functional) testing, this corresponds to checking whether the
unit satisfies its specification. Testing from flat specifications can follow directly
the approach presented in Sect. 3 for each test case. However, once structured
specifications are considered, there are additional complications. First, the struc-
ture has to be taken into account when interpreting test results w.r.t. specifi-
cation axioms. Also, in order to check axioms that involve “hidden symbols” it
is necessary to provide an additional implementation for these symbols as the
program under test is not required to implement them.

Structured specifications are built using structuring primitives like renaming,
union, exporting and extension. These provide a powerful mechanism for reusing
and adapting specification as requirements evolve. In structured specifications
with testing interface [Mac00b], test sets are incorporated into specifications.



Definition 4.1 (Structured Specifications with Testing Interface). The
syntax and semantics of structured specifications are inductively defined as fol-
lows. Each specification SP is assigned a signature Sig(SP ) and two classes of
Sig(SP )-algebras. Mod≈(SP ) is the class of “real” models of SP w.r.t. the
family of Σ-behavioural equalities ≈ = (≈Σ )Σ∈Sign, and ChMod∼,l(SP ) is the
class of “checkable” models of SP determined by testing w.r.t. the families of
approximate equalities ∼ = (∼Σ)Σ∈Sign and l = (lΣ)Σ∈Sign and the test sets
associated with each axiom.

1. (Basic) SP = 〈Σ, Ψ〉 with Ψ ⊆ {(ψ, T ) | ψ ∈ Sen(Σ) and T ⊆ TΣ}.
– Sig(SP ) = Σ
– Mod≈(SP ) = {A ∈ Alg(Σ) |

∧
(ψ,T)∈Ψ A |=≈ ψ}

– ChMod∼,l (SP ) = {A ∈ Alg(Σ) |
∧

(ψ,T)∈Ψ A |=T
∼,l ψ}

2. (Union) SP = SP1 ∪SP2 , where SP1 and SP2 are structured specifications,
with Sig(SP1) = Sig(SP2).

– Sig(SP ) = Sig(SP1) [= Sig(SP2)]
– Mod≈(SP ) = Mod≈(SP1) ∩Mod≈(SP2)
– ChMod∼,l (SP ) = ChMod∼,l(SP1) ∩ ChMod∼,l(SP2)

3. (Renaming) SP = translate SP ′ with σ, where σ : Sig(SP ′)→ Σ.
– Sig(SP ) = Σ
– Mod≈(SP ) = {A ∈ Alg(Σ) | A|σ ∈Mod≈(SP ′)}
– ChMod∼,l (SP ) = {A ∈ Alg(Σ) | A|σ ∈ ChMod∼,l(SP ′)}

4. (Exporting) SP = SP ′|Σ, where Σ is a subsignature of Sig(SP ′).
– Sig(SP ) = Σ
– Mod≈(SP ) = {A′|Σ | A′ ∈Mod≈(SP ′)}
– ChMod∼,l (SP ) = {A′|Σ | A′ ∈ ChMod∼,l (SP ′)}

Operations presented in Definition 4.1 are primitive ones and, in practice,
more complex operations, defined from their combination, are found in Casl and
other languages. Extension – “then” in Casl – is defined in terms of renaming
and union: SP ′ then sorts S opns F axioms Ψ

def
= 〈Σ, Ψ〉 ∪ translate SP ′ with σ,

where SP ′ is a structured specification, S is a set of sorts, F is a set of function
declarations, Σ = Sig(SP ′) ∪ (S, F ), σ : Sig(SP ′) ↪→ Σ is the inclusion, and Ψ
is a set of axioms over Σ with their associated test sets. The union of specifi-
cations over possibly different signatures – “and” in Casl – can be expressed
as: SP1 and SP2

def
= translate SP1 with σ1 ∪ translate SP2 with σ2 , where

Σ = Sig(SP1) ∪ Sig(SP2) and σ1 : Sig(SP1) ↪→ Σ, σ2 : Sig(SP2) ↪→ Σ.
To handle the oracle problem for structured specifications, two styles of test-

ing are suggested in [Mac00b]: structured and flat testing. Structured testing of
a Σ-algebraA against a structured specification SP corresponds to membership
in the class of checkable models of SP , i.e., A ∈ ChMod∼,l(SP ). Structured
testing is based on the structure of SP ; it may involve more than one set of test
obligations (see Definition 4.1) and may demand additional implementation of
symbols not in A (not exported by SP ).

On the other hand, flat testing takes a monolithic approach based on an
unstructured view of the specification without considering non-exported symbols



and using a single pair of approximate equalities on the overall signature of
SP . More specifically, flat testing corresponds to testing satisfaction of axioms
extracted from SP , i.e.,

∧
(ψ,T)∈TAx(SP) A |=T

∼Σ,lΣ ψ where Σ = Sig(SP ) and
TAx (SP ) are the visible axioms of SP , defined as follows.

Definition 4.2 (Visible Axioms). The set of visible axioms together with
corresponding test sets of a specification SP is defined as follows.

1. TAx (〈Σ,Ψ〉) = Ψ
2. TAx (SP1 ∪ SP2) = TAx (SP1) ∪ TAx (SP2)
3. TAx (translate SP ′ with σ) = σ(TAx (SP ′))
4. TAx (SP ′|Σ) = {(φ, T ∩ TΣ) | (φ, T ) ∈ TAx (SP ′) and φ ∈ Sen(Σ)}

The visible axioms of a specification SP exclude those that refer to non-exported
symbols, translating the rest to the signature of SP .

Whether structured or flat testing is performed, we must ask: under which
conditions are correct models not rejected by testing? Results in [Mac00b,Mac00c]
show that under certain assumptions, structured testing and flat testing do not
reject correct models, even though incorrect ones can be accepted.

Theorem 4.3 ([Mac00b]). If ∼ is complete, l is sound, and the axioms
of SP have only positive occurrences of ∀ and negative occurrences of ∃, then
A ∈Mod≈(SP ) implies A ∈ ChMod∼,l(SP ). ut

Theorem 4.4 ([Mac00b]). If ∼ is complete and compatible and l is sound and
compatible and the axioms of SP have only positive occurrences of ∀ and negative
occurrences of ∃, then A ∈Mod≈(SP ) implies

∧
(ψ,T)∈TAx(SP)A |=T

∼,l ψ. ut

Structured testing is more flexible than flat testing in the sense that fewer
assumptions are made. The family of observational equalities is not compatible as
mentioned in Sect. 2, so the additional assumption is a strong one. On the other
hand, flat testing is simpler. Both theorems cover a prevalent use of quantifiers.
Their duals also hold, but are less interesting. There are also variants of these
theorems that substitute assumptions on test sets for assumptions on quantifiers.

Structured testing and flat testing are two extremes. In practice, we may
combine them. This can be done via normalization, where a structured speci-
fication SP is transformed into a specification nf (SP ) of the form 〈Σ ′, Ψ ′〉|Σ
[BCH99] having the same signature and class of models. This procedure groups
axioms, taking hidden symbols into account, so that the result is a flat spec-
ification which exports visible symbols. The usual normalization procedure is
easily extended to structured specifications with testing interface (see [Mac00a]
for details) and then we obtain the following result:

Theorem 4.5 ([Mac00a]). If ∼ and l are compatible, then ChMod∼,l (SP ) =
ChMod∼,l(nf(SP )). ut

The main advantage of normal form is to allow a combination of compo-
sitional and non-compositional testing, namely semi-structured testing, where



normal forms are used to replace parts of a specification, especially when these
parts are combined by union. The result is to reduce the number of different ex-
periments that are performed. Then, the resulting specification can be checked
by structured testing and a result analogous to Theorems 4.3 and 4.4 is obtained:

Theorem 4.6 ([Mac00a]). If ∼ is complete, l is sound, ≈ is compatible and
the axioms of SP have only positive occurrences of ∀ and negative occurrences
of ∃, then A ∈Mod≈(SP ) implies A ∈ ChMod∼,l(nf(SP )). ut

Even though we have shown theoretical results regarding structured, flat and
semi-structured testing, these styles of testing can be infeasible in practice when
the structure of the program is not taken into account, since it may be necessary
to decompose the program to reflect certain signatures in the structure of the
specification and/or re-test the whole program every time it is modified.

5 Testing from Generic Unit Specifications

This section is concerned with testing generic units independent of particular
instantiations. This is a difficult task for testing since we have to anticipate
the behaviour of a generic unit when instantiated by specific units, but the set
of all possible instantiations is almost always infinite. Not all units having the
right signature are correct implementations of the argument specification, and
correctness cannot generally be determined by testing. However, testing a generic
unit using an incorrect implementation of the argument specification may lead
to rejection of correct generic units.

The syntax and semantics of generic unit specifications are as follows. First,
let Alg(Σ ′ → Σ) = {F : Alg(Σ ′) ⇀ Alg(Σ) | ∀A ∈ Dom(F ), F [A]|Σ′ = A} be
the class of persistent partial functions taking Σ ′-algebras to Σ-algebras, where
Σ ′ ⊆ Σ. These functions on algebras model generic units; they are partial since a
generic unit is only required to produce a result when instantiated by an algebra
that satisfies the argument specification.

Definition 5.1 (Generic Unit Specifications). Let Sig(SP ) = Σ and
Sig(SP ′) = Σ ′, such that SP extends SP ′, i.e. Σ ′ ⊆ Σ and for all A ∈
Mod≈(SP ), A|Σ′ ∈Mod≈(SP ′).

– Sig(SP ′ → SP ) = Σ ′ → Σ
– Mod≈(SP ′ → SP ) = {F ∈ Alg(Σ′ → Σ) | ∀A ∈Mod≈(SP ′), A ∈ Dom(F )

and F [A] ∈Mod≈(SP )}
– ChMod∼,l(SP ′ → SP ) = {F ∈ Alg(Σ′ → Σ) | ∀A ∈ ChMod∼,l(SP ′), A ∈
Dom(F ) and F [A] ∈ ChMod∼,l(SP )}

Let SP ′ → SP be a generic unit specification and let F be a generic unit that
is claimed to correctly implement this specification. In contrast to testing from
non-generic unit specifications, membership in the class of checkable models does
not give rise to a feasible style of testing from generic unit specifications. First,



the class of models of SP ′ may be infinite. Moreover, the class of checkable mod-
els of SP ′ → SP cannot be directly compared to its class of “real” models. Sup-
pose F ∈ Mod≈(SP ′ → SP ) and A ∈ ChMod∼,l(SP ′), but A /∈ Mod≈(SP ′)
and F [A] /∈ ChMod∼,l(SP ). Then, F /∈ ChMod∼,l(SP ′ → SP ) – a correct F
is rejected due to bugs in A.

As explained earlier, a testing method should ensure that correct models are
not rejected. This requires that incorrect models of the parameter specification
are not used in testing. Suppose another class of models, named strong models,
is defined as an alternative to the class of checkable models.

Definition 5.2 (Strong Models). The class of strong models of SP ′ → SP
is defined as SMod∼,l(SP ′ → SP ) = {F ∈ Alg(Σ ′ → Σ) | ∀A ∈ Mod≈(SP ′),
A ∈ Dom(F ) and F [A] ∈ ChMod∼,l(SP )}.

This represents the class of models which are successfully tested when only
correct implementations of SP ′ are considered. We then have:

Theorem 5.3. If ∼ is complete, l is sound, and the axioms of SP have only
positive occurrences of ∀ and negative occurrences of ∃, then F ∈Mod≈(SP ′ →
SP ) implies F ∈ SMod∼,l(SP ′ → SP ).

Proof. Suppose F ∈Mod≈(SP ′→ SP ). Then, ∀A ∈Mod≈(SP ′), A ∈ Dom(F )
and F [A] ∈Mod≈(SP ). By Theorem 4.3, F [A] ∈ ChMod∼,l(SP ). Hence, F ∈
SMod∼,l(SP ′ → SP ). ut

This means that if we can test for membership in the class of strong models,
then correct models of generic unit specifications are not rejected. Obviously,
incorrect models can be accepted. As with Theorem 4.3, the dual also holds.

In practice, testing membership in SMod∼,l(SP ′ → SP ) (this also applies
to ChMod∼,l(SP ′ → SP )) is not possible, since as already noted the class
Mod≈(SP ′) is almost always infinite and in any case membership in this class
is not testable in general. A feasible approach to test whether generic units are
models of SP ′ → SP should only rely on a finite subset of Mod≈(SP ′). So let
C be a set of units (“stubs”) chosen according to some coverage criteria. Then
we define a “weak” class of models of SP ′ → SP as follows.

Definition 5.4 (Weak Models). Let C ⊆ Mod≈(SP ′). The class of weak
models of SP ′ → SP is defined as WMod∼,l,C(SP ′ → SP ) = {F ∈ Alg(Σ ′→
Σ) | ∀A ∈ C, A ∈ Dom(F ) and F [A] ∈ ChMod∼,l(SP )}.

The intention here is to select a class C which is finite and has a reasonable
size such that F can be tested with this class and useful information gained. The
following theorem shows that under certain assumptions, correct generic units
are not rejected by testing w.r.t. the class of weak models.

Theorem 5.5. If ∼ is complete, l is sound, and the axioms of SP have only
positive occurrences of ∀ and negative occurrences of ∃, then F ∈Mod≈(SP ′ →
SP ) implies F ∈ WMod∼,l,C(SP ′ → SP ) for any C ⊆Mod≈(SP ′).



Proof. Suppose F ∈ Mod≈(SP ′ → SP ). Then, ∀A ∈ C ⊆ Mod≈(SP ′), A ∈
Dom(F ) and F [A] ∈ Mod≈(SP ). By Theorem 4.3, F [A] ∈ ChMod∼,l(SP ).
Hence, F ∈WMod∼,l,C(SP ′ → SP ). ut

The class of weak models is comparable to the classes of checkable and strong
models, i.e., for any C ⊆ Mod≈(SP ′), F ∈ ChMod∼,l(SP ′ → SP ) implies
F ∈ WMod∼,l,C(SP ′ → SP ), provided the assumptions of Theorem 4.3 hold
for SP ′, and F ∈ SMod∼,l(SP ′ → SP ) implies F ∈ WMod∼,l,C(SP ′ →
SP ). Moreover, for any algebra A used to test membership of F in the class of
weak models of SP ′ → SP , we can conclude that F [A] is indeed a checkable
model of SP , i.e., if A ∈ C and F ∈ WMod∼,l,C(SP ′ → SP ) then F [A] ∈
ChMod∼,l(SP ), by Definition 5.4. However, what if A ∈ Mod≈(SP ′), but
A /∈ C? Is F [A] ∈ ChMod∼,l (SP )? How do we select an appropriate finite set
of Sig(SP ′)-algebras so that an answer to the above question can be given?

Even though, under the assumptions of Theorem 5.5, testing membership in
the class of weak models does not reject correct programs, not all sets C of stubs
are equally interesting. It is desirable that a generic unit F be tested without
regard to the units that are going to be used to instantiate it subsequently. Then,
if we can conclude that F [A] is a checkable model for someA, it may be possible
to avoid re-testing F when A is replaced by a different unit. In other words, we
need to select C to be a representative subset of Mod≈(SP ′) so that given a
correct realisation A of SP ′ (A ∈Mod≈(SP ′)) and a generic unit F in the class
of weak models of SP ′ → SP (F ∈WMod∼,l,C(SP ′ → SP )), we can conclude
that F [A] is a realisation of SP (F [A] ∈ ChMod∼,l(SP )).

One possible answer to the above questions might be to pick one representa-
tive of every equivalence class w.r.t. an equivalence relation ≡ on algebras when
defining C. This might be the observational equivalence on algebras [BHW95]
or an approximation to it. The idea is similar to equivalence partitioning of test
sets and the uniformity hypothesis in black-box testing [Ber91].

Let ≡ be an equivalence relation and define the closure of C under ≡ as
Cl≡(C) = {A ∈ Alg(Σ) | ∃B ∈ C·A ≡ B}. In particular, we might pick C so that
Cl≡(C) coincides with Mod≈(SP ). Following [BHW95], we focus on equivalence
relations that are “factorizable” by partial congruences of interest. The idea
comes from automata theory: two finite state machines are equivalent (i.e. accept
the same language) iff quotienting each one by the Nerode equivalence on states
yields isomorphic machines. (In fact, we will require only right factorizability.)

Definition 5.6 (Factorizability). An equivalence ≡ ⊆ Alg(Σ) × Alg(Σ) is
factorizable by a family of partial Σ-congruences ≈ = (≈A)A∈Alg(Σ) if A ≡ B iff
A/≈A ∼= B/≈B ; ≡ is right factorizable by ≈ if A ≡ B implies A/≈A ∼= B/≈B .

It is shown in [BHW95] that various definitions of observational equivalence are
factorizable by corresponding observational equalities. We will need an equiv-
alence that is right factorizable by an approximate equality that is complete
with respect to our chosen behavioural equality. Complete equalities are coarser
than ≈, and if ≈ is observational equality then equivalences that are factor-
izable by such equalities are coarser than observational equivalence. Requiring



right factorizability permits the equivalence to be finer than the factorizable
one, including observational equivalence and equivalences finer than that.

The following theorem relates behavioural satisfaction of a sentence and or-
dinary satisfaction of the same sentence in a quotient algebra.

Theorem 5.7 ([BHW95]). Let ≈ = (≈A)A∈Alg(Σ) be a family of partial Σ-
congruences. Then A/≈A |= ψ iff A |=≈ ψ. ut

Putting these together:

Corollary 5.8. Let ≡ be right factorizable by ≈. Then A ≡ B implies A |=≈ ψ
iff B |=≈ ψ.

Proof. A |=≈ ψ iff A/≈A |= ψ (Theorem 5.7) iff B/≈B |= ψ (A ≡ B, right
factorizability, preservation of satisfaction by ∼=) iff B |=≈ ψ (Theorem 5.7). ut

Theorem 5.9. Let ≡ be right factorizable by ∼. Then A ≡ B implies A ∈
ChMod∼,∼(SP ) iff B ∈ ChMod∼,∼ (SP ).

Proof. By induction on the structure of SP , using Corollary 5.8 for specifications
of the form 〈Σ, Ψ〉. Since test sets are finite sets of ground terms, A |=T

∼,∼ ψ is
equivalent to A |=∼ ψ′ where ψ′ is obtained from ψ by replacing each subformula
of the form ∀x : s ·ϕ by

∧
t∈Ts ϕ[t/x] and each subformula of the form ∃x : s ·ϕ

by
∨
t∈Ts ϕ[t/x]. ut

A further assumption will be that generic units preserve ≡, i.e. are “stable”:

Definition 5.10 (Stability). A generic unit F ∈ Alg(Σ′ → Σ) is stable with
respect to equivalences ≡Σ′ ⊆ Alg(Σ ′)×Alg(Σ ′) and ≡Σ ⊆ Alg(Σ)×Alg(Σ) if
for any A ∈ Dom(F ), A ≡Σ′ B implies B ∈Dom(F ) and F [A] ≡Σ F [B].

Stability with respect to observational equivalence is a reasonable assumption
for generic units expressed in a programming language, since stability is closely
related to the security of the data encapsulation mechanisms in that language,
see [Sch87] and [ST97]. For an equivalence that is only an approximation to ob-
servational equivalence, stability seems reasonable as a hypothesis in the context
of testing. We then have the main result of this section:

Theorem 5.11. Let C ⊆ Mod≈(SP ′). If F ∈ WMod∼,∼,C(SP ′ → SP ), A ∈
Cl≡Σ ′ (C), ≡ is right factorizable by ∼ and F is stable with respect to ≡Σ′ and
≡Σ, then F [A] ∈ ChMod∼,∼(SP ).

Proof. A ∈ Cl≡Σ ′ (C) means that A ≡Σ′ B for some B ∈ C, and then F [B] ∈
ChMod∼,∼(SP ). By stability, F [A] ≡Σ F [B]. Then, by Theorem 5.9, F [A] ∈
ChMod∼,∼(SP ). ut

Corollary 5.12. Let C ⊆ Mod≈(SP ′). If F ∈ WMod∼,∼,C(SP ′ → SP ), ≡
is right factorizable by ∼ and F is stable with respect to ≡Σ′ and ≡Σ, then
F ∈WMod∼,∼,Cl≡ (C)(SP ′ → SP ).



Theorem 5.11 and Corollary 5.12 are useful “amplification” results. They
allow information gained from testing particular instantiations (the set of stubs
C) to be extrapolated to give information about instantiations that have not
actually been tested. Theorem 5.11 relates to the practice of replacing a module
in a working system (in this case, the parameter of a generic unit) with another
version. If the two versions can be shown to be equivalent (≡), then the overall
system will continue to work provided the assumptions in Theorem 5.11 are
met. In Corollary 5.12, if we choose C so that Cl≡(C) = Mod≈(SP ), then the
conclusion is equivalent to membership in the class of strong models of SP ′ →
SP . In most cases, this ideal will not be achievable; nevertheless, we can aim to
include in C representatives of equivalence classes related to the particular class
of applications for which F is intended to be used.

In order for testing to avoid rejecting correct units, according to Theorem 5.5
we need to restrict to specifications with only positive occurrences of ∀ and nega-
tive occurrences of ∃. A much more serious restriction when combining Theorems
5.5 and 5.11 is that ∼ needs to be both sound and complete. However, an anal-
ysis of the proof shows that it is sufficient if ∼ is complete for equations in
positive positions and sound for equations in negative positions. If ≈ is observa-
tional equality then this can be achieved by taking ∼ to be a contextual equality
(and hence complete) and restricting equations in negative positions to be of
observable sorts only, for which ∼ is sound and complete.

6 Concluding remarks

We have presented ideas relating to testing modular systems against Casl-style
architectural specifications. Our overall objective is to support independent de-
velopment and verification of program components.

The problem of testing against architectural specifications reduces to:

1. testing non-generic units against structured specifications;
2. testing generic units against specifications of the form SP ′ → SP ; and
3. “integration testing” for unit terms that avoids re-testing.

Solutions to (1) are presented in Sect. 4, where previous results for testing
against structured specifications are reviewed and discussed in the context of
architectural specifications. Then, based on previous research on behavioural
implementations, ideas concerning (2) are presented in Sect. 5. Since the class
of possible parameter units (“stubs”) is almost always infinite, we suggest that
a representative finite class be selected, allowing testing results to be extrapo-
lated to equivalent units. For this, stability of generic units is assumed. Problem
(3) is future work, although it is already clear that the results in Sect. 5 and
[Mac00b,Mac00a,Mac00c] are relevant.

Other questions for the future concern the circumstances under which our ap-
proximation to stability holds, as well as the connection between equivalence on
algebras and testing satisfaction, including the question of how this equivalence
can be effectively checked. We also aim to extend the results to specifications



of higher-order generic units. Finally, a general method of applying the ideas
presented along with practical case studies are needed.
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