
Semantic and Syntactic Approaches to
Simulation Relations?

Jo Hannay1, Shin-ya Katsumata2, and Donald Sannella2

1 Department of Software Engineering, Simula Research Laboratory
2 Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract. Simulation relations are tools for establishing the correctness
of data refinement steps. In the simply-typed lambda calculus, logical re-
lations are the standard choice for simulation relations, but they suffer
from certain shortcomings; these are resolved by use of the weaker notion
of pre-logical relations instead. Developed from a syntactic setting, ab-
straction barrier-observing simulation relations serve the same purpose,
and also handle polymorphic operations. Meanwhile, second-order pre-
logical relations directly generalise pre-logical relations to polymorphic
lambda calculus (System F). We compile the main refinement-pertinent
results of these various notions of simulation relation, and try to raise
some issues for aiding their comparison and reconciliation.

1 Introduction

One of the central activities involved in stepwise development of programs is
the transformation of “abstract programs” involving types of data that are not
normally available as primitive in programming languages (graphs, sets, etc.)
into “concrete programs” in which a representation of these in terms of sim-
pler types of data (integers, arrays, etc.) is provided. Apart from the change to
data representation, such data refinement should have no effect on the results
computed by the program: the concrete program should be equivalent to the
abstract program in the sense that all computational observations should return
the same results in both cases.

The usual way of establishing this property, known as observational equiva-
lence, is by exhibiting a simulation relation that gives a correspondence between
the data values involved in the two programs that is respected by the functions
they implement. The details depend on the nature of the language in which the
programs are written. In the simple case of a language with only first-order func-
tions, it is usually enough to use an invariant on the domain of concrete values
together with a function mapping concrete values (that satisfy the invariant) to
abstract values [Hoa72], but a strictly more general method is to use a homo-
morphic relation [Mil71], [Sch90], [ST97]. If non-determinism is present in the
language then some kind of bisimulation relation is required.
? This research was partly supported by the MRG project (IST-2001-33149) which is

funded by the EC under the FET proactive initiative on Global Computing. SK was
supported by an LFCS studentship.

When the language in question is the simply-typed lambda calculus, the
standard choice of simulation relation — which originates with Reynolds in
[Rey81,Rey83] but is described most clearly in [Ten94], cf. [Mit96] — is to use a
logical relation, a type-indexed family of relations that respects not just function
application (like homomorphisms) but also lambda abstraction. Logical relations
are used extensively in the study of typed lambda calculus and have applications
outside lambda calculus. A problem with the use of logical relations, in connec-
tion with data refinement and other applications, is the fact that they lack some
convenient algebraic properties; in particular, the composition of two logical rela-
tions is not in general a logical relation. This calls into question their application
to data refinement at least, where one might expect composition to account for
the correctness of stepwise refinement.

An alternative is to use instead a pre-logical relation [HS02], a weaker form
of logical relations that nevertheless has many of the features that make logical
relations so useful as well as being composable. This yields a proof method
for establishing observational equivalence that is not just sound, as with logical
relations, but is also complete. The use of pre-logical relations in data refinement
is studied in [HLST00].

The situation is more complicated when we consider polymorphically typed
lambda calculi such as System F [Gir71,Rey74]. Pre-logical relations can be
extended to this context, see [Lei01], but then they do not compose in general
although they remain sound and complete for observational equivalence. At the
same time, the power of System F opens the possibility of taking a syntactic
approach, placing the concept of simulation relation in a logical setting and
using existential type quantification for data abstraction [MP88]. This line of
development has been investigated in a string of papers on abstraction barrier-
observing simulation relations by Hannay [Han99,Han00,Han01,Han03] based
on a logic for parametric polymorphism due to Plotkin and Abadi [PA93]. A
clear advantage of such an approach is that it is amenable to computer-aided
reasoning but there are certain compromises forced by the syntactic nature of
the framework.

We present this background in Sects. 2–4 and then make a number of remarks
aiming at some kind of reconciliation in Sect. 5. There are more questions than
answers but some possible lines of enquiry are suggested.

2 Pre-Logical Relations

Our journey begins with λ→, the simply-typed lambda calculus having → as its
only type constructor.

Definition 2.1. The set of types over a set B of base types (or type constants)
is given by the grammar σ ::= b | σ → σ where b ranges over B. A signature Σ
consists of a set B of type constants and a collection C of typed term constants
c : σ. Types→(Σ) denotes the set of types over B.

Σ-terms are given by the grammar M ::= x | c | λx:σ.M | M M where x
ranges over variables and c over term constants. The usual typing rules associate

each well-formed term M in a Σ-context Γ = x1:σ1, . . . , xn:σn with a type
σ ∈ Types→(Σ), written Γ � M : σ. If Γ is empty then we write simply M : σ.

Definition 2.2. A Σ-combinatory algebra A consists of:

– a carrier set [[σ]]A for each σ ∈ Types→(Σ);
– a function Appσ,τ

A : [[σ → τ]]A → [[σ]]A → [[τ]]A for each σ, τ ∈ Types→(Σ);
– an element [[c]]A ∈ [[σ]]A for each term constant c : σ in Σ; and
– combinators Kσ,τ

A ∈ [[σ → (τ → σ)]]A and Sρ,σ,τ
A ∈ [[(ρ → σ → τ) → (ρ →

σ) → ρ → τ]]A for each ρ, σ, τ ∈ Types→(Σ)

such that Kσ,τ
A x y = x (i.e. Appτ,σ

A (Appσ,τ→σ
A Kσ,τ

A x) y = x) and Sρ,σ,τ
A x y z =

(x z)(y z) (ditto).

A Γ -environment η on a combinatory algebra A assigns elements of A to
variables, with η(x) ∈ [[σ]]A for x : σ in Γ . A Σ-term Γ � M : σ is interpreted
in A under a Γ -environment η in the usual way with λ-abstraction interpreted
via translation to combinators, written [[Γ � M : σ]]Aη , and this is an element of
[[σ]]A. If M is closed then we write simply [[M : σ]]A.

A signature Σ models the interface (type names and function names) of
a functional program, with Σ-combinatory algebras modelling programs that
match interface Σ. Observational equivalence of two Σ-combinatory algebras is
then fundamental to the notion of data refinement.

Definition 2.3. Let A and B be Σ-combinatory algebras and let OBS, the ob-
servable types, be a subset of Types→(Σ). Then A is observationally equivalent
to B with respect to OBS, written A ≡OBS B, if for any two closed Σ-terms
M,N : σ for σ ∈ OBS, [[M : σ]]A = [[N : σ]]A iff [[M : σ]]B = [[N : σ]]B.

It is usual to take OBS to be the “built-in” types for which equality is decid-
able, for instance bool and/or nat . Then A and B are observationally equivalent
iff it is not possible to distinguish between them by performing computational
experiments. Note that OBS ⊆ OBS ′ implies ≡OBS ⊇ ≡′OBS .

Logical relations are structure-preserving relations on combinatory algebras.

Definition 2.4. A logical relation R over Σ-combinatory algebras A and B is
a family of relations {Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types→(Σ) such that:

– Rσ→τ (f, g) iff ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.Rσ(a, b) ⇒ Rτ (AppA f a,AppB g b).
– Rσ([[c]]A, [[c]]B) for every term constant c : σ in Σ.

For OBS = {nat}, the connection between logical refinement and observational
equivalence is given by Mitchell’s representation independence theorem.

Theorem 2.5 (Representation Independence [Mit96]). Let Σ be a sig-
nature that includes a type constant nat, and let A and B be Σ-combinatory
algebras3 with [[nat]]A = [[nat]]B = N. If there is a logical relation R over A and

3 Actually Henkin models, which are extensional combinatory algebras; however ex-
tensionality is not a necessary condition for this theorem.

B with Rnat the identity relation on natural numbers, then A ≡{nat} B. Con-
versely, if A ≡{nat} B, Σ provides a closed term for each element of N, and Σ
contains only first-order term constants, then there is a logical relation R over
A and B with Rnat the identity relation. 2

This theorem corresponds directly to the following method for establishing
the correctness of data refinement steps.

Proof method ([Ten94]). Let A and B be Σ-combinatory algebras and let
OBS ⊆ Types→(Σ). To show that B is a refinement of A, find a logical relation
R over A and B such that Rσ is the identity relation for each σ ∈ OBS. We
then say that B is a logical refinement of A and write A B, or A R B when
we want to make R explicit.

A well-known problem with logical relations is the fact that they are not
closed under composition. It follows that, given logical refinements A R B and
B S C, the composition S ◦ R cannot in general be used as a witness for the
composed refinement A C. (In fact, the problem is more serious than it
appears at first: sometimes there is no witness for A C at all.) This is at odds
with the stepwise nature of refinement, and the transitivity of the underlying
notion of observational equivalence. It is one source of examples demonstrating
the incompleteness of the above proof method; there are other examples that do
not involve composition of refinement steps, see [HLST00].

The restriction to signatures with first-order term constants in the second
part of Theorem 2.5 is necessary, and this is the key to the incompleteness of
logical refinements as a proof method and the problem with composability of
logical refinements. If A B C then A ≡OBS B ≡OBS C, and so A ≡OBS C
since ≡OBS is an equivalence relation. But then it follows that A C only for
signatures without higher-order term constants.

In [HS02], a weakening of the notion of logical relations called pre-logical
relations was studied; see [PPST00] for a categorical formulation.

Definition 2.6 ([HS02]). An algebraic relation R over Σ-combinatory alge-
bras A,B is a family of relations {Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types→(Σ) such that:

– If Rσ→τ (f, g) then ∀a ∈ [[σ]]A.∀b ∈ [[σ]]B.Rσ(a, b) ⇒ Rτ (AppA f a,AppB g b).
– Rσ([[c]]A, [[c]]B) for every term constant c : σ in Σ.

A pre-logical relation R is an algebraic relation such that:

– R(Sρ,σ,τ
A , Sρ,σ,τ

B) and R(Kσ,τ
A ,Kσ,τ

B) for all ρ, σ, τ ∈ Types→(Σ).

The idea of this definition is to replace the reverse implication in the definition
of logical relations with a requirement that the relation contains the S and K
combinators. Since these suffice to express all lambda terms, this amounts to
requiring the reverse implication to hold only for pairs of functions that are
expressible by the same lambda term. It is easy to see that any logical relation
is a pre-logical relation.

Example 2.7. A Σ-homomorphism h : A → B is a type-indexed family of
functions {hσ : [[σ]]A → [[σ]]B}σ∈Types→(Σ) such that for any term constant
c : σ in Σ, hσ([[c]]A) = [[c]]B, hτ (Appσ,τ

A f a) = Appσ,τ
B hσ→τ (f) hσ(a) and

hσ→τ ([[Γ � λx:σ.M : σ → τ]]AηA) = [[Γ � λx:σ.M : σ → τ]]Bh◦ηA . Any Σ-
homomorphism is a pre-logical relation but is not in general a logical relation.

The binary case of pre-logical relations over A and B is derived from the
unary case of pre-logical predicates for the product structure A × B. Similarly
for n-ary relations for n > 2.

Definition 2.8 ([HS02]). A pre-logical predicate P over a Σ-combinatory al-
gebra A is a family of predicates {Pσ ⊆ [[σ]]A}σ∈Types→(Σ) such that:

– If Pσ→τ (f) then ∀a ∈ [[σ]]A.Pσ(a) ⇒ P τ (AppA f a).
– Pσ([[c]]A) for every term constant c : σ in Σ.
– P (Sρ,σ,τ

A) and R(Kσ,τ
A) for all ρ, σ, τ ∈ Types→(Σ).

Example 2.9. For any signature Σ and combinatory algebra A, the family

Pσ(v) ⇔ v is the value of a closed Σ-term M : σ

is a pre-logical predicate over A. (In fact, P is the least such — see Prop. 2.17
below.) Now, consider the signature Σ containing the type constant nat and
term constants 0 : nat and succ : nat → nat and let A be the combinatory
algebra over N where 0 and succ have their usual interpretations and [[σ →
τ]]A = [[σ]]A → [[τ]]A for every σ, τ ∈ Types→(Σ) with Appσ,τ

A f x = f(x). Then
P is not a logical predicate over A: any function f ∈ [[nat → nat]]A, including
functions that are not lambda definable, takes values in P to values in P and so
must itself be in P .

An improved version of Theorem 2.5, without the restriction to first-order
signatures, holds if pre-logical relations are used in place of logical relations.

Theorem 2.10 (Representation Independence for Pre-Logical Relations
[HS02]). Let A and B be Σ-combinatory algebras and let OBS ⊆ Types→(Σ).
Then A ≡OBS B iff there exists a pre-logical relation over A and B which is a
partial injection on OBS. 2

This suggests the following. (We switch to a notation that makes the set of
observable types explicit.)

Definition 2.11 ([HLST00]). Let A and B be Σ-combinatory algebras and
OBS ⊆ Types→(Σ). Then B is a pre-logical refinement of A, written A OBS∼∼∼∼∼>B,
if there is a pre-logical relation R over A and B such that Rσ is a partial injection
for each σ ∈ OBS.

We phrase this as a definition, rather than as a proof method for the underlying
notion of data refinement, in contrast to logical refinements. As a proof method
it is sound and complete, and therefore equivalent to this underlying notion.

Pre-logical relations compose — in fact, for extensional models they are the
minimal weakening of logical relations with this property (see [HS02] for details).

Proposition 2.12 ([HS02]). The composition S ◦R of pre-logical relations R
over A,B and S over B, C is a pre-logical relation over A, C. 2

So pre-logical refinements compose, and this explains why stepwise refinement
is sound. Another explanation goes via Theorem 2.10: A OBS∼∼∼∼∼>B OBS∼∼∼∼∼> C ⇒
A ≡OBS B ≡OBS C ⇒ A ≡OBS C ⇒ A OBS∼∼∼∼∼> C. The set of observable types
need not be the same in both steps, as the following result spells out.

Proposition 2.13. If A OBS∼∼∼∼∼>B OBS ′∼∼∼∼∼> C and OBS ⊆ OBS ′ then A OBS∼∼∼∼∼> C.
2

The key to many of the applications of logical relations, including Theo-
rem 2.5, is the Basic Lemma, which says that any logical relation over A and B
relates the interpretation of each lambda term in A to its interpretation in B.

Lemma 2.14 (Basic Lemma for Logical Relations). Let R be a logical
relation over A and B. Then for all Γ -environments ηA, ηB such that RΓ (ηA, ηB)
and every term Γ � M : σ, Rσ([[Γ � M : σ]]AηA , [[Γ � M : σ]]BηB). 2

(Here, RΓ (ηA, ηB) refers to the obvious extension of R to environments.) For
pre-logical relations, we get a two-way implication. This says that pre-logical
relations are the most liberal weakening of logical relations that give the Basic
Lemma. (The reverse implication fails for logical relations.)

Lemma 2.15 (Basic Lemma for Pre-Logical Relations [HS02]). Let R =
{Rσ ⊆ [[σ]]A × [[σ]]B}σ∈Types→(Σ) be a family of relations over A and B. Then R
is a pre-logical relation iff for all Γ -environments ηA, ηB such that RΓ (ηA, ηB)
and every Σ-term Γ � M : σ, Rσ([[Γ � M : σ]]AηA , [[Γ � M : σ]]BηB). 2

Composability of pre-logical relations (Prop. 2.12) is an easy consequence of this.
Pre-logical relations enjoy a number of useful algebraic properties apart from

closure under composition. For instance:

Proposition 2.16 ([HS02]). Pre-logical relations are closed under intersec-
tion, product, projection, permutation and ∀. Logical relations are closed under
product, permutation and ∀ but not under intersection or projection. 2

A consequence of closure under intersection is that given a property P of re-
lations that is preserved under intersection, there is always a least pre-logical
relation satisfying P . We then have the following lambda-definability result (re-
call Example 2.9 above):

Proposition 2.17 ([HS02]). The least pre-logical predicate over a given com-
binatory algebra contains exactly those elements that are the values of closed
Σ-terms. 2

In a signature with no term constants, a logical relation may be constructed
by defining a relation R on base types and using the definition to “lift” R
inductively to higher types. The situation is different for pre-logical relations:
there are in general many pre-logical liftings of a given R, one being of course

its lifting to a logical relation. But since the property of lifting a given R is
preserved under intersection, the least pre-logical lifting of R is also a well-defined
relation. Similarly, the least pre-logical extension of a given family of relations
is well-defined for any signature. Lifting R to a logical relation is not possible
in general for signatures containing higher-order term constants. Extension is
also problematic: the cartesian product A×A is a logical relation that trivially
extends any binary relation on A, but this is uninteresting.

3 Pre-Logical Relations for System F

The simply-typed lambda calculus λ→ considered in the last section is a very
simple language. Extending it with other type constructors, for example sum
and product types, is unproblematic, see [HS02]. Much more challenging is the
addition of parametric polymorphism as found in functional programming lan-
guages, which yields System F [Gir71,Rey74]. A hint of the power this adds,
apart from the obvious ability to define functions that work uniformly over a
family of types, is the fact that it is possible to encode inductive types, including
the natural numbers, booleans, lists and products, in pure System F [BB85].

Our interest is in data refinement over System F viewed as a programming
language, as a means of applying the ideas in the previous section to languages
like Standard ML. The key concept underlying data refinement, as we have seen,
is that of observational equivalence, and thus understanding the notion of obser-
vational equivalence between models of System F is the main theme. Towards
this goal, we extend the semantic approach described in Sect. 2 to System F.
This involves extending pre-logical relations to System F, and characterising
observational equivalence by pre-logical relations. Leiß [Lei01] has developed a
formulation of pre-logical relations and studied their properties in Fω, the exten-
sion of System F by type constructors. In the context of this paper we restrict
attention to plain System F, even though the further extension to Fω presents
no additional difficulties.

Definition 3.1. The set of types for System F over a set B of base types is
given by the grammar σ ::= b | α | σ → σ | ∀α . σ, where α ranges over type
variables. A signature Σ consists of a set B of type constants and a collection
C of typed term constants c : σ where σ is closed. Types→∀(Σ) denotes the set
of types over B.

The set of Σ-terms for System F is given by the grammar M ::= x | c |
λx : σ . M | MM | Λα . M | Mσ.

For simplicity, we obey Barendregt’s variable convention: bound variables are
chosen to differ in name from free variables in any type or term. A Σ-type context
(ranged over by ∆) is a list of distinct type variables. A Σ-context (ranged over
by Γ) is a list of pairs of variables and types in Types→∀(Σ), where variables are
distinct from each other. We often omit Σ if it is clear from the context. For the
type system and representation of data types, see e.g. [GTL90]. By ∆� τ,∆�Γ

and ∆ | Γ � M : τ we mean to declare a type, a context and a term which are
well-formed.

First we introduce the underlying model theory of System F in the style of
Bruce, Mitchell and Meyer [BMM90].

Definition 3.2. A Σ-BMM interpretation (abbreviated BMMI) A consists of

– a set TA and a family [Tn
A → TA] ⊆ Tn

A → TA for each n ∈ N satisfying
certain conditions,4

– an element [[b]]A ∈ TA for each b ∈ B of Σ,
– functions ⇒A: TA × TA → TA and ∀A : [TA → TA] → TA,
– a TA-indexed family of sets A,
– a function Appt⇒u

A : At⇒Au → (At → Au) for each t, u ∈ TA,
– a function App∀f

A : A∀Af →
∏

t∈A Af(t) for each f ∈ [TA → TA].

Here we introduce two terminologies. A ∆-environment is a mapping from type
variables in ∆ to TA. We write T∆

A for the set of ∆-environments. For a context
∆�Γ , a Γ -environment is a mapping which maps a variable in Γ to an element
in A[[Γ (x)]]Aχ , where χ is a ∆-environment. We write A[[Γ]]Aχ for Γ -environments.
We continue the definition:

– a meaning function for types [[−]]A, which maps a type ∆ � σ and χ ∈ T∆
A

to [[σ]]Aχ ∈ TA (for details, see [Has91]),
– an element [[c]]A ∈ A[[σ]]A for each c : σ in Σ,
– a meaning function for terms [[−]]A (we use the same symbol), which maps

a term ∆ | Γ ` M : σ and environments χ ∈ T∆
A , η ∈ R[[Γ]]Aχ to a value

[[M]]Aχ;η ∈ R[[σ]]Aχ (for details, see [Has91]).

Given Σ-BMMIs A and B, we can define the product Σ-BMMI A × B in the
obvious componentwise fashion.

Definition 3.3. Let A be a Σ-BMMI. A predicate R over A (written R ⊆ A)
consists of a subset TR ⊆ TA and TR-indexed family of subsets Rt ⊆ At. For
t, u ∈ TA and f ∈ [TA → TA] such that f(t) ∈ TR for any t ∈ TR, we define

Rt → Ru = {x ∈ At⇒Au | ∀y ∈ Rt . Appt⇒u
A (x)(y) ∈ Ru}

∀x ∈ TR . Rf = {x ∈ A∀Af | ∀t ∈ TR . πt(App∀f
A (x)) ∈ Rf(t)}

Binary relations for Σ-BMMIs are just predicates over product interpretations.
Now a predicate R ⊆ A is

– pre-logical for types if it satisfies the following:
• [[b]]A ∈ TR,
• t, u ∈ TR implies t ⇒A u ∈ TR,

4 [T n
A → TA] includes projections and is closed under composition, ⇒A and ∀A. See

[Has91] for a detailed account.

• for all types ∆, α � σ with χ ∈ T∆
R , if [[σ]]Aχ{α7→t} ∈ TR holds for all

t ∈ TR, then [[∀α . σ]]Aχ ∈ TR,
– algebraic if it is pre-logical for types and

• [[c]]A ∈ R[[σ]]A for all c : σ in Σ,
• for all t, u ∈ TR, Rt⇒Au ⊆ Rt → Ru,
• for all types ∆, α � σ with χ ∈ T∆

R , R∀Af ⊆ ∀x ∈ TR . Rf holds, where
f(t) = [[σ]]Aχ{α7→t},

5

– pre-logical if it is algebraic and
• for all terms ∆ | Γ, x : σ � M : σ′ with χ ∈ T∆

R and η ∈ R[[Γ]]Aχ , if
[[M]]Aχ;η{x7→v} ∈ R[[σ′]]Aχ holds for all v ∈ R[[σ]]Aχ , then [[λx : σ . M]]Aχ;η ∈
R[[σ]]Aχ ⇒A[[σ′]]Aχ ,

• for all terms ∆, α | Γ � M : σ with χ ∈ T∆
R and η ∈ R[[Γ]]Aχ , if

[[M]]Aχ{α7→t};η ∈ Rft holds for all t ∈ TR, then [[Λα . M]]Aχ;η ∈ R∀Af ,
where f(t) = [[σ]]Aχ{α7→t}.

– logical if it is pre-logical for types and conditions of algebraic relations hold
by equality.

Alternatively, we can extend the definition of pre-logical relations (Definition
2.6) in terms of algebraic relations relating additional combinators for System F
[BMM90].

We have the following main theorem of pre-logical predicates:

Theorem 3.4 (Basic Lemma for Pre-Logical Predicates [Lei01]). Let A
be a Σ-BMMI and R ⊆ A be a predicate.

1. R is pre-logical for types iff for all types ∆ � σ with χ ∈ T∆
R , [[σ]]Aχ ∈ TR

holds.
2. R is pre-logical iff for all terms ∆ | Γ � M : σ with χ ∈ T∆

R and η ∈ R[[Γ]]Aχ ,
[[M]]Aχ;η ∈ R[[σ]]Aχ holds. ut

Corollary 3.5 ([Lei01]). Logical predicates over Σ-BMMIs are pre-logical. ut

Proposition 3.6 ([Lei01]). Let A be a Σ-BMMI. We define the definability
predicate D by TD = {[[∅� σ]]A} and D[[∅�σ]]A = {[[∅ | ∅� M : σ]]A}. Then D is
the least pre-logical predicate over A. ut

It is easy to see that pre-logical predicates for System F are closed under product,
permutation and arbitrary intersection. On the other hand, they are not closed
under composition (nor under projection). This is pointed out by Leiß in the
setting of Fω [Lei01]. The compositionR◦S of two relationsR ⊆ A×B,S ⊆ B×C
is given as follows:

TR◦S = TR ◦ TS , R ◦ St,u = {Rt,r ◦ Sr,u | ∃r.(t, r) ∈ TR, (r, s) ∈ TS}
5 At this point we know that f(t) ∈ TR for any t ∈ TR by the first part of Theorem

3.4. Thus ∀x ∈ TR . Rf is defined.

Proposition 3.7. Binary pre-logical relations between Σ-BMMIs do not com-
pose in general.

Proof. Let Σc = ({b}, {c : b}) be a signature and A be a Σc-BMMI where [[b]]A

contains at least two elements, namely {>,⊥}. Any non-trivial BMMI for the
empty signature can be used for this purpose. We interpret the constant by
[[c]]A = >. We use λx . ⊥ as shorthand for [[λx : b . y]]A∅;{y 7→⊥} ∈ A[[b]]A⇒A[[b]]A .

Let θ = [b/α] and θ′ = [b ⇒ b/α] be type substitutions. We define relation
TR by TR = {([[σθ]]A, [[σθ′]]B) | α ` σ}. It is easy to show that this is pre-logical
for types. Next we define R[[σθ]]Aχ ,[[σθ′]]Bχ for all ∆, α�σ and χ ∈ T∆

R by induction:

R[[bθ]]Aχ ,[[bθ′]]Bχ = {(>,>)}
R[[αθ]]Aχ ,[[αθ′]]Bχ = {(⊥, λx . ⊥)}
R[[βθ]]Aχ ,[[βθ′]]Bχ = Rχ(β)

R[[(σ⇒σ′)θ]]Aχ ,[[(σ⇒σ′)θ′]]Bχ = R[[σθ]]Aχ ,[[σθ′]]Bχ → R[[σ′θ]]Aχ ,[[σ′θ′]]Bχ

R[[(∀β.σ)θ]]Aχ ,[[(∀β.σ)θ′]]Bχ = ∀x ∈ TR . Rf (f(t, u) = ([[σθ]]Aχ{β 7→t}, [[σθ′]]Bχ{β 7→u}))

We can show that R = (TR, R) is pre-logical. However the relation R−1 ◦ R
relates (λx . ⊥, λx . ⊥) but not (⊥,⊥). This contradicts algebraicity. ut

One natural question is when the composition of two pre-logical relations is
pre-logical, and Leiß showed a sufficient condition [Lei01].

We give a characterisation of observational equivalence by pre-logical rela-
tions, as in Theorem 2.10. We can reuse Definition 2.3 for observational equiva-
lence between Σ-BMMIs with respect to closed observable types.

Theorem 3.8 ([Lei01]). Let A and B be Σ-BMMIs and let OBS be a set of
closed types of System F. Then A ≡OBS B iff there exists a pre-logical relation
over A and B which is a partial injection on OBS.

4 Expressing Simulation Relations Syntactically

Our journey now moves into the syntactic realm, placing the concepts of sim-
ulation relation and representation independence in a logical setting. The main
incentive is that computer-aided reasoning requires syntactic expressibility.

One reasonable choice for syntactic formalism is the polymorphic lambda
calculus, together with a second-order logic, with the lambda calculus being
the object programming language. The decision in this section to make use of
polymorphism is motivated primarily by expressibility, since semantic notions
may then be internalised in syntax. At the outset, we use this expressive power to
express the simply-typed notions of Sect. 2. However, in Sect. 4.4, polymorphism
in data types is also handled. Nevertheless, in Sect. 4.6 we suggest that the
appropriate setting for describing polymorphic data types is actually F3.

Our choice here of formalism influences the way we regard the failure of
standard simulation relations, i.e., logical relations, at higher order. It turns

out that a natural trail of development gives a solution that is conceptually
different from that of pre-logical relations, although it should be evident that the
concepts are strongly related. The syntactic approach here is developed directly
from syntactic abstraction barriers inherent in polymorphic types. This gives a
notion of abstraction barrier-observing (abo) simulation relation.

4.1 Internalisation into Syntax

To start, we consider System F, cf. Sect. 3. Here we wish to be formalistic, so
we use pure System F without constants. Self-iterating inductive types can be
encoded [BB85], e.g., nat def= ∀α.α → (α → α) → α, bool def= ∀α.α→α→α, and
listσ

def= ∀α.α → (σ → α → α) → α, with programmable constructors, destruc-
tors and conditionals. Products encode as σ × τ

def= ∀α.(σ → τ → α) → α with
constructor pairσ,τ and destructors proj 1σ,τ and proj 2σ,τ .

We use the logic for parametric polymorphism due to [PA93], a second-order
logic over System F augmented with relation symbols, relation definition, and the
axiomatic assertion of relational parametricity. See also [Mai91,Tak98]. Formulae
now include relational statements as basic predicates and quantifiables,

φ ::= (M =σ N) | M ξ N | · · · | ∀ξ⊂σ×τ . φ | ∃ξ⊂σ×τ . φ

where ξ ranges over relation variables. Relation definition is given by the syntax

Γ � (x :σ, y :τ) . φ ⊂ σ×τ

where φ is a formula. For example eqσ
def= (x :σ, y :σ) . (x =σ y).

We write U [X] to indicate possible occurrences of variable X in type, term
or formula U , and write U [A] for the capture-correct substitution U [A/X].

Complex relations may be built from simpler ones. We get the arrow-type
relation R→R′ ⊂ (σ→σ′)×(τ→τ ′) from R ⊂ σ×τ and R′ ⊂ σ′×τ ′ by

(R→R′) def= (f :σ→σ′, g :τ→τ ′) . (∀x :σ.∀y :τ . (x R y ⇒ (fx) R′ (gy)))

The universal-type relation ∀(α, β, ξ ⊂ α×β)R[ξ] ⊂ (∀α.σ[α])×(∀β.τ [β]) is
defined from R[ξ] ⊂ σ[α]× τ [β], where α, β and ξ ⊂ α× β are free, by

∀(α, β, ξ ⊂ α×β)R[ξ] def= (y :∀α.σ[α], z :∀β.τ [β]) . (∀α.∀β.∀ξ . (yα)R[ξ](zβ))

For n-ary α, σ, τ , R, where Ri⊂σi×τi, we get ρ[R]⊂ρ[σ]×ρ[τ], the action of
type ρ[α] on R, by substituting relations for type variables:

ρ[α] = αi : ρ[R] = Ri

ρ[α] = ρ′[α]→ρ′′[α] : ρ[R] = ρ′[R]→ρ′′[R]
ρ[α] = ∀α′.ρ′[α, α′] : ρ[R] = ∀(β, γ, ξ⊂β×γ)ρ′[R, ξ]

Here, R may be seen as base relations from which one uniquely defines relations
according to type construction. This is logical lifting and gives the mechanism
for logical relations in our syntactic setting.

The proof system is intuitionistic natural deduction, augmented with infer-
ence rules for relation symbols in the obvious way. There are standard axioms
for equational reasoning implying extensionality for arrow and universal types.

Parametric polymorphism requires all instances of a polymorphic functional
to exhibit a uniform behaviour [Str67,BFSS90,Rey83]. We adopt relational para-
metricity [Rey83,MR91]: A polymorphic functional instantiated at two related
domains should give related instances. This is asserted by the schema

Param : ∀γ.∀f : (∀α.σ[α, γ]) . f (∀α.σ[α, eqγ]) f

The logic with Param is sound; we have, e.g., the parametric per -model of
[BFSS90] and the syntactic models of [Has91]. In order to prove the existence of
a model, one has to show that Param holds for all closed f . If one then expands
the statement, one obtains a syntactic analogue of the Basic Lemma for logical
relations, but here involving universal types.

Lemma 4.1 (Basic Lemma Param [PA93]). For all closed f : ∀α.σ[α], we
derive without Param, f (∀α.σ[α]) f . 2

Constructs such as products, sums, initial and final (co-)algebras are encod-
able in System F. With Param, these become provably universal constructions.
Relational parametricity also yields the fundamental

Lemma 4.2 (Identity Extension Param [PA93]). With Param, we derive

∀γ.∀u, v :σ[γ] . (u σ[eqγ] v ⇔ (u =σ[γ] v)) 2

For data types, we use the following notation: A data type over a signature
T consists of a data representation A and an implementation of a set of opera-
tions a :T [A]. Encapsulation is provided in the style of [MP88] by the following
encoding of existential (abstract) types and pack and unpack combinators:

∃α.T [α] def= ∀β.(∀α.(T [α]→β)→β), β not free in σ

packT (A)(a) def= Λβ.λf :∀α.(T [α]→β).f(A)(a)
unpackT (package)(τ)(f) def= package(τ)(f)

Operationally, pack packages a data representation and an implementation of op-
erations on that data representation to give a data type of the existential type.
The resulting package is a polymorphic functional, that given a client computa-
tion and its result domain, instantiates the client with the particular elements
of the package. The unpack combinator is merely the application operator for
pack . An abstract type for stacks of natural numbers could be

∃α.(α× (nat→α→α)× (α→α)× (α→nat))

A data type of this type is, e.g., (pack listnat l), where

(proj 1 l) = nil , (proj 2 l) = cons,
(proj 3 l) = λl : listnat . (cond listnat (isnil l)nil (cdr l)),
(proj 4 l) = λl : listnat . (cond nat (isnil l) 0 (car l)).

For convenience we use a labelled product notation,

∃α.TStacknat
[α]

where TStacknat
[α] def= (empty : α, push : nat →α→α, pop : α→α, top : α→ nat).

Each fi : Ti[α] is a profile in T [α]. The analogy to Sect. 2 is that fi is a term
constant in the signature T , and models are internalised as packages (packAa).

Consider now the issue of when two packages are interchangeable in a pro-
gram. To each refinement stage, a set OBS of observable types is associated,
assumed to contain closed inductive types, such as bool or nat , and also any
parameters. Two data types are interchangeable if their observable properties
are the same, i.e., packages should be observationally equivalent if it makes no
difference which one is used in computations with observable result types. Thus:

Definition 4.3 (Observational Equivalence). Observational equivalence of
(packAa), (packBb) with respect to OBS is expressed by∧

ι∈OBS

∀f :∀α.(T [α]→ ι).(fA a) =ι (fB b)

For example, an observable computation on natural-number stacks could be
Λα.λx :TStacknat [α] . x.top(x.push n x.empty).

Observational equivalence is the conceptual description of interchangeability,
and simulation relations is a means for showing observational equivalence. In the
logic one uses the action of types on relations to define logical relations. Two
data types are related by a simulation relation if there exists a relation on their
data representations that is preserved by their corresponding operations.

Definition 4.4 (Simulation Relation). The existence of a simulation relation
between (packAa) and (packBb) is expressed by ∃ξ⊂A×B . a(T [ξ, eqγ])b.

We want the two notions to be equivalent. For data types with first-order oper-
ations, this equivalence is a fact under relational parametricity. At higher-order
this is not the case. Also, the composability of simulation relations fails at higher
order, compromising the constructive composition of refinement steps.

Consider the assumption that T [α] has only first-order function profiles:

FDT T
OBS : Every profile Ti[α] = Ti1[α] → · · · → Tni [α] → Tci [α] of T [α] is first
order, and such that Tci [α] is either α or some ι ∈ OBS .

Theorem 4.5 (Composability [Han99]). Assuming FDTT
OBS , with Param we

get

∀A,B,C, ξ⊂A×B, ζ⊂B×C, a :T [A], b :T [B], c :T [C].
a T [ξ, eqγ] b ∧ b T [ζ, eqγ] c ⇒ a T [ξ ◦ ζ, eqγ] c 2

Theorem 4.6 (Representation Independence [Han99]). Assuming FDTT
OBS ,

we get with Param, for A,B, a :T [A], b :T [B] and OBS,

∃ξ⊂A×B . a T [ξ, eqγ] b ⇔
∧

ι∈OBS

∀f :∀α.(T [α]→ ι) . (fA a) =ι (fB b)

2

For Theorem 4.6, consider how to derive ⇒. In Sect. 2, we would use the Basic
Lemma in this situation. Here, we apply Param; f (∀α.T [α, eqγ] → ι) f . As
mentioned before, Param for closed f is essentially the Basic Lemma for logical
relations. In the semantic setting one can talk about closed terms. This is not
immediately possible syntactically, and note that the definition of observational
equivalence here says nothing about f being closed. To compensate for this, we
use a extended ‘Basic Lemma’, namely relational parametricity.

For the opposite direction, one must construct a relation ξ. Analogous to the
case in the semantic setting, we use definability, but since closedness is intangible
for us, we can only exhibit ξ

def= (a :A, b :B) . (Dfnbl(a, b)), where

Dfnbl def= (x :A, y :B) . (∃fα :∀α.T [α]→α . fαAa = x ∧ fαBb = y)

This works since observational equivalence is defined ‘open’ as well. For example,
if there is a profile g :α→α in T , then we show a.g (Dfnbl →Dfnbl) b.g which
follows easily by giving f

def= Λα.λx : α.x.g(fααx), where fα is postulated by the
antecedentary Dfnbl . If g : α → ι, then f : ∀α.T [α] → ι, and by observational
equivalence we have fAa =ι fBb, which gives fAa ι fBb by Param.

This particular proof fails if T [α] has higher-order profiles. Consider

T [α] def= (p : (α→α)→nat , s :α→α)

We must derive ∀x : A→A, y : B→B . x(Dfnbl →Dfnbl)y ⇒ a.px =nat b.py.
However, x(Dfnbl→Dfnbl)y does not give us an fα→α :∀α.T [α]→ (α→α) such
that fα→αAa = x ∧ fα→αBb = y, so we cannot construct our f :∀α.T [α]→nat
to complete the proof.

This negative result involving Dfnbl generalises. At higher order, there might
not exist any simulation relation in the presence of observational equivalence
[Han01]. To exemplify with T [α] above, any candidate R ⊂ A×B has to satisfy
∀x :A→A, y :B→B . x (R→R) y ⇒ a.px =nat b.py, and this includes x and
y that do not belong to, or are not expressible by, operations in the respective
data types. This, one might argue, is unreasonable.

In fact, it is. Consider a computation f = Λα.λx : T [α].M [α, x]. A crucial
observation is now embodied in the following obvious statement.

Abs-Bar : A computation Λα.λx :T [α].M [α, x] cannot have free variables of types
involving the virtual data representation α.

This has a direct bearing on how data type operations may be used. For example,
x :A→A and y :B→B above cannot be arbitrary, but must be expressible by
respective data type operations; in this case, the only possible candidate for x
is a.g, and b.g for y.

4.2 abo-Simulation Relations with Special Parametricity

An obvious solution is now to define a notion of simulation relation where arrow-
type relations are weakened by definability clauses for arguments [Han00,Han01].
For example, write a.s (R→R)ג b.s, for ג def= 〈A,B〉〈a, b〉, meaning

∀x :A, y :B . x R y ∧ Dfnblג
α(x, y) ⇒ a.sx R b.sy

where Dfnblג
α(x, y) def= (x :A, y :B) . (∃fα :∀α.T [α]→α . fαAa = x ∧ fαBb = y).

In general, definability clauses are inserted recursively in arrow types, bottoming
out at base relations, i.e., Rג def= R. The full definition is in [Han01], and includes
the formulation at universal type as well. With a slight abuse of notation,
Definition 4.7 (abo-Simulation Relation). For any A, B and R ⊂ A×B,

T [R, eqγ ג[def= (a :T [A,γ], b :T [B,γ]) . (∧1≤i≤k a.gi (Ti[R, eqγ (ג[b.gi)

Observable types such as nat are universal types and appear in variants-ג inside
T [ξ]. Therefore, it is important that natג is eqnat . This holds for closed inductive
types using Param. However, we do not get desired relational properties at
product type, hence the formulation in Definition 4.7.

We are still working under the assumption of relational parametricity. How-
ever, notice that we cannot apply Param, e.g., when using T [ξ, eqγ .ג[One can
recover the needed proof power by asserting the missing piece of relational para-
metricity. Write f (∀α.T [α, eqγ]ε→σ[α, eqγ]ε) f , meaning

∀A,B, ξ⊂A×B.∀a :T [A,γ], b :T [B,γ] .
a(T [ξ, eqγ b(ג[⇒ (fA a)(σ[ξ, eqγ fB)(ג[b)

where ג = A,B, a, b. We assume the following:

HDT T
OBS : Every profile Ti[α] = Ti1[α]→· · ·→Tni [α]→Tci [α] of T [α] is such that
Tij [α] has no occurrences of universal types other than those in OBS , and
Tci

[α] is either α or some ι ∈ OBS .

Definition 4.8 (Special abo-Parametricity (SpParam)). For HDTT
OBS , for

σ[α, γ] having no occurrences of universal types other than those in OBS, and
whose only free variables are among α and γ,

SpParam: ∀f :∀α.(T [α, γ]→σ[α, γ]) . f (∀α.T [α, eqγ]ε→σ[α, eqγ]ε) f

Lemma 4.9 (Basic Lemma SpParam [Han01]). For HDTT
OBS , for σ[α] hav-

ing no occurrences of universal types other than those in OBS, and for closed
f :∀α.(T [α]→σ[α]), we derive f (∀α.T [α]ε→σ[α]ε) f . 2

Lemma 4.9 entails soundness for the logic with Param and SpParam with
respect to the closed type and term model and the parametric minimal model
due to [Has91].
Theorem 4.10 (Composability [Han00]). Assuming HDTT

OBS , we get using
SpParam, for ג = 〈A,B〉〈a, b〉, ′ג = 〈B,C〉〈b, c〉, and ′′ג = 〈A,C〉〈a, c〉,

∀A,B,C, ξ⊂A×B, ζ⊂B×C, a :T [A], b :T [B], c :T [C].
a T [ξ, eqγ ג[b ∧ b T [ζ, eqγ ג[

′
c ⇒ a T [ζ ◦ ξ, eqγ ג[

′′
c 2

Theorem 4.11 (Representation Independence [Han00]). With the assump-
tion HDTT

OBS , we get with SpParam, for A,B, a : T [A], b : T [B], OBS, and
ג = 〈A,B〉〈a, b〉,

∃ξ⊂A×B . a T [ξ, eqγ ג[b ⇔
∧

ι∈OBS

∀f :∀α.(T [α]→ ι) . (fA a) =ι (fB b)

2

4.3 abo-Simulation Relations with Closed Special Parametricity

If we can express closedness in the logic, then we can relate to non-syntactic
models as well. Closedness is inherently intractable, but we can approximate to
a certain degree. We add a basic predicate Closed to the syntax together with a
pre-defined semantics. The effect of this is, for example, that the interpretation
in any model of ∀f :∀α.(T [α, γ]→ ι) . ClosedOBS (f) ⇒ φ(f) restricts attention
in φ to those interpretations of all f :∀α.(T [α]→ ι) that are denotable by terms
whose only free variables are of types in OBS .

The semantics for the predicate Closed is not stable under term formation,
so we cannot make axioms for Closed in order to derive the closedness of a
term from its subterms. We can however add a second symbol ClosedS with a
pre-defined semantics that does allow the derivation of closedness, but ClosedS
will then not satisfy substitutivity. This is resolved by giving a separate non-
substitutive calculus for deriving closedness, together with rules for importing
the needed results into the main logic. Details are in [Han01]. We now get:

Definition 4.12 (Observational Equivalence by Closed Computation).
Observational equivalence by closed computation of (packAa) and (packBb) with
respect to OBS is expressed as∧

ι∈OBS

∀f :∀α.(T [α]→ ι) . ClosedOBS (f) ⇒ (fA a) =ι (fB b)

Also we write for example, a.s (R→R)ג
C b.s, for ג def= 〈A,B〉〈a, b〉, meaning

∀x :A, y :B . x R y ∧ DfnblC ג
α(x, y) ⇒ a.sx R b.sy

where DfnblC ג
α(x, y) def= (x :A, y :B) .

(∃fα :∀α.T [α]→α . ClosedOBS (f) ∧ fαAa = x ∧ fαBb = y)

Again, with a slight abuse of notation:

Definition 4.13 (abo-Simulation Relation by Closed Computation). For
any A, B and R ⊂ A×B,

T [R, eqγ Cג[
def= (a :T [A,γ], b :T [B,γ]) . (∧1≤i≤k a.gi (Ti[R, eqγ Cג[) b.gi)

Definition 4.14 (Special Closed abo-Parametricity (spParamC)). For
HDTT

OBS , for σ[α, γ] having no occurrences of universal types other than those
in OBS, and whose only free variables are among α and γ,

spParamC: ∀f :∀α.(T [α, γ]→σ[α, γ]) . ClosedOBS (f)
⇒ f (∀α.T [α, eqγ]εC →σ[α, eqγ]εC) f

Using this, we get analogous results to the previous section. The corresponding
Basic Lemma entails the soundness of the logic with Param and spParamC
with respect to any relational parametric model.

4.4 abo-Relational Parametricity

The previous two subsections augmented relational parametricity with special
instances of what one could call abo-relational parametricity. Now we replace
relational parametricity altogether with full-fledged abo-relational parametricity.
This gives a much simpler treatment than the previous approaches, but at a price:
we now need infinite conjunctions in the logic. These are however well-behaved
in the sense that proofs only need pointwise treatment. Moreover, refinement
proofs need not be concerned with infinite conjunctions.

Abs-Bar says that function arguments in computations are bounded by for-
mal parameters, e.g., in the computation f

def= Λα.λx :α.λs :α→α.t[x, s], s will
only be applied to arguments built from formal parameters x and s. This trans-
fers to instances fσ and fτ . So even at the basic level of universal types, one
could for R⊂σ×τ say that e.g., sσ (R→R) sτ should reflect this, in that only
those x, y are considered for the antecedent x R y that are admissible in the
computations. Thence, f (∀α.α→(α→α)→α)abo g is the relation given by

∀γ, δ, ξ ⊂ γ × δ . ∀a :γ, b :δ, s :γ→γ, s′ :δ→δ .
a ξ b ⇒ s (ξ→ξ)k s′ ⇒ fγas ξ gδbs′

where s (ξ→ξ)k s′ for k = 〈γ, δ〉〈a, b〉〈s, s′〉 is

∀x :γ, y :δ . x ξ y ∧Dfnblk
γ (x, y) ⇒ sx ξ s′y

where Dfnblk
γ (x, y) def= (x :γ, y :δ) . (∃fα :∀α.T [α]→α . fαγas = x ∧ fαγbs′ = y).

In general, Dfnbl clauses are inserted recursively in arrow types, bottoming out at
base relations. The notion of abo-relation in [Han03] formalises the idea. Univer-
sal types play two rôles. Consider (∀α.α→(α→α)→(∀β.(α→β)→β)→α)abo,
and a term of this type, e.g., Λα.λx :α, s :α→α, p :∀β.(α→β)→β . s(pαs). The
abo-relation treats the outer universal type as the type of a computation, and
sets up the Dfnbl clauses according to formal parameters x, s, p. Then, the inner
universal type must be treated as a polymorphic parameter, and it is necessary
to capture that instances pσ may only vary in α. This is where infinite conjunc-
tions enters the scene, but this discernability for universal types is what enable
abo-simulation relations to handle polymorphism in data types, see below.

The abstraction barrier-observing formulation of relational parametricity is
now given by the following axiom schema.

Definition 4.15 (abo-Parametricity).

abo-Param : ∀γ.∀f : (∀α.σ[α, γ]) . f (∀α.σ[α, eqγ])abo f

The abo-version of the identity extension lemma does not follow from abo-
Param, because we can no longer use extensionality. Nevertheless, in the spirit
of observing abstraction barriers, we argue that in virtual computations, it suf-
fices to consider extensionality only with respect to function arguments that will
actually occur. The simplest way to capture this is in fact by asserting identity
extension.

Definition 4.16 (abo-Identity Extension for Universal Types).

abo-Iel : ∀γ.∀u, v : (∀α.σ[α, γ]) . u (∀α.σ[α, eqγ])abo v ⇔ u = v

Both abo-Param and abo-Iel hold in the abo-parametric per -model [Han03].
We can also formulate a basic lemma for abo-Param, if we allow infinite deriva-
tions. Regular parametricity, Param, will not hold in this model; in fact any
logic containing both Param and abo-Param is inconsistent. Note that abo-Iel
implies abo-Param. Nevertheless, we choose to display both. With abo-Param
and abo-Iel, we regain universal properties, for example for products:

∀σ, τ.∀z :σ×τ . pair(proj 1z)(proj 2z) = z

∀u, v :σ × τ . u (σ[eqγ]×τ [eqγ])abo v
⇔ (proj 1u) σ[eqγ]abo (proj 1v) ∧ (proj 2u) τ [eqγ]abo (proj 2v)

Theorem 4.17 (Representation Independence [Han03]). Under the as-
sumption HDTT

OBS , we get with abo-Param and abo-Iel,

∀A,B.∀a :T [A], b :T [B] .
∃ξ⊂A×B . a T [ξ, eqγ]〈A,B〉〈a,b〉 b

⇔
∧

ι∈OBS ∀f :∀α.(T [α]→ ι) . (fA a) =ι (fB b) 2

Theorem 4.18 (Composability [Han03]). Assuming HDTT
OBS , we get with abo-

Param and abo-Iel,

∀A,B, C, ξ⊂A×B, ζ⊂B×C, a :T [A], b :T [B], c :T [C].
a(T [ξ, eqγ]〈A,B〉〈a,b〉)b ∧ b(T [ζ, eqγ]〈B,C〉〈b,c〉)c

⇒ a(T [ζ ◦ ξ, eqγ]〈A,C〉〈a,c〉)c 2

If we allow infinite derivations, we get representation independence and com-
posability for data types with polymorphic operations, under one requirement:
In the sense of Sects. 2 and 3, all type constants must either be observable or
hidden, if they are the result type of any operation. Here, type constants cor-
respond to closed types, and since we have polymorphism, type instantiation
requires added caution. For example, if OBS = {bool}, then T [α] may not have
a profile g : α → (∀β.β → β), since ∀β.β → β is not observable, nor any pro-
file g : α→ (∀β.α→ β), since gx can then be instantiated by a non-observable
closed type yielding a derived profile gx(∀β.β→β) : α→ (∀β.β→β). Thus, the
requirement takes the form

DT T
OBS : Every profile Ti[α] = Ti1[α]→· · ·→Tni

[α]→Tci
[α] of T [α] is such that

if Tci
[α] has a deepest rightmost universal type ∀β.V , then this subtype is

not closed, nor is the deepest rightmost subtype of ∀β.V the quantified β.

Then, Theorem 4.17 and Theorem 4.18 hold under DT T
OBS .

In closing, we mention that for this section, HDT T
OBS can in any case be relaxed

by dropping the restriction on Tij .

4.5 pl-Relational Parametricity

It is possible to define algebraic relations in the logic. We do this from basic prin-
ciples, just as we do for abo-relations. Consider again for example the universal
type ∀α.α→ (α→α)→α. In a sense, universal types determine signatures with
function profiles. This inductive type has a profile for ‘zero’, and a profile for
‘successor’. Relative to the ‘signature’ consisting of these profiles, one can then
define algebraic relations in a finite way. Here this can be done for any σ and τ ,
by giving a relation Rα ⊂ σ×τ , taking the rôle of a base type relation, and then
giving a relation Rα→α ⊂ (σ→σ)× (τ→τ) that we insist satisfies algebraicity:
Rα→α(s, s′) ⇒ s (Rα →Rα) s′. In this manner, the universal type induces a
family of relations, namely Rα and Rα→α, over the ‘signature’ of the universal
type. Thus, we write e.g., f (∀α.α→(α→α)→α)pl g for the relation

∀γ, δ, ξα ⊂ γ × δ, ξα→α ⊂ γ→γ × δ→δ . plα→α(ξα→α; ξα) ⇒
∀a :γ, b :δ, s :γ→γ, s′ :δ→δ . Rα(a, b) ∧Rα→α(s, s′) ⇒ Rα(fγas, gδbs′)

where plα→α(ξα→α; ξα) asserts algebraicity of ξα→α relative to ξα. In general, one
completes the finite family of relations with all so-called free subtypes, in order
to ensure well-definedness of the algebraicity conditions. Also, the full definition
of algebraic relations in this manner must reflect the two levels of polymorphism
mentioned in the previous section.

To get pre-logical relations (pl -relations), one must additionally ensure clo-
sure over abstraction. This spoils finiteness, since for a combinatorial approach,
we must assert relatedness of an infinite set of combinators. Again this infinite
conjunction is well-behaved, since it ranges over all types only varying over the
data representations.

We may soundly assert pl -relational parametricity and using this, we get
similar results to those in the previous section.

It might be possible to get away with a finite number of combinators. The
rationale behind this is that one may proceed with only a finite family of algebraic
relations. If relations of higher order than those in the family are needed, then
these can be constructed by logical lifting. This is relevant for polymorphic
instantiation. Based on this, it may suffice to have an upper bound on the type
complexity of combinators needed. This is under investigation.

4.6 Polymorphic Data Types in F3

Polymorphism within data types is dealt with in a somewhat general manner in
the two previous sections. However, it is hard to find natural examples of data
types with polymorphic operations that are expressible in System F. Instead, F3

is appropriate, and then one could give e.g., polymorphic stacks as follows.

∃X :∗→∗.TpolyStack [X],
TpolyStack [X] = (empty :∀γ .Xγ, push :∀γ . γ→Xγ→Xγ,

pop :∀γ .Xγ→Xγ, top :∀γ .Xγ→γ→γ,
map :∀γ, γ′ . (γ→γ′)→Xγ→Xγ′)

This provides polymorphic stack operations. The data representation is a type
constructor X to be instantiated by the relevant stack element type.

One can treat this kind of shallow polymorphism in a pointwise fashion in
F2 [Han01], so that one essentially reduces the problem to non-polymorphic sig-
natures. Then it is not necessary that F2 technology deals with polymorphic
signatures, neither in one way or another. Alternatively, one could devise appro-
priate notions of relational parametricity for F3.

5 Reconciliation

In comparison with the neat and tidy story of pre-logical relations in the simply-
typed lambda calculus told in Sect. 2, both the semantic account of pre-logical
relations in System F in Sect. 3 and the syntactic approach of abstraction
barrier-observing simulation relations in Sect. 4 exhibit certain shortcomings.
Our present feeling is that true enlightenment on this subject will require some
bridge between the two. The following subsections suggest some possible lines of
enquiry that seem promising to us.

5.1 Internalisation of Semantic Notions into Syntax

Sects. 2 and 3 deal with semantic simulation relations between models for lambda
calculi. Sect. 4, on the other hand, internalises models and simulation relations
into syntax. Models (data types) then become terms of an existential type of the
form ∃α.T [α] def= ∀β.(∀β.T [α]→ β)→ β, for some ‘signature’ T [α], and compu-
tations or programs using data types are f : ∀α.T [α]→σ. Thus, polymorphism
is used to internalise semantic notions. This use of polymorphism is at a level
external to data types (models); as in the outermost universal type in compu-
tations f :∀α.T [α]→σ, in contrast to polymorphism within models arising from
any polymorphic profiles in T [α].

Relationally, this two-leveled aspect gives rise to certain difficulties. For logi-
cal relations it suffices to give a uniform relational definition for universal types,
but for abo-relations which use definability relative to data type signatures, it is
necessary to reflect the two levels in the relational definitions. This gives a non-
uniform relational treatment at universal type. Note that the semantic approach
in Sect. 3 does not work on internalised structures in the syntax, and the notion
of relational parametricity is there cleaner.

Internalising models as, e.g., inhabitants of existential type, gives syntactic
control, especially in the context of refining abstract specifications to executable
programs. However, we think that the benefits of this to mechanised reasoning
should be weighed against a possible scenario without internalisation, but per-
haps with sound derived proofs rules for data refinement. This would be a more
domain-specific calculus, but might provide a simpler formalism, perhaps more
in style with semantic reasoning.

5.2 Equivalence of Models Versus Equivalence of Values in a Model

As a consequence of the internalisation of semantic notions discussed above,
the term “observational equivalence” has been applied at two different levels to
achieve similar aims. In Sects. 2 and 3, observational equivalence is a relation
between two models over the same signature, representing programs. In Sect. 4,
it is a relation on encapsulated data types within a single model; such a relation
is sometimes referred to as indistinguishability, written ≈. In both of the latter
two sections, the power of System F would allow the opposite approach to be
taken. Then the question of the relationship between the resulting definitions
arises. This question has been investigated in a number of simpler frameworks
in [BHW95,HS96,Kat03], where the connection is given by a factorisability result
of the formA ≡ B iffA/≈ ∼= B/≈. It is likely that the same applies in the context
of System F, and this might in turn help to shed light on the relationship between
the semantic and syntactic worlds.

5.3 Finiteness

Pre-logical relations are defined in terms of definable elements. In logic it is hard
to deal with definability in a term-specific way. In Sect. 4.3 we approximated
by introducing a new predicate Closed , and in Sect. 4.2 we explicitly related
to syntactic models. In both Sect. 4.4 and Sect. 4.5, we basically end up with
infinitary logic, albeit in a tractable manner. It may also be feasible to combine
elements, for example to use the Closed predicate together with pl -relations.

From a purist point of view, all these approaches are slightly unsatisfactory,
although for practical purposes they provide methods for proving refinement,
since the infinitary issues are basic and of no concern when doing refinement
proofs. In fact this is true a fortiori for abo-simulation relations, since these are
in fact finite, unlike pre-logical relations.

5.4 Pre-Logical Relations and abo-Relations

Both pre-logical relations (pl -relations in the logic) and abo-relations solve the
same problems for refinement. The question is then what else they have in com-
mon. To make a comparison easier, one can do two things. First, one can trans-
pose the syntactic idea of abo-relation into the semantic setting around e.g.,
combinatory algebras. It is then probably natural to interpret the Dfnbl clauses
as term-definability. In that case when considering data types, it is evident that
abo-simulation relations specialise to a finitary version of the minimal pre-logical
relation, which is not surprising. The general relationship is however unclear.

Conversely, one might transpose the idea of pre-logical relation into syntax
with internalised data types. This is mentioned in Sect. 4.5. Then, the connection
is not so clear, since the Dfnbl clause says nothing about term-definability, unless
we use the Closed predicate of Sect. 4.3. Any comparison would probably depend
on the model of choice for the logic.

Furthermore, at a more fundamental level, one gets various concepts of rela-
tional parametricity. We have the ones in the syntactic setting where data types
are internalised, but we also have the external semantic concept in connection
to the scenario in Sect. 3. Characterising these in terms of one another is left as
an interesting challenge, the start of which is described in the next section.

5.5 Connection with Pre-Logical Relations and Relational
Interpretation of System F

We can regard a binary relation over a BMM interpretation as an interpretation
of types by relations. The origin of this viewpoint, the relational interpretation of
System F, goes back to Reynolds [Rey83] in his attempt to obtain a set-theoretic
model of System F. This relational viewpoint enables him to capture the nature
of polymorphism in terms of relational parametricity.

A semantic account of this viewpoint is given in [MR91,Has91,RR94,BAC95].
Roughly speaking, a relational interpretation of System F consists of two com-
ponents: a reflexive graph (a graph with an identity edge at each node), which
gives a skeleton of binary relations; and an underlying interpretation of System F
together with binary relations over it. The interpretation ties nodes and edges
of the reflexive graph to the carrier sets of the underlying interpretation and
binary relations. This mapping respects identity, i.e. identity edges are mapped
to identity relations.

We can find a correspondence between pre-logical relations and the relational
interpretation of System F. Reflexive graphs are a generalisation of reflexive
relations. Thus a pair consisting of a BMM interpretation A and a relation R ⊆
A×A such that TR is reflexive and Rt,t = idAt form a relational interpretation of
System F. Conversely, any relational interpretation whose reflexive graph is just a
reflexive relation can be regarded as a relation over its underlying interpretation
of System F. Moreover we often assume that the mapping from edges to relations
respects the interpretation of types. This situation is called natural in [Has91],
and under the above correspondence, this means that the corresponding relation
is logical.

This correspondence suggests that we can bring back our notion of pre-logical
relations to consider a class of relational interpretations of System F. We expect
that this new class includes interpretations which satisfy Reynolds’ abstraction
theorem. The question is how do we understand the notion of relational para-
metricity in this new class. Parametricity states that relations at universal types
include identity relations, but the identity relation itself is a logical notion (in
extensional models). One negative consequence of this mismatch is that the
Identity Extension Lemma does not hold. On the other hand, modifying para-
metricity is a good idea for achieving a finer characterisation of observational
equivalence. This is exactly achieved on the syntactic side in Sect. 4. We expect
that this modification and relevant results developed in the syntactic approach
will provide interesting feedback to the relational interpretation of System F.

References

[BFSS90] E. Bainbridge, P. Freyd, A. Scedrov, and P. Scott. Functorial polymor-
phism. Theoretical Computer Science 70:35–64 (1990).

[BAC95] R. Bellucci, M. Abadi, and P.-L. Curien. A model for formal paramet-
ric polymorphism: a PER interpretation for system R. Proc. 2nd Intl.
Conf. on Typed Lambda Calculi and Applications, TLCA’95, Edinburgh.
Springer LNCS 902, 32–46 (1995).

[BHW95] M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor
specifications. Science of Computer and Programming, 25:149–186 (1995).

[BB85] C. Böhm and A. Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science 39:135–154 (1985).

[BMM90] K. Bruce, A. Meyer, and J. Mitchell. The semantics of the second-order
lambda calculus. Information and Computation 85(1):76–134 (1990).

[Gir71] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et
son application à l’élimination des coupures dans l’analyse et la théorie des
types. Proc. 2nd Scandinavian Logic Symp., Oslo. Studies in Logic and the
Foundations of Mathematics, Vol. 63, 63–92. North-Holland (1971).

[GTL90] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press (1990).

[Han99] J. Hannay. Specification refinement with System F. Proc. 13th Intl. Work-
shop on Computer Science Logic, CSL’99, Madrid. Springer LNCS 1683,
530–545 (1999).

[Han00] J. Hannay. A higher-order simulation relation for System F. Proc. 3rd Intl.
Conf. on Foundations of Software Science and Computation Structures.
ETAPS 2000, Berlin. Springer LNCS 1784, 130–145 (2000).

[Han01] J. Hannay. Abstraction Barriers and Refinement in the Polymorphic
Lambda Calculus. PhD thesis, Laboratory for Foundations of Computer
Science (LFCS), University of Edinburgh (2001).

[Han03] J. Hannay. Abstraction barrier-observing relational parametricity. Proc.
6th Intl. Conf. on Typed Lambda Calculi and Applications, TLCA 2003,
Valencia. Springer LNCS 2701 (2003).

[Has91] R. Hasegawa. Parametricity of extensionally collapsed term models of
polymorphism and their categorical properties. Proc. Intl. Conf. on The-
oretical Aspects of Computer Software, TACS’91, Sendai. Springer LNCS
526, 495–512 (1991).

[Hoa72] C.A.R. Hoare. Proof of correctness of data representations. Acta Infor-
matica 1:271–281 (1972).

[HS96] M. Hofmann and D. Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic. Theoretical Computer Science 167:3–45
(1996).

[HLST00] F. Honsell, J. Longley, D. Sannella and A. Tarlecki. Constructive data
refinement in typed lambda calculus. Proc. 3rd Intl. Conf. on Foundations
of Software Science and Computation Structures. ETAPS 2000, Berlin.
Springer LNCS 1784, 161–176 (2000).

[HS02] F. Honsell and D. Sannella. Prelogical relations. Information and Compu-
tation 178:23–43 (2002). Short version in Proc. Computer Science Logic,
CSL’99, Madrid. Springer LNCS 1683, 546–561 (1999).

[Kat03] S. Katsumata. Behavioural equivalence and indistinguishability in higher-
order typed languages. Selected papers from the 16th Intl. Workshop on

Algebraic Development Techniques, Frauenchiemsee. Springer LNCS, to
appear (2003).

[Lei01] H. Leiß. Second-order pre-logical relations and representation indepen-
dence. Proc. 5th Intl. Conf. on Typed Lambda Calculi and Applications,
TLCA’01, Cracow. Springer LNCS 2044, 298–314 (2001).

[MR91] Q. Ma and J. Reynolds. Types, abstraction and parametric polymorphism,
part 2. Proc. 7th Intl. Conf. on Mathematical Foundations of Programming
Semantics, MFPS, Pittsburgh. Springer LNCS 598, 1–40 (1991).

[Mai91] H. Mairson. Outline of a proof theory of parametricity. Proc. 5th
ACM Conf. on Functional Programming and Computer Architecture, Cam-
bridge, MA. Springer LNCS 523, 313–327 (1991).

[Mil71] R. Milner. An algebraic definition of simulation between programs. Proc.
2nd Intl. Joint Conf. on Artificial Intelligence. British Computer Society,
481–489 (1971).

[Mit96] J. Mitchell. Foundations for Programming Languages. MIT Press (1996).
[MP88] J. Mitchell and G. Plotkin. Abstract types have existential type. ACM

Trans. on Programming Languages and Systems 10(3):470–502 (1988).
[PA93] G. Plotkin and M. Abadi. A logic for parametric polymorphism. Proc.

Intl. Conf. Typed Lambda Calculi and Applications, TLCA’93, Utrecht.
Springer LNCS 664, 361–375 (1993).

[PPST00] G. Plotkin, J. Power, D. Sannella and R. Tennent. Lax logical rela-
tions. Proc. 27th Int. Colloq. on Automata, Languages and Programming,
Geneva. Springer LNCS 1853, 85–102 (2000).

[Rey74] J. Reynolds. Towards a theory of type structures. Programming Sympo-
sium (Colloque sur la Programmation), Paris, Springer LNCS 19, 408–425
(1974).

[Rey81] J. Reynolds. The Craft of Programming. Prentice Hall (1981).
[Rey83] J. Reynolds. Types, abstraction and parametric polymorphism. Proc. 9th

IFIP World Computer Congress, Paris. North Holland, 513–523 (1983).
[RR94] E. Robinson and G. Rosolini. Reflexive graphs and parametric polymor-

phism. Proc., Ninth Annual IEEE Symposium on Logic in Computer Sci-
ence, Paris, 364–371. IEEE Computer Society Press (1994).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing 9:229–269
(1997).

[Sch90] O. Schoett. Behavioural correctness of data representations. Science of
Computer Programming 14:43–57 (1990).

[Str67] C. Strachey. Fundamental concepts in programming languages. Lecture
notes from the Intl. Summer School in Programming Languages, Copen-
hagen (1967).

[Ten94] R. Tennent. Correctness of data representations in Algol-like languages.
In: A Classical Mind: Essays in Honour of C.A.R. Hoare. Prentice Hall
(1994).

[Tak98] I. Takeuti. An axiomatic system of parametricity. Fundamenta Informat-
icae, 33(4):397–432 (1998).

