Formal specification of ML programs

Donald Sannella

Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh

1 Introduction

Specifications play a part in every phase of program development. First, the
construction of a program cannot commence without a specification of what it is
supposed to do. This requirements specification is supplied by the customer for
whom the program is being developed. It serves as a means of communication

between the customer and the program development team.

Specifications also serve as a means of communication between the members
of the program development team. Each programmer is responsible for a certain
component of the program which may use facilities provided by several “foreign”
components. Precise specifications of these components are required before any
program which relies on them can be written. These specifications are produced
during the design phase when a way of decomposing the task is decided upon
and the component subtasks recorded. It is important that the specifications of
the components avoid giving away unnecessary details of the implementation —
if nobody is able to depend on the idiosyncratic features of a particular solution
to a subtask, then another solution may be easily substituted without affecting
correctness. In this way, specifications are also a means of avoiding undesirable
communication, by defining exactly those details of module interfaces on which

others are allowed to depend.

Once a program has been written some attempt is normally made to check that
it is correct. This check may be an informal test of the program on a few input
values, or a formal proof of correctness. In any case, some specification is needed
to compare the program against; a program is only correct with respect to some
specification of its desired behaviour. Finally, documentation is required, both for
the use of the customer and to aid the future maintenance and modification of the
program. This documentation is also a specification, serving as a means of com-
munication between the development team and the users and future maintainers

of the program.

Up to now the word “specification” has been used in a very broad sense. Every
means of describing a program and its behaviour is included, from informal Eng-
lish documentation or program comments to a precise description in a formal
specification language. A very simple and straightforward program may be useful
as a specification of an equivalent program which must be complex in order to be

efficient.

Informal specifications suffer from imprecision. This is a serious problem be-
cause of the very heavy penalties which may be incurred if a specification is mis-
understood. This is one reason why we advocate the use of formal specifications
in the program development process. Formal specifications are necessarily precise

and unambiguous.

A reason for using formal specifications which is becoming increasingly im-
portant is that they enable the use of formal methods in program development.
A program can (in principle) be proved to satisfy its formal specification. Per-
haps a more reasonable approach is to ensure that a correct program is produced
in the first place using formal methods for evolving guaranteed-correct programs
from specifications. It cannot be denied that neither of these is currently a pos-
sibility for practical development of real programs. But the use of these and other
formal methods in the program development process presupposes the use of formal

specifications.

The effort of constructing a formal specification often has a large payoff in
increased understanding of the task and early detection of difficulties. The caretul
attention to detail which is required to write a formal specification means that
important problems and useful generalisations can be uncovered early in the de-
velopment process. This is the case even if no formal methods are to be used in

the construction of the program itself.

The main problem with formal specifications is that they are hard to construct
and hard to use and understand. It was already mentioned that the fact that it is
hard to write formal specifications may be a blessing in disguise. Various methods
are available for building large specifications in a structured fashion from small,
easy to understand and reusable components. But more simply and obviously,
formal specifications should be supplemented with informal comments to ease their
understanding and use. Ultimately, the advantages of using formal specifications

to develop correct programs will outweigh the difficulties involved in their use.

These notes describe methods for specitying Standard ML programs. At the
moment, there are no tools available for processing ML specifications, so although
they will be written in a font which makes them look like programs, we have no
way even to check that they are syntactically well-formed or that they are free
from type errors. Such tools would keep us from writing specifications which are
meaningless. Other tools are prerequisites to the practical use of specifications;
the most important is probably some kind of mechanised theorem prover which
allows logical consequences to be inferred from specifications. Finally, the task of
constructing specifications is eased if we have available a large library of commonly-
used specifications (for example, of standard data types like sets, stacks and queues
and standard functions like sorting and searching) so that most of the effort can

be devoted to those aspects which are unique to the problem at hand.

2 Specifying ML functions

Before we begin to discuss methods for specifying ML functions, note that ML

function definitions such as the following are specifications already:

fun member(x,nil) = false
| member(x,y::1) = if x = y then true else member(x,l)

This is a specification in the sense that all programs are specifications — namely,
it is a precise and unambiguous definition. But more to the point, it is a high-level
description of the member function, uncluttered by low-level details in comparison
with the same program in a more traditional language like Pascal. Using a simple
notation, it specifies the result of the member function by means of a case analysis.
This is arguably the simplest and most straightforward specification of the member

function.

This example suggests that ML could itselt be useful as a specification lan-
guage for programs in a language like Pascal. ML function definitions could be
used to specify Pascal functions in the obvious way, and also to specify procedures
by describing the value of variables on exit as a function of the values of variables
on entrance. An advantage of using ML as a specification language is that spe-
cifications are runnable (or rather, walkable') so a specification can also be used
as a prototype implementation of the system being developed.

Each ML function definition consists of a collection of equations having a cer-
tain special form — namely, the left-hand side of each equation is the name of
the function being defined, applied to a pattern. This is what makes it possible
to execute functions in ML; function evaluation works by matching the patterns
supplied against the given argument, returning the value of the right-hand side
of the matching equation. Now suppose this restriction were to be relaxed and
functions could be defined in ML by means of arbitrary equations? (Or slightly
more generally, not just functions but arbitrary ML values?)

As an example, consider the problem of specifying the square root of a (real)
number. To write an ML program, we would have to code some algorithm for
finding the square root, such as Newton’s method. But if we are allowed to use

unrestricted equations, the specification is short and sweet:

sqrt(a)*sqrt(a) = a

1Joke due to Rod Burstall.

Since this equation is no longer in the special form required by ML, sqrt is not
runnable (or even walkable), but only thinkable. But as a high-level specification,
this is preferable to a program which uses Newton’s method to compute the square
root — it says what we want without being cluttered by the least suggestion of

how to compute it.

As another example, suppose we have already defined a data type of matrices as
well as matrix multiplication (x) and the identity matrix (I). We can now specify
a function inv:matrix -> matrix to invert a matrix as follows:

inv(A) x A
A x inv(Ad)

Once we have dropped the restriction that equations must be in the form
required by ML, there is already no particular reason to require that specifications
be expressed using equations only. It is sometimes convenient to use other logical
notations to specify programs, possibly mixed with equations. For example, here
is a specification of a function maxelem:int list -> int which finds the largest
element in a list of integers. This specification refers to the function member defined

earlier.

1 <> nil ==> member(maxelem 1,1)

member(a,l) ==> (maxelem 1) >= a

This says that the maximum element of a non-empty list is an element of the list
(line 1) and moreover it is greater than or equal to all the elements in the list (line
2). Both assertions (or axzioms) use ==> to denote implication. For example, the
second axiom should be read

“member (a,l) implies (maxelem 1) >= a”
or
“if member(a,l) then (maxelem) 1) >= a”

The things on the left- and right-hand side of the ==> should be equations or else
(as above) bool-valued expressions which can really be regarded as abbreviating
equations of the form expr=true. We will use these two forms interchangeably.

(In fact, the second axiom above is equivalent to the equation:
(if member(a,l) then (maxelem 1) >= a else true) = true

but this is a bit more cryptic.)

Other logical notation which will come in handy when writing specifications
are the connectives and, or and not and the quantifiers forall and exists. All
axioms are already surrounded by an implicit forall quantifier over the unbound

variables in the axiom; for example the axiom

member(a,l) ==> (maxelem 1) >= a
is equivalent to the axiom
forall a,l => member(a,l) ==> (maxelem 1) >= a

(the => here is the same one used with fn to write unnamed functions, which is

not the same as ==>). In fact, the ML function definition

fun member(x,nil) = false

| member(x,y::1) = if x = y then true else member(x,l)
is equivalent to the two axioms

axiom forall x => member(x,nil) = false
axiom forall x,y,l => member(x,y::1) = if x = y then true
else member(x,1)

Two more of these notations are used in the following specification of the (built-in)
function >= in terms of + and a function nonneg® which returns true unless its

argument is a negative number:
n>m-=exists r => (n =m + r and (nonneg r))

The right-hand side of this equation should be read “there exists some r such that
n = m + r and nonneg ris true”. Again, the two arguments of and and the argu-
ment of exists after the => should be either equations or bool-valued expressions.
Note that although the above specification of >= is superficially an equation in the
form required by ML, it is not runnable because exists is not runnable. But note
that runnable functions like + may also be used in the specification.

As a slightly more difficult example, we now specify two functions,
before: string * string -> string
and
after: string * string -> string

Given two strings s and r, before(s,r) is the part of r before the first occurrence
of s in r and after(s,r) is the part of r after the first occurrence of s in r. So

for example,

nonneg is not a built-in function.

before("my","Elementary, my dear Watson'") is "Elementary, "
and
after("my","Elementary, my dear Watson") is " dear Watson".

The specification of before and after will make use of an auxiliary func-
tion initial_substring:string*string->bool. Given two strings s and r,
initial_substring(s,r) is true if the first part of r matches s, and false

otherwise. So for example,

initial_substring("my","my dear Watson") is true
while

initial_substring("dear","my dear Watson") is false.
The specification of initial_substring is as follows:

initial_substring(s,r) = exists t => (8"t = r)

That is, s is an initial substring of r if there is a string (possibly empty) which
can be added to the end of s so that the result is r.

Using initial_substring we can write a simple and elegant specification of

before and after:

before(s,r) s after(s,r) = r
t1°s"t2 = r ==> initial_substring(before(s,r),t1)

The first axiom of this specification states that any string r (containing at least
one occurrence of s) consists of the part of r before s, followed by s itself, followed
by the part of r after s. The second axiom says that before and after are
with respect to the first occurrence of the first argument in the second argument,
since if there is another way of decomposing r into three parts t1, s and t2
then before(s,r) must be an initial substring of t1. Note that this specification
requires before(s,r) and/or after(s,r) to produce no result in the case where
s does not occur in r; although it would be possible to specify that they produce
some particular result in this case as well, the specification may also be adequate

for some purposes as it stands.

Exercise Modify the above specification so that before(s,r) and after(s,r)

return nil if s does not occur in r.

Note that the specifications of before and after above are completely inter-

twined; in contrast to the earlier specifications there is no single axiom or collection

of axioms which are entirely devoted to specifying either before or after. Even
though the second axiom contains no explicit use of after, it constrains the im-
plementation of after because of the way that after and before are related by

the first axiom.

One of the advantages of using arbitrary equations (mixed with logical notation
or not) is that it is possible to write definitions which are purposefully vague; that
is, we are not required to specify the value of the function being specified exactly
under all circumstances but we can instead leave decisions open to be made later.
For example, the alert reader will have noticed that the result of applying maxelem
to nil is undefined and that our specification of sqrt does not say whether we
want the positive or negative square root. Specifications such as these which leave

some things unspecified are called loose specifications.

A loose specifications is neither imprecise nor ambiguous; it specifies precisely
those aspects of the program which we are interested in while leaving some choices
open to be made at later stages of the design process or by the programmer. For
example, we might want to specify a square root function which is required to
produce a result which is correct to within a certain precision (say 1%). We can
specify this as follows:

sqrt(a)*sqrt(a) >= 0.99*a
1.01*a >= sqrt(a)*sqrt(a)

Any algorithm for producing the square root of a number will be acceptable ac-
cording to this specification provided that it works with at least the specified
precision. When a system involving this function is implemented, the programmer
or designer may decide to use a simple algorithm which produces answers correct
to within 1% rather than a more complex algorithm which produces more accurate
results on the basis of mundane considerations like the amount of storage and time
required by the two algorithms.

3 Proving that a function meets its specification

Suppose that we have written an ML function and we wish to ensure that it
satisfies its specification. This is the problem of program verification. We must
prove that the ML function we have defined satisfies each of the axioms in the

specification.

To take a concrete example, let us recall the specification of the function

maxelem : 1int list -> int which finds the largest integer in a list:

1<>nil ==> member (maxelem 1,1)

member(a,l) ==> (maxelem 1) >= a

An ML function which satisfies this specification (at least, we would like to show

it does) is the following:

fun maxelem(a::nil) = a
| maxelem(a::b::1) = if a>maxelem(b::1) then a

else maxelem(b::1)

Since the definition of maxelem is recursive, we will use induction to show that
maxelem satisfies each of the axioms in the above specification. The specification
makes use of other functions, namely <>, member and >=. A rigorous proof would
make reference to the definitions of these functions but it will simplify matters
slightly it we allow ourselves to use various facts about these functions without
proving that they follow from the definitions; for example, we will need to use the
fact that if a>b and b>=c then a>=c.

Proof (maxelem satisfies 1<>nil ==> member(maxelem 1,1)) We assume

1<>nil and prove by induction that member (maxelem 1,1) = true.

Base case Suppose 1 = a::nil for some integer a. Then maxelem 1 = a, and

so member (maxelem 1,1) = member(a,a::nil) = true.

Step case We assume member (maxelem 1,1) = true and show that then
member (maxelem(a::1),a::1) = true for any integer a. According to the defin-
ition of maxelem, maxelem(a::1) is either a or maxelem 1. If it is a, then
member (maxelem(a::1),a::1) = member(a,a::1) = true. If it is maxelem 1,
then member (maxelem(a::1),a::1) = member(maxelem 1,a::1) = truebecause

of our assumption that member (maxelem 1,1) = true. O

Proof (maxelem satisfies member(a,l) ==> (maxelem 1) >= a) We assume

that member(a,l) and prove by induction that (maxelem 1) >= a.

Base case Suppose that 1 = a::nil; then maxelem 1 = a and so we have

maxelem 1 = a >= a.

Step case We assume that (maxelem 1) >= a for every integer a such that
member(a,l) and show that then maxelem(b::1) >= a for every a such that
member (a,b::1), for every integer b. According to the definition of maxelem,

there are two cases to consider:

Case 1 (b > maxelem 1) In this case, maxelem(b::1) = b. For every a such
that member(a,b::1), either a = b (and so maxelem(b::1) = b = a >= a) or

member(a,l) (and so maxelem(b::1) = b > maxelem 1 >= a).

Case 2 (maxelem 1 >= b) In this case, maxelem(b::1) = maxelem 1. For

every a such that member(a,b::1), either a = b (and so we have maxelem(b::1)

maxelem 1 >= b = a) or member(a,l) (in which case we get maxelem(b::1)

maxelem 1 >= a). O

We have thus proved the correctness of our definition of maxelem. The proof
was rather tedious and would have been much longer and even more tedious had
we attempted to give a rigorous proof directly from the definitions of <>, member,
>= and maxelem. It is easy to make mistakes in such proofs when they are done
by hand, especially when they involve even slightly more complicated programs
(and also since the person doing the proof does not expect to find bugs!).

Considerations such as these have prompted research into computer-assisted
program verification systems, or more generally into computer-assisted theorem-
proving systems. It is not within the scope of these notes to discuss this topic
here, except to suggest that such a system would provide a great deal of help
in performing proofs like those above; indeed, the Boyer-Moore theorem prover”

would probably be able to carry out the above proof entirely automatically.

Exercise Write ML programs to compute >=, initial _substring, before and
after and prove that they satisty their specifications.

More difficult exercise Write ML programs to compute sqrt and inv and
prove that they satisfy their specifications (for sqrt, use the specification at the
end of the last section).

4 Specifying structures and functors

Just as we used axioms to specify functions, we can use axioms to specify struc-
tures. The only difference is that since a structure may contain several functions,
the specification of a structure will be larger than the specification of a single
function.

For example, consider the following structure which implements an array of
integers indexed starting from 0 using a list of integers:

structure Array =
struct

type array = int list;
val empty = nil;
fun retrieve(n,nil) = 0

| retrieve(n,v::1) = if n=0 then v

else retrieve(n-1,1);

fun put(n,v,nil) = if n=0 then v::nil

®R.S. Boyer and J.S. Moore, A Computational Logic, Academic Press, 1979.

else 0::put(n-1,v,nil)
| put(n,v,w::1) = if n=0 then v::1
else w::put(n-1,v,1)

end;

We can specify this just as if it were two independent functions Array.retrieve

and Array.put and a value Array.empty as follows:

Array.put(n,v,Array.put(n,w,1l)) = Array.put(n,v,l)
n<>m ==> Array.put(n,v,Array.put(m,w,1))

= Array.put(m,w,Array.put(n,v,1))
Array.retrieve(n,Array.empty) = O
Array.retrieve(n,Array.put(n,v,1)) = v
n<>m ==> Array.retrieve(n,Array.put(m,v,1)) = Array.retrieve(n,l)

These axioms state properties of Array.retrieve, Array.put and Array.empty
such as the fact that inserting a value using Array.put at the same place as
an earlier insertion supercedes the value inserted earlier (axiom 1) and that when
using Array.retrieve to obtain a value from a given place in the array, insertions

at other places in the array have no effect (axiom 5).

Recall that the signature associated with a structure plays the role of that

structure’s interface to the outside world. The signature of Array is:

sig
type array
val empty: array
val retrieve: int * array -> int
val put: int * int * array -> array

end;

As a description of what Array makes available, this signature is sufficient for
the purpose of compiling functions which refer to Array, but otherwise it is not
very informative. It is not sufficient, for example, for proving program correctness
or for program documentation. It is natural to combine the information in the
signature with the axioms specifying Array to form a more complete interface, as

follows:

signature ARRAYSIG =
sig
type array
val empty: array
val retrieve: int * array -> int
val put: int * int * array -> array

axiom put(n,v,put(n,w,1)) = put(n,v,l)

10

axiom n<>m ==> put(n,v,put(m,w,l)) = put(m,w,put(n,v,1))
axiom retrieve(n,empty) = 0

axiom retrieve(n,put(n,v,l)) = v

axiom n<>m ==> retrieve(n,put(m,v,l)) = retrieve(n,l)

end;

Now, if we want to express the fact that ARRAYSIG is the interface of Array we
simply write Array: ARRAYSIG. As usual, this can be combined with the declaration
of Array as follows:

structure Array:ARRAYSIG=
struct

type array = int list;

end;

By adding axioms to a signature as in ARRAYSIG, we have formed what is
known as a theory, and it would be appropriate to change the notation accordingly.
However, we will continue to use the term “signature” to refer to a signature with
axioms as well. One could imagine extending the ML compiler to allow signatures
to include axioms, but unfortunately the compiler cannot be expected to check
that an axiom is satisfied by a function the way that it can check that types are
correct (for this would involve proofs like the one in the last section), so axioms

would have to be treated as comments.

Signatures with axioms can have a hierarchical structure just as ordinary signa-
tures can. For example, here is a specification of a structure containing functions
for creating, updating and displaying a histogram (recall that a histogram is a stat-
istical device for maintaining a count of the number of data elements encountered
according to their values, typically displayed as a “bar graph” — for example, a
graph of scores on an examination vs. the number of students obtaining those

scores):

signature HISTOGRAMSIG =
sig
structure A:ARRAYSIG
type histogram
val create: histogram
val incrementcount: int * histogram -> histogram
val display: histogram -> A.array
local val count: int * histogram -> int
axiom count(n,create) = 0
axiom count(n,incrementcount(n,h)) = 1 + count(n,h)
axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)
in

11

axiom A.retrieve(n,display h) = count(n,h)
end

end;

This specification uses an auxiliary function count in order to specify the function
display®. We do not want this to become part of the signature HISTOGRAMSIG
because there may be implementations of HISTOGRAMSIG which do not involve
a function like count. In the specification above we adopted the syntax local

.in ...end used in structures and other ML declarations to express that we
want count to be local to the specification of display (this is technically a change
to the syntax of signatures). This is a bit clumsy and difficult to read, so from
now on we will use a pictorial representation whereby the specification of types
and functions which are intended to be strictly local to the specification of the
other types and functions in the signature are enclosed in a box like so:

signature HISTOGRAMSIG =
sig
structure A:ARRAYSIG
type histogram
val create: histogram
val incrementcount: 1int * histogram -> histogram
val display: histogram -> A.array
val count: int * histogram -> int

axiom count(n,create) = 0

axiom count(n,incrementcount(n,h)) = 1 + count(n,h)

axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)
axiom A.retrieve(n,display h) = count(n,h)

end;

This specification is implemented by the following structure in which histo-

grams are represented as arrays and display is the identity function:

structure Histogram:HISTOGRAMSIG =
struct
structure A:ARRAYSIG = Array;
type histogram = A.array;
val create = A.empty;
fun incrementcount(n,h) = A.put(n,l + A.retrieve(n,h),h);
fun display h = h

end;

*It is also possible to specify display directly without using count (exercise).

12

Axioms in signatures can also be used to specify functors. The only difference
is that a functor has both a parameter signature (actually, zero or more parameter
signatures, depending on how many parameters it takes) and a result signature,
and so each functor is associated with two specifications (more or less, depending

on the number of parameters).

As an example we will consider a functor which provides a function for sorting
a list of objects using a Quicksort algorithm, given an ordering on the objects as

a parameter. The signature of the parameter (without axioms) will be as follows:

signature ORDSIG =

sig
type obj
val le: obj * obj -> bool
end;

The idea is that 1e will be an order relation (less than or equal) on values of type

obj. The signature of the result (again, without axioms) will be:

signature SORTSIG =
sig
structure 0BJ:0RDSIG
val partition: 0BJ.obj * 0OBJ.obj list
-> 0BJ.obj list * 0BJ.obj list
val sort: OBJ.obj list -> 0BJ.obj list

end;

The partition function is used in the Quicksort algorithm to split a list into two
lists relative to a given element; the first list contains all objects in the given list
which are less than or equal to the element and the second contains the objects

which are greater than the element.

Finally, here is the definition of the functor itself:

functor Sort(X:0RDSIG) :SORTSIG =

struct
structure 0OBJ = X;
fun partition(a,nil) = (nil,nil)

| partition(a,b::1) = let val (11,12) = partition(a,l) in
if 0BJ.le(b,a) then (b::11,12)
else (11,b::12) end;
fun sort nil = nil
| sort(a::1) = let val (11,12) = partition(a,l) in
(sort 11)@(a::(sort 12)) end

end;

13

Now we can consider what the specification of Sort should be. The first thing
to do is to augment the parameter signature ORDSIG by axioms stating the prop-
erties required of any structure used as a parameter of Sort. It turns out that the
sorting program above will not give the expected results unless the 1e function is
a total order®, that is:

e leis transitive, i.e. for any a,b,c:objif le(a,b) and le(b,c) then le(a,c);

o leis anti-symmetric, i.e. for any a,b:obj if le(a,b) and 1le(b,a) then a=b;

and
e leis total, i.e. for any a,b:obj either le(a,b) or le(b,a) (or both).

Examples of total orders are >= and <= on integers and the dictionary ordering on
strings. If we add these requirements in the form of axioms to ORDSIG, we obtain

the following parameter specification (or import interface) for Sort:

signature ORDSIG =

sig
type obj
val le: obj * obj -> bool
axiom le(a,b) and le(b,c) ==> le(a,c)
axiom le(a,b) and le(b,a) ==> a=b
axiom le(a,b) or le(b,a)

end;

Now we have to augment the result signature SORTSIG by axioms specifying
partition and sort. The function sort is a bit tricky to specify; the idea of the
specification below is that sort takes a list and permutes (rearranges) it in such
a way that the result is an ordered list. This specification of sort requires several

auxiliary functions:

signature SORTSIG =
sig
structure 0BJ:0RDSIG
val partition: O0BJ.obj * 0BJ.obj list
-> 0BJ.obj list * 0BJ.obj list

axiom (11,12)=partition(a,l) and member(b,l)

==> member(b,11) or member(b,12)
axiom (11,12)=partition(a,l) and member(b,11) ==> 0BJ.le(b,a)

’The reader may disagree with this statement depending on the interpretation of
“expected results”; at least it should be clear that a total order is sufficient.

14

axiom (11,12)=partition(a,l) and member(b,12) ==> not(0BJ.le(b,a))

val isordered: O0BJ.obj list -> bool

axiom isordered 1 = forall 11,a,12,b,13 =>
(1=110[a]@120[b]@13 ==> 0BJ.le(a,b))

val remove: O0BJ.obj * 0OBJ.obj list -> 0BJ.obj list

axiom remove(a,a::1) = 1

axiom a<>b ==> remove(a,b::1) = b::remove(a,l)

val ispermutation: 0BJ.obj list * 0BJ.obj list -> bool

axiom ispermutation(nil,nil) = true

axiom ispermutation(nil,b::1) = false

axiom ispermutation(a::11,12) = member(a,l2) and
ispermutation(ll,remove(a,l2))

val sort: O0BJ.obj list -> 0BJ.obj list

axiom sort(1l1) = 12 ==> isordered 12 and ispermutation(11,12)

end;

Notice that the function remove is local to the specification of ispermutation
and so the above specification could have used two concentric boxes.

Now that we have written the parameter and result specification of Sort, the
fact that they are the import and export interfaces is expressed by defining Sort

with explicit parameter and result signatures (as before):

functor Sort(X:0RDSIG) :SORTSIG =
struct

end;

5 Proving that structures and functors meet their
specifications

The problem of verifying that a “flat” structure (one without substructures) satis-
fies its specification is just the same as the problem of proving that all the functions

it contains meet their specifications.

Exercise Prove that the structure Array in the last section meets its specifica-

tion.

The problem of showing that a structure with substructures meets its specific-
ations has two stages. First, it is necessary to show that all the substructures meet
their specifications. Of course, the substructures may themselves have substruc-
tures, so in general this requires descending to the most deeply nested substruc-

tures and working upwards. Second, the functions in the structure must be shown

15

to satisfy their specifications. Since these functions may make use of functions
in substructures, these proofs will often need to use facts about the functions in
the substructures. It is normally most convenient to use the specifications of the
functions in the substructures in these proofs rather than the code of these func-
tions. For one thing, the specification is normally at a more abstract level than the
code, defining what the function does (which is interesting in such proofs) rather
than how it works (which is not). For another, this allows a different substructure
satisfying the same specification but possibly using a different data representation
or different algorithms to be substituted without affecting the correctness of the
proof.

As an example, consider the structure Histogram from the last section. For
convenient reference, here is the structure and its specification HISTOGRAMSIG
again:

signature HISTOGRAMSIG =
sig
structure A:ARRAYSIG
type histogram
val create: histogram
val incrementcount: 1int * histogram -> histogram
val display: histogram -> A.array
val count: int * histogram -> int

axiom count(n,create) = 0
axiom count(n,incrementcount(n,h)) = 1 + count(n,h)

axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)
axiom A.retrieve(n,display h) = count(n,h)

end;

structure Histogram:HISTOGRAMSIG =

struct
structure A:ARRAYSIG = Array;
type histogram = A.array;
val create = A.empty;
fun incrementcount(n,h) = A.put(n,l + A.retrieve(n,h),h);
fun display h = h

end;

where

signature ARRAYSIG =

s1g
type array

val empty: array

16

val retrieve: int * array -> int

val put: int * int * array -> array

axiom put(n,v,put(n,w,1)) = put(n,v,l)

axiom n<>m ==> put(n,v,put(m,w,l)) = put(m,w,put(n,v,1))
axiom retrieve(n,empty) = 0

axiom retrieve(n,put(n,v,l)) = v

axiom n<>m ==> retrieve(n,put(m,v,l)) = retrieve(n,l)

end;

is the specification of the structure Histogram.A.

Assuming that you have done the above exercise, we know that Histogram.A
satisfies the specification ARRAYSIG. In order to prove that Histogram satisfies
HISTOGRAMSIG, we then have to show that the functions and constants in Histogram,
namely create, incrementcount and display, satisfy the axiom in HISTOGRAMSIG,
namely:

A.retrieve(n,display h) = count(n,h)
where count is defined by the “hidden” axioms in HISTOGRAMSIG, namely:

count(n,create) = 0
count (n,incrementcount(n,h)) = 1 + count(n,h)

n<>m ==> count(n,incrementcount(m,h)) = count(n,h)

Proof (Histogram satisfies A.retrieve(n,display h) = count(n,h)) The

proof is by induction on the structure of histograms.

Base case Suppose h = create. Then:
A.retrieve(n, display h)
= A.retrieve(n,A.empty) (by the definitions of display and
create in Histogram)
= 0 (by the third axiom in ARRAYSIG)
= count(n,h) (by the first axiom for count).

Step case We assume A.retrieve(n,display h) = count(n,h) and show
that then

A.retrieve(n,display(incrementcount (m,h)))
= count(n,incrementcount(m,h))

for any integer m. According to the definitions of display and incrementcount
in Histogram,

A.retrieve(n,display(incrementcount(m,h))) =

A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))

17

Now in order to complete the proof we must consider two cases:

Case 1 (n = m) In this case,

A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))

1 + A.retrieve(n,h) (by the fourth axiom in ARRAYSIG)

1 + count(n,h) (by the definition of display and the inductive

assumption)

count (n, incrementcount(m,h)) (by the second axiom for count).

Case 2 (n <> m) In this case,
A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))
= A.retrieve(n,h) (by the fifth axiom in ARRAYSIG)
count(n,h) (by the definition of display and the inductive as-

sumption)

count (n, incrementcount (m,h)) (by the third axiom for count).0

Proving that a functor meets its specification is very similar to showing that a
structure with substructures satisfies its specification, since the functor parameters
may be regarded more or less in the same way as substructures during the proof.
In this case the argument for using the specifications of substructures in the proof
(rather than the code) gains added force: we do not know ahead of time which

structures a functor will be applied to and so we have no access to the code.

Exercise Show that the functor Sort in the last section satisfies its specification.

6 Conclusion

A number of important topics in the specification of ML programs have not been
covered. For example, the examples do not make use of exceptions or assignment
— we have been dealing with purely functional programs only. The use of excep-
tions and assignment turn out to introduce complications which have not yet been
resolved in a satisfactory way. Another point which is important to be aware of is
that we have been taking a slightly idealised view of the world where for example
integers can be of unbounded size and real numbers are of unbounded precision.
Since we have glossed over the sordid realities of the situation, it is actually pos-
sible to prove that a program satisfies a specification when in fact it does not
(because e.g. of arithmetic overflow). Capturing the consequences of the finiteness
of real machines in specifications without making them overly complicated is a

difficult job.

The use of specifications in the program development process has not been
mentioned except in the introduction. The gradual evolution of programs from
specifications by means of verified refinement steps so that a correct result is guar-

anteed is perhaps the most exciting potential application of formal specifications.

18

For more about this and about the specification of ML programs, see: “Program
specification and development in Standard ML” by D. Sannella and A. Tarlecki
in Proceedings ACM Conference on Principles of Programming Languages, New

Orleans, 1985.

Acknowledgements Some of the examples used are originally due to Rod Burstall.
Thanks to Andrzej Tarlecki for continuing collaboration on the subject of these
notes, to Joan Ratcliff for typing and to Paul Taylor, George Cleland and David
Walker for helping with the proofreading and production.

19

