
Formal speci�cation of ML programsDonald SannellaLaboratory for Foundations of Computer ScienceDepartment of Computer ScienceUniversity of Edinburgh



1 IntroductionSpeci�cations play a part in every phase of program development. First, theconstruction of a program cannot commence without a speci�cation of what it issupposed to do. This requirements speci�cation is supplied by the customer forwhom the program is being developed. It serves as a means of communicationbetween the customer and the program development team.Speci�cations also serve as a means of communication between the membersof the program development team. Each programmer is responsible for a certaincomponent of the program which may use facilities provided by several \foreign"components. Precise speci�cations of these components are required before anyprogram which relies on them can be written. These speci�cations are producedduring the design phase when a way of decomposing the task is decided uponand the component subtasks recorded. It is important that the speci�cations ofthe components avoid giving away unnecessary details of the implementation |if nobody is able to depend on the idiosyncratic features of a particular solutionto a subtask, then another solution may be easily substituted without a�ectingcorrectness. In this way, speci�cations are also a means of avoiding undesirablecommunication, by de�ning exactly those details of module interfaces on whichothers are allowed to depend.Once a program has been written some attempt is normally made to check thatit is correct. This check may be an informal test of the program on a few inputvalues, or a formal proof of correctness. In any case, some speci�cation is neededto compare the program against; a program is only correct with respect to somespeci�cation of its desired behaviour. Finally, documentation is required, both forthe use of the customer and to aid the future maintenance and modi�cation of theprogram. This documentation is also a speci�cation, serving as a means of com-munication between the development team and the users and future maintainersof the program.Up to now the word \speci�cation" has been used in a very broad sense. Everymeans of describing a program and its behaviour is included, from informal Eng-lish documentation or program comments to a precise description in a formalspeci�cation language. A very simple and straightforward program may be usefulas a speci�cation of an equivalent program which must be complex in order to bee�cient.Informal speci�cations su�er from imprecision. This is a serious problem be-cause of the very heavy penalties which may be incurred if a speci�cation is mis-understood. This is one reason why we advocate the use of formal speci�cationsin the program development process. Formal speci�cations are necessarily preciseand unambiguous. 1



A reason for using formal speci�cations which is becoming increasingly im-portant is that they enable the use of formal methods in program development.A program can (in principle) be proved to satisfy its formal speci�cation. Per-haps a more reasonable approach is to ensure that a correct program is producedin the �rst place using formal methods for evolving guaranteed-correct programsfrom speci�cations. It cannot be denied that neither of these is currently a pos-sibility for practical development of real programs. But the use of these and otherformal methods in the program development process presupposes the use of formalspeci�cations.The e�ort of constructing a formal speci�cation often has a large payo� inincreased understanding of the task and early detection of di�culties. The carefulattention to detail which is required to write a formal speci�cation means thatimportant problems and useful generalisations can be uncovered early in the de-velopment process. This is the case even if no formal methods are to be used inthe construction of the program itself.The main problem with formal speci�cations is that they are hard to constructand hard to use and understand. It was already mentioned that the fact that it ishard to write formal speci�cations may be a blessing in disguise. Various methodsare available for building large speci�cations in a structured fashion from small,easy to understand and reusable components. But more simply and obviously,formal speci�cations should be supplemented with informal comments to ease theirunderstanding and use. Ultimately, the advantages of using formal speci�cationsto develop correct programs will outweigh the di�culties involved in their use.These notes describe methods for specifying Standard ML programs. At themoment, there are no tools available for processing ML speci�cations, so althoughthey will be written in a font which makes them look like programs, we have noway even to check that they are syntactically well-formed or that they are freefrom type errors. Such tools would keep us from writing speci�cations which aremeaningless. Other tools are prerequisites to the practical use of speci�cations;the most important is probably some kind of mechanised theorem prover whichallows logical consequences to be inferred from speci�cations. Finally, the task ofconstructing speci�cations is eased if we have available a large library of commonly-used speci�cations (for example, of standard data types like sets, stacks and queuesand standard functions like sorting and searching) so that most of the e�ort canbe devoted to those aspects which are unique to the problem at hand.
2



2 Specifying ML functionsBefore we begin to discuss methods for specifying ML functions, note that MLfunction de�nitions such as the following are speci�cations already:fun member(x,nil) = false| member(x,y::l) = if x = y then true else member(x,l)This is a speci�cation in the sense that all programs are speci�cations | namely,it is a precise and unambiguous de�nition. But more to the point, it is a high-leveldescription of the member function, uncluttered by low-level details in comparisonwith the same program in a more traditional language like Pascal. Using a simplenotation, it speci�es the result of the member function by means of a case analysis.This is arguably the simplest and most straightforward speci�cation of the memberfunction.This example suggests that ML could itself be useful as a speci�cation lan-guage for programs in a language like Pascal. ML function de�nitions could beused to specify Pascal functions in the obvious way, and also to specify proceduresby describing the value of variables on exit as a function of the values of variableson entrance. An advantage of using ML as a speci�cation language is that spe-ci�cations are runnable (or rather, walkable1) so a speci�cation can also be usedas a prototype implementation of the system being developed.Each ML function de�nition consists of a collection of equations having a cer-tain special form | namely, the left-hand side of each equation is the name ofthe function being de�ned, applied to a pattern. This is what makes it possibleto execute functions in ML; function evaluation works by matching the patternssupplied against the given argument, returning the value of the right-hand sideof the matching equation. Now suppose this restriction were to be relaxed andfunctions could be de�ned in ML by means of arbitrary equations? (Or slightlymore generally, not just functions but arbitrary ML values?)As an example, consider the problem of specifying the square root of a (real)number. To write an ML program, we would have to code some algorithm for�nding the square root, such as Newton's method. But if we are allowed to useunrestricted equations, the speci�cation is short and sweet:sqrt(a)*sqrt(a) = a1Joke due to Rod Burstall. 3



Since this equation is no longer in the special form required by ML, sqrt is notrunnable (or even walkable), but only thinkable. But as a high-level speci�cation,this is preferable to a program which uses Newton's method to compute the squareroot | it says what we want without being cluttered by the least suggestion ofhow to compute it.As another example, suppose we have already de�ned a data type of matrices aswell as matrix multiplication (x) and the identity matrix (I). We can now specifya function inv:matrix -> matrix to invert a matrix as follows:inv(A) x A = IA x inv(A) = IOnce we have dropped the restriction that equations must be in the formrequired by ML, there is already no particular reason to require that speci�cationsbe expressed using equations only. It is sometimes convenient to use other logicalnotations to specify programs, possibly mixed with equations. For example, hereis a speci�cation of a function maxelem:int list -> int which �nds the largestelement in a list of integers. This speci�cation refers to the function member de�nedearlier.l <> nil ==> member(maxelem l,l)member(a,l) ==> (maxelem l) >= aThis says that the maximum element of a non-empty list is an element of the list(line 1) and moreover it is greater than or equal to all the elements in the list (line2). Both assertions (or axioms) use ==> to denote implication. For example, thesecond axiom should be read\member(a,l) implies (maxelem l) >= a"or \if member(a,l) then (maxelem) l) >= a"The things on the left- and right-hand side of the ==> should be equations or else(as above) bool-valued expressions which can really be regarded as abbreviatingequations of the form expr=true. We will use these two forms interchangeably.(In fact, the second axiom above is equivalent to the equation:(if member(a,l) then (maxelem l) >= a else true) = truebut this is a bit more cryptic.)Other logical notation which will come in handy when writing speci�cationsare the connectives and, or and not and the quanti�ers forall and exists. Allaxioms are already surrounded by an implicit forall quanti�er over the unboundvariables in the axiom; for example the axiom4



member(a,l) ==> (maxelem l) >= ais equivalent to the axiomforall a,l => member(a,l) ==> (maxelem l) >= a(the => here is the same one used with fn to write unnamed functions, which isnot the same as ==>). In fact, the ML function de�nitionfun member(x,nil) = false| member(x,y::l) = if x = y then true else member(x,l)is equivalent to the two axiomsaxiom forall x => member(x,nil) = falseaxiom forall x,y,l => member(x,y::l) = if x = y then trueelse member(x,l)Two more of these notations are used in the following speci�cation of the (built-in)function >= in terms of + and a function nonneg2 which returns true unless itsargument is a negative number:n >= m = exists r => (n = m + r and (nonneg r))The right-hand side of this equation should be read \there exists some r such thatn = m + r and nonneg r is true". Again, the two arguments of and and the argu-ment of exists after the => should be either equations or bool-valued expressions.Note that although the above speci�cation of >= is super�cially an equation in theform required by ML, it is not runnable because exists is not runnable. But notethat runnable functions like + may also be used in the speci�cation.As a slightly more di�cult example, we now specify two functions,before: string * string -> stringand after: string * string -> stringGiven two strings s and r, before(s,r) is the part of r before the �rst occurrenceof s in r and after(s,r) is the part of r after the �rst occurrence of s in r. Sofor example,2nonneg is not a built-in function. 5



before("my","Elementary, my dear Watson") is "Elementary, "and after("my","Elementary, my dear Watson") is " dear Watson".The speci�cation of before and after will make use of an auxiliary func-tion initial substring:string*string->bool. Given two strings s and r,initial substring(s,r) is true if the �rst part of r matches s, and falseotherwise. So for example,initial substring("my","my dear Watson") is truewhile initial substring("dear","my dear Watson") is false.The speci�cation of initial substring is as follows:initial_substring(s,r) = exists t => (s^t = r)That is, s is an initial substring of r if there is a string (possibly empty) whichcan be added to the end of s so that the result is r.Using initial substring we can write a simple and elegant speci�cation ofbefore and after:before(s,r)^s^after(s,r) = rt1^s^t2 = r ==> initial_substring(before(s,r),t1)The �rst axiom of this speci�cation states that any string r (containing at leastone occurrence of s) consists of the part of r before s, followed by s itself, followedby the part of r after s. The second axiom says that before and after arewith respect to the �rst occurrence of the �rst argument in the second argument,since if there is another way of decomposing r into three parts t1, s and t2then before(s,r)must be an initial substring of t1. Note that this speci�cationrequires before(s,r) and/or after(s,r) to produce no result in the case wheres does not occur in r; although it would be possible to specify that they producesome particular result in this case as well, the speci�cation may also be adequatefor some purposes as it stands.Exercise Modify the above speci�cation so that before(s,r) and after(s,r)return nil if s does not occur in r.Note that the speci�cations of before and after above are completely inter-twined; in contrast to the earlier speci�cations there is no single axiom or collection6



of axioms which are entirely devoted to specifying either before or after. Eventhough the second axiom contains no explicit use of after, it constrains the im-plementation of after because of the way that after and before are related bythe �rst axiom.One of the advantages of using arbitrary equations (mixed with logical notationor not) is that it is possible to write de�nitions which are purposefully vague; thatis, we are not required to specify the value of the function being speci�ed exactlyunder all circumstances but we can instead leave decisions open to be made later.For example, the alert reader will have noticed that the result of applying maxelemto nil is unde�ned and that our speci�cation of sqrt does not say whether wewant the positive or negative square root. Speci�cations such as these which leavesome things unspeci�ed are called loose speci�cations.A loose speci�cations is neither imprecise nor ambiguous; it speci�es preciselythose aspects of the program which we are interested in while leaving some choicesopen to be made at later stages of the design process or by the programmer. Forexample, we might want to specify a square root function which is required toproduce a result which is correct to within a certain precision (say 1%). We canspecify this as follows:sqrt(a)*sqrt(a) >= 0.99*a1.01*a >= sqrt(a)*sqrt(a)Any algorithm for producing the square root of a number will be acceptable ac-cording to this speci�cation provided that it works with at least the speci�edprecision. When a system involving this function is implemented, the programmeror designer may decide to use a simple algorithm which produces answers correctto within 1% rather than a more complex algorithm which produces more accurateresults on the basis of mundane considerations like the amount of storage and timerequired by the two algorithms.3 Proving that a function meets its speci�cationSuppose that we have written an ML function and we wish to ensure that itsatis�es its speci�cation. This is the problem of program veri�cation. We mustprove that the ML function we have de�ned satis�es each of the axioms in thespeci�cation.To take a concrete example, let us recall the speci�cation of the functionmaxelem : int list -> int which �nds the largest integer in a list:l<>nil ==> member(maxelem l,l)member(a,l) ==> (maxelem l) >= a7



An ML function which satis�es this speci�cation (at least, we would like to showit does) is the following:fun maxelem(a::nil) = a| maxelem(a::b::l) = if a>maxelem(b::l) then aelse maxelem(b::l)Since the de�nition of maxelem is recursive, we will use induction to show thatmaxelem satis�es each of the axioms in the above speci�cation. The speci�cationmakes use of other functions, namely <>, member and >=. A rigorous proof wouldmake reference to the de�nitions of these functions but it will simplify mattersslightly if we allow ourselves to use various facts about these functions withoutproving that they follow from the de�nitions; for example, we will need to use thefact that if a>b and b>=c then a>=c.Proof (maxelem satis�es l<>nil ==> member(maxelem l,l)) We assumel<>nil and prove by induction that member(maxelem l,l) = true.Base case Suppose l = a::nil for some integer a. Then maxelem l = a, andso member(maxelem l,l) = member(a,a::nil) = true.Step case We assume member(maxelem l,l) = true and show that thenmember(maxelem(a::l),a::l) = true for any integer a. According to the de�n-ition of maxelem, maxelem(a::l) is either a or maxelem l. If it is a, thenmember(maxelem(a::l),a::l) = member(a,a::l) = true. If it is maxelem l,then member(maxelem(a::l),a::l) = member(maxelem l,a::l) = true becauseof our assumption that member(maxelem l,l) = true. 2Proof (maxelem satis�es member(a,l) ==> (maxelem l) >= a) We assumethat member(a,l) and prove by induction that (maxelem l) >= a.Base case Suppose that l = a::nil; then maxelem l = a and so we havemaxelem l = a >= a.Step case We assume that (maxelem l) >= a for every integer a such thatmember(a,l) and show that then maxelem(b::l) >= a for every a such thatmember(a,b::l), for every integer b. According to the de�nition of maxelem,there are two cases to consider:Case 1 (b > maxelem l) In this case, maxelem(b::l) = b. For every a suchthat member(a,b::l), either a = b (and so maxelem(b::l) = b = a >= a) ormember(a,l) (and so maxelem(b::l) = b > maxelem l >= a).Case 2 (maxelem l >= b) In this case, maxelem(b::l) = maxelem l. Forevery a such that member(a,b::l), either a = b (and so we have maxelem(b::l)= maxelem l >= b = a) or member(a,l) (in which case we get maxelem(b::l)= maxelem l >= a). 28



We have thus proved the correctness of our de�nition of maxelem. The proofwas rather tedious and would have been much longer and even more tedious hadwe attempted to give a rigorous proof directly from the de�nitions of <>, member,>= and maxelem. It is easy to make mistakes in such proofs when they are doneby hand, especially when they involve even slightly more complicated programs(and also since the person doing the proof does not expect to �nd bugs!).Considerations such as these have prompted research into computer-assistedprogram veri�cation systems, or more generally into computer-assisted theorem-proving systems. It is not within the scope of these notes to discuss this topichere, except to suggest that such a system would provide a great deal of helpin performing proofs like those above; indeed, the Boyer-Moore theorem prover3would probably be able to carry out the above proof entirely automatically.Exercise Write ML programs to compute >=, initial substring, before andafter and prove that they satisfy their speci�cations.More di�cult exercise Write ML programs to compute sqrt and inv andprove that they satisfy their speci�cations (for sqrt, use the speci�cation at theend of the last section).4 Specifying structures and functorsJust as we used axioms to specify functions, we can use axioms to specify struc-tures. The only di�erence is that since a structure may contain several functions,the speci�cation of a structure will be larger than the speci�cation of a singlefunction.For example, consider the following structure which implements an array ofintegers indexed starting from 0 using a list of integers:structure Array =structtype array = int list;val empty = nil;fun retrieve(n,nil) = 0| retrieve(n,v::l) = if n=0 then velse retrieve(n-1,l);fun put(n,v,nil) = if n=0 then v::nil3R.S. Boyer and J.S. Moore, A Computational Logic, Academic Press, 1979.9



else 0::put(n-1,v,nil)| put(n,v,w::l) = if n=0 then v::lelse w::put(n-1,v,l)end;We can specify this just as if it were two independent functions Array.retrieveand Array.put and a value Array.empty as follows:Array.put(n,v,Array.put(n,w,l)) = Array.put(n,v,l)n<>m ==> Array.put(n,v,Array.put(m,w,l))= Array.put(m,w,Array.put(n,v,l))Array.retrieve(n,Array.empty) = 0Array.retrieve(n,Array.put(n,v,l)) = vn<>m ==> Array.retrieve(n,Array.put(m,v,l)) = Array.retrieve(n,l)These axioms state properties of Array.retrieve, Array.put and Array.emptysuch as the fact that inserting a value using Array.put at the same place asan earlier insertion supercedes the value inserted earlier (axiom 1) and that whenusing Array.retrieve to obtain a value from a given place in the array, insertionsat other places in the array have no e�ect (axiom 5).Recall that the signature associated with a structure plays the role of thatstructure's interface to the outside world. The signature of Array is:sigtype arrayval empty: arrayval retrieve: int * array -> intval put: int * int * array -> arrayend;As a description of what Array makes available, this signature is su�cient forthe purpose of compiling functions which refer to Array, but otherwise it is notvery informative. It is not su�cient, for example, for proving program correctnessor for program documentation. It is natural to combine the information in thesignature with the axioms specifying Array to form a more complete interface, asfollows:signature ARRAYSIG =sigtype arrayval empty: arrayval retrieve: int * array -> intval put: int * int * array -> arrayaxiom put(n,v,put(n,w,l)) = put(n,v,l)10



axiom n<>m ==> put(n,v,put(m,w,l)) = put(m,w,put(n,v,l))axiom retrieve(n,empty) = 0axiom retrieve(n,put(n,v,l)) = vaxiom n<>m ==> retrieve(n,put(m,v,l)) = retrieve(n,l)end;Now, if we want to express the fact that ARRAYSIG is the interface of Array wesimply write Array:ARRAYSIG. As usual, this can be combinedwith the declarationof Array as follows:structure Array:ARRAYSIG=structtype array = int list;. . .end;By adding axioms to a signature as in ARRAYSIG, we have formed what isknown as a theory, and it would be appropriate to change the notation accordingly.However, we will continue to use the term \signature" to refer to a signature withaxioms as well. One could imagine extending the ML compiler to allow signaturesto include axioms, but unfortunately the compiler cannot be expected to checkthat an axiom is satis�ed by a function the way that it can check that types arecorrect (for this would involve proofs like the one in the last section), so axiomswould have to be treated as comments.Signatures with axioms can have a hierarchical structure just as ordinary signa-tures can. For example, here is a speci�cation of a structure containing functionsfor creating, updating and displaying a histogram (recall that a histogram is a stat-istical device for maintaining a count of the number of data elements encounteredaccording to their values, typically displayed as a \bar graph" | for example, agraph of scores on an examination vs. the number of students obtaining thosescores):signature HISTOGRAMSIG =sigstructure A:ARRAYSIGtype histogramval create: histogramval incrementcount: int * histogram -> histogramval display: histogram -> A.arraylocal val count: int * histogram -> intaxiom count(n,create) = 0axiom count(n,incrementcount(n,h)) = 1 + count(n,h)axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)in 11



axiom A.retrieve(n,display h) = count(n,h)endend;This speci�cation uses an auxiliary function count in order to specify the functiondisplay4. We do not want this to become part of the signature HISTOGRAMSIGbecause there may be implementations of HISTOGRAMSIG which do not involvea function like count. In the speci�cation above we adopted the syntax local: : : in : : :end used in structures and other ML declarations to express that wewant count to be local to the speci�cation of display (this is technically a changeto the syntax of signatures). This is a bit clumsy and di�cult to read, so fromnow on we will use a pictorial representation whereby the speci�cation of typesand functions which are intended to be strictly local to the speci�cation of theother types and functions in the signature are enclosed in a box like so:signature HISTOGRAMSIG =sigstructure A:ARRAYSIGtype histogramval create: histogramval incrementcount: int * histogram -> histogramval display: histogram -> A.arrayval count: int * histogram -> intaxiom count(n,create) = 0axiom count(n,incrementcount(n,h)) = 1 + count(n,h)axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)axiom A.retrieve(n,display h) = count(n,h)end;This speci�cation is implemented by the following structure in which histo-grams are represented as arrays and display is the identity function:structure Histogram:HISTOGRAMSIG =structstructure A:ARRAYSIG = Array;type histogram = A.array;val create = A.empty;fun incrementcount(n,h) = A.put(n,1 + A.retrieve(n,h),h);fun display h = hend;4It is also possible to specify display directly without using count (exercise).12



Axioms in signatures can also be used to specify functors. The only di�erenceis that a functor has both a parameter signature (actually, zero or more parametersignatures, depending on how many parameters it takes) and a result signature,and so each functor is associated with two speci�cations (more or less, dependingon the number of parameters).As an example we will consider a functor which provides a function for sortinga list of objects using a Quicksort algorithm, given an ordering on the objects asa parameter. The signature of the parameter (without axioms) will be as follows:signature ORDSIG =sigtype objval le: obj * obj -> boolend;The idea is that le will be an order relation (less than or equal) on values of typeobj. The signature of the result (again, without axioms) will be:signature SORTSIG =sigstructure OBJ:ORDSIGval partition: OBJ.obj * OBJ.obj list-> OBJ.obj list * OBJ.obj listval sort: OBJ.obj list -> OBJ.obj listend;The partition function is used in the Quicksort algorithm to split a list into twolists relative to a given element; the �rst list contains all objects in the given listwhich are less than or equal to the element and the second contains the objectswhich are greater than the element.Finally, here is the de�nition of the functor itself:functor Sort(X:ORDSIG):SORTSIG =structstructure OBJ = X;fun partition(a,nil) = (nil,nil)| partition(a,b::l) = let val (l1,l2) = partition(a,l) inif OBJ.le(b,a) then (b::l1,l2)else (l1,b::l2) end;fun sort nil = nil| sort(a::l) = let val (l1,l2) = partition(a,l) in(sort l1)@(a::(sort l2)) endend; 13



Now we can consider what the speci�cation of Sort should be. The �rst thingto do is to augment the parameter signature ORDSIG by axioms stating the prop-erties required of any structure used as a parameter of Sort. It turns out that thesorting program above will not give the expected results unless the le function isa total order5, that is:� le is transitive, i.e. for any a,b,c:obj if le(a,b) and le(b,c) then le(a,c);� le is anti-symmetric, i.e. for any a,b:obj if le(a,b) and le(b,a) then a=b;and� le is total, i.e. for any a,b:obj either le(a,b) or le(b,a) (or both).Examples of total orders are >= and <= on integers and the dictionary ordering onstrings. If we add these requirements in the form of axioms to ORDSIG, we obtainthe following parameter speci�cation (or import interface) for Sort:signature ORDSIG =sigtype objval le: obj * obj -> boolaxiom le(a,b) and le(b,c) ==> le(a,c)axiom le(a,b) and le(b,a) ==> a=baxiom le(a,b) or le(b,a)end;Now we have to augment the result signature SORTSIG by axioms specifyingpartition and sort. The function sort is a bit tricky to specify; the idea of thespeci�cation below is that sort takes a list and permutes (rearranges) it in sucha way that the result is an ordered list. This speci�cation of sort requires severalauxiliary functions:signature SORTSIG =sigstructure OBJ:ORDSIGval partition: OBJ.obj * OBJ.obj list-> OBJ.obj list * OBJ.obj listaxiom (l1,l2)=partition(a,l) and member(b,l)==> member(b,l1) or member(b,l2)axiom (l1,l2)=partition(a,l) and member(b,l1) ==> OBJ.le(b,a)5The reader may disagree with this statement depending on the interpretation of\expected results"; at least it should be clear that a total order is su�cient.14



axiom (l1,l2)=partition(a,l) and member(b,l2) ==> not(OBJ.le(b,a))val isordered: OBJ.obj list -> boolaxiom isordered l = forall l1,a,l2,b,l3 =>(l=l1@[a]@l2@[b]@l3 ==> OBJ.le(a,b))val remove: OBJ.obj * OBJ.obj list -> OBJ.obj listaxiom remove(a,a::l) = laxiom a<>b ==> remove(a,b::l) = b::remove(a,l)val ispermutation: OBJ.obj list * OBJ.obj list -> boolaxiom ispermutation(nil,nil) = trueaxiom ispermutation(nil,b::l) = falseaxiom ispermutation(a::l1,l2) = member(a,l2) andispermutation(l1,remove(a,l2))val sort: OBJ.obj list -> OBJ.obj listaxiom sort(l1) = l2 ==> isordered l2 and ispermutation(l1,l2)end;Notice that the function remove is local to the speci�cation of ispermutationand so the above speci�cation could have used two concentric boxes.Now that we have written the parameter and result speci�cation of Sort, thefact that they are the import and export interfaces is expressed by de�ning Sortwith explicit parameter and result signatures (as before):functor Sort(X:ORDSIG):SORTSIG =struct. . .end;5 Proving that structures and functors meet theirspeci�cationsThe problem of verifying that a \at" structure (one without substructures) satis-�es its speci�cation is just the same as the problem of proving that all the functionsit contains meet their speci�cations.Exercise Prove that the structure Array in the last section meets its speci�ca-tion.The problem of showing that a structure with substructures meets its speci�c-ations has two stages. First, it is necessary to show that all the substructures meettheir speci�cations. Of course, the substructures may themselves have substruc-tures, so in general this requires descending to the most deeply nested substruc-tures and working upwards. Second, the functions in the structure must be shown15



to satisfy their speci�cations. Since these functions may make use of functionsin substructures, these proofs will often need to use facts about the functions inthe substructures. It is normally most convenient to use the speci�cations of thefunctions in the substructures in these proofs rather than the code of these func-tions. For one thing, the speci�cation is normally at a more abstract level than thecode, de�ning what the function does (which is interesting in such proofs) ratherthan how it works (which is not). For another, this allows a di�erent substructuresatisfying the same speci�cation but possibly using a di�erent data representationor di�erent algorithms to be substituted without a�ecting the correctness of theproof.As an example, consider the structure Histogram from the last section. Forconvenient reference, here is the structure and its speci�cation HISTOGRAMSIGagain:signature HISTOGRAMSIG =sigstructure A:ARRAYSIGtype histogramval create: histogramval incrementcount: int * histogram -> histogramval display: histogram -> A.arrayval count: int * histogram -> intaxiom count(n,create) = 0axiom count(n,incrementcount(n,h)) = 1 + count(n,h)axiom n<>m ==> count(n,incrementcount(m,h)) = count(n,h)axiom A.retrieve(n,display h) = count(n,h)end;structure Histogram:HISTOGRAMSIG =structstructure A:ARRAYSIG = Array;type histogram = A.array;val create = A.empty;fun incrementcount(n,h) = A.put(n,1 + A.retrieve(n,h),h);fun display h = hend;wheresignature ARRAYSIG =sigtype arrayval empty: array 16



val retrieve: int * array -> intval put: int * int * array -> arrayaxiom put(n,v,put(n,w,l)) = put(n,v,l)axiom n<>m ==> put(n,v,put(m,w,l)) = put(m,w,put(n,v,l))axiom retrieve(n,empty) = 0axiom retrieve(n,put(n,v,l)) = vaxiom n<>m ==> retrieve(n,put(m,v,l)) = retrieve(n,l)end;is the speci�cation of the structure Histogram.A.Assuming that you have done the above exercise, we know that Histogram.Asatis�es the speci�cation ARRAYSIG. In order to prove that Histogram satis�esHISTOGRAMSIG,we then have to show that the functions and constants in Histogram,namely create, incrementcount and display, satisfy the axiom in HISTOGRAMSIG,namely:A.retrieve(n,display h) = count(n,h)where count is de�ned by the \hidden" axioms in HISTOGRAMSIG, namely:count(n,create) = 0count(n,incrementcount(n,h)) = 1 + count(n,h)n<>m ==> count(n,incrementcount(m,h)) = count(n,h)Proof (Histogram satis�es A.retrieve(n,display h) = count(n,h)) Theproof is by induction on the structure of histograms.Base case Suppose h = create. Then:A.retrieve(n, display h)= A.retrieve(n,A.empty) (by the de�nitions of display andcreate in Histogram)= 0 (by the third axiom in ARRAYSIG)= count(n,h) (by the �rst axiom for count).Step case We assume A.retrieve(n,display h) = count(n,h) and showthat thenA.retrieve(n,display(incrementcount(m,h)))= count(n,incrementcount(m,h))for any integer m. According to the de�nitions of display and incrementcountin Histogram,A.retrieve(n,display(incrementcount(m,h))) =A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))17



Now in order to complete the proof we must consider two cases:Case 1 (n = m) In this case,A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))= 1 + A.retrieve(n,h) (by the fourth axiom in ARRAYSIG)= 1 + count(n,h) (by the de�nition of display and the inductiveassumption)= count(n,incrementcount(m,h)) (by the second axiom for count).Case 2 (n <> m) In this case,A.retrieve(n,A.put(m,1 + A.retrieve(m,h),h))= A.retrieve(n,h) (by the �fth axiom in ARRAYSIG)= count(n,h) (by the de�nition of display and the inductive as-sumption)= count(n,incrementcount(m,h)) (by the third axiom for count).2Proving that a functor meets its speci�cation is very similar to showing that astructure with substructures satis�es its speci�cation, since the functor parametersmay be regarded more or less in the same way as substructures during the proof.In this case the argument for using the speci�cations of substructures in the proof(rather than the code) gains added force: we do not know ahead of time whichstructures a functor will be applied to and so we have no access to the code.Exercise Show that the functor Sort in the last section satis�es its speci�cation.6 ConclusionA number of important topics in the speci�cation of ML programs have not beencovered. For example, the examples do not make use of exceptions or assignment| we have been dealing with purely functional programs only. The use of excep-tions and assignment turn out to introduce complications which have not yet beenresolved in a satisfactory way. Another point which is important to be aware of isthat we have been taking a slightly idealised view of the world where for exampleintegers can be of unbounded size and real numbers are of unbounded precision.Since we have glossed over the sordid realities of the situation, it is actually pos-sible to prove that a program satis�es a speci�cation when in fact it does not(because e.g. of arithmetic overow). Capturing the consequences of the �nitenessof real machines in speci�cations without making them overly complicated is adi�cult job.The use of speci�cations in the program development process has not beenmentioned except in the introduction. The gradual evolution of programs fromspeci�cations by means of veri�ed re�nement steps so that a correct result is guar-anteed is perhaps the most exciting potential application of formal speci�cations.18



For more about this and about the speci�cation of ML programs, see: \Programspeci�cation and development in Standard ML" by D. Sannella and A. Tarleckiin Proceedings ACM Conference on Principles of Programming Languages, NewOrleans, 1985.Acknowledgements Some of the examples used are originally due to Rod Burstall.Thanks to Andrzej Tarlecki for continuing collaboration on the subject of thesenotes, to Joan Ratcli� for typing and to Paul Taylor, George Cleland and DavidWalker for helping with the proofreading and production.

19


