
Toward Component-Oriented Formal Software
Development: An Algebraic Approach?

Michel Bidoit1, Donald Sannella2, and Andrzej Tarlecki3

1 Laboratoire Spécification et Vérification, CNRS & ENS de Cachan, France
2 Laboratory for Foundations of Computer Science, University of Edinburgh, UK
3 Institute of Informatics, Warsaw University and Institute of Computer Science,

Polish Academy of Sciences, Warsaw, Poland

Abstract. Component based design and development of software is one
of the most challenging issues in software engineering. In this paper, we
adopt a somewhat simplified view of software components and discuss
how they can be conveniently modelled in a framework that provides a
modular approach to formal software development by means of stepwise
refinement. In particular we take into account an observational interpre-
tation of requirements specifications and study its impact on the defini-
tion of the semantics of specifications of (parametrized) components. Our
study is carried out in the context of Casl architectural specifications.

1 Introduction

Nowadays component based design is perceived as a key technology for devel-
oping systems in a cost- and time effective manner. However, there is still no
clear understanding of what is a component, and in particular of how to provide
a formal semantics of components. Similarly, formal software development has
received relatively little attention in the context of component based approaches.

We focus here on a rather restrictive view of components, namely software
components (understood as pieces of code) in contrast with system components
(understood as self-contained computers with their own hardware and software
interacting with each other and the environment by exchanging messages across
linking interfaces). However, our view of (software) components is consistent with
the best accepted definition in the software industry, see [Szy98]: a (software)
component is a unit of composition with contractually specified interfaces and
fully explicit context dependencies that can be deployed independently.

There has been a great deal of work in the algebraic specification tradition on
formalizing the intuitive idea of software development by stepwise refinement,
including [EKMP82,GM82,Gan83,Sch87,ST88b,ST89,Sch90]; the general ideas
go back at least to [Hoa72]. For a recent survey, see [EK99]. There are many
issues that make this a difficult problem, and some of them are rather subtle,
? This work has been partially supported by KBN grant 7T11C 002 21 and Euro-

pean AGILE project IST-2001-32747 (AT), CNRS–PAS Research Cooperation Pro-
gramme (MB, AT), and British–Polish Research Partnership Programme (DS, AT).

one example being the relationship between specification structure and software
structure. An overview that covers most of our own contributions is [ST97], with
some more recent work addressing the problem of how to prove correctness of
refinement steps [BH98], and the design of a convenient formalism for writing
specifications [ABK+02,BST02a].

In this paper we discuss how software components can be modelled in an alge-
braic framework providing a modular approach to formal software development
by means of stepwise refinement. In particular we take into account an observa-
tional interpretation of requirements specifications and study its impact on the
definition of the semantics of specifications of (parametrized) components. Our
study is carried out in the context of Casl architectural specifications. Archi-
tectural specifications, for describing the modular structure of software systems,
are probably the most novel feature of Casl. We view them here as a means
of making complex refinement steps, by defining well-structured constructions
to be used to build a software system from implementations of individual com-
ponents (these also include parametrized components, acting as constructions
providing local construction steps to be used in a more global context).

We begin with a brief introduction to Casl basic and structured specifica-
tions in Sect. 2. Then we present our basic view of formal software development
by means of stepwise refinement in Sect. 3, motivating Casl architectural spec-
ifications introduced in Sect. 4. In Sect. 5 we motivate and recall the observa-
tional interpretation of specifications, and we study in Sect. 6 the impact of this
observational interpretation on the semantics of specifications of parametrized
components. An example is given in Sect. 7 to illustrate a few of the main points.
Further work is discussed in Sect. 8. The present paper is a high-level overview
that concentrates on presenting and justifying the concepts without dwelling on
the technicalities, which are presented in [BST02b] and elsewhere.

2 Casl Essentials

A basic assumption underpinning algebraic specification and derived approaches
to software specification and development is that programs are modelled as alge-
bras (of some kind) with their “types” captured by algebraic signatures (again,
adapted as appropriate). Then specifications include axioms describing their re-
quired properties. This leads to quite a flexible framework, which can be tuned
as desired to cope with various programming features of interest by selecting the
appropriate variation of algebra, signature and axiom. This flexibility has been
formalized via the notion of institution [GB92] and related work on the theory
of specifications and formal program development [ST88a,ST97,BH93].

Casl is an algebraic specification language to describe Casl models: many-
sorted algebras with subsorts, partial and total operations, and predicates. Casl
models are classified by Casl signatures, which give sort names (with their
subsorting relation), partial and total operation names, and predicate names,
together with profiles of operations and predicates. In Casl models, subsorts
and supersorts are linked by implicit subsort embeddings required to compose

with each other and to be compatible with operations and predicates with the
same names. For each signature Σ, the class of all Σ-models is denoted Mod(Σ).

The basic level of Casl includes declarations to introduce components of sig-
natures and axioms to give properties that characterize models of a specification.
The logic used to write the axioms is essentially first-order logic (so, with quan-
tification and the usual logical connectives) built over atomic formulae which in-
clude strong and existential equalities, definedness formulae and predicate appli-
cations, with generation constraints added as special, non-first-order sentences.
A basic Casl specification SP amounts to a definition of a signature Σ and a set
of axioms Φ. It denotes the class [[SP]] ⊆ Mod(Σ) of SP -models, which are those
Σ-models that satisfy all the axioms in Φ: [[SP]] = {A ∈ Mod(Σ) | A |= Φ}.

Apart from basic specifications as above, Casl provides ways of building
complex specifications out of simpler ones by means of various structuring con-
structs. These include translation, hiding, union, and both free and loose forms
of extension. Generic specifications and their instantiations with pushout-style
semantics [BG80,EM85] are also provided. Structured specifications built using
these constructs can be given a compositional semantics where each specification
SP determines a signature Sig [SP] and a class [[SP]] ⊆ Mod(Sig [SP]) of models.

3 Program Development and Refinement

The intended use of Casl, as of any such specification formalism, is to spec-
ify programs. Each Casl specification should determine a class of programs
that correctly realize the specified requirements. To fit this into the formal
view of Casl specifications, programs must be written in a programming lan-
guage having a semantics which assigns4 to each program its denotation as a
Casl model. Then each program P determines a signature Sig [P] and a model
[[P]] ∈ Mod(Sig [P]). The denotation [[SP]] of a specification SP is a description
of its admissible realizations: a program P is a (correct) realization of SP if
Sig [P] = Sig [SP] and [[P]] ∈ [[SP]].

In an idealized view of program development, we start with an initial loose
requirements specification SP0 and refine it step by step until we have a speci-
fication SP last that records all the intended design decisions:

SP0 ; SP1 ; · · · ; SP last

Stepwise refinement only makes sense if the above chain of refinements guaran-
tees that any correct realization of SP last is also a correct realization of SP0: for
any P , if [[P]] ∈ [[SP last]] then [[P]] ∈ [[SP0]]. This is ensured by the definition of
refinement. For any SP and SP ′ with the same signature, we define:

SP ; SP ′ ⇐⇒ [[SP ′]] ⊆ [[SP]]
4 This may be rather indirect, and in general involves a non-trivial abstraction step.

It has not yet been attempted for any real programming language, but see [SM02]
for an outline of how this could be done for Haskell. See also the pre-Casl work on
Extended ML [KST97].

The construction of a program to realize SP last is a separate task which strongly
depends on the target programming language. If SP last is relatively small and
sufficiently detailed, then achieving this task tends to be straightforward for
clean functional programming languages and problems that are appropriately
coded in such languages, see for instance the example in Sect. 7. If the target
programming language is C or a similar low-level language then of course there
is a larger gap between specification and program, largely because a lot of work
must be devoted to mundane and complex matters like management of heap
space that are handled automatically by more modern languages. This step is
outside the scope of Casl, which provides means for building specifications
only; in this sense it is not a “wide-spectrum” language [BW82]. See [AS02]
for a more detailed discussion. Furthermore, there is no construct in Casl to
explicitly express refinement between specifications. All this is a part of the
meta-level, though firmly based on the formal semantics of Casl specifications.

A more satisfactory model of refinement allows for modular decomposition
of a given development task into several tasks by refining a specification to a
sequence of specifications, each to be further refined independently. (Of course,
a development may branch more than once, giving a tree structure.)

SP ; BR

SP1 ; · · · ; SP1,last

...
SPn ; · · · ; SPn,last

Given realizations P1, . . . , Pn of the specifications SP1,last , . . . ,SPn,last , we should
be able to put them together with no extra effort to obtain a realization of SP .
So for each such branching point we need an operation to combine arbitrary
realizations of SP1, . . . ,SPn into a realization of SP . This may be thought of
as a linking procedure LINKBR attached to the branching point BR, where for
any P1, . . . , Pn realizing SP1, . . . ,SPn, LINKBR(P1, . . . , Pn) realizes SP :

if [[P1]] ∈ [[SP1]], . . . , [[Pn]] ∈ [[SPn]] then [[LINKBR(P1, . . . , Pn)]] ∈ [[SP]]

Crucially, this means that whenever we want to replace a realization Pi of a
component specification SP i with a new realization P ′

i (still of SP i), all we need
to do is to “re-link” it with realizations of the other component specifications,
with no need to modify them in any way. LINKBR(P1, . . . , P

′
i , . . . , Pn) is guar-

anteed to be a correct realization of SP , just as LINKBR(P1, . . . , Pi, . . . , Pn)
was. In other words, the only interaction between the components happens via
LINKBR, so the components may be developed entirely independently from each
other.

The nature of LINKBR depends on the nature of the programs considered.
They could be for instance just “program texts” in some programming language
like Pascal (in which case LINKBR may be a simple textual operation, say, re-
grouping the declarations and definitions provided by the component programs)
or actual pieces of compiled code (in which case LINKBR would really be linking
in the usual sense of the word). Our preferred view is that the programming

language in use has reasonably powerful and flexible modularization facilities,
such as those in Standard ML [Pau96] or Ada [Ada94]. Then P1, . . . , Pn are
program modules (structures in Standard ML, packages in Ada) and LINKBR

is a module expression or a generic module with formal parameters for which the
actual modules P1, . . . , Pn may be substituted. Note that if we later replace a
module Pi by P ′

i as above, “recompilation” of LINKBR(P1, . . . , P
′
i , . . . , Pn) might

be required but in no case will it be necessary to modify the other modules.
One might expect that BR above is just a specification-building operation

OP (or a specification construct expressible in Casl), and branching could be
viewed as “ordinary” refinement SP ; OP(SP1, . . . ,SPn). Further refinement
of OP(SP1, . . . ,SPn) might then consist of separate refinements for SP1, . . . ,SPn

as above. This requires at least that OP is “monotonic” with respect to inclusion
of model classes.5 Then the following “refinement rule” is sound:

SP1 ; SP ′
1 · · · SPn ; SP ′

n

OP(SP1, . . . ,SPn) ; OP(SP ′
1, . . . ,SP ′

n)

This view is indeed possible provided that the specification-building operation
OP is constructive in the following sense: for any realizations P1, . . . , Pn of
SP1, . . . ,SPn, we must be able to construct a realization LINKOP (P1, . . . , Pn)
of OP(SP1, . . . ,SPn). In that case, OP(SP1, . . . ,SPn) will be consistent when-
ever SP1, . . . ,SPn are. However, simple examples show that some standard
specification-building operations (like the union of specifications) do not have
this property. It follows that refining SP to OP(SP1, . . . ,SPn), where OP is an
arbitrary specification-building operation, does not ensure that we can provide
a realization of SP even when given realizations of SP1, . . . ,SPn. (See [HN94]
for a different approach to this problem.)

Another problem with the refinement step SP ; OP(SP1, . . . ,SPn) is that
it does not explicitly indicate that subsequent refinement is to proceed by inde-
pendently refining each of SP1, . . . ,SPn, so preserving the structure imposed by
the operation OP . The structure of the specification OP(SP1, . . . ,SPn) in no
way prescribes the structure of the final program. And this is necessarily so: while
preserving the structure of a specification throughout the ensuing development is
convenient when it is natural to do so, refinements that break this structure must
also be allowed. Otherwise, at very early stages of the development process we
would have to fix the final structure of the resulting program: any decision about
structuring a specification would amount to a decision about the structure of the
final program. This is hardly practical, as the aims of structuring specifications
in the early development phases (and at the requirements engineering phase) are
quite distinct from those of structuring final programs.

On the other hand, at certain stages of program development we need to
fix the structure of the system under development: the design of the modular
5 Most of the specification constructs of Casl and other specification languages are

indeed monotonic. The few exceptions — like imposing the requirement of freeness —
can be viewed as operations which add “constraints” to specifications rather than as
fully-fledged specification-building operations, cf. data constraints in Clear [BG80].

structure of the system is often among the most important design decisions in
the development process. In Casl, this is the role of architectural specifications,
introduced in the next section.

4 Architectural Specifications

In Casl, an architectural specification prescribes a decomposition of the task of
implementing a requirements specification into a number of subtasks to imple-
ment specifications of “modular components” (called units) of the system under
development. The units may be parametrized or not. Another essential part of
an architectural specification is a prescription of how the units, once developed,
are to be put together using a few simple operators. Thus, an architectural spec-
ification may be thought of as a definition of a construction that implements a
requirements specification in terms of a number of specified units to be developed
subsequently.

For the sake of readability, we present here only a very simple version of
Casl architectural specifications, with a limited (but representative) number of
constructs, shaped after a somewhat less simplified fragment used in [SMT+01].

Architectural specifications: ASP ::= arch spec Dcl∗ result T
An architectural specification consists of a list of unit declarations followed
by a unit result term.

Unit declarations: Dcl ::= U :SP | U :SP1
ι−→SP2

A unit declaration introduces a unit name with its type, which is either
a specification or a specification of a parametrized unit, determined by a
specification of its parameter and its result, which extends the parameter
via a signature morphism ι.

Unit terms: T ::= U | U [T fit σ] | T1 and T2

A unit term is either a (non-parametrized) unit name, or a (parametrized)
unit application with an argument that fits via a signature morphism σ, or
an amalgamation of (non-parametrized) units.

The semantics of this Casl fragment can be defined following the same lines
as for full Casl, see [CoFI03,SMT+01,BST02b]. Let us just discuss here the
semantics of specifications of parametrized units. Consider for instance the fol-
lowing simple architectural specification:

arch spec AS
units U1 : SP1 ;

F :SP1
ι−→SP2;

result F [U1]

To be well-formed, the specification SP1
ι−→SP2 of the parametrized unit F

should be such that [[SP2]] ι ⊆ [[SP1]].6 Let Σ1 and Σ2 be the respective sig-

6 Given a signature morphism ι: Σ1 → Σ2 and a Σ2-model M2 ∈ Mod(Σ2), M2 ι ∈
Mod(Σ1) is the reduct of M2 w.r.t. ι to a Σ1-model defined in the usual way; this
obviously extends further to classes of Σ2-models.

natures of SP1 and SP2. To realize the specification SP1
ι−→SP2, we should

provide a “program fragment” ∆P (i.e., a parametrized program, see [Gog84])
that extends any realization P1 of SP1 to a realization P2 of SP2, which we will
write as ∆P (P1). The basic semantic property required is that for all programs
P1 such that [[P1]] ∈ [[SP1]], ∆P (P1) is a program that extends P1 and realizes
SP2 (semantically: [[∆P (P1)]] ι = [[P1]] and [[∆P (P1)]] ∈ [[SP2]]). This amounts
to requiring ∆P to determine a partial function7 [[∆P]]:Mod(Σ1) →? Mod(Σ2)
that “preserves” its argument whenever it is defined, is defined on (at least) all
models in [[SP1]],8 and yields a result in [[SP2]] when applied to a model in [[SP1]].
This leads to the following definitions.

Definition 1. Given a signature morphism ι:Σ1 → Σ2, a local construction
along ι is a persistent partial function F :Mod(Σ1) →? Mod(Σ2) (for each
A1 ∈ dom(F), F (A1) ι = A1). We write Mod(Σ1

ι−→Σ2) for the class of all
local constructions along ι.

Definition 2. A local construction F along ι:Sig(SP1) → Sig(SP2) is strictly
correct w.r.t. SP1 and SP2 if for all models A1 ∈ [[SP1]], A1 ∈ dom(F) and
F (A1) ∈ [[SP2]]. We write [[SP1

ι−→SP2]] for the class of all local constructions
along ι that are strictly correct w.r.t. SP1 and SP2.

The class [[SP1
ι−→SP2]] is empty if there is some model of SP1 that cannot

be extended to a model of SP2; then we say that SP1
ι−→SP2 is inconsistent.

The crucial idea here is that while programs (closed software components) are
represented as Casl models, parametrized programs (generic software compo-
nents) are represented as persistent partial functions mapping models to models.

Instantiation of such generic modules is then simply function application.
This may be further complicated in Casl by cutting the argument out of a larger
“global” context via some fitting morphism, and putting the result back into that
context. (Hence the terminology “local construction”.) The latter involves the
amalgamation construct, which puts together models (non-parametrized units)
sharing common parts, as discussed in detail in [SMT+01].

Note that in the architectural specification AS above, although F is generic
it is only instantiated once. Genericity is used here merely to separate the task
of implementing SP1 from the task of implementing the rest of SP2. This may
be stressed by making the generic unit anonymous, and treating U1 as an import
for the unit that implements SP2. In Casl, this is written as follows:

arch spec AS′

units U1 : SP1 ;
U2 : SP2 given U1 ;

result U2

Semantically, this is essentially equivalent to AS except that the generic unit
remains anonymous and there is an explicit name for the result.
7 As in Casl, X →? Y denotes the set of partial functions from X to Y .
8 Intuitively, ∆P (P1) is “statically” well-formed as soon as P1 has the right signature,

but needs to be defined only for arguments that realize SP1.

5 Observational Equivalence

So far, we have followed the usual interpretation for basic specifications given
as sets of axioms over some signature, which is to require models of such a
basic specification to satisfy all its axioms. However, in many practical examples
this turns out to be overly restrictive. The point is that only a subset of the
sorts in the signature of a specification are typically intended to be directly
observable — the others are treated as internal, with properties of their elements
made visible only via observations: terms producing a result of an observable
sort, and predicates. Often there are models that do not satisfy the axioms
“literally” but in which all observations nevertheless deliver the required results.
This calls for a relaxation of the interpretation of specifications, as advocated in
numerous “observational” or “behavioural” approaches, going back at least to
[GGM76,Rei81]. Two approaches are possible:

– introduce an “internal” observational indistinguishability relation between
elements in the carrier of each model, and re-interpret equality in the axioms
as indistinguishability; or

– introduce an “external” observational equivalence relation on models over
each signature, and re-interpret specifications by closing their class of models
under such equivalence.

It turns out that under some acceptable technical conditions, the two approaches
are closely related and coincide for most basic specifications [BHW95,BT96]. We
follow the second approach here.

From now on, for the sake of simplicity, we will assume that the set of ob-
servable sorts is empty and so predicates are the only observations. Note that
this is not really a restriction, since one can always treat a sort as observable by
introducing an “equality predicate” on it.

Definition 3. Consider a signature Σ. A correspondence between two Σ-models
A,B, written ρ:A ./ B, is a relation ρ ⊆ |A| × |B| that is closed under the oper-
ations9 and preserves and reflects the predicates.10 Two models A,B ∈ Mod(Σ)
are observationally equivalent, written A ≡ B, if there exists a correspondence
between them.

This formulation is due to [Sch87] (cf. “simulations” in [Mil71] and “weak ho-
momorphisms” in [Gin68]) and is equivalent to other standard ways of defining
observational equivalence between algebras, where a special role is played by
observable equalities, i.e., equalities between terms of observable sorts.

9 That is, for f : s1 × . . . × sn → s in Σ, a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈
|B|s1 , . . . , bn ∈ |B|sn , if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn then fA(a1, . . . , an) is de-
fined iff fB(b1, . . . , bn) ∈ ρs is defined, and then (fA(a1, . . . , an), fB(b1, . . . , bn)) ∈ ρs.

10 That is, for p: s1 × . . .× sn in Σ, a1 ∈ |A|s1 , . . . , an ∈ |A|sn and b1 ∈ |B|s1 , . . . , bn ∈
|B|sn , if (a1, b1) ∈ ρs1 , . . . , (an, bn) ∈ ρsn then pA(a1, . . . , an) ⇐⇒ pB(b1, . . . , bn).

For any specification SP with Sig(SP) = Σ, we define its observational in-
terpretation by abstracting from the standard interpretation as follows:

Abs≡(SP) = {A ∈ Mod(Σ) | A ≡ B for some B ∈ [[SP]]}.

6 Observational Interpretation of Architectural
Specifications

The observational interpretation of specifications sketched in the previous sec-
tion leads to a more liberal notion of refinement of specifications. Given two
specifications SP and SP ′ with the same signature, we define:

SP ≡; SP ′ ⇐⇒ [[SP ′]] ⊆ Abs≡(SP)

This observational refinement concept means that now we consider that a
program P is a correct realization of a specification SP if it determines a Sig(SP)-
model which is observationally equivalent to an SP -model, thus relaxing the
requirements spelled out in Sect. 3.

The crucial issue is now to understand how to re-interpret the semantics of
architectural specifications to take account of the observational interpretation of
specifications. Surprisingly enough, there is not much to change in the semantics
of architectural specifications, the essential modifications to be made concerning
only the semantics of specifications of parametrized units.

The key insight is that we should require local constructions to satisfy a
“stability” property, see [Sch87].

Definition 4. A local construction F along ι:Σ1 → Σ2 is stable if it preserves
observational equivalence of models, i.e., for any Σ1-models A,B such that A ≡
B, if A ∈ dom(F) then B ∈ dom(F) and F (A) ≡ F (B).

While stability seems to be an obvious requirement to be imposed on local
constructions, it turns out that it is not quite strong enough for our purposes.
The reason is that when applying a local construction, the argument may be
“cut out” of a larger global context where more observations are available. To
restrict attention to conditions that will be both strong enough and essentially
local to the local constructions involved, we define local stability as follows.

Definition 5. A local construction F along ι:Σ1 → Σ2 is locally stable if for
any Σ1-models A,B and correspondence ρ1:A ./ B, A ∈ dom(F) if and only if
B ∈ dom(F) and moreover, if this is the case then there exists a correspondence
ρ2:F (A) ./ F (B) that extends ρ1 (i.e., ρ2 ι = ρ1).

Obviously, local stability implies stability. However, it also implies that using
the local construction in a global context as suggested above yields a stable
construction at the global level as well.

We now have the necessary ingredients to provide a re-interpretation of spec-
ifications of parametrized units.

Definition 6. A local construction F along ι:Sig(SP1) → Sig(SP2) is observa-
tionally correct w.r.t. SP1 and SP2 if for every model A1 ∈ [[SP1]], A1 ∈ dom(F)
and there exists a model A2 ∈ [[SP2]] and correspondence ρ2:A2 ./ F (A1) such
that ρ2 ι is the identity. We write Mod lc(SP1

ι−→SP2) for the class of all locally
stable constructions along ι that are observationally correct w.r.t. SP1 and SP2.

This implies that A2 ≡ F (A1) and A2 ι = A1, which is in general stronger

than F (A1) ∈ Abs≡(SP2). It follows that if F ∈ Mod lc(SP1
ι−→SP2) then there

is some F ′ ∈ [[SP1
ι−→SP2]] such that dom(F ′) = dom(F) and for each A1 ∈

[[SP1]], F ′(A1) ≡ F (A1). But in general [[SP1
ι−→SP2]] 6⊆ Mod lc(SP1

ι−→SP2),
as strictly correct local constructions need not be stable. Moreover, it may hap-
pen that there are no stable observationally correct constructions, even if there
are strictly correct ones: that is, we may have Mod lc(SP1

ι−→SP2) = ∅ even if
[[SP1

ι−→SP2]] 6= ∅. For a more detailed treatment of stability and of observa-
tional interpretation of architectural specifications, see [BST02b].

The conclusion here is that now parametrized program modules, i.e., generic
software components, are modelled as persistent locally stable partial functions.
It is important to understand that stable constructions are those that respect
modularity in the software construction process. That is, such constructions can
use the ingredients provided by their parameters, but they cannot take advantage
of their particular internal properties. Thus, (local) stability is a directive for
language design, rather than a condition to be checked on a case-by-case basis:
in a language with good modularization facilities, all constructions that one can
code should be locally stable.

7 Example

The following example illustrates some of the points in the previous sections.
The notation of Casl is hopefully understandable without further explanation;
otherwise see [ABK+02].

We start with a simple specification of sets of strings.

spec String = sort String . . .

spec StringSet = String
then sort Set

ops empty : Set ;
add : String × Set → Set

pred present : String × Set
∀ s, s′ : String , t : Set
• ¬present(s, empty)
• present(s, add(s, t))
• s 6= s′ =⇒ (present(s, put(s′, t)) ⇐⇒ present(s, t))

We now refine this specification to introduce the idea of using a hash table
implementation of sets.

spec Int = sort Int . . .
spec Elem = sort Elem
spec Array[Elem] = Elem and Int

then sort Array [Elem]
ops empty : Array [Elem];

put : Int × Elem ×Array [Elem] → Array [Elem];
get : Int ×Array [Elem] →? Elem

pred used : Int ×Array [Elem]
∀ i, j : Int ; e, e′ : Elem; a : Array [Elem]
• i 6= j =⇒ put(i, e′, put(j, e, a)) = put(j, e, put(i, e′, a))
• put(i, e′, put(i, e, a)) = put(i, e′, a)
• ¬used(i, empty)
• used(i, put(i, e, a))
• i 6= j =⇒ (used(i, put(j, e, a)) ⇐⇒ used(i, a))
• get(i, put(i, e, a)) = e

spec Elem Key = Elem and Int
then op hash : Elem → Int

spec HashTable[Elem Key] = Elem Key and Array[Elem]
then ops add : Elem ×Array [Elem] → Array [Elem];

putnear : Int × Elem ×Array [Elem] → Array [Elem]
preds present : Elem ×Array [Elem]

isnear : Int × Elem ×Array [Elem]
∀ i : Int ; e : Elem; a : Array [Elem]
• add(e, a) = putnear(hash(e), e, a)
• ¬used(i, a) =⇒ putnear(i, e, a) = put(i, e, a)
• used(i, a) ∧ get(i, a) = e =⇒ putnear(i, e, a) = a
• used(i, a) ∧ get(i, a) 6= e =⇒

putnear(i, e, a) = putnear(succ(i), e, a)
• present(e, a) ⇐⇒ isnear(hash(e), e, a)
• ¬used(i, a) =⇒ ¬isnear(i, e, a)
• used(i, a) ∧ get(i, a) = e =⇒ isnear(i, e, a)
• used(i, a) ∧ get(i, a) 6= e =⇒

(isnear(i, e, a) ⇐⇒ isnear(succ(i), e, a))
spec StringKey = String and Int

then op hash : String → Int
spec StringHashTable =

HashTable[StringKey] with Array [String] 7→ Set
reveal String ,Set , empty , add , present

It is easy to check that StringHashTable is a refinement of StringSet. This is
a fairly natural structure, building on a specification of arrays that is presumably
already available, and including a generic specification of hash tables that may
be reused in future.

However, the structure of this specification does not prescribe the structure
of the final implementation! For example, we may decide to adopt the structure
given by the following architectural specification:

arch spec StringHashTableDesign =
units N : Int;

S : String;
SK : StringKey given S, N ;
A : Elem → Array[Elem] given N ;
HT : StringHashTable

given {A[SK] with Array [String] 7→ Set}
result HT reveal String ,Set , empty , add , present

The structure here differs in an essential way from the earlier one since we have
chosen to forego genericity of hash tables, implementing them for the special
case of strings.

Further development might lead to a final implementation in Standard ML,
including the following modules. The task of extracting Standard ML signatures
(ARRAY_SIG etc.) from the corresponding Casl signatures of the specifications
given above is left for the reader.

functor A(E : ELEM_SIG) : ARRAY_SIG =
struct
open E
type array = int -> elem
exception unused
fun empty(i) = raise unused
fun put(i,e,a)(j) = if i=j then e else a(j)
fun get(i,a) = a(i)
fun used(i,a) = (a(i); true) handle unused => false

end

structure HT : STRING_HASH_TABLE_SIG =
struct
open SK
structure ASK = A(struct type elem=string end); open ASK
type set = array
fun putnear(i,s,t) =

if used(i,t)
then if get(i,t)=s then t else putnear(i+1,s,t)
else put(i,s,t)

fun add(s,t) = putnear(hash(s),s,t)
fun isnear(i,s,t) =

used(i,t) andalso (get(i,t)=s orelse isnear(i+1,s,t))
fun present(s,t) = isnear(hash(s),s,t)

end

The functor A is strictly correct with respect to Elem and Array[Elem], and
the structure HT satisfies the axioms of HashTable[StringKey] literally (at
least on the reachable part, and assuming the use of extensional equality on

functions). The former would not hold if, for instance, we implemented arrays
so as to store the history of updates:

functor A’(E : ELEM_SIG) : ARRAY_SIG =
struct
open E
type array = int -> elem list
fun empty(i) = nil
fun put(i,e,a)(j) = if i=j then e::a(j) else a(j)
fun get(i,a) = let val e::_=a(i) in e end
fun used(i,a) = not(null a(i))

end

Then A’ is not strictly correct with respect to Elem and Array[Elem] (it vi-
olates the axiom put(i, e′, put(i, e, a)) = put(i, e′, a)) but it is observationally
correct. Similarly we might change the code for HT to count the number of inser-
tions of each string. This would violate the axiom used(i, a) ∧ get(i, a) = s =⇒
putnear(i, s, a) = a, but again would be correct under an observational interpre-
tation.

The Standard ML functors above are locally stable: they respect encapsula-
tion since they do not use any properties of their arguments other than what
is spelled out in their parameter signatures. Indeed, it is impossible to express
non-stable functors in Standard ML.

Now let us try to instead directly implement the structure expressed by
the specification StringHashTable. That structure may be captured by the
following architectural specification:

arch spec StringHashTableDesign′ =
units N : Int;

A : Elem → Array[Elem] given N ;
HT ′ : Elem Key×Array[Elem] → HashTable[Elem Key];
S : String;
SK : StringKey given S, N ;

result HT ′[SK][A[S]] reveal String ,Set , empty , add , present

Then we might try

functor HT’
(structure EK : ELEM_KEY_SIG and A : ARRAY_ELEM_KEY_SIG

sharing type EK.elem=A.elem) : HASH_TABLE_ELEM_KEY_SIG =
struct
open EK A
fun putnear(i,e,a) =

if used(i,a)
then if get(i,a)=e then a else putnear(i+1,e,a)
else put(i,e,a)

fun add(e,a) = putnear(hash(e),e,a)

fun isnear(i,e,a) =
used(i,a) andalso (get(i,a)=e orelse isnear(i+1,e,a))

fun present(e,a) = isnear(hash(e),e,a)
end

However, this does not define a locally stable functor, and is in fact not cor-
rect code in Standard ML, since it requires equality on elem (in get(i,a)=e)
which is not required by ELEM_KEY_SIG. There is no locally stable functor sat-
isfying the required specification. So, what is a reasonable structure for the
requirements specification, as expressed in StringHashTable, turned out to
be inappropriate as a modular design.

There is of course more than one way of changing the structure to make it
appropriate; one was provided above in StringHashTableDesign. Another
would be to require equality on Elem in Elem Key, by introducing an equality
predicate — this corresponds to making elem an “eqtype” in ELEM_KEY_SIG.
One point of architectural specifications is that such change of structure is an
important design decision that deserves to be recorded explicitly.

8 Conclusions and Further Work

In this paper, we have recalled how the standard and quite general view of formal
software development by stepwise refinement can be refined to take into account
some notion of components, leading to what is called architectural specifications
in Casl. An important outcome of this view is the interpretation of software
components by means of local constructions.

In a second step, we have taken into account the fact that a program need not
be a strictly correct realization of the given requirements specification: it need
only be observationally correct. Then we have pointed out how observational
interpretation of specifications leads to the key — and quite natural — stability
requirement on local constructions, and how this leads to a re-interpretation of
software components by means of persistent locally stable partial functions.

A challenging issue is now to understand how far the concepts developed
for our somewhat simplified view of software components can be inspiring for
a more general view of components, in particular for the case of system com-
ponents implemented as communicating processes. While this is clearly beyond
the scope of this paper, we nevertheless imagine that a promising direction of
future research would be to look for an adequate counterpart of (local) stability
in this more general setting.

References

[Ada94] Ada Reference Manual: Language and Standard Libraries, version 6.0. In-
ternational standard ISO/IEC 8652:1995(E). http://www.adahome.com/
rm95/ (1994).

[AS02] D. Aspinall and D. Sannella. From specifications to code in Casl.
Proc. 9th Intl. Conf. on Algebraic Methodology and Software Technology,
AMAST’02. Springer LNCS 2422, 1–14 (2002).

[ABK+02] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P.D. Mosses,
D. Sannella and A. Tarlecki. Casl: The Common Algebraic Specification
Language. Theoretical Computer Science 286:153–196 (2002).

[AKBK99] E. Astesiano, B. Krieg-Brückner and H.-J. Kreowski, eds. Algebraic Foun-
dations of Systems Specification. Springer (1999).

[BW82] F. Bauer and H. Wössner. Algorithmic Language and Program Develop-
ment. Springer (1982).

[BH93] M. Bidoit and R. Hennicker. A general framework for modular implemen-
tations of modular systems. Proc. 4th Int. Conf. on Theory and Practice of
Software Development TAPSOFT’93, Springer LNCS 668, 199–214 (1993).

[BH98] M. Bidoit and R. Hennicker. Modular correctness proofs of behavioural
implementations. Acta Informatica 35(11):951–1005 (1998).

[BHW95] M. Bidoit, R. Hennicker and M. Wirsing. Behavioural and abstractor spec-
ifications. Science of Computer Programming 25:149–186 (1995).

[BST02a] M. Bidoit, D. Sannella and A. Tarlecki. Architectural specifications in
Casl. Formal Aspects of Computing, 13:252–273 (2002).

[BST02b] M. Bidoit, D. Sannella and A. Tarlecki. Global development via local ob-
servational construction steps. Proc. 27th Intl. Symp. on Mathematical
Foundations of Computer Science, MFCS’02. Springer LNCS 2420, 1–24
(2002).

[BT96] M. Bidoit and A. Tarlecki. Behavioural satisfaction and equivalence in
concrete model categories. Proc. 20th Coll. on Trees in Algebra and Com-
puting CAAP’96, Linköping, Springer LNCS 1059, 241–256 (1996).

[BG80] R. Burstall and J. Goguen. The semantics of Clear, a specification lan-
guage. Proc. Advanced Course on Abstract Software Specifications, Copen-
hagen. Springer LNCS 86, 292–332 (1980).

[CoFI03] The CoFI Task Group on Semantics. Semantics of the Common Algebraic
Specification Language Casl. Available from http://www.cofi.info/

(2003).
[EK99] H. Ehrig and H.-J. Kreowski. Refinement and implementation. In:

[AKBK99], 201–242.
[EKMP82] H. Ehrig, H.-J. Kreowski, B. Mahr and P. Padawitz. Algebraic implemen-

tation of abstract data types. Theoretical Computer Science 20:209–263
(1982).

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I: Equa-
tions and Initial Semantics. Springer (1985).

[Gan83] H. Ganzinger. Parameterized specifications: parameter passing and imple-
mentation with respect to observability. ACM Transactions on Program-
ming Languages and Systems 5:318–354 (1983).

[GGM76] V. Giarratana, F. Gimona and U. Montanari. Observability concepts in
abstract data type specifications. Proc. 5th Intl. Symp. on Mathematical
Foundations of Computer Science, Springer LNCS 45, 576–587 (1976).

[Gin68] A. Ginzburg. Algebraic Theory of Automata. Academic Press (1968).
[Gog84] J. Goguen. Parameterized programming. IEEE Trans. on Software Engi-

neering SE-10(5):528–543 (1984).
[GB92] J. Goguen and R. Burstall. Institutions: abstract model theory for speci-

fication and programming. Journal of the ACM 39:95–146 (1992).

[GM82] J. Goguen and J. Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. Proc. 9th Intl. Coll. on Au-
tomata, Languages and Programming. Springer LNCS 140, 265–281 (1982).

[HN94] R. Hennicker and F. Nickl. A behavioural algebraic framework for mod-
ular system design and reuse. Selected Papers from the 9th Workshop on
Specification of Abstract Data Types, Caldes de Malavella. Springer LNCS
785, 220–234 (1994).

[Hoa72] C.A.R. Hoare. Proofs of correctness of data representations. Acta Infor-
matica 1:271–281 (1972).

[KST97] S. Kahrs, D. Sannella and A. Tarlecki. The definition of Extended ML: a
gentle introduction. Theoretical Comp. Sci. 173:445–484 (1997).

[Mil71] R. Milner. An algebraic definition of simulation between programs. Proc.
2nd Intl. Joint Conf. on Artificial Intelligence, London, 481–489 (1971).

[Pau96] L. Paulson. ML for the Working Programmer, 2nd edition. Cambridge
Univ. Press (1996).

[Rei81] H. Reichel. Behavioural equivalence — a unifying concept for initial and
final specification methods. Proc. 3rd Hungarian Comp. Sci. Conference,
27–39 (1981).

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation 76:165–210 (1988).

[ST88b] D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: implementations revisited. Acta Informat-
ica 25:233–281 (1988).

[ST89] D. Sannella and A. Tarlecki. Toward formal development of ML programs:
foundations and methodology. Proc. Colloq. on Current Issues in Program-
ming Languages, Intl. Joint Conf. on Theory and Practice of Software De-
velopment TAPSOFT’89, Barcelona. Springer LNCS 352, 375–389 (1989).

[ST97] D. Sannella and A. Tarlecki. Essential concepts of algebraic specifica-
tion and program development. Formal Aspects of Computing 9:229–269
(1997).

[Sch87] O. Schoett. Data Abstraction and the Correctness of Modular Program-
ming. Ph.D. thesis, report CST-42-87, Dept. of Computer Science, Univ.
of Edinburgh (1987).

[Sch90] O. Schoett. Behavioural correctness of data representations. Science of
Computer Programming 14:43–57 (1990).

[SM02] L. Schröder and T. Mossakowski. HasCasl: Towards integrated speci-
fication and development of functional programs. Proc. 9th Intl. Conf.
on Algebraic Methodology and Software Technology, AMAST’02. Springer
LNCS 2422, 99–116 (2002).

[SMT+01] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman and B. Klin. Se-
mantics of architectural specifications in Casl. Proc. 4th Intl. Conf. Fun-
damental Approaches to Software Engineering FASE’01, Genova. Springer
LNCS 2029, 253–268 (2001).

[Szy98] C. Szyperski. Component Software: Beyond Object-Oriented Programming.
ACM Press and Addison-Wesley, New-York, N.Y. (1998).

