
Toward Formal Development of Programs from AlgebraicSpeci�cations:Model{Theoretic Foundations1Donald SannellaDepartment of Computer ScienceUniversity of EdinburghEdinburgh, UK Andrzej TarleckiInstitute of Computer SciencePolish Academy of SciencesWarsaw, PolandAbstract: This paper presents in an informal way the main ideas underlying our workon the model-theoretic foundations of algebraic speci�cation and program development.We attempt to o�er an overall view, rather than new results, and focus on the basicmotivation behind the technicalities presented elsewhere and on the conclusions fromthis work.IntroductionThe long-term goal of work on algebraic speci�cation is to provide a formal basis to supportthe systematic development of correct programs from speci�cations by means of veri�edre�nement steps. There has been a large body of technical work directed towards thisimportant goal. Many interesting technical concepts have been introduced and quite anumber of non-trivial results have been stated and proved (see [BKLOS 91] for a review anda comprehensive list of references). Instead of providing yet another piece in the puzzle, inthis paper we try to sketch on a rather informal level our views on how some of the existingpieces �t into an overall picture of what is important in the light of the ultimate goal. Wefocus on the motivations for certain technicalities which we think are of crucial importance,and try to draw some conclusions.Our earlier papers already mentioned many of the points we make here, such as theuse of \institutions" to ensure su�cient generality of the proposed framework, and theuse of \constructor implementations" to capture the essence of program development steps(including \design" steps which involve a decomposition into independent programmingtasks). Some of these ideas were hidden amongst the technical de�nitions and results, andso we think they are worth restating here more prominently, with more careful argumentsin some cases. For example, we go into a bit more detail to justify our conviction thatmodel-classes, not theories, form the appropriate semantic domain for speci�cations. Wealso present more clearly our current views on the role of behavioural equivalence in thedevelopment process.Since the emphasis here is on motivation and intuition, we refer the interested reader tothe papers we have published on these and related topics over the last few years and to aforthcoming monograph [ST 93] for the corresponding technical details.1To appear in Proc. 19th Intl. Colloq. on Automata, Languages and Programming, Vienna. SpringerLNCS (1992). 1

1 The logical frameworkThe overall aim of work on algebraic speci�cation is to provide semantic foundations forthe development of programs that are correct w.r.t. to their requirements speci�cations. Inother words, the program developed must exhibit the required input/output behaviour. Weview the correctness of a program as its most crucial property. Other desirable properties(e�ciency, robustness, reliability etc.) are disregarded in this work. Of course, this does notmean that we do not care about them, but this approach does not provide any formal meansfor their analysis.The assumption that the correctness of the input/output behaviour of a program takesprecedence over all its other properties allows us to abstract away from concrete detailsof code and algorithms, and to model program functions as mathematical functions. Suchfunctions are never considered in isolation, but always in units (programmodules) comprisinga collection of related functions together with the data domains they operate on. At thislevel of abstraction we are dealing directly with the information essential for the analysisof program correctness, without the burden of irrelevant details. This leads to the mostfundamental assumption underlying work on algebraic speci�cation: programs are modelledas many-sorted algebras.We refrain from recalling the formal de�nition of many-sorted algebra (see e.g. [EM 85]).It is enough to know that an algebra consists of a collection of carriers (sets of data) andoperations on them. Algebras are classi�ed by signatures, naming the algebra components(sorts and operations) and thus providing the basic vocabulary for using the program andfor making assertions about its properties. The class of all �-algebras (algebras over thesignature �) will be denoted by Alg (�). For any program P , the algebra it denotes iswritten as [[P]] 2 Alg(Sig(P)), where Sig(P) is the underlying signature of P .For any signature, we need a logical system for describing properties of algebras overthat signature. Many-sorted equational logic (cf. [GM 85, EM 85]) is the most commonly-used system for this purpose, at least in the area of algebraic speci�cation. Properties of�-algebras (or rather, of their operations) may be described by equations over �: we knowwhat it means for a �-algebra A to satisfy a �-equation ', written A j= '. This alsodetermines a notion of logical consequence: a set of axioms � entails an equation ', written� j= ', if every algebra that satis�es all the axioms in � also satis�es '.Very rarely in the process of program development does the user work with just a singlesignature: operations and sorts of data are renamed, added and hidden according to whatseems most suitable. To take account of this, signatures are equipped with a notion ofsignature morphism (cf. [EM 85]). A signature morphism � : � ! �0 maps the sort andoperation names of � to those of �0. This determines in a natural way a translation ofany �-equation ' to a �0-equation �('), and on the semantic level, a translation of any�0-algebra A0 2 Alg(�0) to its reduct A0 � 2 Alg(�). (Notice the change of direction!)The above framework is often criticised (quite rightly!) as rather restrictive and cumber-some to use in practice. Some important features of programs, for example non-terminationand higher-order functions, are di�cult to model in algebras; equations are often not expres-sive enough to conveniently capture properties which one may want to state as requirements.Fortunately, this de�ciency is relatively easy to overcome using the concept of institution.This concept was introduced by Goguen and Burstall [GB 84] to capture the informal notionof a logical system and was strongly inuenced by the understanding of this notion in thetheory of speci�cations (see [Bar 74] for an early account of abstract model theory covering2

similar ideas approached from the viewpoint of classical logic and model theory).An institution de�nes a notion of a signature together with for any signature �, a setof �-sentences, a class of �-models and a satisfaction relation between �-models and �-sentences. Moreover, signatures come equipped with a notion of a signature morphism. Anysignature morphism induces a translation of sentences and a translation of models (the lattergoing into the opposite direction as above). The only semantic requirement is that when wechange signatures using a signature morphism, the induced translations of sentences and ofmodels preserve the satisfaction relation. Many standard logical systems have been presentedexplicitly as institutions (cf. [GB 90]). It should be easy to see that in fact any usual logicalsystem with a well-de�ned model theory may be put into this mould.Everything below, barring concrete examples, works in the framework of an arbitraryinstitution, even though for the reader's convenience we avoid \institutional jargon" anduse more familiar terms (signature, algebra, axiom). Consequently, everything in this paperapplies to all of the many di�erent concepts of \signature", \algebra" and \axiom" usedin the theory and practice of software speci�cation. This is a general feature of our line ofresearch: most of the technicalities and ideas are parameterised by an arbitrary institution.This results in \reusable" methodologies, theorems, and (ultimately) tools. This approachoriginated in [GB 84]; in [ST 87, ST 88a, ST 88b, ST 91a] various components of a frameworkfor software speci�cation and development have been elaborated following this idea.Strict followers of the early approaches to algebraic speci�cation might view this as analarming departure, and might protest that what we are doing is not algebraic speci�cationat all. In our view the essential idea of algebraic speci�cation is the stress on \algebra-like" models and the use of logical axioms to describe such models. The use of ordinarymany-sorted algebras and equations is but a special case of this. Just as it was necessaryto generalise from classical single-sorted algebras to many-sorted algebras in order to dealwith programs handling several kinds of data, it is necessary to adopt more complicatedmodels to deal with other features of programming languages (polymorphism, higher-orderfunctions, in�nite behaviour, lazy evaluation, etc.). The essence is that we need a notion ofa semantic structure which is detailed enough to capture the program properties we want toanalyse and abstract enough to make this analysis feasible. Moreover, to specify and reasonabout programs, we need a logical system with a model theory based on such structures.2 Speci�cationsWhat is a speci�cation? Clearly, since our aim is a formal approach to software development,speci�cations must be objects as formal as (for example) programs are. That is, we haveto have a formal language to write speci�cations down and to provide a vehicle on whichformal techniques to manipulate speci�cations may be based. It is important for such aspeci�cation language to provide a collection of convenient notational conventions which areeasy to understand and use. One of the basic constituents of a speci�cation will be a list ofaxioms the speci�ed program is required to satisfy.Any speci�cation language must be given a precise, formal semantics. Here, the �rstquestion to ask is what the meanings of speci�cations are, i.e. what speci�cations denote.Whatever the full answer is, a speci�cation at least determines the underlying signature ofthe speci�ed system. For any speci�cation SP , we write this signature as Sig(SP). Then,one may attempt to give a semantics of speci�cations on (at least) three di�erent levels:3

� Presentation level: a speci�cation denotes a signature and a set of axioms over thissignature (this set may be required to be �nite or at least recursive or recursivelyenumerable). At this level, the meaning of a speci�cation is close to the syntacticform in which speci�cations are written; the semantics extracts the axioms, resolvesreferences to other speci�cations, etc.� Theory level: a speci�cation denotes a signature and a set of axioms over this signaturewhich is closed under logical consequence. At this level, the set of axioms is much largerthan what has been written explicitly (it is typically in�nite, usually not recursive andsometimes not r.e.); thus the meaning of a speci�cation is no longer strictly syntactic.The semantics performs the closure under logical consequence.� Model-class level: a speci�cation denotes a signature and a class of algebras over thissignature. At this level, the meaning of a speci�cation is entirely non-syntactic (exceptfor the signature part). The semantics abstracts away from the axioms, taking intoaccount only their possible realizations.The ultimate role of any speci�cation is to describe a class of programs which we wantto view as its correct realizations. Since we have already decided to model programs asalgebras, whichever one of these three levels we choose for the semantic domain, giventhe natural mappings from presentations to theories and from theories to model classes,ultimately speci�cations determine classes of algebras.For any speci�cation SP , the algebras that model programs which are considered to becorrect realizations of SP are referred to as the models of SP , and the class of all modelsof SP is denoted by [[[SP]]] � Alg(Sig(SP)). This semantics determines a notion of logicalconsequence of a speci�cation: a speci�cation SP entails an axiom ', written SP j= ', if 'holds in every model of SP .Of course, a speci�cation SP may admit a number of di�erent program behaviours,and so the class [[[SP]]] may contain non-isomorphic algebras (hence we cover so-called loosespeci�cations). Or it might be empty.For any signature �, there is a Galois connection between classes of �-algebras and setsof �-axioms, assigning to any set of axioms the class of all algebras that satisfy them, andto any class of algebras the set of all axioms that hold in them (see [GB 84]). The closedelements of this Galois connection are theories, that is, sets of axioms determined by classes ofalgebras; they are in one-to-one correspondence with closed (i.e., de�nable by sets of axioms)classes of algebras. Therefore, it is obvious that as a semantic domain for speci�cations thetheory level is less expressive than either the presentation or the model-class level. The lattertwo are, however, incomparable: there are properties which can be naturally studied at thepresentation level (for example, �niteness of an axiomatisation) with no natural counterpartat the model-class level, and vice versa.It is not immediately obvious that working at the model-class level brings any essentialbene�ts over working with closed classes of algebras only, or equivalently, working at thetheory level. It is not clear whether non-closed classes of algebras ever arise as meanings ofspeci�cations; even if they do arise, it is not clear whether this makes any di�erence for theuse of speci�cations. The following example exhibits both of these phenomena (we use some4

ad hoc notation for writing speci�cations with a hopefully clear intuitive interpretation):SP 8>>>>>>>><>>>>>>>>: enrichSP 18>>><>>>: hide a inSP 08><>: sorts s; s0opns a : sb; c : s0by 8x:s: b = cThis example relies on the following well-known phenomenon [GM 85]: 8x:s: b = c does notimply b = c, although it implies b = c for Sig(SP)-algebras with non-empty carrier of sort s.Now, at the model-class level, [[[SP0]]] is the class of all algebras (over the indicatedsignature) and [[[SP1]]] consists of all algebras that are reducts of Sig (SP0)-algebras, obtainedby forgetting the constant a. Consequently, [[[SP1]]] contains only those algebras having anon-empty carrier of sort s. Then, selecting the algebras that satisfy 8x:s: b = c yields theclass [[[SP]]] | and all these algebras satisfy b = c (since for the algebras in [[[SP1]]], b = cfollows from 8x:s: b = c). Thus, under the model-class interpretation, the property b = c isa consequence of the speci�cation SP .On the other hand, at the theory level, the theory of SP 0 is clearly the trivial equationaltheory, and so is the theory of SP1 (there are no equations capable of expressing the fact thata carrier is non-empty). Then, the additional axiom 8x:s: b = c in the context of the theoryof SP1 does not entail the equation b = c. Thus, under the theory-level interpretation, b = cis not ensured by the speci�cation SP .This discrepancy (and similar examples one may construct without relying on the \emptycarriers" phenomenon) faces us with the necessity to choose between theories and classes ofalgebras as the basic semantic domain for speci�cations. The choice is obvious: the objectsof ultimate interest here are programs, which are modelled as algebras, while axioms andtheories are nothing more than logical means for describing them. The lack of agreementbetween theories and classes of algebras shows that theories are not adequate as denotationsof speci�cations.The above speci�cation SP is a trivial example of a structured speci�cation, in which acomplex speci�cation is built from simpler ones. Any speci�cation formalism must o�er sucha possibility if it is to be used in practice: a speci�cation of a real-life system must state ahuge number of properties, and building such a speci�cation in an unstructured, monolithicway would result in a long list of axioms which would be neither understandable nor useful.Moreover, the structure of a speci�cation may be used to express intangible aspects of thespeci�er's knowledge of the problem. For this purpose, a speci�cation language must providesome speci�cation-building operations used to put together small speci�cations to form morecomplex ones [BG 77]. Then, an understanding of a large speci�cation is achieved via anunderstanding of its components. Since we have chosen classes of algebras as meaningsof speci�cations, such speci�cation-building operations semantically correspond simply tofunctions on classes of algebras.Choosing appropriate speci�cation-building operations to be included in a speci�cationlanguage is a non-trivial task (even though by now there is a list of typical ones that speci�-cation languages are based on). It involves a certain trade-o� between the expressive powerof the speci�cation language and the ease of understanding and dealing with the operations.One way to circumvent this problem is to �rst develop a kernel language consisting of aminimal set of very powerful, but perhaps di�cult to use operations, and then build on top5

of it a higher-level, more user-friendly language, perhaps sacri�cing some of the expressivepower to achieve ease of use and ease of understanding. Such an approach has been takenwith the ASL [SW 83, ST 88a, Wir 86] kernel speci�cation language, on top of which suchspeci�cation languages as PLUSS [Gau 84] and Extended ML [ST 91b] have been built.We should stress here that the internal structure of a speci�cation should not constrainthe �nal structure of its implementations. This is one of the consequences of the famousdogma that a speci�cation should describe only the what's of the speci�ed software withoutconstraining any of its how's. In fact, requiring the structure of the initial speci�cationto be preserved in its implementation would be highly unrealistic and unreasonable, eventhough this has been explicitly suggested by some (e.g. [GB 80, Mor 90]) and is implicitin the approach taken by others. The aims of structuring requirements speci�cations areoften contradictory with the aims of structuring software. See for instance [FJ 90] for a nicediscussion of a practical example where such a discrepancy occurs.3 Speci�cation engineeringThe point of constructing a speci�cation is so that it may be used to de�ne a programmingtask by precisely delimiting the range of program behaviours that are to be regarded aspermissible. This statement of the programming task represents a rather idealized view thatthe requirements speci�cation we start with accurately reects the real-life requirements thecustomer expects to be satis�ed. Thus formulated, the programming task allows for nochange to the original speci�cation. Of course, this is not very realistic, and we envisagethat a programmer working with an appropriate support system will be able to try slightlydi�erent ideas, to modify the original formal speci�cation, to experiment with a whole bunch(or better, a tree) of speci�cations.The problem of getting the original requirements speci�cation right is the topic of \re-quirements engineering" [Par 91]. Even though there has been much work on this, we arenot convinced that all the potential of the use of formal speci�cations has been explored.Naturally, there always will be a gap between the informal wishes of the customer and theirformalised version couched as a precise, unambiguous, entirely formal speci�cation. Somemethods involved in the process of passing from the former to the latter may and should�nd a more precise formulation.One major problem within this area is how we can make formal speci�cations easier tounderstand and construct. We have already mentioned a part of the answer in the previoussection: we need good speci�cation languages with good structuring operations allowingspeci�cations to be built and understood in a systematic, modular fashion.Another aspect here is that once a speci�cation is built, the customer should be ableto \play with" it, to test whether or not the speci�cation indeed expresses the propertieshe expects. A traditional approach to this is to engage a team of programmers to builda prototype, a quickly assembled but necessarily bad and simpli�ed realization. This canthen be given to the customer to test. Of course, such an approach is irreplacable for someaspect of the software to be developed. For example, there can be no better way to testa user interface than by playing with some version of it; going through sample sessionswith the system seems to be the only way for a user to get a feel for what working withthe system will be like. In general, however, the prototyping approach has a number ofdisadvantages. First, it involves some extra work to produce a system which is then thrown6

away. More importantly, if the original speci�cation is loose (and it usually is) any prototypewill incorporate choices between the alternative behaviours permitted by the speci�cation,and these choices need not necessarily be mirrored in the �nal implementation. Consequently,the user may conclude that the system will have some properties which are not ensured bythe speci�cation at all, and this undermines the sense of the whole exercise.The overhead of prototyping may be avoided through the use of a rapid prototypingsystem like RAP [Hus 85]. This demands that requirements speci�cations be written in anexecutable speci�cation language, not far from high-level programming languages like Stan-dard ML [MTH 90]. In the fundamental trade-o� between executability and expressiveness,it is clearly the latter which is of central importance in a language intended for writingrequirements speci�cations, so such a strong restriction seems highly undesirable.We believe that for many purposes prototyping should be replaced by theorem proving(see [GH 80] for a similar observation). To check whether a given speci�cation indeedembodies a desirable property, it seems most appropriate to state this property explicitly andthen try to prove that it is a consequence of the speci�cation. This is the most general formof speci�cation testing activity; the more usual approaches via rapid prototyping, symbolicevaluation, term rewriting etc. can easily be seen as some special cases, or rather as somespecial techniques of theorem proving applicable to some particular situations.This indicates a need for good theorem provers. For use in this area, theorem proversshould be able not only to derive consequences of a list of axioms (� j= '), but also toderive consequences of a speci�cation built in a structured way (SP j= '). Theorem proversshould be able to exploit the structure of speci�cations to guide proof search (cf. [SB 83,ST 88a, HST 89, Wir 92]). It would also be extremely useful for a theorem prover, in thecase where it fails to �nd a proof, to provide the user with readable information on where theproof attempts break down, and perhaps even how the speci�cation may be augmented tomake the proof go through | a desirable feature which few contemporary theorem proversexhibit.4 Program developmentGiven a speci�cation SP , the programming task it de�nes is to construct a program P whichis a correct realization of SP , that is such that [[P]] 2 [[[SP]]].There can be no universal recipe which would ensure successful development of a programimplementing a given speci�cation. All we can hope to o�er are methodologies, and perhapssome particular techniques and heuristics oriented towards speci�c problem areas.Perhaps the most fundamental point is that it is not possible to leap in a single bound overthe gap between a high-level user-oriented requirements speci�cation and the very speci�crealm of programs full of technical decisions and algorithmic details. Program developmentshould proceed systematically in a stepwise fashion, gradually enriching the original require-ments speci�cation with more and more detail, incorporating more and more design andimplementation decisions. Such decisions include choosing between the options of behaviourleft open by the speci�cation, between the algorithms which realize this behaviour, betweendata representation schemes, etc. Each such decision should be recorded separately, as aseparate step hopefully consisting of a local modi�cation to the speci�cation. The programdevelopment process is then a sequence of such small, easy to understand and easy to verify7

steps: SP 0���> SP1���> � � ����> SPnIn such a chain, SP0 is the original requirements speci�cation and SP i�1���> SP i for anyi = 1; : : : ; n is an individual re�nement step. The aim is to reach a speci�cation (here, SPn)which is an exact description of a program in full detail, with all the technical decisionsincorporated (it may simply be a program, if our speci�cation formalism is rich enough).Any formal de�nition of such re�nement steps SP ���> SP 0 must incorporate the require-ment that any correct �nal realization of SP 0 must be (or, somewhat more generally, mustgive rise to) a correct realization of SP . Recalling that [[[SP]]] is the class of all admissiblerealizations of SP , this leads to the following straightforward de�nition [SW 83, ST 88b]:SP ���> SP 0 i� [[[SP 0]]] � [[[SP]]]This de�nition ensures that the correctness of the �nal outcome of the stepwise develop-ment process may be inferred from the correctness of the individual re�nement steps:SP 0���> SP1���> � � ����> SPn A 2 [[[SPn]]]A 2 [[[SP0]]]The proof is by an easy induction on the length of the re�nement sequence.Notice that if the �nal speci�cation SPn represents an individual program P , then theconclusion that A 2 [[[SP0]]] for all A 2 [[[SPn]]] is equivalent to our original statement of theprogram development task: [[P]] 2 [[[SP0]]].An indirect way to prove the correctness of the �nal outcome is to notice a stronger fact,namely that consecutive re�nements can be composed (referred to as \vertical composabil-ity" [GB 80]): SP ���> SP 0 SP 0���> SP 00SP ���> SP 00The above gives a formal view of the stepwise development methodology. As mentionedbefore, there can be no universal recipe for coming up with useful re�nements of a givenspeci�cation | necessarily, this is the place where the developer's invention is required.Once a re�nement step is proposed, though, we should be able to prove it correct, that is,we should have some formalism for proving the inclusion between the corresponding modelclasses. Of course, this must incorporate a theorem prover for the underlying logic. Anew need which arises here is that such a formalism must also be able to prove entailmentsbetween two structured speci�cations (we write SP 0 j= SP to state that every model of SP 0is a model of SP , yet another formulation of SP ���> SP 0 which we will use in this context).If the structures of SP and SP 0 match exactly (and the speci�cation-building operationsused are monotonic w.r.t. inclusion of model classes | this is typically the case) then thisproblem may be reduced to proving that individual axioms (from SP) are consequencesof certain speci�cations (parts of SP 0) via the following fact (referred to as \horizontalcomposability" [GB 80] for the speci�cation-building operation op):SP 1���> SP 01 � � � SPn���> SP 0nop(SP 1; : : : ;SPn)���> op(SP 01; : : : ;SP 0n)Unfortunately, the structures of the two speci�cations need not coincide, which makes sucha reduction very non-trivial. The only work on this important problem we are aware of is[Far 92]. 8

Another issue which may seem worrying here is that we have not put into our de�nitionof re�nement any requirement that the re�ned speci�cation is consistent (that it has anymodel). Indeed, this can be seen as a problem, since an inconsistent speci�cation cannot beimplemented by any program, and so it opens a blind valley in the program developmentprocess. From this point of view, it would be worthwhile to be able to check consistencyof a speci�cation as soon as it is formulated. Unfortunately, in general (for any su�cientlypowerful speci�cation framework) this is an undecidable property. Fortunately, inconsistencyof speci�cations cannot lead to incorrect programs: if we arrive at a program at some pointin the development process, then this program is by de�nition consistent (it has a uniquemodel) and consequently, all the speci�cations leading to it must have been consistent aswell.The proposed methodology of stepwise re�nement does not and cannot be expected toguarantee success. Apart from inconsistencies, there are many sources of \blind valleys"and failures in the development process: there might be no computable realization of aspeci�cation, there might be no \practically computable" realization, we might not be cleverenough to �nd a realization, we might run out of money to �nish the project, etc. The mainfeature of the methodology we really can ensure is its safety: if we arrive at a program, thenit is a correct realization of the original speci�cation.5 Constructor implementationsThe simple notion of speci�cation re�nement is mathematically elegant and powerful enough(in the context of a su�ciently rich speci�cation language) to handle all concrete examples ofinterest. However, it is not very convenient to use: in the practice of software development,certain constructions are used so often that it seems tempting to incorporate some treatmentof them in the notion of re�nement. During the process of developing a program, thesuccessive speci�cations incorporate more and more details arising from successive designdecisions. Thereby, some parts become fully determined, and remain unchanged as a partof the speci�cation until the �nal program is obtained.'& $ %SP 0 ���> �1 '& $ %SP 1 ���> �1 �2 #" !SP2 ���> � � ����> �1 �2 � � � �n �It is more convenient to avoid such clutter by putting the �nished parts aside, and proceedingwith the development of the unresolved parts only.'& $ %SP0 �1���> '& $ %SP 1 �2���> #" !SP 2 �3���> � � � �n���> � SPn = EMPTY9

It is important for these �nished parts to be independent of the particular choice of realizationfor what is left: they should act as constructions extending any realization of the unresolvedpart to a realization of what is being re�ned. Semantically, each �i amounts to a function(which we will call a constructor) on algebras, �i : Alg(Sig(SP i))! Alg(Sig(SP i�1)). Oncethe development is �nally �nished (that is, when nothing is left unresolved) we can put theconstructors together to obtain a correct realization of the original speci�cation.To formally capture the above considerations, we introduce the concept of constructorimplementation [ST 88b], a more elaborate version of the notion of re�nement of the previoussection. We write SP ����> SP 0 to say that a speci�cation SP 0 implements a speci�cation SPvia a constructor � : Alg(Sig(SP 0)) ! Alg(Sig(SP)), and de�ne this as follows:SP ����> SP 0 i� �([[[SP 0]]]) � [[[SP]]]Here, �([[[SP 0]]]) is the image of [[[SP 0]]] under �. This suggests how a constructor � may beviewed as a speci�cation-building operation �, so that constructor implementations may beviewed as re�nements (SP ����> SP 0 is equivalent to SP ���> �(SP 0)). Then proof techniquesfor re�nements may be applied to establish the correctness of constructor implementations.The correctness of the �nal outcome of the stepwise development process may be inferredfrom the correctness of the individual constructor implementation steps:SP 0 �1���> SP 1 �2���> � � � �n���> SPn = EMPTY�1(�2(: : : �n(h i) : : :)) 2 [[[SP0]]]where EMPTY is the empty speci�cation over the empty signature and h i is its unique(empty) model.It is also easy to see that constructor implementations (vertically) compose:SP ����> SP 0 SP 0 �0���> SP 00SP �0 ;�����> SP 00(semicolon stands for functions composition, written in the diagrammatic order). As in thecase of re�nement, vertical composability is not really necessary to ensure the correctness ofthe development process. All we need is the condition inherent in the de�nition of constructorimplementation, namely that implementations reect realizations:SP ����> SP 0 A0 2 [[[SP 0]]]�(A0) 2 [[[SP]]]Even though in the above we have viewed constructors as arbitrary functions on alge-bras, in practice more restrictions should be imposed. In particular, we want constructorsto be \e�ective": given a contructor implementation SP ����> SP 0, the ability to compute inan algebra A0 2 [[[SP 0]]] should ensure the ability to compute in the algebra �(A0) 2 [[[SP]]].In this sense, � may be viewed as a parameterised program [Gog 84] or, equivalently, as aStandard ML functor [MTH 90] with input interface SP 0 and output interface SP . A pro-gramming language which supports stepwise development in the style suggested here willprovide syntax and modularisation facilities for coding up such constructors. The modu-larisation facilities must ensure that one may successively instantiate constructors in orderto assemble the �nal program �1(�2(: : : �n(h i) : : :)). This is a much weaker requirement10

than that constructors be composable (necessary for vertical composability of constructorimplementations in the speci�c programming language) | even though any programminglanguage with decent modularisation facilities should ensure the latter as well. It seems thatthis stronger requirement becomes important when higher-order parameterised programsand their development from speci�cations are considered [SST 90].Much work on vertical composability of implementations (see e.g. [EKMP 82, SW 82,Ore 83]) has aimed at a still stronger requirement. This stems from the choice of a de�ni-tion of implementation which is similar to that of constructor implementation but requiresthe constructor to be in a particular �xed form. Then the vertical composition of two im-plementations must yield an implementation of the same form. The requirement that thecomposition of constructors be forced into some given normal form corresponds to requiringprograms to be written in a rather restricted programming language which does not providesu�ciently powerful modularisation facilities for the job.We have already mentioned that the internal structure of a requirements speci�cationneed not be mirrored by programs which realize it. This is why the de�nitions of re�nementand constructor implementation above take no account of the structure of speci�cations.However, when developing a large program it is crucial to progressively decompose the jobinto smaller tasks which can be handled separately. Each task is de�ned by a speci�cation,and solving a task means producing a program component which satis�es this speci�cation.Once all tasks are solved, then producing the �nal system is a matter of appropriatelyassembling these components.A development step involving the decomposition of a programming task into separatesubtasks is modelled using a constructor implementation with a multi-argument constructor:SP ����> hSP1; : : : ;SPni i� �([[[SP1]]]; : : : ; [[[SPn]]]) � [[[SP]]]where � : Alg (Sig(SP1))�� � ��Alg (Sig(SPn))! Alg (Sig(SP)) is an n-argument constructor(an n-argument function on algebras) describing a way to put realizations of SP1; : : : ;SPntogether to construct a realization of SP . Now the development process takes on a tree-like shape. This process is �nished once a tree is obtained which has empty (sequences of)speci�cations as its leaves:SP ����> 8>>>>>>>><>>>>>>>>: SP1 �1���> h i...SPn �n���> 8>><>>: SPn1 �n1����> n SPn11 �n11����> h i� � �SPnm �nm����> h iThen the composition of the constructors in the tree yields a realization of the originalrequirements speci�cation. The above tree yields:�(�1(); : : : ; �n(�n1(�n11()); : : : ; �nm())) 2 [[[SP]]]:The structure of the �nal program is determined by the shape of the development tree,which is in turn determined by the decomposition steps. Each such step corresponds towhat software engineers call a design speci�cation: it de�nes the structure of the system byspecifying its components and describing how they �t together. This style of developmentleads to modular programs, built from fully speci�ed, correct and reusable components.11

Horizontal composability for constructor implementations takes the form:SP 1 �1���> SP 01 � � � SPn �n���> SP 0nop(SP 1; : : : ;SPn)���> op(�1(SP 01); : : : ; �n(SP 0n))In spite of this fact, which holds for all monotonic speci�cation-building operations op,decomposition of a speci�cation SP = op(SP 1; : : : ;SPn) into separate tasks SP1; : : : ;SPnmight not be appropriate. It is possible for the design decisions taken in the solutions of theseseparate tasks to conict so that even once we have obtained realizations of SP 1; : : : ;SPn, itmight not be possible to combine these to form a realization of SP . This problem cannot arisefor speci�cation-building operations corresponding to constructors, as in the decompositionsteps via multi-argument constructors above.6 Behavioural implementationsA speci�cation should be a precise and complete statement of required properties. Weshould try to avoid including extra requirements, even if they happen to be satis�ed bya possible future realization. Such over-speci�cation unnecessarily limits the options leftopen to the implementer. Ideally, the target is to describe exactly the admissible programbehaviours. This suggests that speci�cations of programming tasks should not distinguishbetween programs (modelled as algebras) exhibiting the same behaviour.The intuitive idea of behaviour of an algebra has been formalised in a number of ways (seee.g. [Rei 81, GM 82, SW 83, Sch 87, ST 87]). In most approaches one distinguishes a certainset OBS of sorts as observable. Intuitively, these are the sorts of data directly visible to theuser (integers, booleans, characters, etc.) in contrast to sorts of \internal" data structures,which are observable only via the functions provided by the program. The behaviour of analgebra is characterised by the set of observable computations taking arguments of sorts inOBS and producing a result of a sort in OBS . Two �-algebras A and B are behaviourallyequivalent (w.r.t. OBS), written A � B, if they exhibit the same behaviour, that is, if allobservable computations yield the same results in A and in B. The motivation is related tothat of so-called testing equivalences studied in the context of concurrent systems [DH 84].A hackneyed example is that of stacks of integers, with the usual operations (empty,isempty, push, pop, top). The sorts int and bool are observable while the sort stack isnot. The observable computations are all the terms of the form isempty(s) and top(s)where s is a term of sort stack with variables (representing the inputs) of sort int only.Now, all intuitively acceptable realizations of stacks are behaviourally equivalent, since forany observable computation (like top(pop(push(n,push(4,push(6,empty)))))) they alldeliver the same result (in this case 4). However not all of these algebras act the same waywhen non-observable computations are considered: for example, the computations emptyand pop(push(n,empty)) yield the same result when stacks are represented as lists, butthey yield di�erent results when a stack is represented by an array with a pointer to the topelement (the latter computation then leaves n in the position above the pointer).Our earlier discussion would lead us to expect the class of models of a speci�cation tobe closed under behavioural equivalence. It is perhaps surprising that this is not easy toachieve directly: the class of models of a set of axioms typically does not have this property.Equational logic may be modi�ed so as to force this to happen (cf. [NO 88]) but we seeno straightforward way to achieve this for most logical systems. Instead, we suggest simply12

closing the class of models of a speci�cation under behavioural equivalence [SW 83, ST 87].Any speci�cation SP determines the class [[SP]] � Sig(SP) of models which \literally" satisfythe stated requirements; the ultimate semantics of SP is taken to be the closure of this underbehavioural equivalence: [[[SP]]] = fA j A � B for some B 2 [[SP]]gIf SP is a list of axioms, then [[SP]] contains exactly the algebras which satisfy all the axioms,while [[[SP]]] contains also the algebras which do not satisfy the axioms themselves but arebehaviourally equivalent to algebras which do. For example, if the speci�cation STACKconsists of the usual stack axioms, then both the list representation and the array-with-pointer representation of stacks are in [[[STACK]]], even though the latter does not literallysatisfy the axiom pop(push(n,s)) = s and so is not in [[STACK]]. This approach givesextra expressive power to the system: there are classes of algebras which may be �nitelycharacterised in this way, and which cannot be �nitely axiomatised directly [Sch 91]. Also,model-oriented speci�cations [Jon 86] can be handled: if [[SP]] contains just a single algebra,[[[SP]]] admits any realisation of the exhibited behaviour.The basic intuition for the use of behavioural equivalence in the development process isthat it is not necessary to implement a speci�cation SP according to its literal interpretation[[SP]]; it is su�cient to implement it up to behavioural equivalence, as captured by its \ulti-mate" semantics [[[SP]]]. The crucial novelty, due to [Sch 87], is that when using a realizationof SP , it is convenient (and possible) to pretend that it satis�es the literal interpretation ofSP . For example, consider the following program:multipush(n,s) = if n=0 then s else multipush(n-1,push(anything,s))multipop(n,s) = if n=0 then s else multipop(n-1,pop(s))id(x,n) = top(multipop(n,multipush(n,push(x,empty))))Given any realization of STACK , to verify that id(x,n) = x for all x and n � 0, itis convenient to assume that the axiom pop(push(n,s)) = s holds literally | then asimple proof by induction goes through | in spite of the fact that this equation is notvalid in [[[STACK]]]. These considerations lead to the following de�nition of behaviouralimplementation [ST 88b]: SP �����> SP 0 i� �([[SP 0]]) � [[[SP]]]The alert reader will have noticed that there is a problem here: we want to have our cake andeat it. On one hand, we want to allow speci�cations to be implemented up to behaviouralequivalence; on the other hand, we would like to use any realization as if it satis�ed its spec-i�cation literally. Behavioural implementations do not compose, and the following crucialproperty is lost: SP �����> SP 0 A0 2 [[[SP 0]]]�(A0) 2 [[[SP]]]The behavioural implementation SP �����> SP 0 ensures only that algebras in [[SP 0]] give riseto correct realizations of SP ; this says nothing about the models in [[[SP 0]]] which are not in[[SP 0]].It might seem that all is lost. But there is a way out, originally suggested in [Sch 87]. Theabove crucial property is recovered if we assume that the constructors used are stable, that is,that any constructor � : Alg(Sig(SP 0)) ! Alg(Sig(SP)) preserves behavioural equivalence:13

Stability assumption: if A � B then �(A) � �(B)(the exact de�nition of stability of constructors in a formal development framework basedon a full-blown programming language is somewhat more complex | see [Sch 87, ST 89]).Under this assumption, the correctness of the individual implementation steps ensuresthe correctness of the result:SP 0 ��1���> SP 1 ��2���> � � � ��n���> SPn = EMPTY�1(�2(: : : �n(h i) : : :)) 2 [[[SP0]]]We could repeat here the tree-like development picture of Section 5 | developments involvingdecomposition steps based on behavioural implementations with multi-argument (stable)constructors yield correct programs as well. We also recover vertical composability:SP �����> SP 0 SP 0 ��0���> SP 00SP ��0;�����> SP 00The correctness of a behavioural implementation SP �����> SP 0 is easier to verify than thecorrectness of the corresponding constructor implementation SP ����> SP 0 (�([[SP 0]]) � [[[SP]]]is weaker than �([[[SP 0]]]) � [[[SP]]]). We are still left, though, with the need to establishthe stability of constructors, and so one may wonder if it is worthwhile taking advantage ofthis. However, the important point is that the constructors which may be used in programdevelopment are determined by the particular programming language to be used. Thus sta-bility can be checked in advance, for the programming language as a whole (this is simpli�edsomewhat by the fact that the composition of stable constructors is stable) and this freesthe programmer from the need to prove it during the program development process.There is a close connection between the requirement of stability and the security ofencapsulation mechanisms in programming languages supporting abstract data types. Aprogramming language ensures stability if the only way to access an encapsulated data typeis via the operations explicitly provided in its output interface. This suggests that stabilityof constructors is an appropriate thing to expect; following [Sch 87] we view the stabilityrequirement as a methodologically justi�ed design criterion for the modularisation facilitiesof programming languages.7 Final remarksWe have outlined the main ideas of a framework to support the formal development ofcorrect programs from speci�cations. One of the central themes we did not have spaceto discuss is the vital role of parameterisation in speci�cation and formal development.Following the technicalities in [SST 90], the framework outlined here may be extended to dealwith the development of parameterised programs (modelled as functions on algebras) fromtheir speci�cations. Extra exibility is obtained by allowing higher-order parameterisation.Speci�cations of such parameterised programs (denoting classes of functions on algebras)should be carefully distinguished from parameterised speci�cations (denoting functions onclasses of algebras).Principle among the areas in which further work is required is the development of ad-equate proof technology. As mentioned earlier, much more than methods for proving con-sequences of unstructured sets of assumptions is required: we need to prove consequences14

of structured speci�cations, entailment between structured speci�cations, and correctnessof behavioural implementation steps. Soundness with respect to the underlying model-theoretic semantics of speci�cations and of implementation steps is essential; completenessis unfortunately not achievable. In spite of some recent work, it is not clear how to scale upthe methods and techniques which exist for the unstructured case (e.g. in the area of termrewriting) to deal with large structured speci�cations and with behavioural equivalence.The main challenge now is to put these ideas into practice in the formal development ofnon-trivial programs in real programming languages. The above comments concerning prooftechnology indicate just a part of what is required. We are moving in this direction with ourwork on the Extended ML framework for the formal development of modular Standard MLprograms [ST 91b], though more e�ort is required. Subjecting foundational work to the testof practice is sure to bring fascinating new problems and issues to light.Acknowledgements: Most of the above ideas have been presented elsewhere, and have beendiscussed with and inuenced by many of our colleagues. Thanks especially to Rod Burstall, JordiFarr�es, Joseph Goguen, Fernando Orejas, Oliver Schoett and Martin Wirsing. Partial support forwriting this paper was provided by the ESPRIT-funded COMPASS working group and by a grantfrom the UK Science and Engineering Research Council.References[Bar 74] J. Barwise. Axioms for abstract model theory. Ann. Math. Logic 7, 221{265 (1974).[BKLOS 91] M. Bidoit et al (eds.) Algebraic System Speci�cation and Development: A Survey andAnnotated Bibliography. Springer LNCS 501 (1991).[BG 77] R. Burstall and J. Goguen. Putting theories together to make speci�cations. Proc. 5thIntl. Joint Conf. on Arti�cial Intelligence, Cambridge, Massachusetts, 1045{1058 (1977).[DH 84] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical ComputerScience 34, 83{133 (1984).[EKMP 82] H. Ehrig, H.-J. Kreowski, B. Mahr and P. Padawitz. Algebraic implementation ofabstract data types. Theoretical Computer Science 20, 209{263 (1982).[EM 85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation I: Equations and InitialSemantics. Springer (1985).[Far 92] J. Farr�es-Casals. Veri�cation in ASL and Related Speci�cation Languages. Ph.D. thesis,Dept. of Computer Science, Univ. of Edinburgh, to appear (1992).[FJ 90] J. Fitzgerald and C. Jones. Modularizing the formal description of a database system.Proc. VDM'90 Conference, Kiel. Springer LNCS 428 (1990).[Gau 84] M.-C. Gaudel. A �rst introduction to PLUSS. Technical report, LRI, Universit�e de Paris-Sud, Orsay (1984).[Gog 84] J. Goguen. Parameterized programming. IEEE Trans. on Software Engineering SE-10(5),528{543 (1984).[GB 80] J. Goguen and R. Burstall. CAT, a system for the structured elaboration of correct pro-grams from structured speci�cations. Technical report CSL-118, SRI International (1980).[GB 84] J. Goguen and R. Burstall. Introducing institutions. Proc. Logics of Programming Work-shop, Carnegie-Mellon. Springer LNCS 164, 221{256 (1984).[GB 90] J. Goguen and R. Burstall. Institutions: abstract model theory for speci�cation andprogramming. Report ECS-LFCS-90-106, Univ. of Edinburgh (1990). J. ACM, to appear.[GM 82] J. Goguen and J. Meseguer. Universal realization, persistent interconnection and imple-mentation of abstract modules. Proc. Intl. Colloq. on Automata, Languages and Program-ming, Aarhus. Springer LNCS 140, 265{281 (1982).[GM 85] J. Goguen and J. Meseguer. Completeness of many-sorted equational logic. HoustonJournal of Mathematics 11(3), 307{334 (1985).15

[GH 80] J. Guttag and J. Horning. Formal speci�cation as a design tool. Proc. ACM Symp. onPrinciples of Programming Languages, Las Vegas, 251{261 (1980).[HST 89] R. Harper, D. Sannella and A. Tarlecki. Structure and representation in LF. Proc. 4thIEEE Symp. on Logic in Computer Science, Asilomar, 226{237 (1989).[Hus 85] H. Hu�mann. Rapid prototyping for algebraic speci�cations: RAP system user's manual.Report MIP-8504, Universit�at Passau (1985).[Jon 86] C. Jones. Systematic Software Development using VDM. Prentice Hall (1986).[MTH 90] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML. MIT Press (1990).[Mor 90] J. Morris. A methodology for designing and re�ning speci�cations. Proc. 3rd Re�nementWorkshop, Hursley Park. Springer BCS Workshop series (1990).[NO 88] P. Nivela and F. Orejas. Initial behaviour semantics for algebraic speci�cations. SelectedPapers from the 5th Workshop on Speci�cation of Abstract Data Types, Gullane. SpringerLNCS 332, 184{207 (1988).[Ore 83] F. Orejas. Characterizing composability of abstract implementations. Proc. 1983 Intl.Conf. on Foundations of Computation Theory, Borgholm. Springer LNCS 158 (1983).[Par 91] H. Partsch. Requirements Engineering. Handbuch der Informatik. Oldenbourg (1991).[Rei 81] H. Reichel. Behavioural equivalence | a unifying concept for initial and �nal speci�cationmethods. Proc. 3rd Hungarian Computer Science Conference, 27{39 (1981).[SB 83] D. Sannella and R. Burstall. Structured theories in LCF. Proc. Colloq. on Trees in Algebraand Programming, L'Aquila. Springer LNCS 159, 377{391 (1983).[SST 90] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of programs fromalgebraic speci�cations: parameterisation revisited. Report 6/90, FB Informatik, Universit�atBremen (1990). Acta Informatica, to appear.[ST 87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic speci�cation. J.of Computer and System Sciences 34, 150{178 (1987).[ST 88a] D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. Information andComputation 76, 165{210 (1988).[ST 88b] D. Sannella and A. Tarlecki. Toward formal development of programs from algebraicspeci�cations: implementations revisited. Acta Informatica 25, 233{281 (1988).[ST 89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundationsand methodology. Proc. 3rd Joint Conf. on Theory and Practice of Software Development,Barcelona. Springer LNCS 352, 375{389 (1989).[ST 91a] D. Sannella and A. Tarlecki. A kernel speci�cation formalism with higher-order parame-terisation. Proc. 7th Intl. Workshop on Speci�cation of Abstract Data Types, Wusterhausen.Springer LNCS 534, 274{296 (1991).[ST 91b] D. Sannella and A. Tarlecki. Extended ML: past, present and future. Proc. 7th Intl.Workshop on Speci�cation of Abstract Data Types, Wusterhausen. Springer LNCS 534, 297{322 (1991).[ST 93] D. Sannella and A. Tarlecki. Foundations of Algebraic Speci�cations and Formal ProgramDevelopment. Cambridge Univ. Press, to appear (1993?).[SW 82] D. Sannella and M. Wirsing. Implementation of parameterised speci�cations. Proc. Intl.Colloq. on Automata, Languages and Programming, Aarhus. Springer LNCS 140, 473{488(1982).[SW 83] D. Sannella and M. Wirsing. A kernel language for algebraic speci�cation and implemen-tation. Proc. 1983 Intl. Conf. on Foundations of Computation Theory, Borgholm. SpringerLNCS 158, 413{427 (1983).[Sch 87] O. Schoett. Data Abstraction and the Correctness of Modular Programming. Ph.D. thesis,report CST-42-87, Dept. of Computer Science, Univ. of Edinburgh (1987).[Sch 91] O. Schoett. An observational subset of �rst-order logic cannot specify the behaviour of acounter. Proc. 8th Symp. on Theoretical Aspects of Computer Science, Hamburg. SpringerLNCS 480, 499{510 (1991).[Wir 86] M. Wirsing. Structured algebraic speci�cations: a kernel language. Theoretical ComputerScience 42, 123{249 (1986).[Wir 92] M. Wirsing. Structured speci�cations: syntax, semantics and proof calculus. Technicalreport, Universit�at Passau (1992). 16

