
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 34, Is&178 (1987)

On Observational Equivalence and Algebraic Specification*

DONALD SANNELLA AND ANDRZEJ TARLECKI+

Departmeni of‘ C’ompuier Science, Unioersi? of Edinburgh,
Edinburgh EH9 SJZ, Unired Kingdom

Received August 22, 1985; revised February 24, 1986

The properties of a simple and natural notion of observational equivalence of algebras and
the corresponding specification-building operation are studied. We begin with a defmition of
observational equivalence which is adequate to handle reachable algebras only, and show how
to extend it to cope with unreachable algebras and also how it may be generalised to make
sense under an arbitrary institution. Behavioural equivalence is treated as an important
special case of observational equivalence, and its central role in program development is
shown by means of an example. (1987 Academic Press. Inc

1. INTRODUCTJ~N

Probably the most exciting potential application of formal specifications is to the
formal development of programs by gradual refinement from a high-level
specification to a low-level “program” or “executable specification” as in OBJ [30]
or HOPE [lo]. Each refinement step embodies some design decisions (such as
choice of data representation) under the requirement that behaviour must be
preserved. If each refinement step can be proved correct, then the program which
results is guaranteed to satisfy the original specification.

This paper studies what is meant by ‘behaviour” in the context of algebraic
specifications. Intuitively, the behaviour of a program is determined just by the
answers which are obtained from computations the program may perform. We may
say (informally) that two C-algebras are hehauiouralfy equivalent with respect to a
set OBS of observable sorts if it is not possible to distinguish between them by
evaluating C-terms which produce a result of observable sort. For example, suppose
C contains the sorts nat, boo/, and bunch and the operations empty: -+ bunch, add:
nat, bunch -+ bunch and E: nat, bunch + boo1 (as well as the usual operations on nut
and bool), and suppose A and B are C-algebras with

IAhunChj = the set of finite sets of natural numbers

IBbunChl = the set of finite lists of natural numbers

* An extended abstract of this paper appeared in “Proceedings, 10th Colloq. on Trees in Algebra and
Programming, Joint Conf. on Theory and Practice of Software Development, Berlin, March 1985,” Lect.
Notes in Comput. Sci. Vol. 185, pp. 308-322, Springer, New York/Berlin, 1985.

+ Present address: Institute of Computer Science, Polish Academy of Sciences, Warsaw.

150
0@22-0000/87 $3.00
Copyright 0 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 151

with the operations and the remaining carriers defined in the obvious way (but B
does not contain operations like cons, cur, and cdr). Then A and B are
behaviourally equivalent with respect to {bool}, since every term of sort boo1 has
the same value in both algebras (the interesting terms are of the form m E
add(a,)...) add(a,, empty)...)). Note that A and B are not isomorphic.

In the above we assume that the only observations (or experiments) we are
allowed to perform are to test whether the results of computations are equal. In this
paper we deal with the more general situation in which observations may be
arbitrary logical formulae. We discuss a notion of observational equivalence in which
two algebras are observationally equivalent if they both give the same answers to
any observation from a prespecilied set. Similar ideas have appeared in [41], and a
related approach to observational equivalence of concurrent processes was studied
in [12].

Observational equivalence (or more specifically, behavioural equivalence) seems
to be a concept which is fundamental to programming methodology. For example:

Data Abstraction

A practical advantage of using abstract data types in the construction of
programs is that the implementation of abstractions by program modules need not
be fixed. A different module using different algorithms and/or different data struc-
tures may be substituted without changing the rest of the program provided that
the new module is behaviourally equivalent to the module it replaces (with respect
to the non-encapsulated types). ADJ [31] have suggested that “abstract” in
“abstract data type” means “up to isomorphism”; we understand it to mean “up to
behavioural equivalence.“’

Program Spectyication

One way of specifying a program is to describe the desired input/output
behaviour in some concrete way, e.g., by constructing a very simple program which
exhibits the desired behaviour. Any program which is behaviourally equivalent to
the sample program with respect to the primitive types of the programming
language satisfies the specification. This is called an abstract model specifi:cation
[37]. In general, specifications under the usual algebraic approaches are not
abstract enough; it is either difficult, as in Clear [8] or impossible, as in the initial

i It is not our intention to quibble over terminology here. We only wish to suggest that the use of the
word “abstract” in “abstract data type,” meaning “independent of representation” according to [31], is
more accurately reflected by the notion of behavioural equivalence than by isomorphism as was
suggested there. This seems to be consistent with the use of the term in languages like CLU [36] (where
abstract data types are called chers). In 128, 291 it has been suggested that “abstract data type” is an
appropriate term for an isomorphism class of algebras while “abstract machine” refers to a behavioural
equivalence class of algebras. Then a CLU cluster would correspond to an abstract machine. Since the
motivation is really to capture algebraically the idea embodied in CLU clusters, we are in agreement
with Goguen and Meseguer although we choose to use a different terminology.

152 SANNELLA AND TARLECKI

algebra approach of [3 1] and the final algebra approach of [52] to specify sets of
natural numbers in such a way that both A and B above are models. The kernel
specification language ASL [47] provides a specification-building operation
abstract which when applied to a specification SP relaxes interpretation to all those
algebras which are observationally equivalent to a model of SP with respect to the
given set of “equational” observations. With a properly chosen set of observations,
this gives hehavioural abstraction.

Stepwise Refinement

A formalisation of stepwise refinement requires a precise definition of the notion
of refinement, i.e., of the implementation of one specification by a lower level
specification. In the context of a specification language which includes an operation
like behavioural abstraction, it is possible to adopt a very simple definition of
implementation (see Sect. 5 for details). This notion of implementation has two very
desirable properties (vertical and horizontal composability, see [25]) which permit
the development of programs from specifications in a gradual and modular fashion.
An alternative approach which illustrates the same point is to use a definition of
implementation which implicitly involves behavioural equivalence, as in [28,48].

This paper establishes a number of basic definitions and results concerning obser-
vational equivalence in an attempt to provide a sound foundation for its
application to problems such as those indicated above. We begin by treating in Sec-
tion 2 the case in which observations are logical formulae containing no free
variables. We define observational equivalence of algebras and prove that it has
properties such as antimonotonicity (with respect to the set of observations) and
coherence with translation of algebras and formulae along signature morphisms.
We define in terms of observational equivalence a specification-building operation
(abstract) which performs observational abstraction and prove that it is, e.g., idem-
potent and satisfies certain identities. We try to characterise the effect that abstract
has on the model class of a specification; in the case of first-order logic and
specifications having a simple form we can characterise it exactly. It turn out that
observations without free variables are sufficient if we are only interested in
reachable algebras, and if we are willing to use the infmitary logic L,,, then such
observations are sufficient to deal with all algebras.

We generalise this material in two different dimensions; Section 3 discusses obser-
vations which contain free variables (to handle “junk” in unreachable algebras
without resorting to inlinitary logic) and Section 6 shows how the definitions can
be generalised to make sense under an arbitrary logical system (or institution [26]).
Almost all the results of Section 2 continue to hold under both of these
generalisations. Section 4 deals with the problem of proving theorems about struc-
tured specifications in the context of observational abstraction, and gives an
inference rule for reasoning about specifications built using the abstract operation.
Section 5 discusses behavioural equivalence as an important special case of obser-
vational equivalence. A simple notion of implementation is defined, and we

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 153

demonstrate the role of behavioural equivalence in program development by
carrying out one refinement step in the development of a fragment of an optimising
compiler from its specification.

We assume that the reader is familiar with the basic algebraic notions presented
in, e.g., [31] (cf. [9]) as well as basic notions of logic as in, e.g., [lS] including
some inlinitary logic, see [35].* In addition, Section 6 assumes some knowledge of
category theory, see [l or 381.

2. OBSERVATIONAL EQUIVALENCE: THE GROUND CASE

What is an observation on an algebra? In the axiomatic framework, the most
natural choice is to take logical formulae as observations; the result of an obser-
vation on an algebra is just the truth or falsity of the formula in the algebra. The
kind of formulae we use dictates the kinds of observations we are allowed to make
on algebras. On the other hand, the kinds of observations we want to make on
algebras dictates the kind of formulae we need, that is, the logic we should use.

For example, if we want only to examine results of computations, the natural
choice is equations which allow us to compare the values of terms. Another natural
choice is first-order predicate calculus which allows us to distinguish between, e.g.,
closed and open intervals of rationals (the observation/formula Vx.3y.x < y yields
true in the latter and false in the former). Another choice is an infinitary logic such
as L,,, which allows us to check, e.g., reachability of algebras (that is, whether all
elements of the algebra are values of ground terms). Note that the latter two kinds
of observations are not computationally based; they are at a more abstract level,
i.e., they describe algebras rather than computations in algebras. Still another kind
of formulae is necessary if we want to deal with problems of concurrency or other
non-functional “facets” of programming languages (see [40]), but we do not
consider such issues in this paper.

For the moment, we do not want to commit ourselves to any particular logic,
and so we leave the notion of “formula” undefined. (In fact, all our definitions work
in an even more general setting; see Sect. 6.) The reader may feel more comfortable
imagining that we are talking about first-order logic.

We use the term “formula” rather than “sentence” to indicate the possible
presence of free variables to name elements which are not values of ground terms
(“junk”). Free variables introduce some complications which we postpone to the
next section. We will assume for the remainder of this section that formulae contain
no free variables; we call these ground observations or sentences. The following
definition corresponds directly to the definition of elementary equivalence in [41].

* In fact, as far as intinitary logic is concerned we use only the convention that if a is a regular intinite
cardinal and /3 is a cardinal either 0 or o < /If m, then L,, denotes the language of first-order logic
extended by allowing formulae to include conjunctions and disjunctions of sets of formulae of cardinality
<G(and quantification over sets of variables of cardinality </I. So, L,,,,,, includes countable (<ol)

conjunctions and disjunctions but quantification is allowed only for tinite (<w) sets of variables.

154 SANNELLA AND TARLECKI

DEFINITION. Let C be a signature, @ a set of C-sentences, and let A, B be
C-algebras. A and B are observationally equivalent with respect to @, written
A-,B, iffor any VE@, A k cp iff B/= q.

Easy Facts

FACT 1. For any signature C and set CD of’ C-sentences, = G is an equivalence
relation on the class qf C-algebras.

FACT 2. For any signature .Z and sets CD, @’ of C-sentences, @ 2 @’ implies
E@C 3*..

FACT 3. For any signature C, family { @i}rtl OJ sets of Z-sentences, and
C-algebras A, B, A +, B for all iE I implies A =@ B, where @ = UIEl @,.

Two algebras are observationally equivalent w.r.t. @ if they satisfy exactly the
same sentences of @. Note that this remains true if we consider not only the senten-
ces of @ but also their negations and conjunctions, possibly infinite or empty (A@
is true). We can also add to @ sentences equivalent to the ones already in @, and so
everything which is definable in terms of negation and conjunction as well (dis-
junctions, implications, etc.). For any set Q, of C-sentences, let Cl(@) denote the
closure of @ under negation, conjunction, and equivalence, insofar as the logic in
use allows.

FACT 4. = @ = -(J(Q).

Note that this implies that the premise @z @’ in Fact 2 may be replaced by the
weaker condition Cl(@) 2 @‘.

A signature morphism 0: .Z + 2:’ is a renaming of the sorts and operations in C to
those of Z’ which preserves the argument and result sorts of operations. This
induces in a natural way a translation of Z-terms to C’-terms and of C-sentences to
Z-sentences; if cp is a Z-sentence, then a(q) denotes its translation to a Z-sentence.
A signature morphism cr: Z-+2’ also induces a a-reduct functor translating
Z-algebras to Z-algebras; if A’ is a Z-algebra then A’ Id denotes its o-reduct. For
the exact definitions of these notions see, e.g., [44, Sect. 21. These translations
satisfy the following condition (see [26] and also Section 6):

SATISFACTION CONDITION. For any C-sentence cp and C’-algebra A’, A’ 1 d t= cp iff
A’ I= 4~).

This gives immediately

FACT 5. For any signature morphism a: .T -+Z’, set @ of Z-sentences and
Z-algebras A’, B’, A’ z,(~, B’ iff A’l,r@ B’J,, where a(@)= {Olin@}.

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 155

This says that observational equivalence is coherent with translation along
signature morphisms. We can also show that observational equivalence is preserved
under combination of “independent” algebras.

Let Zl and C2 be disjoint signatures and let Cl + C2 be their (disjoint) union.3
For any Cl-algebra A 1 and CZalgebra A2, let (A 1, A2) be the unique (El + Z2)-
algebrasuch that (Al,A2)1,,=,41 and (Al,A2)1,,=.42, where11 and 12are the
inclusions of Cl and C2 (respectively) into Cl + C2. Note that all (Cl + C2)-
algebras are of this form.

FACT 6. For any disjoint signatures Cl, C2, sets of Ll-sentences @l and CZsen-
tences @2, Cl-algebras Al, Bl and CZalgebras A2, B2,

(AL AZ) --11(m)u,2(c~2) (Bl, B2) ifs Al =@I Bl and A2 =e2 82.

Proof. (e) By Fact 5, if Al E@, Bl then (Al, A2) G,,(~,) (Bl, B2). Similarly,
if A2 sab2 82 then (Al, A2) -,2,02J (Bl, B2), and so by Fact 3,
(AL AZ:, =11(91)ur2(e2) (Bl, B2).

(*I BY Fact 2, <Al, AZ) =,l(Gl)u,2(G2) (BL B2) implies (Al, AZ) =rlcGl)
(Bl, B2), and so by Fact 5, Al z,,,~ Bl. By the same argument, A2-,, 82. 1

A specification describes a collection of models of the same signature. To for-
malise this, for any specification SP let Sig[SP] denote its signature and Mod[SP]
denote the class of its models, which are Sig[SP]-algebras. The notion of obser-
vational equivalence give rise to a very powerful specification-building operation:

DEFINITION. For any specification SP and set @ of Sig[SP]-sentences

Sig[abstract SP w.r.t. @] = Sig[SP]

Mod[abstract SPw.r.t.@]= (AlA=@ Bforsome B~Mod[Spl}.

Informally, abstract SP w.r.t. @ is a specification which admits any model which is
observationally equivalent to some model of SP. This provides a way of abstracting
away from certain details of a specification (see [44,47]).

Easy Facts

FACT 7. For any specification SP and set 8 of Sig[SP]-sentences,

Mod [SP] c Mod [abstract SP w.r.t. @]

FACT 8. For any specification SP and set 8 of Sig[SP]-sentences,

Mod[abstract (abstract SP w.r.t. @) w.r.t. @] = Mod[abstract SP w.r.t. @I.

3 Or coproducr in categorical terms; this footnote is for the benefit of Sect. 6.

156 SANNELLA AND TARLECKI

FACT 9. For any spec$cation SP and sets 8, @’ of Sig[SP]-sentences,

Cl(@) 2 @’ implies Mod[abstract SP w.r.t. @] c Mod[abstract SP w.r.t. @‘I.

FACT 10. For any specfications SP, SP’ such that Sig[SP] = Sig[SP’] and sei
@ of Sig[SP]-sentences, Mod[SP] c Mod[SP’] implies

Mod[abstract SP w.r.t. Qb] c Mod[abstract SP’ w.r.t. @I.

Using the above facts we may derive simple identities which allow us to trans-
form specifications involving abstract. For example:

FACT 11. For any spectjkation SP and sets 8, @’ of Sig[SP]-sentences,

(a) Mod[abstract SP w.r.t. @ u @‘I E Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I
c Mod[abstract SP w.r.t. Cl(@) n Cl(W)].

(b) Cl(@) 2 @’ implies

Modcabstract SP w.r.t. @‘I = ModEabstract (abstract SP w.r.t. @) w.r.t. @‘I
= Mod[abstract (abstract SP w.r.t. W) w.r.t. Q, J.

Proof Example (first part of(b)).

Mod[abstract SP w.r.t. Q’] E Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I
by Facts 7 and 10;

Modcabstract SP w.r.t. @‘I 2 Mod[abstract SP w.r.t. @]
by Fact 9, since Cl(@) 2 @‘;

so

Modcabstract SP w.r.t. @‘I = Mod[abstract (abstract SP w.r.t. @‘) w.r.t. @‘I
by Fact 8,

1 Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I
by Fact 10. 1

The following counterexample shows that the second equality in (b) above need not
hold if Cl(@) & @‘:

COUNTEREXAMPLE. Consider the signature 2 having one sort and three
constants a, 6, c. Let SP be a specification with Sig[SPJ =Z such that
Mod[SP]= {AI,4 k a=b=c}. Let @= {a=b, b=c} and @‘= (a=c}.
Now, Mod[abstract SP w.r.t. @] = Mod[SP] and so any algebra in
Mod[abstract (abstract SP w.r.t. @) w.r.t. @‘I satisfies a = c. On the other hand,
Mod[abstract SP w.r.t. @‘I contains, for example, algebras in which a = c but a # b

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 157

(#c). Thus Mod[abstract (abstract SP w.r.t. @‘) w.r.t. @] contains algebras in
which all three constants have different values. This shows

Mod[abstract (abstract SP w.r.t. @) w.r.t. W]

Mod[abstract (abstract SP w.r.t. @‘) w.r.t. CD].

Note that this counterexample also shows that the inclusions in (a) above may be
proper.

Every algebraic specification language provides an operation for specifying the
class of models of a given signature which satisfy a given set of axioms, that is,

DEFINITION. For any signature C and set A of Z-sentences, (C, A) is a basic
specification and

Sig[(C, A)] =C

Mod[(C,A)]={AIAisaZ-algebraandA k A}.

For any signature Z and class K of C-algebras, let Th(K) denote the set of all Z-
sentences which hold in K. Note that Kc Mod[(C, Th(K))] but the converse
inclusion is true only for classes K definable by basic specifications.

FACT 12. For any specification SP with Sig[SP] = C and set CD of C-sentences,

Mod[abstract SP w.r.t. @] 2 Mod[(C, Th(Mod[SP]) n Cl(@))].

ProoJ: Let A E Mod[abstract SP w.r.t. @I, i.e., A z9 B for some BE Mod[SP].
Obviously, B + Th(Mod[SP]) and so for any cp E Th(Mod[SP]) n Cl(@), B j= cp.
Hence, by Fact 4, A /= cp so A E Mod[(C, Th(Mod[SP]) n Cl(@))]. 1

In the following, we try to further characterise how abstract works for classes of
models definable by basic specifications. For any signature C and set A of C-senten-
ces, let A* = Th(Mod[(C, A)]) be the closure of A under consequence.

FACT 13. In first-order logic, for any signature C and sets A, @ of C-sentences,

Mod[abstract (L’, A) w.r.t. @] = Mod[(C, A* n Cl(@))].

Proof: (E) Obvious by the previous fact.
(2) Since for unsatisfiable A the containment holds (because falser Cl(@)), we

assume that A has a model. Let AE Mod[(C, A* nCl(@))]. Consider !P =
{cp~Cl(@)lA ‘F cp>. W e want to show that A* v Y has a model. Suppose not, i.e.,
that A* u !P is not satisfiable. Then by the compactness theorem of first-order logic
and by the fact that Y is closed under conjunction there is a II/ E !P such that

158 SANNELLA AND TARLECKI

d* u {II/ } has no model. Hence d * /= 1 II/, which, since A* is closed under logical
consequence implies that l+ E A *. Thus lII/ E A* n Cl(@) (Cl(@) is closed under
negation) and so A k l+, which contradicts Ic/ E Y.

This proves that A* u Y has a model, say B. Let cp E @. If A /= cp then cp E Y
andsoB~=cp.IfA~~,i.e.,A~l~,thenlcpE~andsoB~lcp,i.e.,B~cp.
Thus A =@ B, which shows that A E Mod[abstract (C, A) w.r.t. @I, since
BEMod[(C, A)]. 1

The above fact may be interpreted as a statement that Cl(@) gives a complete
characterisation of observational equivalence with respect to @. Another for-
mulation of this is

FACT 14. In first-order logic, ,for any signature Z and sets @l, @2 of Z-sentences,

30, = -,#Q iff Cl(@l)=C1(@2).

Prooj (+) Follows directly from Fact 4.
(a) Assume that Cl(@l) # C1(@2). By symmetry, we may assume that there is

cp E Cl(@l) such that cp $C1(@2). To complete the proof it is enough to show that

Mod[abstract (C, {q}) w.r.t. @l] # Mod[abstract (C, { cp >) w.r.t. @2].

By Fact 13, Mod[abstract (C, {q}) w.r.t. @l] =Mod[(C, {cp}* nCl(@l))]
On the other hand,

= Mod[(C, {cp)*nC1(@2))]. We show that
such that A v cp. Suppose otherwise, i.e.,

Then by the compactness theorem
for first-order logic, since { cp}* n C1(@2) is closed under finite conjunctions, for
some sentence $ E { cp 1* n C1(@2), $ t= cp. Thus cp and II/ are equivalent (cp b Ic/ by
the definition of { cp>*) and so since $ ~C1(@2), cp ~C1(@2) as well, which con-
tradicts our assumptions. 1

Ground observations are powerful enough if we are only interested in reachable
(subalgebras of) algebras and we do not want to distinguish between isomorphic
algebras, provided that our logic is at least capable of expressing ground equations
(i.e., equations between terms without variables).

FACT 15. For any signature Z and C-algebras A, B, A +EQ(Z, B iff' A and B
have isomorphic reachable subalgebras, where GEQ(Z) is the set of all ground .Z-
equations.

Proof (+) Obvious.
(+) Consider the function which maps the value of any ground Z-term in A to

the value of this term in B. It is easy to see that since A mono B this is well
defined and, moreover, that this function is an isomorphism between the reachable
subalgebras of A and B. 1

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 159

3. OBSERVATIONAL EQUIVALENCE: THE GENERAL CASE

In the last section we dealt with observational equivalence based on ground
observations only (formally, on formulae without free variables). As Fact 15
indicates, this is quite satisfactory when we restrict our considerations to reachable
algebras. If we want to deal with algebras containing “junk,” things become more
complicated.

Why do we bother about non-reachable algebras? First, when dealing with
parameterised specifications it is usual to consider examples in which some sorts
have no generators at all, but where we are interested in algebras having the
associated carriers non-empty. This is shown by standard examples such as Stack-
of-X, where X is an arbitrary set. Second, when we view algebras from different
levels of abstraction we view them with respect to different sets of operations. It is
then natural that an algebra which is reachable at a certain level of abstraction
becomes non-reachable when viewed from a higher level. A more technical but
related point is that there is no natural definition of the specification-building
operation derive [S, 441 (which can be used to “forget” operations), if models of the
result are required to be reachable. Finally, there are examples [47] in which
unreachable elements can be useful in constructing specifications; an element which
is unreachable at one stage of the construction can become reachable and useful at
a later stage.

It should be noted that if the logic we are working in is sufficiently powerful then
we can identify algebras up to isomorphism using only ground observations.
According to Scott’s theorem [49] this may be achieved using L,,, for countable
algebras. Using an even more powerful logic the same may be done for arbitrary
algebras.

FACT 16. For any signature C and Z-algebras A, there is a C-sentence [(A) of
L mm such that for any Z-algebra B, B j==. [(A) iff A z B.

Proof: Assume that C has only one sort; the general case is similar but
notationally more cumbersome. Consider the formula

i(A)=,,,~IAl.(A9(A) AVx.V {x=aIaEIAl)),

where (Al is the carrier of A, and 9(A) is the first-order diagram of the expansion
of A to a .Z((Al)-algebra with the natural interpretation of the new constants (in
fact, it is enough to take all ground C(1 Al)-equations and -inequations which are
true in the expansion of A). If B g A then obviously B k [(A). To see this consider
the isomorphism from A to B as the valuation of variables IAl in B.

Conversely, assume that B satisfies [(A). Thus, there is a valuation IX IAl -+ IB(
such that Bk./jC2(A)/jVx.V (x=alaEIAl} (Bl=.cpmeans Bsatisfiespunder
the valuation v; we are going to use this notation throughout the paper.). It is easy
to see that u is an isomorphism between A and B:

160 SANNELLA AND TARLECKI

- vissurjectivesince B/==,,Vx.i/{x=ala~JAI).
- u is l-l: for u,,u,EIAI, if a,#~, then a,#az Ed and so

B +, a, # u2, that is, v(q) # ~(a~).
- v satisfies the homomorphism property: for any n-argument operation

fdZ, a, ,..., u,EIAI, ~EIAI, if fA(al ,..., ~,)=a then f(u, ,..., ~,)=a EQ(A) and
so B k, f(ul ,..., a,) = a, that is, fJv(u,) ,..., ~(a,)) = u(a). l

Note from the construction that in order to handle algebras of cardinality a it is
enough to consider formulae with quantifiers binding a variables. It seems to be
possible to sharpen this result (requiring only quantifiers binding less than a
variables) using some kind of “back-and-forth” construction as in the proof of
Scott’s theorem in [a].

However, in practice it is desirable to avoid use of inlinitary logic (although [39]
argues for an approach to specification in which infinitary logic is central). What
we are trying to do in the following is to obtain a balance between the power of the
logic in use (the simpler the logic, the better) and the simplicity of the definition of
observational equivalence.

It is obvious that using ground equations as observations we are not able to talk
about junk at all. If we use equations with universally quantified variables, although
we are able to say something about junk we cannot always distinguish between
algebras which are intuitively not equivalent. For example, the two algebras

A: o---La / , . . . B: o-!--,0---L...

OF o----f ..’
! / ocl/

cannot be distinguished by any equation with universally quantified variables
(neither of them satisfy Vx.f(x) =x) although if we go to first-order logic then the
formula lx.f(x) = x distinguishes between them. But even in the framework of first-
order logic using only closed sentences, we are not able to deal with junk in a
satisfactory way. We cannot even express such a basic property as is existence. For
example, it is well-known that the standard model of arithmetic (the natural num-
bers) and non-standard models (the natural numbers with junk) satisfy exactly the
same set of first-order sentences. Thus, there is no set of ground first-order obser-
vations which can distinguish between standard and non-standard models of
arithmetic. To distinguish between these models using ground observations we
need L,,,.

We are going to extend the definitions of the previous section by allowing free
variables in observations. The idea is that these provide a way of referring to
otherwise unnameable values. For example, it should be intuitively clear (and will
be formalised below) that the observation f(x) = x with free variable x distinguishes
between the two algebras A and B above, and the set of observations
(x = succ”(0) (n 2 0} with free variable x distinguishes between standard and non-

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 161

standard models of arithmetic. As in logic, we need a valuation of the free variables
into the algebra under consideration to provide these names with interpretations.

Given a signature Z, a set X of variables (of sorts in .E), a set Q(X) of C-formulae
with free variables in X, and two C-algebras A, B there are a number of possible
ways to define A q,(xj B. Here are some which are not satisfactory:

(1) For all cp E Q(X), A k VX.cp iff B k VX.cp.

(2) For all valuations uA: X-+ IAl and 0,:.X-+ (B(and all qE@(X), A kv, cp
iff B k.,q.

(3) There exist valuations uA: X--P IAl and us: X-+ 1 BI such that for all
APE@, A l==,,~iffW==,,cp.

Comments. (1) is basically equivalent to the use of ground observations.
(2) is too strong; the relation it defines is not even reflexive.
(3) is too weak; uA and ug can be chosen to ignore the parts of A and B

which are inconvenient. If A and B have isomorphic reachable subalgebras then
they are observationally equivalent under this definition for any set of observations.

In C47, 441, A -e(x) B was defined as follows:

(4) There exist surjective valuations u A: X+ IAl and us: X+ IBI such that
for all cp E Q(X), A + uA cp iff B k vg cp.

The justification for this definition is that uA and us identify “matching parts” of A
and B; each part of A must match some part of B and vice versa. But there are
some problems with this definition. Technically, this relation is restricted to com-
paring algebras of cardinality less than or equal to that of X because of the surjec-
tivity requirement on II,,, and us. Also, we have to exclude algebras with empty
carriers, (at least) on sorts in which X is non-empty; otherwise the valuations uA
and/or uH cannot exist. Finally, in the “general” case in which models and the logic
are arbitrary (see [44] and also Sect. 6) this definition is rather messy and inelegant
because of the difficulty of formulating in abstract terms the requirement of surjec-
tivity.

We are going to concentrate on still another definition of observational
equivalence. We define the observational equivalence relation in terms of a preor-
der.

DEFINITION. For any signature C, set X of variables of sorts in Z, set D(X) of
C-formulae with free variables in X, and Z-algebras A, B, A is obseruationally
reducible to B w.r.t. @i(X), written A &,CX) B, if for any valuation u, : X +) A(there
exists a valuation ug: X -+ I BI such that for all cp E Q(X), A k uA cp iff B k ug cp.

FACT 17. For any signature 2, set X of uariables of sorts in C, and set Q(X) of
C-formulae with free variables in X, G e(x, is a preorder on the class of Z-algebras.

162 SANNELLA AND TARLECKI

DEFINITION. For any signature Z, set X of variables of sorts in Z, set G(X) of C-
formulae with free variables in X, and C-algebras A, B, A and B are observationally
equivalent w.r.t. Q(X), written A -Gcx) B, if A bGcx, B and B <e(X) A.

Note that if the set X is empty, the above definition of observational equivalence
reduces to the definition in the ground case. But if Xis nonempty then even if Q(X)
contains no free variables it may be the case that observational equivalence with
respect to O(X) is not the same as (ground) observational equivalence with respect
to GJ because of problems caused by empty carriers.

Although we are not going to restate all of them formally here again, Facts 2-6 of
Section 2 hold for the preorder d O,(xj and Facts l-6 hold for the equivalence
3 G(xj. For example, Fact 3 may be reformulated for d 9(x, here as follows:

FACT 3’. For any signature C, family of mutually disjoint sets {Xi}iel of
variables of sorts in C, family {@t } iG t of sets of C-formulae such that for i E Z, Qi has
free variables in Xi, and z-algebras A, B, A &,Cx,, B for all ie Z implies A &,Cx) B,
where@=Uie,@iandX=Uie,Xj.

However, because of the problems which empty carriers may cause, we have to be
careful with the opposite direction of this implication, that is, when discharging
variables. Fact 2 should be reformulated as follows:

FACT 2’. For any signature C, set X oj’ variables of sorts in C, sets Q(X) and
Q’(X) of C-formulae with free variables in X, and C-algebras A, B,

Q(X) 2 Q’(X) and A 6oCx, B implies A <e,(X) B.

Note that @ and @’ must formally have the same set X of free variables, even if the
formulae in the smaller set Cp’ do not use all of them. We can discharge such
unnecessary variables only if X contains other variables of the same sorts, or if the
algebras we are dealing with are guaranteed to have non-empty carriers of these
sorts.

As in the previous section, we can define a specification-building operation
abstract in terms of observational equivalence with exactly the same semantics.

DEFINITION. For any specification SP, set X of variables of sorts in Sig[SP] and
set G(X) of Sig[SP]-formulae with free variables in X,

Sig[abstract SP w.r.t. ‘P(X)] = Sig[SP]

Mod[abstract SP w.r.t. Q(X)] = {A 1 A -G(X) B for some BE Mod[SP]).

Facts 7-12 still hold under this more general definition. Facts 13 and 14 do not
hold, and Fact 15 is not relevant.

Note that we can give a sharper formulation of the facts which involve forming
the closure Cl(@) of a set of formulae @. In the presence of free variables, besides

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 163

conjunctions and negations it is tempting to allow the introduction of quantifiers
here. We can redefine Cl(@(X)) to be the closure of @p(X) under negation, con-
junction (possibly infinite), equivalence, and uniform quantification, that is, cp E
Cl(@(X)) implies VX.(p E Cl(@(X)) and 3X.q E Cl(@(X)). To prove that all the facts
are still true with this new definition of Cl(@(X)), we have to show

FACT 18. = CI(@(X)) 2 G(X).

Proof. Let A and B be algebras with A Q~)‘B. The only problem may be with
quantifiers, but for this note that since A -a(X) B, for cp E Q(X) we have A k LIA cp for
all o,:X-+(A(iff B +“,,cp for all u B: X-+ IBJ. And so A + VX.Q iff B k VX.(p.
Since 3X.p is equivalent to lVX.1 cp, this completes the proof. 1

Note that only uniform quantification is allowed above. The above fact does not
hold if we allow quantification over a proper subset of the set of free variables. For
example, suppose C = sorts rat, boo1 opns <: rat, rat -+ bool. Let A and B be
C-algebras corresponding to, respectively, open and closed intervals of rational
numbers. Now consider Q(X) = {x < y) x, y E X}. Obviously A E~(~, B but
A k Vx.3y.x < y while B k Vx.3y.x < y.

The uniform quantification allowed in the closure Cl(@(X)) is not enough to
guarantee that Fact 13 holds for observational abstraction with respect to open
formulae, as shown by the following counterexample.

COUNTEREXAMPLE. Let C be a signature with one sort and one unary operation
J Let X be a countably infinite set of variables. Consider

A = {Vxdy.f(y) =x}

Q(X)= (x=y,f(x)=yIx,yEX}

,4:... f>. I’>o f ,... B:. .f,o f+n I .

Now, 14 I= A> A f co(x) B, and B$ Mod[abstract (C, A) w.r.t. Q(X)], but
B)= A* (7 Cl(@(X)). To prove the last of these statements we use the following
well-known lemma.

LEMMA. For any Z-algebra A, set of variables X, valuation v: X+ IAI, and quan-
tifier-free (first-order logic) C-formula q(X), A/= v q(X) iff [v’(X’)lA t= L,I cp(xI),
where x’s X is the set of variables which actually occur in cp, v’ is v restricted to x’,
u’(X’)= (v’(x)(x~X’), and [v’(X’)lA is the least subalgebra of A which contains
v’(Y).

Now, for any quantifier-free Z-formula q(X), the set X’c X of variables which
actually appear in cp is finite, and so for any valuation v: X-t 1 Al, [v’(X’)], is
isomorphic to B. Thus, if A ‘F VX.q(X) then B + VX.(p(X) as well, and if
A b 3X.(p(X) then B k 3X.+$X). Using this it is easy to prove that for any C-sen-

571/34/2-3-2

164 SANNELLA AND TARLECKI

tence $ which involves only uniform quantification, if A k $I then B /= II/ as well.
This shows that B + A* n CI(@(X)).

Fact 14 does not hold under the new definition of closure either, as the following
counterexample demonstrates.

COUNTEREXAMPLE. Let C be as in the example above. Let X=del. {x). Consider

@l(X)= {3X.f(X)#X, 3x.f(x)=x)

@2(X) = @l(X) u {f(x) =x}.

Cl(@l(X)) #Cl(@2(X)), since x=f(x)#Cl(@l(X)). But it is easy to show that for
any two E-algebras A and B, if A =G1(Xj B then A -e2(XJ B (the implication holds in
the opposite direction by Fact 2).

4. PROOFS IN STRUCTURED SPECIFICATIONS

An important issue connected with specifications is theorem proving. We would
like to be able to prove theorems about a specification, that is, that certain senten-
ces of the underlying logic hold in every model of a specification. As suggested by
Guttag and Horning [33], by proving that selected theorems hold we can under-
stand specifications and gain confidence that they express what we want. Moreover,
in order to do any kind of formal program development or verification (or even
specification building, if parameterised specifications with requirements are to be
used [511) a theorem-proving capability is necessary.

In the context of structured specifications, we have to cope with two separate
problems. First is how to prove theorems in theories of the underlying logic. Note
that this task may be eased by the fact that our theories have structure, as this
allows us to naturally disregard information which is probably irrelevant to what
we are trying to prove. The other problem is dealing with the structure itself. What
we need are inference rules for every specification-building operation which allow us
to derive theorems about a combined specification from theorems about the com-
ponents from which it was built. Note that the latter problem is not automatically
reducible to the former because not all specifications are equivalent to (have the
same class of models as) theories of the underlying logic [44], let alone theories
with finite presentations as required for use by a theorem prover.

For simple specification-building operations appropriate inference rules are given
in [43], for example,

thm in SP - thm in SP + SP’,

where “thm in SP” means thm E Th(Mod[SP]), that is, that the sentence thm holds
in all models of the specification SP; the specification-building operation + com-
bines the requirements on models imposed by its arguments (see [47] for details).

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 165

The abstract specification-building operation defined in Sections 2 and 3 is more
difficult to handle. One problem is that in contrast to other specification-building
operations it is not monotonic, in the sense that

thm in SP + thm in abstract SP w.r.t.

However, Fact 12 and its analogue for observations with free variables (see Sect. 3)
says that the following inference rule is sound.

INFERENCE RULE. For any set G(X) of open formulae with variables in X,

thm in SP and thm E Cl(@(X)) =z- thm in abstract SP w.r.t. Q(X). (*)

Moreover, for the case of ground observations (i.e., when X is the empty set),
Fact 13 shows that in some standard logics (e.g., first-order logic) the above rule is
in a sense complete when used together with inference rules for the underlying logic
and the other specification-building operations. Note also that Facts 7-11 provide
us with some subsidiary inference rules; for example, Fact 9 implies

thm in abstract SP w.r.t. @ and @ E Cl(@) =s- thm in abstract SP w.r.t. @‘.

A consequence of the inference rule (*) is that a proof of thm in SP is also a valid
proof of thm in abstract SP w.r.t. Q(X) provided that there is a “cut” across the
proof tree containing only observable sentences (i.e., sentences in Cl(@(X))). In
other words, every path in the proof from thm to a fact in SP must contain at least
one observable sentence.

For example, consider the following specification of sets:

Set = sorts elem, set
opns a: -+ set

add: elem, set + set
predicates E: elem, set
axioms Vx:elem, S:set. add(x, add(x, S)) = add(x, S)

Vx,y:elem, S:set. add(x, add(y, S)) = add(y, add(x, S))
Vx:elem.i (x E 0)
Vx:elem, S:set. x E add(x, S)
Vx,y:elem, S:set. x # y j (x E add(y, S) ox E S)

(for this example we use first-order predicate logic with equality). We abstract from
Set with respect to an appropriate set of observable formulae:

SetAbs = abstract Set w.r.t. {x E t 1 t is of the form add(x, ,..., add(x,, a)...) for n 2 o}.

We then enrich this specification by a function choose which selects some arbitrary
element from any non-empty set:

166 SANNELLA AND TARLECKI

SetChoose = enrich SetAbs by
opns choose: set -+ elem
axioms V,S:set. S # /zI = choose(S) E S

(the notation enrich SP by . . . axioms E is an abbreviation for SP +
(sig(SP) u E)).

Suppose we want to prove the following simple theorem in SetChoose:

Vx, y:elem. choose(add(x, add(y, 0))) E add(y, add(x, 0)).

A naive proof which ignores the use of abstract in SetAbs (i.e., imagining that
SetChoose is built directly from Set instead of via SetAbs) might go as in Fig. 1.

To transform this into a valid proof (taking abstract into account) we have to
transform the indicated subproofs Pl and P2 from proofs in Set to proofs in
SetAbs. According to the discussion above, Pl is a proof in SetAbs since the
underlined sentences are observable. This is not the case with P2. In fact, the con-

\ i

P3

vs: set. s+#-b
choose(S) l S
in SetChoose

Wx,y:elem. addk, add(y,@)) =
addly, add(x,&)) in SetChoose

Vx,y:elem. choosebddkadd ly.$i,J; add(y,add(x,q5)) in SetChoose

FIGURE 1

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 167

Vx,y,z:elem. in SetChoose

Vx,y:elem.choore(add(x.add(v,~)~) l addfy. add(x,$)) in SetChoose

FIGURE 2

elusion of P2 is not a theorem of SetAbs (or SetChoose) at all. Thus we must
modify our proof as shown in Fig. 2 (note that the subproof P3 which includes Pl
remains unaltered). P2’ is a valid proof in SetAbs, so the complete proof is valid in
SetChoose.

5. BEHAVIOURAL EQUIVALENCE-AN EXAMPLE

In Sections 2 and 3 we defined a very general and powerful notion of obser-
vational equivalence. In this section we look at a very important special case and
we consider an example of its use. Namely, we restrict observations to equations
between terms from some specified set; this gives an equivalence corresponding to
the one used in the ASL specification language [47]. A proper choice of the set of
terms gives behavioural equivalence as informally discussed in the Introduction.

Suppose that C is a signature and IN and OUT are subsets of the sorts of z.
Now, consider all computations which take input from sorts IN and give output in
sorts OUT; this set of computations corresponds to the set of ,X-terms of sorts OUT
with variables of sorts IN. Consider the set EQ OUT(X,,,,) of equations between terms
of the same sort in OUT having variables X,, of sorts in IN. Two algebras are
observationally equivalent with respect to EQ oUr(X,,) if they are behaviourally
equivalent, that is, if they have matching input/output relations. Note that this
covers the notions of behavioural equivalence with respect to a single set OBS of
observable sorts which appear in the literature. For example, in [28,42] we have
IN= sorts(C), OUT= OBS; in [29,47,48] IN= OUT= OBS; and in [S, 20,343

168 SANNELLA AND TARLECKI

IN = Qr and OUT= OBS. To denote the corresponding special case of abstract we
use

behaviour SP with in IN out OUT=,,,abstract SP w.r.t. EQouT(X,N).

This corresponds to behavioural abstraction as defined in ASL [47].
As an example we are going to consider a simple language of expressions for

arithmetical computation over the integers. This may be imagined as a small piece
of a real programming language. We believe that the approach used below may be
applied to other programming language constructs as well, leading toward the
possible formal development of a compiler. Handling programming language
features like recursion requires that we switch to the framework of partial algebras
[7] or continuous algebras [32]; this is not a problem since as will be discussed in
Section 6 our definitions and results extend smoothly to these cases.

We assume that we are given some standard specifications of the integers (Int)
with the usual arithmetic operations and of identifiers (Ident). For this example,
Ident need only contain a single sort called ident. The (abstract) syntax of
expressions is given by the following specification (we use the notation of the Clear
specification language [8]“):

Expr = enrich Int + Ident by
data sorts expr

opns const: int ---) expr
var: ident -+ expr
plus, times: expr, expr + expr
cond: expr, expr, expr + expr

The use of data above means that any model of Expr is a free extension of a model
of Int + Ident. That is, the sort expr contains (up to isomorphism) expressions built
up using the newly introduced operations. We could achieve the same effect using a
hierarchy constraint [4] (cf. [17,46]) together with the appropriate inequations.

To describe the semantics of expressions we need the additional concept of an
environment from which the values of variables may be retrieved. This is described
by the following (loose) specification:

Env = enrich Int + Ident by
sorts env
opns lookup: env, ident -+ int

For the purpose of our example, no more that the existence of an operation lookup
is required. Other parts of the language may need a more elaborate specification of
environments, including, e.g., an operation to modify environments and axioms to

4 But for the semantics of derive, see 1471.

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 169

relate this operation to lookup. We also simplify our view of environments by
assuming that lookup never produces errors. We could incorporate standard
approaches to specilications with errors, see Section 6.

Eva1 = enrich Expr + Env by
opns eval: expr, env --) int
axioms Vn:int, p:env. eval(const(n), p) = n

Vx:ident, p:env. eval(var(x), p) = lookup@, x)
Ve,e’:expr, p:env. eval(plus(e, e’), p) = evahe, p) + evahe’, p)

) x evahe’, p) Ve,e’:expr, p:env. eval(times(e, e’), p) = evahe, p
Ve,e’,e”:expr, p:env. eval(cond(e, e’, e”), p)

= evahe”, p) if evahe, p
= eval(e’, p) otherwise

)=O

(We use an obvious notation to simplify the syntax of conditional axioms.)
The models of Eva1 are just the models of Expr with the expected semantics

provided by the operation eual. The cond construct has the semantics of
if _ then ._ else --) where 0 (as the value of the first argument) is interpreted as false
and any other value is interpreted as true. Note that the models of Eva1 are pretty
well determined; in fact, they are determined up to isomorphism given models of
Ident and Env. Now imagine that we want to build a compiler which performs
some source-level optimisation; for example, recognising that times(const(O), e) is
just cons?(O). Such optimisations are not permitted by the specification above.

Two solutions- to this dilemma are offered in the literature. First, [52] and [34]
advocate the use of final models; if we adopt this approach (modifying the above
specification appropriately) then every (final) model of Eva1 would satisfy e = e’ iff
it satisfies Vp:enu. eual(e, p) = eual(e’, p), for all expressions e and e’. But this
disallows non-optimal implementations, since it requires that all possible
optimisations are performed. Much worse, the specified models are actually not
attainable since the optimisation required is not computable (this follows from a
result in [ll]).

Second, as advocated in, e.g., [13, 151 the notion of implementation of one
specification by another should take care of this problem. Algebras with some
optimisations are not models of the specification above but models of a
specification which implements it. Unfortunately, the formal notions of implemen-
tation which have been suggested are rather complicated, and especially so in the
context of loose and parameterised specifications. (Note that the specification above
may be viewed as parameterised by Ident.)

We adopt neither of these solutions. Instead, we argue that the specification Eva1
as given above is not really what we intend. When we specify a program, what we
are really interested in is its behaviour, that is, the answers which we obtain when
the program is applied to the various possible inputs. The specification Eva1 says
more than that; it dictates the structure of internal data. We can obtain the class of

170 SANNELLA AND TARLECKI

models having the behaviour which Eva1 specifies (rather concretely) by applying
the bebaviour operation for the appropriate choice of input and output sorts:

Eval-we-really-want = behaviour Eva1 with in (int,ident,env) out { int 1

The inference rule for abstract given in Section 4 may be applied here to show,
e.g., that

Ve,e’:expr, p:env. eval(plus(e, e’), p) = eval(plus(e’, e), p)

is a theorem in Eval-we-really-want, since it is a theorem of Eva1 and is in the
closure of the set of observations we are using here.’

The ability to specify classes of algebras up to behavioural equivalence (as in
Eval-we-really-want) allows us to greatly simplify our formal view of what an
implementation is. Proceeding from a specification to a program means making a
series of design decisions, each of which amounts to a restriction on the class of
models. Such design decisions are choice of data structures, choice of algorithms,
and choice between alternatives which the specification leaves open. Thus, a simple
but natural notion of implementation is as follows.

DEFINITION. A specification SP is implemented by a specification SP’, written
SP-+ SP’, if Mod[SP’] E Mod[,SP].

It is easy to see that the above implementation relation is transitive (SP-+ SP’
and SP’+ SP” implies SP--+ SP”), i.e., that it can be composed vertically
(see [25]). This means that a specification can be relined gradually. Furthermore,
this implementation relation can be composed horizontally [25] as well6 [47]
(SP 1 -+ SP 1’ and SP2 -+ SP2’ implies SP 1 + SP2 ^N) SP 1’ + SP2’ and similarly
for the other specification-building operations). This means that specifications can
be refined in a modular fashion. This is in contrast to the more complicated notions
of implementation mentioned earlier for which these properties do not hold in
general.

The following specification is an implementation of Eval-we-really-want:

Eval’ =
let EvO = enrich Eva1 by

opns optplus, opttimes: expr, expr + expr
optcond: expr, expr, expr -+ expr

axioms Ve,e’:expr. optplus(e, e’)
= e’ if e = con&(O)
=e if e’ = const(0)
= opttimes(const(2), e) if e = e’
= plus(e, e’) otherwise

5 For technical reasons (see 1271) the validity of this comment requires that there be constants of sort
ident.

6 This is the case provided that all specification-building operations are monotonic (with respect to
model classes), which is the case for the specification-building operations defined in, e.g., Clear [S].
LOOK [16], ASL [47], and for abstract and behaviour as defined above.

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 171

Ve,e’:expr. opttimes(e, e’)
= const(0)

e’
=e
= times(e, e’)

Ve,e’,e”:expr. optcond(e, e’, e”)
= e’

in derive signature Eva1
from EvO
by const is const

var is var
plus is optplus
times is opttimes
cond is optcond
eval is eval

=e I,

e’
= cond(e, e’, e”)

if e = const(0)
or e’ = const(0)
if e = const(1)
if e’ = const(1)
otherwise

if e = const(n) and n # 0
if e = const(0)
if e’=e”
otherwise

Eval’ specifies the syntax and semantics of our expression language, requiring that
certain source-level optimisations (constant folding) be carried out.

In order to prove that Eval’ implements Eval-we-really-want we have to show:

CLAIM. Mod [Eval-we-really-want] 2 Mod [Eval’].

To prove this we have to show that any model of Eval’ is behaviourally equivalent
to a model of Eva1 (with respect to input sorts {inl,ident,enu} and output sort
{ irlt}).

Sketch of Proof: Let A’ be a model of Eval’. By the definition of derive [47]
A’ = A0 1~ for some model A0 of EvO, where CJ is the signature morphism described
in the derive. Let A = A0) ,, where r:Sig[Eval] + Sig[EvO] is the signature
inclusion. By definition of enrich [8] A is a model of Eval. We claim that A and A’
are behaviourally equivalent with respect to input sorts (int,ident,enu} and output
sort { int). Note that by the construction of A, the parts of A and A’ corresponding
to Int, Ident, and Env are identical. Thus, it is enough to show that for any
valuation u of variables of sorts { int,ident,enu} into the corresponding carriers of A
(which are the same as those of A’) and for any terms, t, t’ of sort inr having
variables of sorts { int,ident,enu}, A +=u t = t’ iff A’ FL’ t = t’. This may be reduced to
proving that for any term t as above, its values in A and A’ under u are the same.
This is obvious if t is a Sig[Int]-term; the only other case is for t of the form
eu4fexpry p), where p is a variable and texpr is a Sig[Eval]-term of sort expr (with
variables of sorts (int,ident}). The value of this term in A is the same as in AO, and
its value in A’ is the same as the value of euaZ(a(t,,Xp,), p) in AO. That

172 SANNELLA AND TARLECKI

A0 k I, ed*,,,, P) = eu44t,,,), P) may be proved by an easy induction on
t expr I

Note that this proof technique is quite general; it basically relies only on the fact
that the specifications under consideration are persistent enrichments (see, e.g.,
[193) of the specifications of their observable parts. The mechanical proof of a
theorem similar to the final step of the above proof is described in [6].

A different way of proving that two algebras are behaviourally equivalent is
suggested in [48]; in this approach, a relation (called a correspondence) between
the corresponding carriers is set up explicitly and proved to satisfy a kind of
homomorphism property.

A more detailed discussion of the application of the ideas presented in this
section to the development of programs is given in [45].

6. OBSERVATIONAL EQUIVALENCE IN AN ARBITRARY INSTITUTION

In the previous sections we have been rather vague about what we mean by a
“formula.” We have mentioned formulae of equational logic, first-order logic, and
infmitary logic. Moreover, although we have been using the standard notion of
many-sorted algebra as in [31], this was mostly in order to take advantage of the
reader’s intuition; in fact, we made use of very few formal properties of algebras.
This means that in place of the standard notion we could have used, for example,
partial algebras [7] or continuous algebras [32]. We could even change both the
notions of signature and of algebra to deal with errors [22, 231 or coercions
[21, 241.

The notion of an institution [26] provides a tool for dealing with any of these dif-
ferent notions of a logical system for writing specifications. An institution comprises
definitions of signature, model (algebra), sentence, and a satisfaction relation
satisfying a few minimal consistency conditions. (For a similar but more logic-
oriented approach see [3].) By basing our definitions (of observational
equivalence, etc.) on an arbitrary institution we can avoid choosing particular
definitions of these underlying notions and do everything at an adequately general
level.

DEFINITION. An institution INS consists of:

- A category Sign,,, (of signatures)
- A functor Sen,,,. Sign,,, + Set (where Set is the category of all sets;

Sen,Ns gives for any signature .Z the set of Z-sentences and for any signature
morphism o:C --+ C’ the function Sen,,,(a):Sen,N,(L’) + Sen,.&L”) translating
C-sentences to ,Z’-sentences)

- A functor ModINs:Sign,,, -+ CatoP (where Cat is the category of all
categories; Mod,,s gives for any signature 2: the category of C-models and for any

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 173

signature morphism 0:.X --f ,Y the D-reduct functor Mod,,,(o):Mod,,,(C’) +
ModlNS(Z) translating C’-models to C-models)

- A satisfaction relation k IJNS E IM~,Ns(C)I X SenINS(z) for each
signature ,?Y

such that for any signature morphism a:C + C’ the translations Mod,Ns(a) of
models and Sen,,,(a) of sentences preserve the satisfaction relation, i.e., for any
cp E Sen,,,(C) and M’ E (Mod,,,(C’)J,

SATISFACTION CONDITION. M' k &INS SenINS(a)(d iff Md,NS(a)(M’) b .&INS v

To be useful as the underlying institution of a specification language, an
institution must provide some tools for “putting things together.” Thus, in this
paper we additionally require that the category Sign has pushouts and initial
objects (i.e., is finitely cocomplete) and, moreover, that Mod preserves pushouts
and initial objects (and hence finite colimits), i.e., that Mod translates pushouts and
initial objects in Sign to pullbacks and terminal objects (respectively) in Cat. For a
brief discussion of these requirements see [44]. For notational convenience we omit
subscripts like INS and C whenever possible, and for any signature morphism
a:C --) C’ we denote Sen(o) simply by (T and Mod(o) by - ((r.

In [8] the semantics of the Clear specification language was defined in terms of
an arbitrary institution (called there a “language”). More recently, in [44] a num-
ber of more basic but powerful specification-building operations were defined in the
framework of an arbitrary institution.

We encounter no problems at all in generalising the contents of Section 2 (on
ground observations) to an arbitrary institution. In fact, the definitions of obser-
vational equivalence and of the abstract operation with respect to a set of ground
observations may be taken literally as they were formulated there. Moreover, Facts
1-12 still hold. (Facts 13 and 14 hold for institutions with some simple closure
properties. Fact 1.5 may be generalised if we equip institutions with some notion of
reachability along the lines of [SO].)

In order to deal with the general case of observations containing free variables we
have first to provide a notion of an open formula and a valuation of free variables
in the framework of an arbitrary institution. Although sentences as they are used in
the definition of an institution above are always closed, this may be done.

Namely, note that in the standard algebraic case, an open C-formula with
variables X may be viewed as a (closed) sentence over the signature C(X) resulting
from C by adding the elements of X as constants. Then a valuation of variables X
into a E-algebra A may be viewed as an expansion of A to a z(X)-algebra, which
additionally contains interpretations of the constants X. This formulation can be
extended to the framework of an arbitrary institution as follows (see [44] for a
more detailed exposition).

Let z be a signature. Any pair (cp, 0), where 8:C -+ C’ is a signature morphism

174 SANNELLA AND TARLECKI

and cp E Sen(L”), may be viewed as an open L-formula with variables “2“ - 0(,X).”
(Note the quotation marks-since Z’- 0(X) makes no sense in an arbitrary
institution, it is only meaningful as an aid to our intuition.) If A4 is a X-model,
ME [Mod(C)/, then a valuation of variables “L’- 0(C)” into M is a L”-model
M’ E JMod(Z’)I which is a Q-expansion of M, i.e., M’ JH = M.

Given an open C-formula (cp, 0) we can define its universal closure, written
V(cp, 0), as a new C-sentence. A C-model satisfies V(cp, 0) if each of its Gexpan-
sions satisfies cp, i.e., for any ME [Mod(C

A4 k Vl(% e> iff for any M’ E JMod(C’)I such that M’ ID = A4, M’ /= q.

Obviously, other quantifiers (there exists, there exist infinitely many, there exists a
unique, for almost all . ..) may be introduced in the same manner as we have just
introduced universal quantifiers. Moreover, one may similarly introduce logical
connectives such as negation and conjunction (of formulae having the same
“free variables”) with the standard logical interpretation (cf. [3]). Thus, our
definition of the Cl operator on sets of open formulae (see Sect. 3) works in any
institution. Note also that these definitions give more generality than was implied
by the discussion of the standard algebraic case above, since variables denoting
operations or even sorts are permitted. Such variables could be forbidden if desired
by restricting 8 appropriately.

The above definitions allow us to generalise the contents of Section 3.

DEFINITION. For any signature C, signature morphism B:E + C’, set @ E Sen(C’)
of open Z-formulae, and Z-models A, B, A is observationally reducible to B w.r.t. @
via 0, written A <s B, if for every (valuation) A’ E JMod(C’)(with A’ I0 = A there
exists (a valuation) B’ E IMod with B’) H = B, such that for all cp E @, A’ + cp iff
B’ I= cp.
As in the standard case, this is a preorder and so we define observational
equivalence as before.

DEFINITION. For any signature C, signature morphism tU -+ ,Y, set @ E Sen(L”)
of open Z-formulae, and C-models A, B, A and B are observationally equivalent
w.r.t. @ via 8, written A =$ B, if A <$ B and B <$ A.

Again, it is easy to verify that the facts in Section 3 concerning observational
equivalence are still valid. Note, however, that if the sets of observations under con-
sideration use different sets of free variables, as in the reformulation of Fact 3 given
in Section 3, then the disjoint union of sets of variables must be replaced here by
the colimit of the signature morphisms which introduce the free variables. The
proofs then use the satisfaction condition and our requirement that Mod preserves
colimits. An example of a proof using these ideas is the proof of the satisfaction
condition for universally quantified formulae in the extended version of [44]. (Note
that in order to deal with arbitrary (infinite) families of sets of observations for the

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 175

generalisation of Fact 3, we have to require that the category Sign be cocomplete
rather than only finitely cocomplete and that Mod preserves colimits rather than
only finite colimits.)

The definition of the specification-building operation abstract is much as it was
before:

DEFINITION. For any specification SP, signature morphism &Sig[SP] + C’, and
set @ E Sen(Z’) of open Sig[SP]-formulae,

Sig[abstract SP w.r.t. @ via O] = Sig[SP]

Mod[abstractSPw.r.t.~viae]={AIA_~BforsomeBEMod[SP]}.

As might be suspected by now, the relevant facts concerning abstract (Facts 7-12)
still hold under this definition. Moreover, the inference rule given in Section 4 is
sound here as well. The remarks concerning the notion of implementation in
Section 5 carry over without change.

7. CONCLUSION

By exploring the properties of a primitive but powerful and general notion such
as observational equivalence and then deriving the more directly useful concept of
behavioural equivalence as a special case, we are following in the footsteps of earlier
work on kernel specification-building operations [44,47, 53,541. Our ultimate
interest is not in the primitive notions themselves but rather in the useful higher
level constructs which can be expressed in their terms. By carefully investigating the
primitives we hope to gain insights which can be applied to the derived constructs.
An example which justifies this approach is the junk specification-building
operation of ASL [47] which is another useful special case of abstract:

junk SP on S =def abstract SP w.r.t. EQsorts(SP)(Xsor,s(SP) _ s).

(See Sect. 5 for the meaning of the EQ notation.) This gives those algebras which
are the same as models of SP except that they may contain arbitrary junk in sorts
S; see [47] for examples of its use. Since we have studied observational equivalence
and abstract rather than the special case of behavioural abstraction and bebaviour,
everything we have done applies to junk as well.

We have not yet investigated thoroughly the interaction between bebaviour and
other specification-building operations, although a start in this direction is given by
Facts 5 and 6 which give rise to the following identities:

translate (abstract SP w.r.t. @) by CT = abstract (translate SP by a) w.r.t. O(@)

derive from (abstract SP w.r.t. O(G)) by CT = abstract (derive from SP by a) w.r.t. @

176 SANNELLA AND TARLECKI

(abstract SP w.r.t. CD) + (abstract SP' w.r.t. @‘) = abstract (SP + SP') w.r.t. @ u @’

if Sig[SP] and Sig [SP'] are disjoint signatures

(See, e.g., [44] for the semantics of translate, derive, and +.) An issue we have not
discussed is the connection between behavioural equivalence/abstraction and
parameterisation of specifications. An approach to the problem of specifying
software modules which integrates parameterisation and implementation is given
in [14].

The material in this paper could provide the basis for high-level specification
languages such as one in which every specification is surrounded by an implicit
(and invisible) application of behaviour with respect to input and output sorts
appropriate to the context. This follows the argument in the Introduction that a
specification is only worthly to be called “abstract” if the class of its models is
closed under behavioural equivalence. Such a language, obtained by extending the
modularisation facilities of the programming language Standard ML, is presented
in [45].

ACKNOWLEDGMENTS

Our thanks to Rod Burstall for his support and encouragement and to Martin Wirsing and Rocco de
Nicola for helpful comments on an earlier version. Support was provided by the Science and Engineering
Research Council.

REFERENCES

1. M. A. ARBIB AND E. G. MANES, “Arrows, Structures and Functors: The Categorical Imperative,”
Academic Press, New York/London, 1975.

2. J. BARWISE, Back and forth through intinitary logic, in “Studies in Model Theory” (M. D. Morley,
Ed.), Studies in Mathematics Vol. 8, pp. 5-34, Amer. Math. Assn., Washington, DC, 1973.

3. J. BARWISE, Axioms for abstract model theory, Ann. Murh. Logic 7 (1974), 221-265.
4. F. L. BAUER et al. (the CIP Language Group), “Report on a Wide Spectrum Language for Program

Specitication and Development,” Report TUM-18104, Technical Univ. Munich, 1981.
5. J. A. BERGSTRA AND J. J. MEYER, I/O computable data structures, SIGPLAN Notices 16, No. 4

(198 1), 27-32.
6. R. S. BOYER AND J. S. MOORE, “A Computational Logic,” Academic Press, New York/London,

1979.
7. M. BROY AND M. WIRSING, Partial abstract types, Acfa Iform. 18 (1982), 47-64.
8. R. M. BURSTALL AND J. A. GOGUEN, The semantics of Clear, a specification language, in

“Proceedings of Advanced Course on Abstract Software Specifications, Copenhagen,” Lect. Notes in
Comput. Sci. Vol. 86, pp. 292-332, Springer, New York/Berlin, 1980.

9. R. M. BURSTALL AND J. A. GOCUEN, Algebras, theories and freeness: An introduction for computer
scientists, in “Proceedings, 1981 Marktoberdorf NATO Summer School,” Reidel, Dordrecht, 1982.

10. R. M. BURSTALL, D. B. MACQUEEN, AND D. T. SANNELLA, HOPE: An experimental applicative
language, in “Proceedings, 1980 LISP Conference, Stanford, California,” pp. 136143, 1980.

11. A. CHURCH, An unsolvable problem of elementary number theory, Amer. J. Math. ~58 (1936),
345-363.

OBSERVATIONAL EQUIVALENCE AND SPECIFICATION 177

12. R. DE NICOLA AND M. C. B. HENNESSY, Testing equivalences for processes, Theoret. Compuf. Sci. 34
(1984), 83-133.

13. H.-D, EHRICH, “On the Theory of Specification, Implementation, and Parametrization of Abstract
Data Types,” Report 82, Abteilung Informatik, University of Dortmund, 1979; J. Assoc. Comput.
Mach. 29, No. 1 (1982) 206227.

14. H. EHRIC~, “An Algebraic Specification Concept for Modules” (draft version), Report 8404, Institut
fur Software und Theoretische Informatik, Technical Univ. Berlin, 1984.

15. H. EHRIG, H.-J. KREOWSKI, B. MAHR, AND P. PADAWITZ, Algebraic implementation of abstract data
types, Theoret. Comput. Sci. 20 (1982), 209-263. ’

16. H. EHRIC;, J. W. THATCHER, P. LUCAS, AND S. N. ZILLES, Denotational and initial algebra semantics
of the algebraic specification language LOOK, Draft report, IBM Research, 1982.

17. H. EHRIG, E. G. WAGNER, AND J. W. THATCHER, Algebraic specifications with generating con-
straints, in “Proceedings, 10th ICALP, Barcelona,” Lect. Notes in Comput. Sci. Vol. 154,
pp. 188-202, Springer, New York/Berlin, 1983.

18. H. B. ENDERTON, “A Mathematical Introduction to Logic,” Academic Press, London/New York,
1972.

19. H. GANZINGER, Parameterized specitications: parameter passing and implementation, TOPLAS 3
(1983), 318-354.

20. V. GIARRATANA, F. GIMONA, AND U. MONTANARI, Observability concepts in abstract data type
specification, in “Proceedings, 5th MFCS, Gdansk,” Lect. Notes in Comput. Sci. Vol. 45, Springer,
New York/Berlin, 1976.

21. M. GOGOLLA, “Algebraic Specilications with Partially Ordered Sorts and Declarations,” Report 169,
Abteilung Informatik, University of Dortmund, 1983.

22. M. GOCOLLA, K. DROSTEN, U. LIPECK, AND H.-D. EHRICH, Algebraic and operational semantics of
specifications allowing exceptions and errors, Theoret. Compur. Sci. 34 (1984). 289-313.

23. J. A. GOGUEN, Abstract errors for abstract data types, in “Proceedings, IFIP Working Conf. on the
Formal Description of Programming Concepts, New Brunswick, New Jersey,” 1977.

24. J. A. GOGUEN, “Order Sorted Algebras: Exceptions and Error Sorts, Coercions and Overloaded
Operators,” Semantics and Theory of Computation Report No. 14, Dept. of Computer Science,
UCLA, 1978.

25. J. A. GOGUEN AND R. M. BURSTALL “CAT, a System for the Structured Elaboration of Correct
Programs from Structured Specifications,” Technical report CSL- 118, Computer Science
Laboratory, SRI International, 1980.

26. J. A. GOGUEN AND R. M. BURSTALL, Introducing institutions, in “Proceedings Logics of Program-
ming Workshop, Carnegie-Mellon Univ.,” Lect. Notes in Comput. Sci. Vol. 164, pp. 221-256,
Springer, New York/Berlin, 1984.

27. J. A. GOGUEN AND J. MESEGUER, Completeness of many-sorted equational logic, SIGPLAN Notices
16, No. 7 (1981), 24-32; extended version Housfon J. Math. 11 (1985), 307-334.

28. J. A. G~CUEN AND J. MESEGUER, Universal realization, persistent interconnection and implemen-
tation of abstract modules, in “Proceedings, 9th ICALP, Aarhus, Denmark,” Lect. Notes in Comput.
Sci. Vol. 140, pp. 265-281, Springer, New York/Berlin, 1982.

29. J. A. G~GUEN AND J. MESEGUER, “An Initiality Primer,” Draft report, SRI International, 1983.
30. J. A. GIXXJEN AND J. TARDO, An introduction to OBJ: A language for writing and testing software

specifications, in “Specification of Reliable Software,” pp. 170-189, IEEE, New York, 1979.
31. J. A. GOCUEN, J. W. THATCHER, AND E. G. WAGNER, “An Initial Algebra Approach to the

Specification, Correctness, and Implementation of Abstract Data Types,” IBM Research Report RC
6487, 1976; in “Current Trends in Programming Methodology, Vol. 4: Data Structuring” (R. T. Yeh,
Ed.), pp. S&149, Prentice-Hall, Englewood Cliffs, NJ, 1978.

32. J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT, Initial algebra semantics and
continuous algebras, J. Assoc. Comput. Mach. 24, No. 1 (1977) 68-95.

33. J. V. GIJTTAG AND J. J. HORNING, Formal specification as a design tool, in “Proceedings, 7th ACM
Symposium on Principles of Programming Languages, Las Vegas,” pp. 251-261, 1980.

178 SANNELLA AND TARLECKI

34. S. KAMIN. Final data types and their specification, r0OPLAS 5, No. I (1983), Y7 121.
35. C. R. KARP. “Languages with Expressions of Infinite Length,” North-Holland, Amsterdam. 1964.
36. B. LISKOV, R. ATKINSON, T. BLOOM, E. Moss, J. C. SCHAFFERT, R. SCHEIFLER, ANU A. SNYI)ER.

“CLU Reference Manual,” Lect. Notes in Comput. SCI. Vol. 144, Springer, New York/Berlin. 1981.
37. B. H. LISKOV ANU V. BERZI~XS, “An Appraisal of Program Specifications,” Computation Structures

Group Memo 141-l. Laboratory for Computer Science, MIT, 1977.
38. S. MACLANE, “Categories for the Working Mathematician,” Springer, New York/Berlin, 197 I.
39. T. S. E. MAIHALJM, M. R. SADLER. ANI) P. A. S. VELOSO, “Logical Implementation,” Technical

report, Department of Computing, Imperial College, 1983.
40. P. D. MOSSES, Abstract semantic algebras! in “Proceedings, IFIP TC2 Working Conf. on Formal

Description of Programming Concepts II, Garmisch-Partenkirchen,” North-Holland, Amsterdam,
1983.

41. P. PEPPER, On the correctness of type transformations, talk at “2nd Workshop on Theory and
Applications of Abstract Data Types, Passau,” 1983.

42. H. REICHEL, Behavioural Equivalence-a unifying concept for initial and final specification methods,
in “Proceedings 3rd Hungarian Computer Science Conf., Budapest,” pp. 27-39, 1981.

43. D. T. SANNELLA AND R. M. BURSTALL, Structured theories in LCF, in “Proceedings 8th Colloq. on
Trees in Algebra and Programming, L’Aquila, Italy.” Lect. Notes in Comput. Sci. Vol. 159,
pp. 377-391, Springer, New York/Berlin, 1983.

44. D. T. SANNELLA ANU A. TARLECKI. Building specifications in an arbitrary institution, in
“Proceedings, Intl. Symposium on Semantics of Data Types, Sophia-Antipolis,” Lect. Notes in
Comput. Sci. Vol. 173, pp. 337-356, Springer, New York/Berlin, 1984.

45. D. T. SANNELLA AND A. TARLECKI. Program specification and development in Standard ML, in
“Proceedings, 12th ACM Symp. on Principles of Programming Languages, New Orleans,”
pp. 67-77, 1985.

46. D. T. SANNELLA ANL) M. WIRSING, “Implementation of Parameterised Specifications,” Report CSR-
103-82, Dept. of Computer Science, University of Edinburgh; extended abstract in “Proceedings, 9th
ICALP, Aarhus, Denmark,” Lect. Notes in Comput. Sci. Vol. 140, pp. 473488, Springer, New York/
Berlin, 1982.

47. D. T. SANNELLA AND M. WIRSING. “A Kernel Language for Algebraic Specification and Implemen-
tation,” Report CSR-131-83. Dept. of Computer Science, University of Edinburgh; extended abstract
in “Proceedings, Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden,” Lect.
Notes in Comput. Sci. Vol. 158, pp. 413-427, Springer, New York/Berlin, 1983.

48. 0. SCHOETT, “A Theory of Program Modules, Their Specification and Implementation (extended
abstract),” Report CSR-155-83, Dept. of Computer Science, University of Edinburgh, 1983.

49. D. SCOTT, Logic with denumerably long formulas and tinite strings of quantifiers, in “Theory of
Models,” pp. 329-341, North-Holland, Amsterdam, 1965.

50. A. TARLECKI, On the existence of free models in abstract algebraic institutions, Theoret. Comput. Sci.
37 (1985). 269-304.

51. J. W. THATCHER, E. G. WAGNER, AND J. B. WRIGHT, Data type specification: Parameterization and
the power of specification techniques, in “SIGACT 10th Annual Symp. on the Theory of Computing,
San Diego, California,” 1978; in TOPLAS 4, No. 4 (1982), 711-732.

52. M. WAND, Final algebra semantics and data type extensions, J. Compur. ~srem sci. 19 (1979),
2744.

53. M. WIRSING, Structured algebraic specifications, in “Proceedings, AFCET Symp. on Mathematics
for Computer Science, Paris, pp. 93-107, 1982.

54. M. WIRSING, “Structured Algebraic Specifications: A Kernel Language,” Habilitation thesis,
Technical Univ. Munich, 1983.

