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Abstract

Parameterisation is an important mechanism for structuring programs and specifications into
modular units. The interplay between parameterisation (of programs and of specifications) and
specification (of parameterised and of non-parameterised programs) is analysed, exposing import-
ant semantic and methodological differences between specifications of parameterised programs and
parameterised specifications. The extension of parameterisation mechanisms to the higher-order
case is considered, both for parameterised programs and parameterised specifications, and the
methodological consequences of such an extension are explored.

A specification formalism with parameterisation of an arbitrary order is presented. Tts denota-
tional-style semantics is accompanied by an inference system for proving that an object satisfies
a specification. The formalism includes the basic specification-building operations of the ASL
specification language and is institution independent.

1 Introduction

Modular structure is an important tool for organizing large and complex systems of interacting units.
When a system is decomposed into self-contained modules with well-defined interfaces, the number
of possible interactions between parts of the system is greatly reduced. This makes it possible to
understand each module in relative isolation from the other modules in the system.

The application of modular structure to the organization of “dynamic” systems such as programs
and machines is well known. Here, interactions between parts of a system involve transmission of data
or physical contact between bits of metal. Its application to “static” systems such as algebraic specific-
ations is perhaps less obvious but just as important. Interactions here are more implicit and insidious,
where axioms meant to specify one function can indirectly constrain the possible implementations of
other functions as well.

The first algebraic specification language which provided the means to structure specifications was
CLEAR [BG 80]. Since then the need for structure in specifications has become universally recognized,
and mechanisms for structuring specifications appear in all modern algebraic specification languages
including CIP-L [Bau 85], ASL [SW 83]. [Wir 86]. ACT ONE [EM 85] and the Larch Shared Language
[GHW 85].

An important structuring mechanism is parameterisation. This allows modules to be defined in a
generic fashion so that they may be applied in a variety of contexts which share some common charac-
teristics. A parameterised program module F' [Gog 84| (an ML functor [MacQ 86]) may be applied to
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any non-parameterised program module A,, matching a given import interface A,,,. The result is a

non-parameterised program module F'( A a version of I in which the types and functions in A

ar )7 ar
have been instantiated to the matching tyi’)es and functions in A,,,. An example of a parameterisped
program module is a parser module which takes a lexical analyser module as argument. Similarly, a
parameterised specification P may be applied to any non-parameterised specification SP,,, fitting a
certain signature ¥, (or specification SP,,,) to yield a specification P(SP,,, ). A standard example
is a specification Stack-of-X which takes a specification of stack elements and produces a specification
of stacks containing those elements. In some algebraic specification frameworks, parameterisation is

implicit in the sense that no distinction is made between parameterised and non-parameterised spe-
cifications (see for example LOOK [ETLZ 82], ASPIK [Vof 85] and the unified algebra framework
[Mos 89a|, [Mos 89b]) but the idea is the same.

The above discussion has dealt with two distinct classes: programs and specifications. Appropriate
parameterisation mechanisms give rise to two new (and distinct) classes: parameterised programs and
parameterised specifications. It is possible to specify parameterised programs, just as it is possible
to specify non-parameterised programs. The result is not a parameterised specification; it is a non-
parameterised specification of a parameterised program. In work on algebraic specification there has
been a tendency to ignore this distinction and use one flavour of parameterisation for both purposes.
This has sometimes led to misunderstanding and confusion. In this paper, we argue that the distinc-
tion is important both for semantical reasons and because the two kinds of specifications belong to
different phases of program development: parameterised specifications are used to structure require-
ments specifications, while specifications of parameterised programs are used to describe the modules
which arise in the design of an implementation. The most natural way to structure a specification
often reflects the way that an implementation would be structured. But this is not always the case,
and then the lack of a distinction causes real problems.

It is natural to consider what happens when parameterisation mechanisms are extended to the
higher-order case in which parameterised objects are permitted as arguments and as results. This
makes sense both for parameterised specifications and for specifications of parameterised programs.
The consequences of such an extension are explored in this paper. It is shown that re-interpreting the
concept of constructor implementation in [ST 88b] in these terms leads to a natural extension to deal
with implementations of specifications of parameterised programs. This in turn supports an extension
of the methodology for formal development of ML programs from specifications presented in [ST 89
to the case of higher-order ML functors.

The paper is organized as follows. After some preliminary definitions in Section 2, Section 3
surveys four of the approaches to parameterisation found in algebraic specification languages. This
is not intended as an exhaustive overview of the literature on parameterisation; the four approaches
discussed were found to be useful as a means of introducing the ideas in this paper, and many other
related and important studies have been omitted (e.g. [Ehr 82] and [Gan 83], just to mention two).
In Section 4, the similarities and differences between these approaches are analysed. The distinction
between parameterised specifications and specifications of parameterised programs is brought to light,
and the consequences of this distinction are investigated. This part of the paper may be summarized
by the following slogan:

parameterised (program specification) # (parameterised program) specification

In Sections 5 and 6, the technical and methodological consequences of extending parameterisation
to the higher-order case are considered. Section 7 presents a specification formalism built on the
institution-independent kernel specification language in [ST 88a] which supports the specification of
arbitrarily high-order parameterised programs, as well as extending the mechanism in [ST 88a] for
defining first-order parameterised specifications to the higher-order case. This section is based on a



more extensive presentation of this formalism in [ST 91a]. Finally. Section 8 contains conclusions and
some ideas for future work.

2 Preliminaries

Throughout the paper we assume that the reader is familiar with the basic concepts of logic and
universal algebra. In particular we will freely use the notions of: algebraic many-sorted signature,
usually denoted by ¥, X', ¥, | etc.; algebraic signature morphism o : ¥ — Y’ (this yields the category of
signatures STGN); Y-algebra; Y-homomorphism; X-isomorphism; ¥-equation; first-order X-sentence
(the set of all Y-sentences will be denoted by Sen(X)); and satisfaction relation between X-algebras
and Y-sentences. These all have the usual definitions (see e.g. [ST 88a]) and a standard, hopefully self-
explanatory notation is used to write them down. We also make minor use of the pushout construction
of category theory.

For any signature X, the class of all Y-algebras is denoted by Alg(X). We will identify this with
the category of ¥-algebras and ¥-homomorphisms whenever convenient. If o : ¥ — ¥’ is a signature
morphism then _‘0 : Alg(Y') — Alg(Y) is the reduct functor defined in the usual way (the notation

_‘Z is sometimes used when o is obvious). Now. given a signature morphism o : ¥ — ¥" and functor

F: Alg(Y) — Alg(Y), we say that I is (strongly) persistent along o if for every algebra A € Alg(%),
F(A)|a = A.

For any signature Y., by a Y-presentation we mean any set of Y-sentences. Any X-presentation
® determines the class of its models, written [®]. which consists of all ¥-algebras that satisfy all
the sentences in ®. By a X-theory we mean any X-presentation which is closed under semantical
consequence, i.e., a set ® of Y-sentences is a Y-theory if all the sentences that hold in [®] are in ®.

The most basic assumption of work on algebraic specification is that software systems are modelled
as algebras, abstracting away from the concrete details of algorithms and code and focussing on
their functional behaviour. Roughly, the signature of the algebra gives the names of data types and
of operations available to the user of the system, and the algebra itself gives the semantics of the
particular realizations of these data types and operations defined by the system. Consequently, to
specify a software system viewed in this way means to give a signature (fix the abstract syntax available
to the user) and define a class of algebras over this signature, that is, describe a class of admissible
realizations of the system.

One way to give a specification of a system is to present a list of axioms over a given signature
and describe in this way the properties that the operations of the system are to satisfy. This view
of a software-system specification as a Y-presentation (for an appropriate signature X) is perhaps
the simplest possible, but has a number of disadvantages. Most notably, any specification of a real
software system given in this style would comprise a very long, unstructured, and hence unmanageable
list of axioms.

To cope with this problem, a number of so-called specification languages have been designed,
which allow specifications to be built in a structured manner using a predefined set of specification-
building operations. According to the brief discussion above, the most essential feature of any such
specification formalism is that every specification SP over a given signature ¥ (we will say that SP is
a Y-specification) unambiguously determines the class of admissible realizations of the system being
specified, i.e. a class of X-algebras (sometimes referred to as models of the specification). Thus, any

S-specification SP denotes a class of Y-algebras [SP] € Pow(Alg())'. A specification SP is called

! Pow(X), for any class X, denotes the “class of all subclasses” of X. This raises obvious foundational difficulties.
We disregard these here, as they may be resolved in a number of standard ways. For example, for the purposes of
this paper we could assume that algebras are built within an appropriate universal set, and deal with sets, rather than
classes, of algebras.



consistent if it has at least one model, i.e. [SP] # (. See [ST 88a], [ST 92] for a more extensive
discussion of the semantics of specifications.

As a starting point for the presentation of specifications in this paper, we recall here the simple yet
powerful specification-building operations defined in [ST 88a] (with the slight difference that signatures
are regarded as specifications in their own right here with impose ® on ¥ in place of (¥, ®)). This
was in turn based on the ASL specification language [SW 83], [Wir 86]. The main use of these
operations is in examples where they should be more or less self-explanatory. The particular choice
of specification-building operations is not important for the purposes of this paper.

o If ¥ is a signature, then X is a Y-specification with the semantics:

5] = Aly(S)

o If SP is a Y-specification and ® is a set of X-sentences, then impose ® on SP is a X-
specification with the semantics:

[impose ® on SP|={A€[SP]|AE &}

o If SPis a X-specification and ¢ : ¥ — ¥ is a signature morphism, then derive from SP by o
is a Y'-specification with the semantics:

[derive from SP by o] = {A|, | A € [SP]}

o If SP is a Y-specification and o : ¥ — ¥ is a signature morphism, then translate SP by o
is a X'-specification with the semantics:

[translate SP by o] = {A" € Alg(¥") | A",, e [SP]}

o If SP and SP’ are Y-specifications, then SP USSP’ is a Y-specification with the semantics:

[SPUSPT=[SP]N[SPT]

o If SP is a Y-specification and ¢ : ¥’ — ¥ is a signature morphism, then minimal SP wrt o
is a Y-specification with the semantics:

[minimal SP wrt o] = {A € [SP]| A is minimal in Alg(Z) w.r.t. o}?

where a Y-algebra A is minimal w.r.t. o if it has no non-trivial subalgebra with an isomorphic

o-reduct (cf. [ST 88a]).
o If SP is a Y-specification, then iso-close SP is a Y-specification with the semantics:

[iso-close SP] = {A € Alg(X) | A is isomorphic to B for some B € [SP]}

o If SP is a Y-specification, o : ¥ — ¥ is a signature morphism and @ is a set of X'-sentences,
then abstract SP wrt ® via o is a Y-specification with the semantics:

[abstract SP wrt ' via o] = {A € Alg(X) | A =3, B for some B € [SP]}

where A =7, B means that A is observationally equivalent to B w.r.t. ®' via o (see [ST 87],
[ST88a] for details).

?This is slightly different from the definition in [ST 88a.
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The above definitions were given in [ST 88a] in the framework of an arbitrary institution [GB 84].
This means that the specification-building operations defined above are actually independent of the
underlying logical system, that is, of the particular definitions of the basic notions of signature,
algebra, sentence and satisfaction relation. In this paper it will be convenient to use some other
specification-building operations defined in the standard framework of first-order logic, as follows:

o If SPisa Y-specification and SP is a ¥'-specification, then SP+SP’ is a (YUX')-specification
with the semantics:

[SP+SPT={A€ Alg(XUY) | Ay € [SP] and Al € [SPT}

(this is expressible using union and translate as defined above, see [ST 88al).

o If SP is a ¥-specification, S is a set of sort names, {2 is a set of ranked operation names such
that adding S and Q to X yields a well-formed signature ¥, and @' is a set of ¥'-sentences, then
enrich SP by sorts S opns  axioms ®' is a ¥-specification with the semantics:

[enrich SP by sorts S opns Q axioms ®'] = {A € Alg(Y) | Alp € [SP] and A |= o'}
(this is expressible using translate and impose as defined above, see [ST 88al).

o If SP is a Y-specification and S is a set of sort names in ¥. then reachable SP on S is a
Y-specification with the semantics:

[reachable SP on S]= {A € [SP] | A is generated on S}

where A is said to be generated on S if it has no proper subalgebra having the same carriers of
sorts not in S (this is expressible using minimal as defined above, see [S'T' 88a]).

For example we can now define:

Bool =, reachable
sorts bool
opns true, false : — bool

axioms true # false
on {bool}

Nat =,; reachable
enrich Bool
by sorts nat
opns zero : — nat
succ : nat — nat
> : nat x nat — bool

axioms Vn : nat.succ(n) > zero = true
on {nat}

Note that at the semantical level, each of the specification-building operations introduced above
is a function mapping classes of algebras to classes of algebras. We will assume that when viewed this
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way, all specification-building operations are monotone w.r.t. the inclusion ordering on classes. This
is indeed the case for all the above operations.

If SP is a Y-specification and SP' is a ¥'-specification, then a specification morphism from SP to
SP' o :SP — SP' is a signature morphism o : ¥ — X' such that for all A" € [SP], AI‘U e [SP].
This yields the category of specifications SPEC (with composition and identities inherited from the
category of signatures SIGN'). SPEC is co-complete, with colimits in SPEC determined by colimits
in STGN (cf. [GB 84], [ST 88a]). Note that this definition of specification morphism works for any

specification formalism with a semantics in the style presented above.

3 Overview of parameterisation mechanisms

A specification language provides a certain number of specification-building operations such as those
defined above. As we have mentioned, such operations may be viewed as functions mapping spe-
cifications to specifications. More complex functions of this type may be defined as combinations of
the elementary specification-building operations provided. We can use A-abstraction to write such
functions down, where the semantics of application is given by f-conversion. This is the approach
adopted in ASL [SW 83], [Wir 86]; the particular definition below is taken from [ST 88a] with a minor
syntactic modification (viz.. the use of Spec(_) to conform with conventions to be introduced later).

Definition 3.1 An ASL-style parameterised specification has the form AX:Spec(X,,,). SP,.[X] where
Y 4 18 a signature and SP,

par [X]is a X, -specification which may contain one or more uses of X as

a X, ~specification. The result of applying such a parameterised specification to a ¥,,.-specification
SP,,, is defined as follows:

(AX:Spec(X,,,). SP.[X)(SP,,) =44 SP

TES

[SPuyy / X]

paT)
where SP, [SP,,/X]is SP,. with all occurrences of X replaced by SP,,,. d

This naturally extends to higher-order parameterised specifications in the standard way. Recursion is
also no problem since all specification-building operations are monotonic with respect to the inclusion
of model classes.

A characteristic feature of the specification-building operations defined in Section 2 and in [ST 88a]
is that the signature of SP, ([SP,,,/X] is not dependent on SP,,: SP, [SP,,/X]isaX, -specification
.SP,.,[X] describes

Tes

par-Specification SP,. .
a function mapping ., .-specifications to X

This function is only defined for specifications over the indicated parameter signature ¥, . In the

for any X Thus a parameterised specification AX:Spec(¥

paT)

-specifications.

par res

framework of [ST 88a], it is possible to apply a parameterised specification AX:Spec(X,,, ). S P, [ X]

(via the
inclusion morphism ¢ : ¥, — X, ): the same trick works for any SP,,, where there is a signature
morphism o : X

par = Bapy- The part of SP

result of the application.

to a X, -specification SP,,, where ¥, D ¥ . but only by first applying derive to SP

arg arg arg

.r; Which is thereby “forgotten” does not reappear in the

A different approach is taken in CLEAR [BG 80|, where parameterised specifications are used to
uniformly enrich given argument specifications. In this approach, everything which is in the argument
specification carries through to the overall result. This is achieved by making the “fitting” of the
argument specification to the indicated parameter signature an explicit part of the argument-passing
mechanism.

Definition 3.2 A CLEAR-style parameterised specification is a specification morphism P : SP  —
SP,., where SP,,. is a ¥, -specification and SP,., is a ¥, -specification. The overall result of
applying such a parameterised specification to a X, -specification SP,,, via a specification morphism

o:SP,,, — SP,, (aso-called fitting morphism) is defined as the specification SPT/% where
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SPaTg SP’

o
SP,, SP
p P TES
is a pushout in the category of specifications SPEC. O

SPT/ES may be defined more explicitly as follows:

SP' =, (translate SP,, by P)U (translate SP,., by &)

TES

where P and & are given by the following pushout diagram in the category of signatures SZGN:

P
Z‘”g Z;es
o o
EPGT P Zres

This still defines a function taking specifications to specifications, but the signatures of the argu-
ment and of the overall result specifications are not fixed. Further differences with respect to ASL-style
parameterisation are that the argument specification is required to “semantically” fit the parameter
specification SP,,, rather than just to “syntactically” fit the parameter signature ¥, as before, and
that the argument specification is always explicitly included in the overall result specification.

ACT ONE [EM 85] adopts a similar style of parameterisation to that of CLEAR except that
it has an additional layer of semantics. Namely, in addition to the way in which application of
a parameterised specification to an argument specification builds an overall result specification as
above, a parameterised specification describes a functor mapping individual models of the parameter
specification to models of the result specification.

Definition 3.3 An ACT ONE-style parameterised specification and application of such a paramet-
erised specification to an argument specification are defined exactly as for CLEAR-style parameterised
specifications, except that the only specifications considered are presentations with equational axioms.
The model-level semantics of a parameterised specification P : SP = — SP,_ is the free functor

Fp:[SP,,,] — [SP,.] (the left adjoint to the P-reduct functor _|p: ISP, ] — [SP,..])- O

In ACT ONE, an important issue is the compatibility of the specification-level semantics with the
model-level semantics, where the model-level semantics of an unparameterised specification is the class
of its initial models. It turns out that everything works out fine when the free functor defined by a
parameterised specification is persistent. In this case, for any argument specification SP,,, and fitting



morphism o : SP,,, — SP,,, Fp:[SP,,] — [SP.] lifts to a functor F5 : [SP,,] — [[S'PT/ESH (via
the amalgamation lemma) which is free with respect to _|}3 and so maps the initial models of SP,
to the initial models of SPT/ES.

The model-level semantics of ACT ONE-style parameterisation has a completely different flavour
from the previous parameterisation mechanisms. ACT ONE parameterised specifications are not
purely construed as specification-building operations but also as tools to construct models of the
overall results out of models of the arguments. This is very much like module parameterisation
mechanisms in modular programming languages such as Standard ML [MacQ 86], which was the
starting point for work on the Extended ML specification language [ST 85], [ST 89], [San 91]. [ST 91b].
Such modularisation mechanisms provide the means to structure programs “in the large” so that
programs may be decomposed into a number of (possibly generic) self-contained units with well-defined
interfaces [Gog 84]. The Standard ML programming language comprises two layers: an essentially
functional programming language, and a language for defining program units (structures), interfaces
(signatures) and parameterised program units (functors). Simplifying somewhat, we can think of

es

structures as algebras, ML signatures as algebraic signatures, and functors as parametric algebras,
i.e. functions mapping algebras to algebras (cf. OBSCURE [LL 88] where these are called algebra
modules). Extended ML provides a means of specifying such parametric algebras (cf. the notion of
cell in [Sch 87]). Extended ML functor specifications are like Standard ML functors except that
the result of applying the functor to an argument algebra is (loosely) specified rather than defined
explicitly by means of code. To simplify the presentation, we consider only those functors in which
the result includes the parameter.

Definition 3.4 An Futended ML functor specification has the form functor FI(X : SP, ) : SP,
where SP,,, is a X, -specification and SP,., is a X, ;-specification with ¥ C X Its semantics
is a function F' which to any algebra A € [SP,,,] assigns a ¥, -specification F(A) with semantics

defined as follows:

€S par TES"

[F(A)] = (B € [SP..] | Bls,., = A}

A Standard ML functor which maps X,,,-algebras to X, ,-algebras satisfies this specification iff for
each algebra A € [SP,,,] it yields an algebra in [F(A)].
The semantics of an Extended ML functor specification [’ as above extends pointwise to any

argument ¥, -specification SP,,, such that [SP,, ] C [SP,]: F(SP,,)is a ¥, -specification with

semantics defined as follows:

[#(S Py )] = HTF(A] | A € [SP,,]}
0

Note that the function described by an Extended MI. functor specification is persistent by definition,
in the sense that any algebra B in [F/(A)] inherits an unmodified copy of A. For Standard ML
functors, where both the argument and the body of the functor are defined by Standard ML code,
this embodies the fact that the code of the argument cannot be modified by adding the additional code
in the body. This constraint is retained when generalising to specifications of Standard ML functors
as in Extended ML. In Extended ML, however, this may lead to inconsistency since the axioms in the
result specification may impose new requirements on the argument: for some algebras A € [SP,,,].

[#(A)] may be empty, as happens when the requirements imposed in SP,., are inconsistent with the

€8

particular realization of SP,,, given by A. There will then be no Standard ML functor which satisfies
the specification since such a functor must produce a result for all algebras which satisty SP, .
In this section we described a number of different parameterisation mechanisms appearing in

specification languages. One obvious difference between them concerns the technicalities of parameter

passing, which in ASL is based on #-reduction in a A-calculus style, while CLEAR and ACT ONE use



a pushout-based approach. Advocates of the pushout approach argue for its convenience, since for an
arbitrarily large argument the overall result always includes the whole argument. This is not the case
in ASL, as discussed above.

The pushout approach seems fully justified in a formalism used to gradually construct a single
specification by successively adding pieces. The idea is to incorporate in this specification all poten-
tially useful components, as otherwise they may be lost. However, a real specification language will
incorporate an environment of named specifications, with explicit scoping mechanisms like those in de-
clarative programming languages. Once a specification is introduced into the environment, it remains
there and all of its components are permanently accessible. Whichever parameterisation mechanism
is used, there is no danger that some components of an actual parameter will inadvertently become
unavailable. If needed, they can always be taken from the environment, subject only to the con-
straints of the type system and the scoping mechanisms. Specification languages like Extended ML
are designed to be sufficiently permissive to allow this (cf. [Tar 92]).

Such differences will to a large extent be disregarded in this paper; although they are of great
importance for practical purposes, the difference is a matter of taste and convenience rather than of
a more fundamental nature.

4 Parameterised specifications vs. specifications of parametric
algebras

4.1 Concepts and semantic objects

An essential difference between the parameterisation approaches presented in Section 3 may best be
seen if we compare the ASL-style and Extended ML-style parameterisation mechanisms. ASL-style
parameterised specifications are defined entirely on the level of specifications, without any reference to
the algebras which specifications are used to describe. Thus, they accept specifications as arguments
and yield specifications as results. Defining the semantics of Extended ML functor specifications at
this level was possible only via the more basic level of algebras: an Fxtended ML functor specification
describes a function taking single algebras to classes of algebras, which is viewed as a definition of a
class of Standard ML functors. The pointwise extension to specifications is a posteriori, and in fact
plays no part in the Extended ML program development methodology proposed in [ST 89], [ST 91b].
CLEAR-style parameterised specifications are similar in this respect to ASL-style parameterisation,
while ACT ONE-style parameterisation has elements of both embodied in its two levels of semantics.
This distinction seems fundamental as it reflects the role which both kinds of specifications play in
the program development process.

There are two kinds of entities involved in the process of developing a software system from a
specification. On one hand we have software systems, modelled as algebras. On the other hand we
have specifications which describe classes of algebras. Both software systems and specifications may
(and should) be presented in a structured way, using mechanisms such as parameterisation. This
gives rise to both parametric (or generic) software systems, and parameterised specifications. It is
easy to confuse two distinct notions: specifications of parametric software systems, and parameterised
specifications of software systems. The first is a (non-parameterised) specification of a parametric
algebra. FExtended ML-style functor specifications are of this kind. The second is a parameterised
specification of a (non-parametric) algebra. ASL-style and CLEAR-style parameterised specifications
are of this kind. Of course, it is possible to combine these two notions to obtain (for example)
parameterised specifications of parametric algebras, etc.

A technical consequence of the above considerations is that the semantic objects modelling para-
meterised specifications and specifications of parametric algebras are quite different.



Definition 4.1 The denotation of a parameterised specification P with parameter signature 3, and

result signature X__  is a monotone function

[P]: Pow(Alg(X,,,)) — Pow(Alg(¥,.,))

mapping classes of X

called Spec(X

sar-algebras to classes of ¥ -algebras. The collection of all such functions is
) = Spec(X,.,); we write P : Spec(X,,,) — Spec(X,.,) to indicate the “type” of P.
O

par

We will use the notation of ASL to define parameterised specifications. The definition of the applic-
ation of a parameterised specification P (Definition 3.1) yields a monotone function [P] as above
(cf. Section 7.2). When needed, we will use the same notation with a parameter (requirement) spe-
cification instead of just a parameter signature (cf. Section 7). The denotation of a parameterised
specification P with parameter specification SP,,, and result signature X, is a monotone function

[P]: Pow([SP,.,]) — Pow(Alg(X,.,))
mapping classes of SP,,,-models to classes of X,,-algebras.

Definition 4.2 The denotation of a specification @ of ¥, ,-algebras parameterised by ¥, -algebras
is a class

[Q] € Pow(Alg(Xy.,) — Alg(E,e;))

-algebras to X _,-algebras. The collection of all such functions is called
— ¥,.,) to indicate the “type” of Q. O

of functions mapping X

Spec(¥

par

par = Spes); We write @ @ Spec(X,,,

We will use a notation like ITA:X ..
is the class of functions F' which map any %

SP[A] for specifications of parametric algebras. [ILA:X .. SP[A]]
-algebra A to an algebra F(A) € [SP[A|]. Here,
SP[A] is a specification in which A stands for a ¥ ,,-algebra. A can be used in SP via a new
specification-building operation which turns algebras into specifications: if A is a Y-algebra then {A}
is a 2-specification having A as its only model. We can readily generalise this and use an arbitrary spe-
cification rather than a signature to define the class of algebras over which the “parameter” A ranges
(cf. Section T). The denotation of a specification @) of ¥, -algebras parameterised by SF,, -models

par

is a class

Q] € Pow([SP,,.] — Alg(%,.;))
of functions mapping SP,,.-models to ¥, . -algebras. Extended ML functor specifications may be

par

modelled as specifications of parametric algebras: functor F(X : SP ) : SP,

par res

Standard ML functors I which are parametric algebras in the class defined by TI1X:SP,
The following two simple examples illustrate the notions introduced above. Other examples will

specifies the class of

SP

ar* TES "

follow in later sections.

Example 4.3 Let
Key =,; enrich Nat

by sorts key
opns hash : key — nat
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where Nat is as defined in Section 2, and let

HashTablel =,; AX :Spec(Key).

enrich X
by sorts array
opns empty : — array

used : nat x array — bool

put : nat x key x array — array

get : nat x array — key

add : key x array — array

putnear : nat x key x array — array

present : key x array — bool

searchnear : nat x key x array — bool

axioms used(z, empty) = false

... (axzioms for arrays) ...

add(k, ) = putnear(hash(k), k. a)

used(7, a) = false = putnear(s, k, a) = put(s, k, a)

used(i. a) = true A get(hash(k),a) = k =
putnear(i, k,a) = a

used(i. a) = true A get(hash(k),a) # k =
putnear(z, k, a) = putnear(s + 1, k, a)

present(k, a) = searchnear(hash(k), k. a)

used(i, a) = false = searchnear(i, k, a) = false

used(z. a) = true A get(hash(k).a) = k =
searchnear(7, k, a) = true

used(7, a) = true A get(hash(k),a) # k =

searchnear(7, k, a) = searchnear(i + 1. k, a)

(Each axiom is implicitly universally quantified over all its free variables; this convention will be used
in examples throughout the rest of this paper.)

HashTablel is a parameterised specification. Given a specification SP describing a particular
choice for keys and perhaps constraining hash in some fashion (e.g. to have a particular subset of the
natural numbers as its range), HashTable1(SP) is a specification of hash tables containing such keys
and using such a hash function. For instance, let

String =,; enrich Nat
by sorts string

opns nil : — string
a: — string
b: — string
c: — string
- string X string — string
hash : string — nat

axioms s-nil=s
nil-s=s
s-(t-v)=(s-1)-v
hash(nil) =0

Let Y., and Xg,;,, be the signatures of Key and String respectively, and let o : Yk, — Yg,,, be
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the obvious signature morphism (mapping key to string and leaving the rest of the signature of Key
unchanged). Then

HashString =,.,;, HashTablel(derive from String by o)

specifies hash tables containing strings, with the hash function constrained so that the empty string is
hashed into position 0 of the table. Note that adding further axioms to String which constrain its class
of models and then repeating the construction of HashString with this new version of String would
yield a specification with fewer models than HashString as above. This demonstrates the monotonicity
of the function which HashTable denotes.

The above example can be made slightly more realistic by adding a use of derive to the body
of HashTablel to hide some operations (e.g. putnear) and to change the name of the sort array to

hashtable. O

Example 4.4 let

HashTable2 =, IIA: Key.

enrich {A}
by sorts array
opns empty : — array

used : nat x array — bool

... (as in the previous example) . ..
axioms used(7, empty) = false

... (as in the previous example) ...

where Key is as in Example 4.3. HashTable2 is a specification of a parametric algebra. If H is in the
class defined by HashTable2, then H is a function mapping algebras to algebras. For any algebra A
satisfying the specification Key. H(A) is an algebra which realizes hash tables containing the keys in A
and using the hash function in A. H(A) is required to satisfy the axioms in the body of HashTable2 for
any A satisfying Key, so any H satisfying HashTable2 will be a universally applicable parameterised
implementation of hash tables, in the sense that it is required to exhibit correct behaviour for any
choice of keys and any choice of hash function over those keys. O

The above two examples illustrate the essential difference of intention underlying (instantiated) para-
meterised specifications vs. specifications of parametric algebras. To realize HashString (Example 4.3),
the implementor must provide an implementation of hash tables for a hash function of his/her choice
(subject only to the constraint that hash(nil) = 0). To realize HashTable? (Example 4.4), the imple-
mentor must provide an implementation of hash tables which works for any hash function, since the
hash function will be supplied later as an argument.

4.2 The Galois connection

There is a natural connection between the semantic domains of parameterised specifications and spe-
cifications of parametric algebras having the same parameter and result signatures. This relationship
is captured as follows. (The technicalities below do not depend on the fact that we deal with the
meanings of specifications here; we just apply some standard ideas of lattice theory [Bir 48] to our
specific concepts.) Note that all of the following extends to the case where we have a parameter
specification instead of just a parameter signature.

Recall that Spec(X,,,) — Spec(X,.;) stands for the function space Pow(Alg(X,,,)) — Pow(Alg(3,.,))

with elements P (these are monotonic functions corresponding to the denotations of parameterised

res par
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specifications P). Similarly, Spec(¥,,, — X,.) stands for Pow(Alg(X,,,) — Alg(¥,.)) with ele-
ments Q (these correspond to the denotations of specifications ) of parametric algebras). As usual,
in examples we will avoid stressing the distinction between a (parameterised) specification and its
denotation, and use the same name to refer to both.

Definition 4.5 For any P € Spec(X,,,) — Spec(%,.,), let P e Spec(S,,, — %,.,) be defined by

par Tes par

P ={F: Alg(3,,,) — Alg(3,.,) | for all A€ Alg(3,,,), F(A) e P({A})}.

par
For any Q € Spec(X,,, — ¥,.,). let Q' e Spec(X,,,) — Spec(X,.,) be defined by

QNC) = {F(A) | FeQAeC)
for any class (' of ¥, -algebras. O

Example 4.6 Recall the parameterised specification HashTable! in Example 4.3 and the specification
HashTable2 in Example 4.4. We have:

HashTablel® = HashTable2
HashTable2" = HashTablel

Proposition 4.7
L. Spec(¥,q — X,.5) forms a complete lattice with the set inclusion ordering.

2. Spec(X,,,) — Spec(X,.,) forms a complete lattice with the natural extension of the set inclusion
ordering on Spec(¥,.,) = Pow(Alg(X,.,)): for Py, Py € Spec(E,,,) — Spec(X,.;), Py < Py iff for
all C' C Alg(X,,,), P(C) CPy(C).

3. For Qy,Q, € Spee(,,, — 3,.,), if Q; € Q, then QF < Q.
4. For Py. Py € Spec(X,,,) — Spec(X,.,). if P; < Py then P]ﬁ - 733.
5. For Q € Spec(X,,, — X,.5), Q C (Qh*

6. For P e SpE(’(E ) - Spec(zres)7 P Z (Pﬁ)T

par
Thus we have defined a Galois connection [Bir 48].
Proof Immediate from the definitions, but note that 6 relies on the monotonicity of P. O

Corollary 4.8 The maps (_)ﬁ and (_)T defined above are isomorphisms between the sublattices of

Spec(B,0r — X,es) and Spec(E,,,) — Spec(X,.,) consisting of their closed elements, i.e. of paramet-

erised specifications of the form (Pﬁ)Jr and of specifications of parametric algebras of the form (QT)ﬁ7

respectively. O

Definition 4.9 Q € Spec(X,,, — X,.,) is called regular if for every family of functions F, € Q,
A€ Alg(¥,,,), the function F' : Alg(¥,,,) — Alg(X,.,) defined by F'(A) = F4(A) for A € Alg(X

1s an element of Q as well. O

paT)

13



Proposition 4.10 Q € Spec(¥,,, — ¥,.,) is regular iff it is closed, i.e. iff Q = (QT)ﬁ.

Proof (<«): Directly from the definition; for all P € Spec(X,,,) — Spec(X,.,), P! is regular.
(=, €): By Proposition 4.7.5.

(=, D): Consider any I : Alg(X,,,
The definition of Q" implies now that for all A € Alg(X
Thus F' € Q since Q is regular.

) — Alg(2,.,) such that F(A) € Q'({A}) for all A € Alg Y ar)-
there is /)y € Q such that F/(A) = ( ).
il

par)

Definition 4.11 P € Spec(X,,,) — Spec(¥,.,) is called additive if for every class C' C Alg(X,,,).
P(C)=U{P({A}) [ A e C}. 0

Fact 4.12 If P € Spec(X,,,) — Spec(¥,.,) is not additive then P > (Pﬁ)T. O

Definition 4.13 P € Spec(¥,,,) — Spec(¥,.,) is called globally inconsistent if P(C') = @ for all
C C Alg(x O

7?(17’)'

Definition 4.14 P € Spec(X,,,) — Spec(¥,.,) is said to preserve consistency if P(C) # 0 for all
non-empty C' C Alg(X O

paT)‘

Fact 4.15 If P € Spec(X,,,) — Spec(X,.,) does not preserve consistency then P! is inconsistent and
(PH1 is globally inconsistent. O

Proposition 4.16 P € Spec(X,,,) — Spec(¥,.,) is closed, ie. P = (PYT, iff either P is globally
inconsistent, or P is additive and preserves consistency.

Proof (=): Directly from the definition. For all Q € Spec(X,,, — ¥, .,), Q' is additive. Moreover,
either Q = (), and then QT is globally inconsistent, or Q # (}, and then QT preserves consistency.
(«<): If P is globally inconsistent, then P'=( and so P = (pti)T trivially. Otherwise, by additivity
of P and of (7311)T (the latter follows from the proof of the opposite implication, above) and by
Proposition 4.7.6, it is enough to show that P({A}) C (P"T({A}). For all A" € Alg(%,,,), P({A"}) #
f. since P preserves consistency. Consequently, for all B € P({A}), there is F' € P* such that
F(A) = B, and thus B € (P)T({A4}). O

par

Corollary 4.17 Thereis a 1-1 correspondence between consistent regular specifications of parametric
algebras and additive parameterised specifications which preserve consistency. O

Example 4.18 The parameterised specification HashTablel in Example 4.3 is additive and preserves
consistency. The specification HashTable2 in Example 4.4 is regular and consistent. In fact, HashT-
ablel and HashTable2 are in the correspondence mentioned in Corollary 4.17 (cf. Example 4.6). O

Some explanation of the properties embodied in the above technicalities will make their significance
clearer.

Q € Spec(X,,, — X,.,) is regular iff it is a Cartesian product of a family of classes of algebras
indexed by ¥ . -
going to write (and indeed by all specifications expressible in Extended ML). The Il-notation used
above and later formally introduced in Section 7 for defining specifications of parametric algebras has
a semantics which may be decomposed into two stages. Consider 11A:X . SP[A], where SP[A] is
a Y,.,-specification. First, this directly defines a function F : Alg(X ,,) — Pow(Alg(¥,.,)) which

maps any X -algebra A to the class of algebras [SP[A]]. This is then used to determine a class of

-algebras. This is a natural condition which is met by all the specifications we are

par res

functions HAGAZQ(ZPM)]:(A) € Spec(X,,, — Y,.s) (Il is used here as the Cartesian product symbol)
which is the meaning of the specification I1A: Epar SP[A]. Clearly, any specification defined in this
way is regular. Violating regularity would require use of specification mechanisms which constrain
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the instantiation of a parametric algebra on an argument by relating it to the instantiation of this
parametric algebra on other arguments. For example, the “stability” of Standard ML functors (see
[Sch 87], [ST 89], [ST 92]) is such a constraint. Thus, if a specification language provided a way to
require stability of parametric algebras (Standard ML functors) it might allow non-regular classes of
functors to be specified.

With regard to additivity of parameterised specifications, we have assumed that all specification-
building operations (and therefore also parameterised specifications) are monotonic on model classes.
This ensures that P(C') O U{P({A}) | A € C} for every P € Spec(X,,,.) — Spec(¥,.,) and C C
Alg(¥,,,). Thus, the only way for a parameterised specification to be non-additive is for the opposite
inclusion to fail. This may happen if it operates on the class of models of its argument as a whole

par

rather than “pointwise”. The following example of an ASI parameterised specification shows the
difference.

Example 4.19 Let
Yab =ag sorts s
opns a:—s
b:—s

and

Y. =44 sorts s

opns c¢:—s

with signature morphisms 0., 0, : X, — X, where o,,(s) = 0.,(s) = s, 0.,(¢) = a and o,(c) = b.
Now, consider the ASL parameterised specification

P =, AX:Spec(X,,). (derive from X by o) U (derive from X by o).

P is not additive. Consider two X ,-algebras, A, B with A, = B, = {0,1} and a4, = 0,b, = 1,ap =
1,bg = 0. Tt is easy to see that [P]({A}) = [P]({B}) = 0 while [P]({A, B}) = {C, D} where
C,=D,={0,1}, ¢, =0 and ¢, = 1. O

It is interesting to observe that each of the ASL specification-building operations used in this example
(and all those defined in Section 2) are additive. Paradoxically, it was nevertheless possible to use them
to form a non-additive parameterised specification. The reason is that there is a hidden non-additive
operation built into the notation, namely the “diagonalisation” function which allows an argument
to be used repeatedly as in AX:Spec(X). (... X ... X ...). It is also possible to imagine full-fledged
specification-building operations which are non-additive. For example, one might like to define a
class of algebras by first specifying the boundaries of the admissible behaviour and then applying a
specification-building operation which fills in all those algebras which exhibit behaviour within these
boundaries. Such an operation would be non-additive.

Example 4.19 is also an example of a parameterised specification which does not preserve con-
sistency (e.g. [P]({A}) = ) without being globally inconsistent (e.g. [P]({A, B}) # ). Among the
specification-building operations defined in Section 2, derive, translate (with respect to injective
signature morphisms), iso-close and abstract preserve consistency. A parameterised specification
preserves consistency iff it is in principle realizable by a parametric algebra: for every model of
the argument specification there is a model of the result specification. The use operation in the
PLUSS specification language is explicitly designed to have this property, as described in [Bid 88] (cf.
[GM 88]).
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Example 4.20 Let Y, be the signature obtained by adding a sort elem and an operation  :
elem x elem — bool to the signature of the specification Bool defined in Section 2. Then, let

Sort =4  AX 1 Spec(Xopq)-

enrich X
by sorts list
opns nil : — list

cons : elem x list — list
is-in : elem X list — bool
is-sorted : list — bool
sort : list — list
axioms is-in(x,nil) = false
is-in(x, cons(x,[)) = true
x # y = is-in(x, cons(y, ) = is-in(x, )
is-sorted(nil) = true
is-sorted(cons(z, [)) = true <
(Vy : elem. is-in(y, [) = true = lt(y, x) = false)
A is-sorted(l) = true
is-in(a, 1) = is-in(x, sort(/))
is-sorted(sort(l)) = true

Sort is a parameterised specification. Given a specification of data elements with a binary relation,
it builds a specification of lists of these elements together with an operation which sorts lists with
respect to the given relation.

Here are some specifications which constitute admissible arguments for Sort:

Ord =,; enrich Bool
by sorts elem
opns It : elem x elem — bool
axioms lt(z,y) = true = It(y, z) = false
It(z,y) = true Alt(y, z) = true = 1t(z, z) = true

This specifies a strict (i.e. irreflexive) partial ordering. Then. Sort(Ord) is a specification of topological
sorting.
LOrd =,,; enrich Ord
by axioms lt(z.y) = false Alt(y,2) =false =z =y

This specifies a total (linear) ordering. Then, Sort(LOrd) is a specification of ordinary sorting, except
that the sort operation is permitted to remove duplicate elements.

Tot =,; enrich Bool
by sorts elem
opns It : elem x elem — hool
axioms lt(z,y) = true
Jdz,y:elem. .z #y

This specifies a “total” relation with at least two different values of sort elem. Then, Sort(Tot) is
inconsistent! (Suppose a and b are two different values of sort elem; then according to the axioms
for is-in and the penultimate axiom in the body of Sort, we have that sort(cons(a,cons(b, nil)))
is either cons(a. cons(b. nil)) or cons(b, cons(a,nil)), or a list with duplicates for which the same
argument applies. Since the first axiom of Tot requires that lt(a,b) = [t(b,a) = true, we have
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is-sorted(cons(a, cons(b. nil))) = false and is-sorted(cons(b, cons(a, nil))) = false, so neither of these
two values satisfies the last axiom of Tot.) Thus Sort does not preserve consistency although it is not
globally inconsistent.

Let SPg,,,|X]| denote the body of Sort. Then Sort* may be given explicitly as follows:

Sortu — HA:ZOrd‘ SPSort[{A}]

Since Sort does not preserve consistency, Sort' is inconsistent and (Sortﬂ)Jr is globally inconsistent
(Fact 4.15). Thus Sort > (Sortﬁ)T. Intuitively, Sort" is a specification of a parametric algebra which
for any set of elements with a binary relation builds an algebra of lists of elements together with, among
others, an operation to sort lists with respect to the relation. Unfortunately, for non-antisymmetric
binary relations a sorting operation satisfying the axioms in Sort cannot exist, and so Sort* cannot
be implemented (Sort" is inconsistent).

We can modify Sort, restricting the range of admissible parameters so that the binary relation [/t
is forced to be a (strict) partial ordering:

Sort =, AX:Spec(Ord). SPg.. [X]

Then we have

Sort' = IA:Spec(Ord). SPeu[{A}]

It is easy to check that on the domain determined by Ord as above, Sort preserves consistency and is
additive, and so (Proposition 4.16) Sort = (S;ftﬁ)T.
O

4.3 Methodological consequences

The upshot of the above deliberations is that there are two distinct things: parameterised specifica-
tions, and specifications of parametric algebras. Corollary 4.17 characterises the proper subclasses of
these two classes which essentially coincide. The properties of additivity and preserving consistency
characterise the class of parameterised specifications which can be adequately viewed as consistent
specifications of parametric algebras. Regularity of a specification of a parametric algebra ensures
that it can be regarded as a parameterised specification. This does not mean that these properties are
to be viewed as requirements to be imposed on all parameterised specifications and specifications of
parametric algebras. We believe there is a role for both non-additive and non-consistency-preserving
parameterised specifications in the process of software development. Non-regular specifications of
parametric algebras are useful as well, although in Extended ML [ST 89]. [ST 91b] we decided to in-
troduce the only potential non-regular specification-building operation (the requirement of stability)
at a different level.

Corollary 4.17 1s not meant to suggest either that the subclasses of specifications having these
properties should be identified. There is an important methodological distinction between paramet-
erised specifications and specifications of parametric algebras. Parameterised specifications are tools
for building requirements specifications in a structured way. The structure which is thereby introduced
makes the requirements specification easier to understand, reason about and use; it is not meant to
impose any restriction on the structure of the eventual implementation. In contrast, specifications
of parametric algebras are used in the process of designing an implementation. They are introduced
for the express purpose of imposing structure on the desired implementation, breaking the problem
into self-contained chunks which may be tackled independently. Once the job is completed, the result
is a collection of self-contained modules with precisely-specified interfaces, all of which may later be
reused in other systems.
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The structure of the requirements specification may suggest a possible way of decomposing the
specified task into subtasks. However, if the parameterised specifications involved do not preserve
consistency then it will not be possible to provide implementations of the corresponding subtasks
(Fact 4.15). In this case it is necessary to seek an alternative way of decomposing the problem. Less
dangerously, if the parameterised specifications involved are not additive then imposing the structure
of the specification on the solution may exclude some of the models of the original requirements
specification (Fact 4.12). In this case, it may be useful to seek an alternative way of decomposing the
problem which admits more. possibly better, solutions. Even when all the parameterised specifications
involved are both additive and preserve consistency, the structure of the requirements specification
may not be the best structure for the implementation (for example, for efficiency reasons) and so the
implementation team should not be compelled to use it. Thus, in any case, the designer should not be
forbidden from seeking an alternative way of decomposing the problem; the need to eventually obtain
an algebra which realizes the requirements specification should be the only constraint. See [FJ 90] for
a similar conclusion supported by evidence from a practical example.

Example 4.21 The following simple example illustrates some of the points made above.

Let

Bunch =,,, reachable
enrich Nat
by sorts elem, bunch
opns empty : — bunch
add : elem x bunch — bunch
removeone : elem x bunch — bunch
count : elem x bunch — nat
axioms count(a,empty) =10
count(a,add(a, B)) > 0 = true
a # b= count(a,add(b, B)) = count(a, B)
count(a, B) = 0 = count(a, removeone(a, B)) = 0
count(a, B) # 0 =
count(a, removeone(a, B)) = count(a, B) — 1
a # b = count(b, removeone(a, B)) = count(b, B)
on {bunch}

Bunch is a generalisation of finite sets, bags, lists, etc. The intention is that count counts the number
of occurrences of a given element in a bunch and removeone removes one occurrence of an element
from a bunch. The operation add is not constrained except that adding an element to a bunch does
not change the number of occurrences of other elements in the bunch, and leaves in the bunch at
least one occurrence of the indicated element. In a realization of bunches using bags or lists, add
would add one occurrence of the indicated element. There are also realizations of bunches in which
add would add more than one occurrence of the element, and even realizations in which. under some
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circumstances, add would decrease the number of occurrences of the “added” element (as long as it
does not remove them all).

Set =, reachable
enrich Nat
by sorts elem, bunch
opns empty : — bunch
add : elem x bunch — bunch
removeone : elem x bunch — bunch
count, : elem x bunch — nat
axioms add(a.add(b, B)) = add(b,add(a, B))
add(a,add(a, B)) = add(a, B)
count(a,empty) = 0
count(a, add(a, B)) =1
a # b= count(a,add(b, B)) = count(a, B)
count(a, B) = 0 = removeone(a, B) = B
count(a, B) = 0 = removeone(a,add(a, B)) = B
on {bunch}

Set is a specialization of Bunch (in the sense that [Set] C [Bunch]) in which each element occurs at
most once in a bunch (so count is never greater than 1) and add is required to be idempotent and
commutative.

Delete =,.; AX:Spec(Bunch). enrich X
by opns delete : elem x bunch — bunch
axioms count(a,delete(a, B)) =0
a # b= count(a, delete(b, B)) = count(a, B)

The parameterised specification Delete takes any specification SP with [SP] C [Bunch] and adds
an operation delete which removes all occurrences of the indicated element from a bunch. Note that
Delete is additive and preserves consistency.

The parameterised specification Delete may be applied to the specification Bunch:

BunchDelete =,,; Delete(Bunch)

Suppose that BunchDelete is the requirements specification we are to implement. As a requirements
specification, this conveys exactly the same information as the following equivalent non-parameterised
specification:
enrich reachable
enrich Nat
by sorts elem, bunch
opns empty : — bunch
add : elem x bunch — bunch
removeone : elem x bunch — bunch
count : elem x bunch — nat

axioms
on {bunch}
by opns delete : elem x bunch — bunch

axioms
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The requirements specification BunchDelete is correctly realized by any model of the following
enrichment of Set:

SetDelete =, enrich Set
by opns delete : elem x bunch — bunch
axioms delete(a, B) = removeone(a, B)

The definition of delete as removeone takes advantage of the fact that in Set, each element occurs at
most once in a bunch.
Now, suppose we view the definition

BunchDelete =,,; Delete(Bunch)

as a design specification which decomposes the task of implementing BunchDelete into two subtasks:
1. Implement Bunch.

2. Implement Deleteu, where Delete' is given explicitly as follows:

Delete! = ITA:Bunch. enrich {A}
by opns delete : elem x bunch — bunch
axioms count(a,delete(a, B)) =0

a # b= count(a, delete(b, B)) = count(a, B)

Suppose we regard SetDelete as consisting of two separate parts: an implementation of Bunch (i.e.
Set) together with an enrichment of this which adds delete defined as removeone. This is not a
correct implementation of the design specification. The first part is indeed a correct implementation
of Bunch, but the second part is not a correct implementation of Delete®. Tt works only in the context
of the particular implementation of Bunch we have chosen since it takes advantage of some of its
properties which are not shared by other possible implementations. Thus it disobeys the principle of
modular decomposition by which separate modules are to be implemented independently. The natural
implementation of Deleté would define delete to repeatedly apply removeone until all occurrences
of the given element are removed. Applying this implementation to any model of Set gives the
same algebra as the extension embodied in SetDelete (this does not happen in all examples — see
Example 4.22) but the “code” would be quite different. Most significantly, the modular version would
be reusable in other contexts since its correctness is preserved under a change of the implementation

of Bunch. O

Example 4.22 A variation on the above example is the following. Consider an enrichment Bunch
of Bunch above by operations to choose an element of a non-empty bunch, to test whether a bunch
is empty, and to form the union of two bunches. Let Set be an analogous enrichment of Set, and let
Delete be like Delete but with the range of admissible parameters determined by Bunch rather than
by Bunch. Then

mu = [IA:Bunch. enrich {A}
by opns delete : elem x bunch — bunch
axioms

o
One possible implementation of Delete would code delete (a, B) by first initialising the result to empty,
and then, while B is non-empty, choosing an element of B, removing it from B, and if the chosen
element is different from @, adding it to the result. Such an implementation is quite natural under an
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assumption that the count operation is relatively “expensive” and the other operations are relatively
“cheap” — which is quite likely under (for example) the most obvious list implementation of bunches.

Applying this implementation of Dgle\teu to an implementation of Set yields, of course, an imple-
mentation of Del/e\te(SAe\t)

However, if we were to realize @(?&) directly, even assuming that we use a similar idea for
the implementation, then the most natural algorithm for delete(a, B) would proceed as above only
to the point where the first (and only) occurrence of @ in B is encountered. Then the search would
stop, and the union of the result accumulated so far with the remainder of B would be the answer
(since these two parts are disjoint, forming their union is cheap). The algebra thus obtained would

e
be different from that obtained by instantiating the parametric implementation of Delete sketched
above. O

5 Higher-order parameterisation

The ASL-style A-calculus approach to parameterised specifications, outlined in Section 3, extends
naturally to a higher-order parameterisation mechanism. (A very limited form of this in the pushout
approach to parameterisation is provided by parameterised parameter passing [EM 85].) By allowing
both the arguments and results of parameterised specifications to be parameterised specifications of
an arbitrary complexity, as suggested in [ST 88a], we obtain a hierarchy of higher-order parameterised
specifications. This hierarchy is indexed by a class of types 7 defined as the least class such that:

e For any signature ¥, ¥ € 7; and

e For any types 7y, 7 €T, 1y—7y € 7.

Definition 5.1 The semantic domain ParSpec(r) of (denotations of) parameterised specifications of
type 7 € T is defined inductively as follows:

o If 7 = X, then ParSpec(t) =, Pow(Alg(X)) (ordered by inclusion); this will be written as
Spec(X) as well.

o If 7 =7, =7y, then ParSpec(r) =,.; ParSpec(t,) — ParSpec(r,), the class of monotone functions
from ParSpec(m,) to ParSpec(r,) (ordered by pointwise extension of the ordering on ParSpec(,)).
(|

This covers first-order parameterisation (see Definition 4.1) since ParSpec(¥;,—Y,) = Spec(X,) —
Spec(y). In general, ParSpec(... 21 ... — ...X,...)isthesameas (... Spec(Xy) ... — ... Spec(X,) . ..).
Similar definitions may be formulated for parameter specifications in place of parameter signatures,
which will be done in Section 7. For now we will use an obvious modification of the notation introduced
in Section 3.

Example 5.2 The requirements specification in Example 4.21 may be rephrased using higher-order
parameterisation. The most natural way to view Bunch is as a parameterised specification, paramet-
erised by the type of elements. As before, Bunch serves as a parameter for Delete, which then becomes
a higher-order parameterised specification.

Let

Elem =,; sorts elem
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and

P-Bunch =, AESP:Spec(Elem).
reachable
enrich FSP + Nat
by sorts bunch
opns empty : — bunch
add : elem x bunch — bunch
removeone : elem x bunch — bunch
count : elem x bunch — nat
axioms count(a,empty) =0
count(a, add(a, B)) > 0 = true
a # b = count(a, add(b, B)) = count(a, B)
count(a, B) = 0 = count(a, removeone(a, B)) =0
count(a, B) # 0 =
count(a, removeone(a, B)) = count(a,
a # b = count(b, removeone(a, B)) = count(b,

B)-1
B)
on {bunch}

Let X p,,.; be the result signature of P-Bunch. Then P-Bunch : Spec(Elem) — Spec(Xgy,.h )-

P-Delete =,.; ABSP:Spec(Elem) — Spec(Xpunen)-
AESP:Spec(Elem).
enrich BSP(ESP)
by opns delete : elem x bunch — bunch
axioms count(a,delete(a, B)) =0

a # b= count(a, delete(b, B)) = count(a. B)
We now have
P-Delete : (Spec(Elem) — Spee(Xpumen)) — (Spec(Elem) — Spec(Xpeete))

where X p,.0 18 X pynen together with the new operation delete : elem x bunch — bunch.

We can thus apply P-Delete to P-Bunch, and then P-Delete( P-Bunch) : Spec(Elem) — Spec(X o)
is a parameterised specification of bunches with the delete operation, parameterised by the type of
elements. Finally, P-Delete(P-Bunch)(Elem) : Spec(Xp,..;.) 1s a non-parameterised specification of
bunches of arbitrary elements with the delete operation. This is the same as the requirements spe-

cification BunchDelete of Example 4.21. d

Our earlier discussion said that it is often possible to turn a requirements specification directly
into a design specification, leading towards an implementation having the same structure as the
requirements specification. Applying this design strategy to the above example naturally leads to
the need for higher-order parameterisation of software modules. We will be talking about software
modules (corresponding to P-Delete) parameterised by software modules (corresponding to P-Bunch)
which are themselves parameterised (by a realization of Elem). To model this we need higher-order
parametric algebras. The generalisation is not difficult: we introduce a hierarchy of higher-order
parametric algebras indexed by the class 7 of types.

Definition 5.3 The class Alg(7) of parametric algebras of type 7 € 7 is defined inductively as follows:

o If 7 =X, then Alg(7) is the class of all ¥-algebras.
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o If 7 = 7—my, then Aly(7) =, Alg(my) — Alg(7,), the class of all functions from Alg(7) to

Alg(7y).
The semantic domain Spec(7) of (denotations of ) specifications of parametric algebras of type 7 € 7
is defined as Pow(Alg(7)), ordered by inclusion. O

This covers first-order parameterisation (see Definition 4.2), since Spec(¥,—Y,) as defined here is the
same as Spec(X; — ¥,) as defined there. This will be generalised further in Section 7. For now we will
use an obvious modification of the notation introduced in Section 3 for specifications of parametric
algebras.

As before, there is a natural connection between the semantic domains of parameterised spe-
cifications and specifications of parametric algebras having the same type. The following definition
generalises Definition 4.5.

Definition 5.4 For any type 7 € 7, we define by induction:
e For any P € ParSpec(7), let P* € Spec(r) be defined by:
~Ifr =3P =, P
— If 7 = 7y—7y, then P' =, {F € Alg(7) | for all A € Alg(r), F(A) € P({A})'].
o For any Q € Spec(r), let Q' € ParSpec(r) be defined by:

—Ifr=%0"=,, Q.

— If 7 = 7,—7,, then QY(C) =it Unect{F(A) | F e Q} for any C' € ParSpec(r,). where L
is the least upper bound in ParSpec(r,) with respect to the ordering of Definition 5.1.
O

Proposition 4.7 and Corollary 4.8 carry over to this more general framework as well (the monotonicity
of parameterised specifications is needed to show this). It is possible to further generalise this to the
case where we have parameter specifications rather than parameter types, but the details are rather
involved.

Armed with the above technicalities, let us go back to our example.

Example 5.5 Suppose that
BunchDelete =,,; P-Delete(P-Bunch)(Elem)

is the requirements specification we are to implement. Viewing this definition as a design specification,
we decompose the task of implementing BunchDelete into three subtasks:

1. Implement Elem.
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2. Implement P—Bunchﬁ, where P-Bunch' is given explicitly as follows:

P-Bunch' = IIA:Elem.
enrich {A} + Nat
by sorts bunch
opns empty : — bunch
add : elem x bunch — bunch
removeone : elem x bunch — bunch
count : elem x bunch — nat
axioms count(a,empty) =0
count(a, add(a, B)) > 0 = true
a # b= count(a.add(b, B)) = count(a. B)
count(a, B) = 0 = count(a, removeone(a, B)) = 0
count(a, B) # 0 =
count(a,removeone(a, B)) = count(a, B) — 1
a # b= count(b, removeone(a, B)) = count(b, B)

3. Implement P-Delete(u), where P-Delete” is defined as a restriction of P-Delete’ to the domain
of interest as follows:

P-Delete™” =def [1F:P-Bunch”.

ITA:Elem.
enrich {F(A)}
by opns delete : elem x bunch — bunch

axioms count(a, delete(a, B)) =0
a # b = count(a, delete(b, B)) = count(a, B)

Given any realization of these tasks, that is:
1. any algebra A € [FKlem];
2. any parametric algebra F' € [[P-Bunchﬁﬂ; and

3. any higher-order parametric algebra G € [[P-Delete(ﬁ)ﬂ

an implementation of the requirement specification BunchDelete may be constructed, namely G(F)(A) €

[BunchDelete]. O

We stress once more that turning a requirements specification directly into a design specification is
not the only way to proceed. It is important to allow the design specification to take on a completely
different structure from the requirements specification if necessary.

The above example illustrates that higher-order parameterisation is sometimes necessary to present
specifications and to structure implementations in a natural way. Another more extended example is

given in the appendix of [SST 90]; see also [Sok 90].

6 Program development

Higher-order parameterisation is not only useful for purposes of presentation, as we saw in the previous
section; it also comes in during the process of developing modular programs from specifications.

The view of program development presented in [ST 88b], [ST 92] and further elaborated for the
Extended ML framework in [ST 89] is based on the notion of a constructor implementation:
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Definition 6.1 Let SP be a specification of (parametric) algebras of type 7 € 7 and let SP;,...,SP,
be specifications. A constructor from (SP;,...,SP,) to 7 is a function & : [SP,] — ... — [SP,] —
Alg(7). We say that SP is implemented by (SP,,....SP,) via k., written SP ~> (SP. ..., SP,), it

for all A, € [SP]...., A, € [SP,]. k(A;)---(A4,) € [SP]. O

If SPre> (SP,...,SP,), then given any realizations A; € [SP],..., A, € [SP,], the constructor
vields a realization of SP, namely k(A;)---(A,) € [SP]. For technical convenience we have assumed
here that constructors, which may naturally be viewed as multi-argument functions, are given in their
curried form.

The program development process builds a tree of constructor implementations having the original
requirements specification as its root and specifications of subtasks yet to be achieved as leaves.

Sh >
SP > S'Pnl N};\N§>
SP,,., ~

This process is finished once a tree is obtained which has specifications with known implementations
p p p s
given as parameterless constructors, as its leaves.

SP > 0
SP ~o> SP., e {Spnn e ()
SPy, e ()

Then the composition of the constructors in the tree yields a realization of the original requirements
specification. The above tree yields

K (’{1) t (Kn(/{m(ﬁwﬂ)) t (Knm,)) € [[SPH

An obvious observation here is that constructors (in their curried form) are parametric algebras.

This view was presented in [ST 88b] but was limited there to specifications of non-parametric
algebras; in particular the type 7 of algebras specified by SP was always a signature. In the current
framework it is natural to consider the generalisation of this view to the case where any of the spe-
cifications involved in the development process is a specification of (possibly higher-order) parametric
algebras.

For example, one might wish to use an implementation such as SP ~o> (5P, SP,) where SP :
Spec(X), SP, : Spec(¥;) and SP, : Spec(¥; — X). The constructor « would be a function  :
[SP] — [SP,)] — Alg(Y) defined by x(A;)(F,) = Fy(Ay). A correct implementation is obtained
provided that for any A; € [SP,]| and F, € [SP], Fy(A;) € [SP]. This holds, for instance, if we
let SP, =, HA:SP,. SP, which decomposes the problem of implementing SP into the problem of
implementing S P, and (independently) implementing S P,. The latter is the problem of implementing
SP given an (arbitrary) implementation of SP,.

In general, higher-order parameterisation allows us to restrict to constructors which are of a par-
ticularly simple form. Namely, any constructor implementation SP ~ (SP;,...,SP,) may be re-
placed by the decomposition S P s> (SP,,SPy,...,SP,), where SP, =TI X{:SP,. --- 11X :SP,. SP
and app = MF:SP..AX{:SP,. - AX,:SP,. FX,...X,, and then the realization of SP_ by the con-

structor k£ (which is correct since SP ~as (SPy,...,SP,) means £ € [SP,]). Such a decomposition
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captures the decision to realize SP in terms of realizations of SP,.....SP,, turning the problem
of finding the necessary construction into yet another subtask. If n = 0 then this is pointless
since no progress is made towards a realization. Even if n > 0, from the methodological point of
view one may question whether it is appropriate to postpone the problem of finding a constructor
in this manner. This is exactly the controversy between advocates of the top-down development
style (as captured by SP ~as (SP,, ..., SP,)) and the bottom-up development style (as captured by

SP s> (SP.,SPy,...,SP,)). We believe that steps of both kinds are useful, and indeed in this

formulation the distinction is somewhat blurred, with a spectrum of possibilities between these two
extremes.

Example 6.2 Example 5.5 may be rephrased as a higher-order constructor implementation step
BunchDelete ~as (Elem, P—Bunchu, P—Delete(u)>

where r : [Elem] — [P-Bunch’] — [[P—Delete(h)] — Alg(Xp.s.) is defined by s(A)(F)(G) =4
G(F)(A) for arbitrary A € [Elem], F € [P-Bunch'] and G € [P-Delete™]. O

If we restrict attention to the case in which all the specifications involved are Extended ML functor
specifications (recall that these amount to specifications of first-order parametric algebras), the frame-
work obtained corresponds to the Extended ML formal program development methodology described
in [ST 89]. [ST 91b] (modulo issues of behavioural equivalence). The main kind of development step
in this framework is the decomposition of an Extended ML functor specification into a number of
simpler Extended ML functor specifications. The constructor involved in this step describes how
to build a functor which realizes the original functor specification out of functors which realize the
simpler functor specifications.

Example 6.3 A simple case is the decomposition of the specification

FSP =4 UX:SP,. SP

mn:t out

into the two specifications

GSP =, 1X:SP,. SP

in-. *

HSP =,; NY:SP'.SP,,

via the constructor

AG:GSP. (AH:HSP. (AX:SP;,. H(G(X))))
This splits the task of implementing F'SP into first implementing SP’ given any model of SP,, , and

Y

separately implementing S P iven any model of SP’. O
p y p g out g y

Example 6.4 When the decomposition is as in Example 6.3, the implementor of HSP cannot use
the model of S P, which is available to the implementor of GSP. This suggests that a possibly more
flexible decomposition of £'SP might be into the specifications

GSP =, UX:SP,. SP

-

HSP =,, IX:SP,.(IIY:SP'.SP,,)

via the constructor

AG:GSP. (AH:HSP. (AX:SP,. HX)(G(X))))

The uncurried version of this (where HSP is a two-argument functor specification) is the best we

could have done in the first-order framework described in [ST 89], [ST 91b]. O
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Example 6.5 We can use higher-order parameterisation to go further than in Example 6.4 and make
the realization of GG.S P available to the implementor of HSFP. We decompose the task of implementing
FSP into the specifications

GS'P :def HX:AgPZ'n- S'P/
HSP =,, UX:SP,. (IG:GSP.SP,,)

via the constructor

AG:GSP. (AH:HSP. (AX:SP,,. H(X)(G)))

The implementor of HSP now has more powerful tools available to use in building a realization of
SP,.;. Previously, only a realization X of SP,, and a particular realization G(X) of SP’" were made
available; now G itself is available as well, which means that G(X) as well as applications of G to
other algebras satisfying S'P,, can easily be obtained.

Note that there is nothing methodologically ugly about this: there are two independent imple-
mentation tasks to perform, one of implementing GSP and the other of implementing HSP, and
a strict separation between the two tasks is preserved. The implementor of HSP is provided with
a realization of GSP, but he can rely only on those features of this realization which are explicitly

stated in GSP. O

The use of higher-order parameterisation as in the above example is not merely a specious gen-
eralisation. Consider the problem of implementing an interpreter for a programming language. An
obvious subtask of this is to implement stacks, since stacks are useful in various places including the
parser (stacks of parse trees) and the evaluator (stacks of data values). Using first-order paramet-
erisation as in Example 6.4, we would decompose the task of implementing the interpreter into the
following subtasks:

1. Implement stacks of arbitrary elements.
2. Implement parse trees.
3. Implement data values.

4. Implement the interpreter, using parse trees, data values, stacks of parse trees and stacks of
data values.

However, the implementor of subtask 4 may notice that yet another kind of stacks are required,
perhaps in the symbol table. In a strict first-order regime, he/she would either have to re-implement
stacks for this purpose, or else go back to the designer and ask for the specification of his/her subtask
to be modified to provide the new instantiation of stacks. But using higher-order parameterisation as
in Example 6.5, subtask 4 would become

4. Implement the interpreter, using parse trees, data values and stacks of arbitrary elements.

Stacks of parse trees and of data values would be constructed during the realization of this subtask,
as would stacks of other kinds of elements if the need arises. An alternative decomposition would be
into just two subtasks:

1. Tmplement stacks of arbitrary elements.

2. Implement the interpreter, using stacks of arbitrary elements.

27



This leaves the implementation of parse trees and data values as potential lower-level subtasks of sub-
task 2. Such a decomposition introduces a bottom-up flavour into our top-down design methodology,
as mentioned above. It may turn out that the implementor of subtask 2 does not need stacks at all;
they are provided as tools which might come in handy for the task at hand.

In some such cases, explicit higher-order parameterisation may be avoided. An environment of
previously-defined modules, all of which are available for use in subsequent module definitions, allows
some higher-order dependencies of the kind illustrated above to be left implicit. However, this trick
does not work when dependencies become complex and deeply nested, and anyway it seems advisable
to keep dependencies explicit rather than trying to sweep them under the carpet.

7 A kernel specification formalism

7.1 Introducing the language

In the preceding sections we have argued for the use of both parameterised specifications and spe-
cifications of parametric algebras (and of their higher-order counterparts) in software specification
and development. In this section, we present a specification formalism which extends in an essential
way the kernel specification language presented in [ST 88a] by adding a simple yet powerful para-
meterisation mechanism which allows us to define and specify parametric algebras of arbitrary order,
as well as extending the mechanism in [ST 88a] for defining first-order parameterised specifications
to the higher-order case. This is achieved by viewing specifications on one hand as specifications of
objects such as algebras or parametric algebras, and on the other hand as objects themselves to which
functions (i.e. parameterised specifications) may be applied. Consequently, the language allows spe-
cifications to be specified by other specifications, much as in CLEAR [BG 80] or ACT ONE [EM 85]
parameterisation where the parameter specification specifies the permissible argument specifications
(see Section 3).

The view of specifications as objects enables the use of a uniform parameterisation mechanism,
functions defined by means of A-abstraction, to express both parameterised specifications and paramet-
ric algebras. There is also a uniform specification mechanism to specify such functions, ll-abstraction
(Cartesian-product specification, closely related to the dependent function type constructor in e.g.
NuPRL [Con 86]). This may be used to specify (higher-order) parametric algebras as well as (higher-
order) parameterised specifications. There is no strict separation between levels, which means that it
is possible to intermix parameterisation of objects and parameterisation of specifications, obtaining
(for example) algebras which are parametric on parameterised specifications or specifications which
are parameterised by parametric algebras. We have not yet explored the practical implications of this
technically natural generalisation.

The language does not include notation for describing algebras, signatures, signature morphisms,
or sets of sentences. Such notation must be provided separately, for example as done for ASL in
[Wir 86]. The definition of the language is independent of this notation; moreover, it is essentially
institution independent, with all the advantages indicated in [GB 84], [ST 88a].
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The language has just one syntactic category of interest, which includes both specifications and
objects that are specified, with syntax as follows:

Object = Signature
| impose Sentences on Object
| derive from Object by Signature-morphism
| translate Object by Signature-morphism Simple specifications
| minimal Object wrt Signature-morphism
| iso-close Object
| abstract Object wrt Sentences via Signature-morphism
|  Object U Object
I 1{10‘/;]',22[})16'06‘]66t' Object Other specifications
| Spec(Object)
| Variable
| Algebra-expression

| AVariable: Object. Object

| Object(Object)

Other objects

As usual, we have omitted the “syntax” of variables. The other syntactic categories of the language
above are algebra expressions, signatures, sets of sentences and signature morphisms — as mentioned
above, the details of these are not essential to the main ideas of this paper and we assume that they
are provided externally. Algebra expressions may contain occurrences of object variables. We will
assume, however, that variables do not occur in signatures, signature morphisms and sentences, which
seems necessary to keep the formalism institution-independent. This requirement may seem overly
restrictive, as it seems to disallow the components of a particular algebra to be used in axioms; one
would expect to be able to write something like ILX:X. (... X.op...). Fortunately, using the power of
the specification-building operations included in the language, it is possible to define a more convenient
notation which circumvents this restriction (see the appendix of [SS'T 90]).

We have used the standard notation for II- and A-objects to suggest the usual notions of a free
and of a bound occurrence of a variable in a term of the language, as well as of a closed term.
As usual, we identify terms which differ only in their choice of bound variable names. We define
substitution of objects for variables in the usual way: Obj[Obj'/X] stands for the result of substitut-
ing Obj' for all free occurrences of X in Obj in such a way that no unintended clashes of variable
names take place. This also defines the usual notion of F-reduction between objects of the language:

(.. (AX:SP.Obj)(Obs")...) =5 (...0bj[Ob;' | X]...). Then, —>; is the reflexive and transitive closure
of —j5.

The first seven kinds of specifications listed above (simple specifications) are taken directly from
[ST 88a] (see Section 2). The particular choice of these seven operations is orthogonal to the rest
of the language and will not interfere with the further development in this paper. We have singled
out the union operation — we will use it for arbitrary, not necessarily “simple” specifications (this
generalisation w.r.t. [ST 91a] makes the formalism more flexible, but otherwise does not seem to
cause any extra technical difficulties). The other three kinds of specifications are new. ll-abstraction
is used to specify parametric objects.” To make this work, it must be possible to use objects in
specifications. The {_} operation provides this possibility by allowing objects to be turned into
(very tight) specifications. The next clause allows a specification which defines a class C of objects
to be turned into a specification which defines the class of specifications defining subclasses of C.

This is compatible with the use of parameter specifications in parameterised specifications as in

3The notation SP — SP’ is often used for IX:SP. SP’ if X does not actually occur in SP’.
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CLEAR and ACT ONE. For example, the declaration proc P(X : SP) =...in CLEAR introduces
a parameterised specification P, where the parameter (or requirement) specification SP describes the
admissible arguments of P. Namely, if S P defines a class of objects C = [[SP] then P may be applied to
., defining a subclass of C, i.e. such that [SP,,, | C [SP] (we disregard the
parameter fitting mechanism). In our formalism this would be written as P =,,; AX:Spec(SP). ....

The syntax of other objects is self-explanatory.

The richness of the language may lead to some difficulty in recognizing familiar concepts which
appear here in a generalised form. The following comments might help to clarify matters:

argument specifications S P,

e A specification is (an object which denotes) a class of objects. If the objects of this class are
algebras, then this specification is a specification in the usual sense.

e I1X:(...).(...) denotes a class of mappings from objects to objects. If these objects are algebras,
then this is a class of parametric algebras, i.e. a specification of a parameterised program.

e AX:(...).(...) denotes a mapping from objects to objects. If these objects are specifications in
the usual sense, then this is a parameterised specification.

The semantics of the language, presented in the next section, gives more substance to the informal
comments above concerning the intended denotations of certain phrases.

As pointed out above, we assume that the sublanguage of expressions defining algebras is to be
supplied externally (with a corresponding semantics — see Section 7.2). Kven under this assumption,
it would be possible to include institution-independent mechanisms for building algebras from other
algebras (amalgamation, reduct, free extension, etc.) in the language, which could lead to a powerful
and uniform calculus of specified modular programs. This is an interesting possibility for future work
but it is outside the scope of this paper.

7.2 Semantics

We have chosen the syntax for objects in the language so that their semantics should be intuitively
clear. We formalise it by defining for any environment p, which assigns meanings to variables, a
partial function [_]p mapping an object Obj to its meaning [Obj]p. It is defined below by structural
induction on the syntax of objects. The use of the meta-variable SP instead of Obj in some places
below is intended to be suggestive (of objects denoting object classes, used as specifications) but has
no formal meaning. This convention will be used throughout the rest of the paper.

Simple specifications:

[X]p = Alg(X)
[impose ® on SPp={A€[SP]p| A &}
if [SP]p C Alg(¥) and ® C Sen(X) for some signature X
[derive from SP by o]p = {A|, | A € [SP]p}
if [SP]p C Alg(X) and o : ¥’ — ¥ is a signature morphism for some signatures ¥ and ¥’
. similarly for the other forms, based on the semantics given in Section 2 ...
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Other specifications:

[SPUSPp=[SPlpn[SP]p
if [SP]p and [SP']p are classes of values
[{0b5}]p = {10b;1p}
if [Obj]p is defined
[IX:SP. SPTp = ,epsp [S P Tplo/ X"
if [SP]p is a class of values and for each v € [SP]p, [SP]plv/X] is a class of values
[Spec(SP)]p = Pow([SP]p)
if [SP]p is a class of values

Other objects:

[X]p = p(X)
[A]p = ... assumed to be given externally ...
[\X:SP. Objlp = {{v = [Objlplv/XT") | v € [SP]p}
if [SP]p is a class of values and for each v € [SP]p, [Obj]p[v/X] is defined
[0b(Ob5")]p = [Ob5]p([0b;]p)
if [Obj]p is a function and [Obj']p is a value in the domain of this function

In the above definition, it is understood that a condition like “[SP]p C Alg(X)” implicitly requires
that [SP]p is defined. An object’s meaning is undefined unless the side-condition of the appropriate
definitional clause holds.

It is easy to see that the semantics of an object of the language depends only on the part of
the environment which assigns meanings to variables which occur free in the object. In particular,
the meaning of a closed object is independent from the environment. This allows us to omit the
environment when dealing with the semantics of closed objects and write simply [Obj] to stand for
[Obj]p for any environment p whenever Obj is closed.

Of course, the above remark is true only provided that the sublanguage of algebra expressions and
its semantics assumed to be given externally have this property. In the following, we will take this for
granted. We will also assume that the sublanguage satisfies the following substitutivity property: for
any algebra expression A, variable X and object Obj, for any environment p such that v = [Obj]p
is defined, JA[Obj/ X]]p is defined if and only if [A]p[v/X] is defined, and if they are defined then
they are the same. This ensures that the following expected fact holds for our language (the standard
proof by induction on the structure of objects is omitted):

Fact 7.1 For any objects Obj, Obj" and variable X, for any environment p such that o' = [Obj']p is
defined, [Obj[Ob;’/ X]]p is defined if and only if [Obj]p[v’/X] is defined, and if they are defined then

[06j(0b5'/ X]]p = [Obj]plv"/ X]
O

Corollary 7.2 S-reduction preserves the meaning of objects. That is, for any objects Obj and Obj’
such that Oby —>; Obj', for any environment p, if [Obj]p is defined then so is [Obj']p and [Obj]p =

[085'p- O

111 on the right-hand side of this definition denotes the usual Cartesian product of an indexed family of sets. That
is, ;e sCy is the set of all functions with domain S mapping any « € S to an element of C,.

® As usual, p[v/X] is the environment which results from p by assigning v to the variable X (and leaving the values
of other variables unchanged).
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The reader might feel uneasy about the fact that we have not actually defined here any domain
of values, the elements of which are assigned to objects of the language as their meanings. A naive
attempt might have been as follows:

Values = Algebras | Pow(Values) | Values = Values

Clearly, this leads to serious foundational problems, as the recursive domain definition involves “heavy
recursion” (cf. [BT 83]) and hence cannot have a set-theoretic solution (even assuming that we consider
here a set Algebras of algebras built within a fixed universe). However, since the formalism we introduce
is not intended to cater for any form of self application of functions or non-well-foundedness of sets,
the equation above attempts to define a domain of values of objects which is undesirably rich. The
well-formed® objects of the language can easily be seen to form a hierarchy indexed by “types” (see
Section 7.4). Thus, we can define a corresponding cumulative hierarchy of sets of values, and then
define the domain of the meanings of objects as the union of sets in the hierarchy, much in the style
of [BKS 88] (see [BT 83] where the idea of using hierarchies of domains in denotational semantics is
discussed in more detail). Another, less “constructive”, possibility is to work within a fixed universal
set of values of objects containing the “set” of all algebras [Coh 81].

7.3 Proving satisfaction

We are interested in determining whether or not given objects satisfy given specifications. We use the
formal judgement Obj : SP to express the assertion that a closed object Objy satisfies a closed spe-
cification SP. i.e. that [Obj] € [SP]. and generalise it to X, : SP,,..., X, : SP, F Obj : SP stating
the assertion that an object Obj satisfies a specification SP in the context X, : SP..... X, : SP,, ie.
under the assumption that objects X,,..., X, satisfy specifications SP,,...,SP,, respectively. The
inference rules listed below allow us to derive judgements of this general form. For the sake of clarity,
though, we have decided to make contexts implicit in the rules and rely on the natural deduction
mechanism of introducing and discharging assumptions (all of the form X : SP here) to describe the
appropriate context manipulation. For example, in (R2) below, [X : SP] is an assumption which
may be used to derive SP' : Spec(SP"), but is discharged when we apply the rule to derive its
conclusion. Whenever necessary, we will use the phrase “the current context” to refer to the sequence
of currently undischarged assumptions. We say that an environment p is consistent with a context
XSSP, X, SPiffori=1,....n, p(X;) € [SP]p.

Simple specifications:

¥ signature SP :Spec(Y) ® C Sen(X)
¥ : Spec(Y) impose ® on SP : Spec(X)

SP:Spec(Y) o:% =Y SP:Spec(¥) o:%—Y
derive from SP by o : Spec(X) translate SP by o : Spec(Y)

SP:Spec(¥) o:¥ =% SP:Spec(¥)
minimal SP wrt o : Spec(Y) iso-close SP : Spec(Y)

SP:Spec(¥) &' CSen(Y) o:% =Y
abstract SP wrt ®' via o : Spec(Y)

® An intuitive understanding of the notion of well-formedness involved is sufficient here (we hope) — we introduce it
formally in Section 7.3.

32



Other specifications:

0Obj : SP
{04} : Spec(SP) (R1)
[X : SP]
SP :Spec(SF,,,) SP'": Spec(SP") (R2)
[IX:SP. SP": Spec(LLX:SP. SP7) |
SP:Spec(SP) R3S
Spec(SP): Spec(Spec(SP")) (R3)
Union:
SP, : Spec(SP) SP, :Spec(SP) (R4)
SP,USP,:Spec(SP)
SP,USP,:Spec(SP,,,) Obj : SP, Obj : SP, (R5)
Obj : SP,USP,
A-expressions:
[X : SP]
SP:Spec(SF,,,) Obj : SP' (R6)
AX:SP.Obj : IX:SP.SP ’
Obj - TIX:SP.SP'  Obj’ : SP R®7)
Obj(0bj") = SPOb;" | X]
Obj:SP  SP—,SP RS
Obj - SP' (R8)
Obj:SP  SP':Spec(SP,,) SP'—,SP R
Obj : SP' (R9)
Trivial inference:
Oby : SP,,,
Obj - {Obj} (R10)
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“Out”

Obj : SP SP:Spec(SP)

Obj - SP' (RI1)
Semantic inference:
SP :Spec(Y) [Alp € [SP]p for all p consistent with the current context
A:SP (R12)
SP,SP":Spec(X) [SP]p C [SPp for all p consistent with the current context(ng)

SP:Spec(SP)

Some of these rules involve judgements (¥ signature, ® C Sen(¥), o : X — ¥) which are external
to the above formal system. This is a natural consequence of the fact that the language does not
include any syntax for signatures, sentences, etc. More significantly, there are two rules which involve
model-theoretic judgements, referring to the semantics of objects given above.

Following the usual practice, in the sequel we will simply write “Obj : SP” meaning “Obj : SP is
derivable”.

The rules labelled Simple specifications characterise the well-formedness of Y-specifications built
using the underlying specification-building operations included in the language. They directly incor-
porate the “syntactic” requirements of Section 2 on the use of these operations. Rules (R1), (R2)
and (R3) play a similar role for the other specification-forming operations: singleton specification,
Cartesian-product specification and Spec(_ ), respectively. Notice, however, that their specifications
are given here in a form which is as tight as possible. For example, for any SP : Spec(X) and
Obj : SP. rule (R1) allows us to deduce {Obj} : Spec(SP) rather than just {Obj} : Spec(X).

The first of the two rules related to the union operation. (R4). embodies the characterisation of
well-formed union specifications. The other, (R5), gives the obvious way to prove that an object
satisfies a (well-formed) union specification. The two rules are not quite satisfactory, as they do not
seem to sufficiently capture the interplay between union and the other operations — more work is
needed here.

The rules related to A-expressions and their applications to arguments are quite straightforward.
Rules (R6) and (R7) are the usual rules for A-expression introduction and application, respectively.
The assumption SP : Spec(SF,,,) in rule (R6) asserts the well-formedness of the specification S P
(see also (R2), (R9), (R10)). Whenever the meta-variable SF,, is used below, it will play the same
role as part of a well-formedness constraint. Notice that in order to prove AX:SP. Obj : IIX:SP. SP’,
we have to prove Obj : SP’ “schematically” for an arbitrary unknown X : SP. rather than for all
values in the class [SP]p (for the appropriate environments p).

Rules (R8) and (R9) embody a part of the observation that -reduction preserves the semantics of
objects (Corollary 7.2). Rule (R8) allows for -reduction and rule (R9) for well-formed -expansion
of specifications. A particular instance of the latter is

Obj': SP'IObj/X]  (AX:SP.SP")(Obj) : Spec(SP,,,)
0bj" : (AX:SP. SP")(Oby)
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That is, in order to prove that an object satisfies a specification formed by applying a parameterised
specification to an argument, it is sufficient to prove that the object satisfies the corresponding j3-
reduct.

However, we have not incorporated full f-equality into our system; rules (R8) and (R9) introduce
it only for specifications. In particular, we have not included the following rule, which would allow
well-formed §-expansion of objects:

Obj:SP  Obj':SP,,,  Obj—,0bj
Obj' : SP

An instance of this would be:

0bj,[0bjy/X]: SP (AX:SP,. Obj,)(Objy) : SP,,,
(AX:SP,. 0bj,)(Obj,) : SP

Hence, in order to prove that a structured object (AX:SP,. Obj;)(Obj,) satisfies a specification SP,
it would suffice to show that the object is well-formed and to prove that its f-reduct Obj,[0bj,/X]
satisfies the specification. We think that this is not methodologically desirable: a proof of correctness
of a program should follow the structure of the program, without any possibility of flattening it out. So,
to prove (AX:SP,. Obj;)(Obj,) : SP we have to find an appropriate specification for the parameterised
program AX:SP,. Obj;, say AX:SP,. Obj; : 1X:SP,. SP; such that SP;[Obj,/X| = SP (actually,
SP[Obj,/X] : Spec(SP) is sufficient).

The other part of G-equality for objects. -reduction, although not derivable in the system, is
admissible in it” (see [ST 91a] for a proof sketch):

Lemma 7.3 The following rule is an admissible rule of the system

Obj : SP Obj — Obj'
Obj' - SP

0

It might be interesting to enrich the system by the -reduction rule for objects given in the above
lemma, or even more generally by some “operational semantics rules” for (the computable part of)
the object language. This, however, would be quite orthogonal to the issues of object specification
considered in this paper. Therefore, to keep the system as small and as simple as possible, the rule is
not included in the system.

Rules (R10) and (R11) embody trivial deductions which should be intuitively straightforward.
Notice that SP : Spec(SF’), as in the premise of (R11), asserts that specification SP imposes at
least the same requirements as SP'.

Rules (R12) and (R13) refer directly to the semantics of objects. They embody the semantic
verification process which is a necessary component of inference in the above formal system. These
rules are deliberately restricted to the non-parametric case, since this is the point at which an external
formal system is required; parameterisation is handled by the other rules. We do not attempt here to
provide a formal system for proving the semantic judgements [A]p € [SP]p and [SP]p C [SP']p for
all environments p consistent with the current context. This is an interesting and important research
topic, which is however separate from the main concerns of this paper; some considerations and results

“A rule is admissible in a deduction system if its conclusion is derivable in the system provided that all its premises
are derivable. This holds in particular if the rule is dertvable in the system, that is, if it can be obtained by composition
of the rules in the system.
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on this may be found in e.g. [ST 88a] and [Far 92]. It is not possible to give a set of purely “syntactic”
inference rules which is sound and complete with respect to the semantics above because of the power
of the specification mechanisms included in the language (this is already the case for the subset of the
language excluding parameterisation, presented in Section 2).

As mentioned earlier, to make the rules as clear and readable as possible, the presentation of the
system omits a full formal treatment of contexts. In particular, we should add two rules to derive
judgements that a context is well-formed (here, () is the empty context):

() is a well-formed context

]
I' is a well-formed context Xisnotin I’ SP:Spec(SF,,,)
I, X : SP is a well-formed context

and then axioms X; : SP,.... X, : SP, F X, : SP,, for k =1,...,n, where X; : SP,..... X : SP,
is a well-formed context. It is important to realise that contexts are sequences, rather than sets, and
so we allow the variables X, ..., X} to occur in SP,_ ;.

We will continue omitting contexts throughout the rest of the paper. All the definitions and
facts given below (as well as above) are correctly stated for closed objects only, but are meant to be
naturally extended to objects in a well-formed context. This will be done explicitly only within proofs
where it is absolutely necessary. Similarly. we will omit in the following the environment argument to
the semantic function for objects; all the environments thus implicitly considered are assumed to be
consistent with the corresponding context. We hope that this slight informality will contribute to the
readability of the paper without obscuring the details too much.

The following theorem expresses the soundness of the formal system above with respect to the
semantics given earlier.

Theorem 7.4 For any object Obj and specification SP, if Obj : SP is derivable then [Obj] € [SP]
(that is, [SP] is defined and is a class of values and [Obj] is defined and is a value in this class).
Proof (sketch) By induction on the length of the derivation and by inspection of the rules. A
complete formal proof requires, of course, a careful treatment of free variables and their interpretation
(cf. the remark preceding the theorem). Thus, for example, rule (R6) really stands for:

L'~ SP:Spec(SFP,,,) [.X:SPFObj:SP XisnotinT
I'FAX:SP.Obj : IX:SP. SP'

where I" is a context. In the corresponding case of the inductive step we can assume that
1. [SP]p € [Spec(SP,,,)]p for all environments p consistent with context I', and
2. [Obj]p € [SP']p for all environments p consistent with context I', X : SP

and then we have to prove that [AX:SP. Obj]p € [IIX:SP. SP']p for all environments p consistent
with context T'. That is, taking into account the semantics of A- and Il-expressions as given in
Section 7.2, we have to prove that for all environments p consistent with context I'

o [SP]p is defined and is a class of values  which follows directly from assumption (1) above,
and then

e for all values v € [SP]p,
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— [Obj]p[v/X] is defined,
— [SPp[v/X] is defined and is a class of values, and
= [Objlplv/X] € [SPTplv/X],

which in turn follow directly from assumption (2) above.

The cases corresponding to the other rules of the system require similar, straightforward but tedious
analysis. Notice that the proofs about the rules concerning application and S-reduction, (R7), (R8)
and (R9), crucially depend on Fact 7.1 and Corollary 7.2. O

It is natural to ask if the above formal system is also complete with respect to the semantics.
It turns out not to be complete. One reason for incompleteness is that the formal system does not

exploit the semantical consequences of inconsistency. For example, for any inconsistent specification
SP we have that [SP] € [Spec(SP,,,)] for any SP,,, such that [SP,, ] is a class of values. The

an?y ) ant
corresponding formal judgement SP : Sypec(SPwy) is n(;/t derivable when (for example) SP and SP,,,
are simple specifications over different signatures. If the formal parameter specification in a A- or II-
expression is inconsistent then similar difficulties arise (cf. [MMMS 87] for a discussion of the related
issue of “empty types” in typed A-calculi). This topic deserves further study; it would be nice to
identify all sources of incompleteness and the effect of the deliberate omission of a rule allowing for

well-formed §-expansion of objects.
Definition 7.5 An object Obj is well-formed if Obj : SP for some SP. O

This also defines the well-formed specifications since specifications are objects.

Checking whether an expression in the language is well-formed must in general involve “semantic”
verification as embodied in rules (R12) and (R13). In fact, checking the well-formedness of objects is
as hard as checking if they satisfy specifications: Obj : SP if and only if (AX:SP. (any constant))(Oby)
is well-formed.

An easy corollary to the soundness theorem is the following:

Corollary 7.6 Any well-formed object Obj has a well-defined meaning [Obj]. O

Since specifications do not form a separate syntactic category of the language, in the above discus-
sion we have used the term “specification” and the meta-variable S P rather informally, relying on an
intuitive understanding of the role of the objects of the language. This intuitive understanding may
be made formal as follows:

Definition 7.7 An object SP is called a specification if for some SP,,,, SP : Spec(SP,,,). O
Corollary 7.8 The meaning of a specification is a class of values: if SP : Spec(SP,,,) then [SP] C
[SP,,,I 0

Note that this covers ordinary Y-specifications, specifications of (higher-order) parametric algebras,
specifications of (higher-order) parameterised specifications, etc. The following theorem shows that
this is indeed consistent with our previous informal use of the term.

Theorem 7.9 If Obj : SP then SP is a specification. 0

Even though this theorem captures an intuitively rather obvious fact, its inductive proof (given in
[ST 91al, omitted here) is surprisingly long and relatively complicated. Unfortunately, this seems to

be typical of many proofs dealing with “syntactic” properties of A-calculi.
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7.4 Type-checking

Inference in the system presented in the previous section has a purely “type-checking” component
on which the “verification” component is in a sense superimposed. We try to separate this “type-
checking” process below. The concept of type we use must cover signatures (as “basic types” of
algebras) and “arrow types” (types of functions) which would be usual in any type theory, as well as
“specification types” which are particular to the formalism presented here: as we have stressed before,
the type of a specification is distinct from the type of objects the specification specifies.

Definition 7.10 The class of types 7 is defined as the least class such that:
¢ for any signature ¥, ¥ € 7;

o for any types ry, 7 €7, 7y,—7y € T; and

e for any type 7 € 7, Spec(r) € 7.
O

Under the standard notational convention that arrow types of the form 7—7' stand for ll-types of
the form I1X:7. 7" where X does not actually occur in 7', types as defined above are well-formed
specifications.

We define type Type(Obj) for an object Obj of our system by induction as follows:

Simple specifications:

¥ signature Type(SP) = Spec(X) ¢ C Sen(Y)
Type(X) = Spec(X)  Type(impose ® on SP) = Spec(X)

. and similarly for other simple specifications . ..

Other specifications:

Type(Obj) =7 Type(SP) = Spec(r)
Type({Obj}) = Spec(r)  Type(Spec(SP)) = Spec(Spec(7))

[Type(X) = 7]
Type(SP) = Spec(r) Type(SP') = Spec(')
Type(ILX:SP. SP’) — SpeC(T%TI)

Union:

Type(SP,) = Spec(r) Type(SP,) = Spec(r)
Type(SP, U SP,) = Spec(7)

A-expressions:

[ Type(X) = 7]
Type(SP) = Spec(r) Type(Obg) =" Type(Obj) = 7—1' Type(Obj') = 7
Type(AX:SP. Obj) = 7—1 Type(Obj(0b;")) = 7'

Algebra expressions:

A is an algebra expression denoting a ¥-algebra

Type(A) =X
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Note that the semantic inference rules (R12), (R13). the trivial inference rule (R10), the “cut”
rule (R11), (R5) and the f-reduction and f-expansion rules (R8) and (R9), which do not introduce
new well-formed objects. do not have counterparts in the above definition.

Clearly, the above definition depends on a judgement whether or not an algebra expression denotes
an algebra over a given signature. We will assume that such “type-checking” of algebra expressions
is defined externally in such a way that it is consistent with the semantics (i.e., if A is a well-formed
algebra expression denoting a Y-algebra then indeed [A] € Alg(X)). Moreover, we will assume that it
is substitutive: if A is an algebra expression denoting a ¥-algebra under an assumption Type(X) =7
then for any object Obj with Type(Obj) = 7. A[Obj/X] is an algebra expression denoting a Y-algebra
as well.

The above rules (deliberately) do not define Type(Obj) for all object expressions of our language.
However, if a type is defined for an object, it is defined unambiguously. An object Obj is roughly
well-formed if its type Type(Obj) is defined. There are, of course, roughly well-formed objects that
are not well-formed. The opposite implication holds, though:

Theorem 7.11 Type(Oby) is well-defined for any well-formed object Obj. In particular:
1. If Oby : SP then Type(SP) = Spec( Type(Oby)).
2. If SP is a specification then Type(SFP) = Spec(7) for some type 7.

3. 1If Obj : UX:SP.SP then Type(Obj) = 7—1', where Type(SP) = Spec(r), for some types 7
and 7.

0

We omit the proof here: the first part of the theorem follows by induction on the length of the
derivation of Obj : SP (this proof is sketched in [ST 91a]). The other two parts follow directly from
this.

The above theorem states that a necessary condition for an object to satisfy a specification is that
both are roughly well-formed and the type of the object is consistent with the type of the specification.
Of course, nothing like the opposite implication holds. As pointed out earlier, proving that an object
satisfies a specification must involve a verification process as embodied in the two rules of semantic
inference.

One might now expect that any well-formed object Obj “is of its type”, i.e. Obj : Type(Oby).
This is not the case, though. The problem is that both A- and Il-expressions include parameter
specifications rather than just parameter types, and so functions denoted by A-expressions and specified
by Il-expressions have domains defined by specifications, not just by types. This is necessary for
methodological reasons: we have to be able to specify permissible arguments in a more refined way
than just by giving their types. However, as a consequence. objects denoted by A- and ll-expressions
in general do not belong to the domain defined by their types, and so we cannot expect that such
expressions would “typecheck” to their types.

To identify the purely “type-checking” component in our system we have to deal with objects
where parameter specifications are replaced by their types. Formally, for any roughly well-formed
object Obj, its version Erase(Obj) with parameter specifications erased is defined by “rounding up”
parameter specifications to parameter types. A full inductive definition is given in [ST 91a); two
crucial cases are:

Erase(11X:SP.SP") =,,; HX:r. Erase(SP’)

where Type(Erase(SP)) = Spec(r)
Erase(AX:SP.Oby) =,,; AX:1. Erase(Oby)

where Type(Erase(SP)) = Spec(r)
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Now, by a tedious but straightforward induction one may show that for any roughly well-formed object
Obj, Frase(Oby) is well-formed and has the same type as Obj. Joining this with Theorem 7.11, we
conclude that a necessary condition for an object Obj to satisfy a specification is that Erase(Obj),
the version of the object where parameter specifications have been “rounded up” to parameter types,
has a type which is consistent with the type of the specification. This necessary condition embodies
the purely type-checking component of any proof that an object satisfies a specification.

It is important to realize that the type-checking of FErase(Obj) may be performed within the
original system. since Type(FErase(Obj)) = 7 if and only if Erase(Obj) : Spec(r). Moreover, this
can be done separately from the semantic verification part, without any reference to the meanings
of objects and specifications. We present below the corresponding proper fragment of the original
system:

Simple specifications:

¥ signature SP : Spec(Y) ¢ C Sen(X)
Y :Spec(X) impose ® on SP :Spec(Y)

. and just as before for other simple specifications . ..
Other specifications:

(X : 7]
Obj : 7 SP': Spec(r') SP: Spec(r)
{Obj} : Spec(r) TIX:r. SP":Spec(r—7') Spec(SP):Spec(Spec(r))

Union:

SP, : Spec(r) SP,: Spec(r)
SP;USP,:Spec(r)

A-expressions:

(X : 7]
Obj : 7' Obj : T—1' Obj’ 7
AX:7. Obj : 7—1' Obj(Obg") = 7’

Algebra expressions:

A is an algebra expression denoting a Y-algebra

ALY

We hope that a comparison of the above with the system presented in Section 7.3 will clearly illustrate
the intuitive difference between typed A-calculi, like the one above, and “specified” A-calculi, like the
one in Section 7.3.

7.5 An example

Example 7.12 Let us look again at Example 5.2.
First, since Flem is just a signature, Type(FElem) = Spec(Flem). Moreover, we have

Elem : Spec(Elem)
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Then, P-Bunch as defined before is well-formed (modulo the necessary translation of +, enrich
and reachable into the operations provided by the system) and has type Spec(Flem)—Spec(Xp,,.1)-
Again, because Flem is a trivial specification, we have

P-Bunch : Spec(Elem)—Spec(Xg,,)
It is possible, however, to derive a much tighter specification of P-Bunch than its type:
P-Bunch : [TF:Spec(Elem). Spec(P-Bunch(F))
Then another, perhaps more adequate, version of P-Delete may be defined as follows:

P-Delete’ =,.; ABSP:(I1E:Spec(Elem). Spec(P-Bunch(E))).
AESP:Spec(Elem).
enrich BSP(ESP)
by opns delete : elem x bunch — bunch

axioms count(a, delete(a, B)) =0
a # b = count(a,delete(b, B)) = count(a, B)

Then
Type(P-Delete’) = (Spec(Elem) — Spec(Ypua)) — (Spec(Elem) — Spec(Xpee.))
much as in Example 5.2. However, we do not have
P-Delete’ : (Spec(Elem) — Spec(Xpunn)) — (Spec(Elem) — Spec(Ypeee))

The type of P-Delete’. viewed as a specification, requires the specified objects (which are higher-
order parameterised specifications) to be applicable to any specification of the type Spec(FElem) —
Spec(X gunes ), Which is not the case with P-Delete’ as defined here.

We can, however, show that

P-Delete’ : (IIE:Spec(Elem). Spec(P-Bunch(E))) — (Spec(Elem) — Spec(Epeet.))
and the tightest specification we can derive for P-Delete’ is
P-Delete’: 1B: (11 E:Spec(Flem). Spec(P-Bunch(K))). (IE:Spec(Elem). Spec(P-Delete'( B)(E)))

0

8 Concluding remarks

In this paper we have discussed parameterisation and its role in the process of software specification
and development. We have especially stressed two points. The first is that there should be a clear
distinction between parameterised specifications and specifications of parameterised software:

parameterised (program specification) # (parameterised program) specification

Both concepts are important and useful, but they are modelled by different semantical objects and,
more significantly, they play different roles in the process of software development. The methodological
consequences of this distinction were discussed in detail in Section 4.3.
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The second point is that it is natural and useful to generalise parameterisation to the higher-
order case. Specifications of higher-order parametric program modules arise naturally and give extra
flexibility in the process of systematic software development. This was discussed in Sections 5 and 6.

Spurred by these methodological considerations, in Section 7 we introduced an institution-independent
specification formalism that provides a notation for parameterised specifications and specifications of
parametric objects of an arbitrary order, as well as any mixture of these concepts. The formalism
incorporates the kernel specification-building operations described in [ST 88a] based on those in the
ASL specification language [SW 83], [Wir 86]. The basic idea was to treat specifications, which specify
objects, as objects themselves. This collapsing together of the two levels, that of objects and that of
their specifications, led (perhaps surprisingly) to a well-behaved inference system for proving that an
object satisfies a specification with a clearly identified formal type-checking component.

The formalism presented deals explicitly with two levels of objects involved in the process of
software development: programs (viewed as algebras) and their specifications (viewed as classes of
algebras) — both, of course, arbitrarily parameterised. Aiming at the development of an institution-
independent framework, we decided to omit from our considerations yet another level of objects
involved. namely that of algebra components (such as data values and operations on them). In
particular institutions, however, it may be interesting to explicitly consider this level as well, and to
intermix constructs for dealing with this level with those for the other two levels mentioned above.
This would lead to entities such as algebras parametric on data values, specifications parameterised
by functions on data, functions from algebras and specifications to data values, etc.

Just as the kernel ASL-like specification formalism it builds on, the presented system is too low-
level to be directly useful in practice. We view it primarily as a kernel to be used as a semantic
foundation for the development of more user-friendly specification languages. Kasier to use notations
can be devised, with their semantics defined by translation into the formalism of Section 7.

The material in Section 7 is more tentative than that in the remainder of the paper, and clearly
some of the details of the design of the specification formalism deserve further consideration. The
choice of operations used to build simple specifications is not essential; we have chosen here those
of ASL (derive, translate, etc.) but any reasonably expressive set of operations would suffice, and
most of the subsequent technical development would require little or no modification. Adding e.g.
an intersection operation (dual to union) to the present system would be completely unproblematic.
A less straightforward extension would be to add recursion for building specifications as in [SW 83],
[ST 88al: for a parameterised specification P, fix P would be a specification denoting the greatest
fixed point of the (monotone) function [P] on classes of objects. Yet another thing to consider is the
possible benefits of making the (_)" and (_)" operators of Sections 4.2 explicitly available. Tt is not
clear how the system of rules in Section 7.3 could be enriched to cope with these additions though.

The presented system provides an appropriate foundation for the Extended ML specification lan-
guage and program development methodology as presented in [ST 89]. Indeed, one of the main stimuli
to write this paper was our inability to express the semantics of the current version of Extended ML
directly in terms of the kernel specification-building operations in ASL: Extended ML functor spe-
cifications are specifications of parametric objects, and these were not present in ASL. The task of
writing out a complete semantics of Extended ML in terms of the specification formalism presented
here remains to be done. We expect that some technicalities, like those which arise in connection
with ML type inheritance, will cause the same problems as in [ST 89]. Some others, like the use
of behavioural equivalence and the concept of functor stability in the Extended ML methodology,
although directly related to the abstract operation in the formalism presented here, require further
study in this more general framework. Finally, properties of ML functors such as persistency, which
cause difficulties in other specification formalisms, will be easy to express here.

One of the interesting possibilities the system presented in Section 7 offers is that it incorporates the
concept of specification refinement, cf. [ST 88b]. Namely, we can define SP ~> SP' (read: SF' is a
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refinement of SP — this is equivalent to SP ~ey> SP"in the notation of Section 6) as SP’: Spec(SP).
This also covers refinements of specifications of (higher-order) parametric algebras, due to the following
derivable rule:

[X : SP]
qul’\’\& Aq,P” (i.e. Aqu’ . SpeC(SP/))
TIX:SP. SP ~s IX:SP. SP”  (ie. MX:SP. SP” : Spec(IIX:SP. SP'))

We can also “internalize” SP ~as (SP,,...,SP,), for example as & : I1X:SP,. ---11X,:SP,. SP.
The consequences of such an internalisation of development steps seem worth exploring. This was one
of the ideas underlying the design of the SPECTRAL specification language [KS 91] which can be seen
as a higher-level and more user-friendly version of a subset of the formalism presented here.

The formal properties of the system presented in Section 7 need much further study. For example,
it seems that the “cut” rule should be admissible (although not derivable) in the remainder of the
system. The standard properties of F-reduction, such as the Church-Rosser property and termination
(on well-formed objects) should be carefully proven, probably by reference to the analogous properties
of the usual typed A-calculus. For example, the termination property of F-reduction on the well-formed
objects of the language should follow easily from the observation that the Frase function introduced
in Section 7.4 preserves -reduction, which allows us to lift the corresponding property of the usual
typed A-calculus to our formalism. The system is incomplete, as pointed out earlier. It would be
useful to identify all the sources of this incompleteness, for example by characterising an interesting
subset of the language for which the system is complete. One line of research which we have not
followed (as yet) is to try to encode the formalism we present here in one of the known type theories
(for example, Martin-Lof’s system [NPS 90], the calculus of constructions [CH 88] or LF [HHP 87])).
It would be interesting to see both which of the features of the formalism we propose would be difficult
to handle, as well as which of the tedious proofs of some formal properties of our formalism (cf. the
proofs sketched for Theorems 7.9 and 7.11 in [S'T 91a]) would turn out to be available for free under
such an encoding.

Note added in proof.

Our attention has recently been drawn to certain intriguing similarities between some of the rules
presented in Section 7.3 and those in the paper “Structural subtyping and the notion of power type”
by Luca Cardelli in Proc. 15th ACM Symp. on Principles of Programming Languages, San Diego,
70-79 (1988). Among other things, the Spec operator here is closely related to Cardelli’s Power
type-formation operator, our “cut” rule (R11) corresponds to his Power elimination rule, and our rule
(R3) corresponds to his Power subtyping rule.
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