
Toward formal development of programs from algebraicspeci�cations: parameterisation revisited�Donald Sannellay Stefan Soko lowskiz Andrzej TarleckixAbstractParameterisation is an important mechanism for structuring programs and speci�cations intomodular units. The interplay between parameterisation (of programs and of speci�cations) andspeci�cation (of parameterised and of non-parameterised programs) is analysed, exposing import-ant semantic and methodological di�erences between speci�cations of parameterised programs andparameterised speci�cations. The extension of parameterisation mechanisms to the higher-ordercase is considered, both for parameterised programs and parameterised speci�cations, and themethodological consequences of such an extension are explored.A speci�cation formalism with parameterisation of an arbitrary order is presented. Its denota-tional-style semantics is accompanied by an inference system for proving that an object satis�esa speci�cation. The formalism includes the basic speci�cation-building operations of the ASLspeci�cation language and is institution independent.1 IntroductionModular structure is an important tool for organizing large and complex systems of interacting units.When a system is decomposed into self-contained modules with well-de�ned interfaces, the numberof possible interactions between parts of the system is greatly reduced. This makes it possible tounderstand each module in relative isolation from the other modules in the system.The application of modular structure to the organization of \dynamic" systems such as programsand machines is well known. Here, interactions between parts of a system involve transmission of dataor physical contact between bits of metal. Its application to \static" systems such as algebraic speci�c-ations is perhaps less obvious but just as important. Interactions here are more implicit and insidious,where axioms meant to specify one function can indirectly constrain the possible implementations ofother functions as well.The �rst algebraic speci�cation language which provided the means to structure speci�cations wasCLEAR [BG 80]. Since then the need for structure in speci�cations has become universally recognized,and mechanisms for structuring speci�cations appear in all modern algebraic speci�cation languagesincluding CIP-L [Bau 85], ASL [SW 83], [Wir 86], ACT ONE [EM 85] and the Larch Shared Language[GHW 85].An important structuring mechanism is parameterisation. This allows modules to be de�ned in ageneric fashion so that they may be applied in a variety of contexts which share some common charac-teristics. A parameterised program module F [Gog 84] (an ML functor [MacQ 86]) may be applied to�To appear in Acta Informatica.yDepartment of Computer Science, University of Edinburgh, Edinburgh, UK.zInstitute of Computer Science, Polish Academy of Sciences, Gda�nsk, Poland.xInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.1



any non-parameterised program module Aarg matching a given import interface Apar. The result is anon-parameterised program module F (Aarg), a version of F in which the types and functions in Aparhave been instantiated to the matching types and functions in Aarg . An example of a parameterisedprogram module is a parser module which takes a lexical analyser module as argument. Similarly, aparameterised speci�cation P may be applied to any non-parameterised speci�cation SParg �tting acertain signature �par (or speci�cation SPpar) to yield a speci�cation P (SParg ). A standard exampleis a speci�cation Stack-of-X which takes a speci�cation of stack elements and produces a speci�cationof stacks containing those elements. In some algebraic speci�cation frameworks, parameterisation isimplicit in the sense that no distinction is made between parameterised and non-parameterised spe-ci�cations (see for example LOOK [ETLZ 82], ASPIK [Vo� 85] and the uni�ed algebra framework[Mos 89a], [Mos 89b]) but the idea is the same.The above discussion has dealt with two distinct classes: programs and speci�cations. Appropriateparameterisation mechanisms give rise to two new (and distinct) classes: parameterised programs andparameterised speci�cations. It is possible to specify parameterised programs, just as it is possibleto specify non-parameterised programs. The result is not a parameterised speci�cation; it is a non-parameterised speci�cation of a parameterised program. In work on algebraic speci�cation there hasbeen a tendency to ignore this distinction and use one 
avour of parameterisation for both purposes.This has sometimes led to misunderstanding and confusion. In this paper, we argue that the distinc-tion is important both for semantical reasons and because the two kinds of speci�cations belong todi�erent phases of program development: parameterised speci�cations are used to structure require-ments speci�cations, while speci�cations of parameterised programs are used to describe the moduleswhich arise in the design of an implementation. The most natural way to structure a speci�cationoften re
ects the way that an implementation would be structured. But this is not always the case,and then the lack of a distinction causes real problems.It is natural to consider what happens when parameterisation mechanisms are extended to thehigher-order case in which parameterised objects are permitted as arguments and as results. Thismakes sense both for parameterised speci�cations and for speci�cations of parameterised programs.The consequences of such an extension are explored in this paper. It is shown that re-interpreting theconcept of constructor implementation in [ST 88b] in these terms leads to a natural extension to dealwith implementations of speci�cations of parameterised programs. This in turn supports an extensionof the methodology for formal development of ML programs from speci�cations presented in [ST 89]to the case of higher-order ML functors.The paper is organized as follows. After some preliminary de�nitions in Section 2, Section 3surveys four of the approaches to parameterisation found in algebraic speci�cation languages. Thisis not intended as an exhaustive overview of the literature on parameterisation; the four approachesdiscussed were found to be useful as a means of introducing the ideas in this paper, and many otherrelated and important studies have been omitted (e.g. [Ehr 82] and [Gan 83], just to mention two).In Section 4, the similarities and di�erences between these approaches are analysed. The distinctionbetween parameterised speci�cations and speci�cations of parameterised programs is brought to light,and the consequences of this distinction are investigated. This part of the paper may be summarizedby the following slogan:parameterised (program speci�cation) 6= (parameterised program) speci�cationIn Sections 5 and 6, the technical and methodological consequences of extending parameterisationto the higher-order case are considered. Section 7 presents a speci�cation formalism built on theinstitution-independent kernel speci�cation language in [ST 88a] which supports the speci�cation ofarbitrarily high-order parameterised programs, as well as extending the mechanism in [ST 88a] forde�ning �rst-order parameterised speci�cations to the higher-order case. This section is based on a2



more extensive presentation of this formalism in [ST 91a]. Finally, Section 8 contains conclusions andsome ideas for future work.2 PreliminariesThroughout the paper we assume that the reader is familiar with the basic concepts of logic anduniversal algebra. In particular we will freely use the notions of: algebraic many-sorted signature,usually denoted by �, �0, �1, etc.; algebraic signature morphism � : � ! �0 (this yields the category ofsignatures SIGN ); �-algebra; �-homomorphism; �-isomorphism; �-equation; �rst-order �-sentence(the set of all �-sentences will be denoted by Sen(�)); and satisfaction relation between �-algebrasand �-sentences. These all have the usual de�nitions (see e.g. [ST 88a]) and a standard, hopefully self-explanatory notation is used to write them down. We also make minor use of the pushout constructionof category theory.For any signature �, the class of all �-algebras is denoted by Alg(�). We will identify this withthe category of �-algebras and �-homomorphisms whenever convenient. If � : � ! �0 is a signaturemorphism then � : Alg(�0) ! Alg(�) is the reduct functor de�ned in the usual way (the notation� is sometimes used when � is obvious). Now, given a signature morphism � : � ! �0 and functorF : Alg(�) ! Alg(�0), we say that F is (strongly) persistent along � if for every algebra A 2 Alg(�),F (A) � = A.For any signature �, by a �-presentation we mean any set of �-sentences. Any �-presentation� determines the class of its models, written [[�]], which consists of all �-algebras that satisfy allthe sentences in �. By a �-theory we mean any �-presentation which is closed under semanticalconsequence, i.e., a set � of �-sentences is a �-theory if all the sentences that hold in [[�]] are in �.The most basic assumption of work on algebraic speci�cation is that software systems are modelledas algebras, abstracting away from the concrete details of algorithms and code and focussing ontheir functional behaviour. Roughly, the signature of the algebra gives the names of data types andof operations available to the user of the system, and the algebra itself gives the semantics of theparticular realizations of these data types and operations de�ned by the system. Consequently, tospecify a software system viewed in this way means to give a signature (�x the abstract syntax availableto the user) and de�ne a class of algebras over this signature, that is, describe a class of admissiblerealizations of the system.One way to give a speci�cation of a system is to present a list of axioms over a given signatureand describe in this way the properties that the operations of the system are to satisfy. This viewof a software-system speci�cation as a �-presentation (for an appropriate signature �) is perhapsthe simplest possible, but has a number of disadvantages. Most notably, any speci�cation of a realsoftware system given in this style would comprise a very long, unstructured, and hence unmanageablelist of axioms.To cope with this problem, a number of so-called speci�cation languages have been designed,which allow speci�cations to be built in a structured manner using a prede�ned set of speci�cation-building operations. According to the brief discussion above, the most essential feature of any suchspeci�cation formalism is that every speci�cation SP over a given signature � (we will say that SP isa �-speci�cation) unambiguously determines the class of admissible realizations of the system beingspeci�ed, i.e. a class of �-algebras (sometimes referred to as models of the speci�cation). Thus, any�-speci�cation SP denotes a class of �-algebras [[SP ]] 2 Pow(Alg(�))1. A speci�cation SP is called1Pow(X), for any class X, denotes the \class of all subclasses" of X. This raises obvious foundational di�culties.We disregard these here, as they may be resolved in a number of standard ways. For example, for the purposes ofthis paper we could assume that algebras are built within an appropriate universal set, and deal with sets, rather thanclasses, of algebras. 3



consistent if it has at least one model, i.e. [[SP ]] 6= ;. See [ST 88a], [ST 92] for a more extensivediscussion of the semantics of speci�cations.As a starting point for the presentation of speci�cations in this paper, we recall here the simple yetpowerful speci�cation-building operations de�ned in [ST 88a] (with the slight di�erence that signaturesare regarded as speci�cations in their own right here with impose � on � in place of h�;�i). Thiswas in turn based on the ASL speci�cation language [SW 83], [Wir 86]. The main use of theseoperations is in examples where they should be more or less self-explanatory. The particular choiceof speci�cation-building operations is not important for the purposes of this paper.� If � is a signature, then � is a �-speci�cation with the semantics:[[�]] = Alg (�)� If SP is a �-speci�cation and � is a set of �-sentences, then impose � on SP is a �-speci�cation with the semantics:[[impose � on SP ]] = fA 2 [[SP ]] j A j= �g� If SP is a �-speci�cation and � : �0 ! � is a signature morphism, then derive from SP by �is a �0-speci�cation with the semantics:[[derive from SP by �]] = fA � j A 2 [[SP ]]g� If SP is a �-speci�cation and � : � ! �0 is a signature morphism, then translate SP by �is a �0-speci�cation with the semantics:[[translate SP by �]] = fA0 2 Alg(�0) j A0 � 2 [[SP ]]g� If SP and SP 0 are �-speci�cations, then SP [ SP 0 is a �-speci�cation with the semantics:[[SP [ SP 0]] = [[SP ]]\ [[SP 0]]� If SP is a �-speci�cation and � : �0 ! � is a signature morphism, then minimal SP wrt �is a �-speci�cation with the semantics:[[minimal SP wrt �]] = fA 2 [[SP ]] j A is minimal in Alg(�) w.r.t. �g2where a �-algebra A is minimal w.r.t. � if it has no non-trivial subalgebra with an isomorphic�-reduct (cf. [ST 88a]).� If SP is a �-speci�cation, then iso-close SP is a �-speci�cation with the semantics:[[iso-close SP ]] = fA 2 Alg(�) j A is isomorphic to B for some B 2 [[SP ]]g� If SP is a �-speci�cation, � : � ! �0 is a signature morphism and �0 is a set of �0-sentences,then abstract SP wrt �0 via � is a �-speci�cation with the semantics:[[abstract SP wrt �0 via �]] = fA 2 Alg(�) j A ���0 B for some B 2 [[SP ]]gwhere A ���0 B means that A is observationally equivalent to B w.r.t. �0 via � (see [ST 87],[ST88a] for details).2This is slightly di�erent from the de�nition in [ST 88a].4



The above de�nitions were given in [ST 88a] in the framework of an arbitrary institution [GB 84].This means that the speci�cation-building operations de�ned above are actually independent of theunderlying logical system, that is, of the particular de�nitions of the basic notions of signature,algebra, sentence and satisfaction relation. In this paper it will be convenient to use some otherspeci�cation-building operations de�ned in the standard framework of �rst-order logic, as follows:� If SP is a �-speci�cation and SP 0 is a �0-speci�cation, then SP +SP 0 is a (�[�0)-speci�cationwith the semantics:[[SP + SP 0]] = fA 2 Alg(� [ �0) j A � 2 [[SP ]] and A �0 2 [[SP 0]]g(this is expressible using union and translate as de�ned above, see [ST 88a]).� If SP is a �-speci�cation, S is a set of sort names, 
 is a set of ranked operation names suchthat adding S and 
 to � yields a well-formed signature �0, and �0 is a set of �0-sentences, thenenrich SP by sorts S opns 
 axioms �0 is a �0-speci�cation with the semantics:[[enrich SP by sorts S opns 
 axioms �0]] = fA 2 Alg(�0) j A � 2 [[SP ]] and A j= �0g(this is expressible using translate and impose as de�ned above, see [ST 88a]).� If SP is a �-speci�cation and S is a set of sort names in �, then reachable SP on S is a�-speci�cation with the semantics:[[reachable SP on S]] = fA 2 [[SP ]] j A is generated on Sgwhere A is said to be generated on S if it has no proper subalgebra having the same carriers ofsorts not in S (this is expressible using minimal as de�ned above, see [ST 88a]).For example we can now de�ne:Bool =def reachablesorts boolopns true; false : ! bool: : :axioms true 6= false: : :on fboolgNat =def reachableenrich Boolby sorts natopns zero : ! natsucc : nat ! nat> : nat� nat ! bool: : :axioms 8n : nat: succ(n) > zero = true: : :on fnatgNote that at the semantical level, each of the speci�cation-building operations introduced aboveis a function mapping classes of algebras to classes of algebras. We will assume that when viewed this5



way, all speci�cation-building operations are monotone w.r.t. the inclusion ordering on classes. Thisis indeed the case for all the above operations.If SP is a �-speci�cation and SP 0 is a �0-speci�cation, then a speci�cation morphism from SP toSP 0, � : SP ! SP 0, is a signature morphism � : � ! �0 such that for all A0 2 [[SP 0]], A0 � 2 [[SP ]].This yields the category of speci�cations SPEC (with composition and identities inherited from thecategory of signatures SIGN ). SPEC is co-complete, with colimits in SPEC determined by colimitsin SIGN (cf. [GB 84], [ST 88a]). Note that this de�nition of speci�cation morphism works for anyspeci�cation formalism with a semantics in the style presented above.3 Overview of parameterisation mechanismsA speci�cation language provides a certain number of speci�cation-building operations such as thosede�ned above. As we have mentioned, such operations may be viewed as functions mapping spe-ci�cations to speci�cations. More complex functions of this type may be de�ned as combinations ofthe elementary speci�cation-building operations provided. We can use �-abstraction to write suchfunctions down, where the semantics of application is given by �-conversion. This is the approachadopted in ASL [SW 83], [Wir 86]; the particular de�nition below is taken from [ST 88a] with a minorsyntactic modi�cation (viz., the use of Spec( ) to conform with conventions to be introduced later).De�nition 3.1 An ASL-style parameterised speci�cation has the form �X:Spec(�par): SPres[X] where�par is a signature and SPres[X] is a �res-speci�cation which may contain one or more uses of X asa �par-speci�cation. The result of applying such a parameterised speci�cation to a �par-speci�cationSParg is de�ned as follows:(�X:Spec(�par): SPres[X])(SParg ) =def SPres[SParg=X]where SPres[SParg=X] is SPres with all occurrences of X replaced by SParg . �This naturally extends to higher-order parameterised speci�cations in the standard way. Recursion isalso no problem since all speci�cation-building operations are monotonic with respect to the inclusionof model classes.A characteristic feature of the speci�cation-building operations de�ned in Section 2 and in [ST 88a]is that the signature of SPres[SParg=X] is not dependent on SParg : SPres[SParg=X] is a �res-speci�cationfor any �par-speci�cation SParg . Thus a parameterised speci�cation �X:Spec(�par): SPres[X] describesa function mapping �par-speci�cations to �res-speci�cations.This function is only de�ned for speci�cations over the indicated parameter signature �par. In theframework of [ST 88a], it is possible to apply a parameterised speci�cation �X:Spec(�par): SPres[X]to a �arg -speci�cation SParg where �arg � �par, but only by �rst applying derive to SParg (via theinclusion morphism � : �par ,! �arg ); the same trick works for any SParg where there is a signaturemorphism � : �par ! �arg . The part of SParg which is thereby \forgotten" does not reappear in theresult of the application.A di�erent approach is taken in CLEAR [BG 80], where parameterised speci�cations are used touniformly enrich given argument speci�cations. In this approach, everything which is in the argumentspeci�cation carries through to the overall result. This is achieved by making the \�tting" of theargument speci�cation to the indicated parameter signature an explicit part of the argument-passingmechanism.De�nition 3.2 A CLEAR-style parameterised speci�cation is a speci�cation morphism P : SPpar !SPres, where SPpar is a �par-speci�cation and SPres is a �res-speci�cation. The overall result ofapplying such a parameterised speci�cation to a �arg -speci�cation SParg via a speci�cation morphism� : SPpar ! SParg (a so-called �tting morphism) is de�ned as the speci�cation SP 0res where6



SParg SP 0resSPpar SPres--P6� 6
is a pushout in the category of speci�cations SPEC. �SP 0res may be de�ned more explicitly as follows:SP 0res =def (translate SParg by bP ) [ (translate SPres by b�)where bP and b� are given by the following pushout diagram in the category of signatures SIGN :�arg �0res�par �res-bP -P6� 6b�This still de�nes a function taking speci�cations to speci�cations, but the signatures of the argu-ment and of the overall result speci�cations are not �xed. Further di�erences with respect to ASL-styleparameterisation are that the argument speci�cation is required to \semantically" �t the parameterspeci�cation SPpar rather than just to \syntactically" �t the parameter signature �par as before, andthat the argument speci�cation is always explicitly included in the overall result speci�cation.ACT ONE [EM 85] adopts a similar style of parameterisation to that of CLEAR except thatit has an additional layer of semantics. Namely, in addition to the way in which application ofa parameterised speci�cation to an argument speci�cation builds an overall result speci�cation asabove, a parameterised speci�cation describes a functor mapping individual models of the parameterspeci�cation to models of the result speci�cation.De�nition 3.3 An ACT ONE-style parameterised speci�cation and application of such a paramet-erised speci�cation to an argument speci�cation are de�ned exactly as for CLEAR-style parameterisedspeci�cations, except that the only speci�cations considered are presentations with equational axioms.The model-level semantics of a parameterised speci�cation P : SPpar ! SPres is the free functorFP : [[SPpar]] ! [[SPres]] (the left adjoint to the P -reduct functor P : [[SPres]] ! [[SPpar]]). �In ACT ONE, an important issue is the compatibility of the speci�cation-level semantics with themodel-level semantics, where the model-level semantics of an unparameterised speci�cation is the classof its initial models. It turns out that everything works out �ne when the free functor de�ned by aparameterised speci�cation is persistent. In this case, for any argument speci�cation SParg and �tting7



morphism � : SPpar ! SParg , FP : [[SPpar]] ! [[SPres]] lifts to a functor FbP : [[SParg ]] ! [[SP 0res]] (viathe amalgamation lemma) which is free with respect to bP and so maps the initial models of SPargto the initial models of SP 0res.The model-level semantics of ACT ONE-style parameterisation has a completely di�erent 
avourfrom the previous parameterisation mechanisms. ACT ONE parameterised speci�cations are notpurely construed as speci�cation-building operations but also as tools to construct models of theoverall results out of models of the arguments. This is very much like module parameterisationmechanisms in modular programming languages such as Standard ML [MacQ 86], which was thestarting point for work on the Extended ML speci�cation language [ST 85], [ST 89], [San 91], [ST 91b].Such modularisation mechanisms provide the means to structure programs \in the large" so thatprograms may be decomposed into a number of (possibly generic) self-contained units with well-de�nedinterfaces [Gog 84]. The Standard ML programming language comprises two layers: an essentiallyfunctional programming language, and a language for de�ning program units (structures), interfaces(signatures) and parameterised program units (functors). Simplifying somewhat, we can think ofstructures as algebras, ML signatures as algebraic signatures, and functors as parametric algebras,i.e. functions mapping algebras to algebras (cf. OBSCURE [LL 88] where these are called algebramodules). Extended ML provides a means of specifying such parametric algebras (cf. the notion ofcell in [Sch 87]). Extended ML functor speci�cations are like Standard ML functors except thatthe result of applying the functor to an argument algebra is (loosely) speci�ed rather than de�nedexplicitly by means of code. To simplify the presentation, we consider only those functors in whichthe result includes the parameter.De�nition 3.4 An Extended ML functor speci�cation has the form functor F (X : SPpar) : SPreswhere SPpar is a �par-speci�cation and SPres is a �res-speci�cation with �par � �res. Its semanticsis a function F which to any algebra A 2 [[SPpar]] assigns a �res-speci�cation F (A) with semanticsde�ned as follows: [[F (A)]] = fB 2 [[SPres]] j B �par = AgA Standard ML functor which maps �par-algebras to �res-algebras satis�es this speci�cation i� foreach algebra A 2 [[SPpar]] it yields an algebra in [[F (A)]].The semantics of an Extended ML functor speci�cation F as above extends pointwise to anyargument �par-speci�cation SParg such that [[SParg ]] � [[SPpar]]: F (SParg) is a �res-speci�cation withsemantics de�ned as follows: [[F (SParg )]] = [f[[F (A)]] j A 2 [[SParg ]]g �Note that the function described by an Extended ML functor speci�cation is persistent by de�nition,in the sense that any algebra B in [[F (A)]] inherits an unmodi�ed copy of A. For Standard MLfunctors, where both the argument and the body of the functor are de�ned by Standard ML code,this embodies the fact that the code of the argument cannot be modi�ed by adding the additional codein the body. This constraint is retained when generalising to speci�cations of Standard ML functorsas in Extended ML. In Extended ML, however, this may lead to inconsistency since the axioms in theresult speci�cation may impose new requirements on the argument: for some algebras A 2 [[SPpar ]],[[F (A)]] may be empty, as happens when the requirements imposed in SPres are inconsistent with theparticular realization of SPpar given by A. There will then be no Standard ML functor which satis�esthe speci�cation since such a functor must produce a result for all algebras which satisfy SPpar.In this section we described a number of di�erent parameterisation mechanisms appearing inspeci�cation languages. One obvious di�erence between them concerns the technicalities of parameterpassing, which in ASL is based on �-reduction in a �-calculus style, while CLEAR and ACT ONE use8



a pushout-based approach. Advocates of the pushout approach argue for its convenience, since for anarbitrarily large argument the overall result always includes the whole argument. This is not the casein ASL, as discussed above.The pushout approach seems fully justi�ed in a formalism used to gradually construct a singlespeci�cation by successively adding pieces. The idea is to incorporate in this speci�cation all poten-tially useful components, as otherwise they may be lost. However, a real speci�cation language willincorporate an environment of named speci�cations, with explicit scoping mechanisms like those in de-clarative programming languages. Once a speci�cation is introduced into the environment, it remainsthere and all of its components are permanently accessible. Whichever parameterisation mechanismis used, there is no danger that some components of an actual parameter will inadvertently becomeunavailable. If needed, they can always be taken from the environment, subject only to the con-straints of the type system and the scoping mechanisms. Speci�cation languages like Extended MLare designed to be su�ciently permissive to allow this (cf. [Tar 92]).Such di�erences will to a large extent be disregarded in this paper; although they are of greatimportance for practical purposes, the di�erence is a matter of taste and convenience rather than ofa more fundamental nature.4 Parameterised speci�cations vs. speci�cations of parametricalgebras4.1 Concepts and semantic objectsAn essential di�erence between the parameterisation approaches presented in Section 3 may best beseen if we compare the ASL-style and Extended ML-style parameterisation mechanisms. ASL-styleparameterised speci�cations are de�ned entirely on the level of speci�cations, without any reference tothe algebras which speci�cations are used to describe. Thus, they accept speci�cations as argumentsand yield speci�cations as results. De�ning the semantics of Extended ML functor speci�cations atthis level was possible only via the more basic level of algebras: an Extended ML functor speci�cationdescribes a function taking single algebras to classes of algebras, which is viewed as a de�nition of aclass of Standard ML functors. The pointwise extension to speci�cations is a posteriori, and in factplays no part in the Extended ML program development methodology proposed in [ST 89], [ST 91b].CLEAR-style parameterised speci�cations are similar in this respect to ASL-style parameterisation,while ACT ONE-style parameterisation has elements of both embodied in its two levels of semantics.This distinction seems fundamental as it re
ects the role which both kinds of speci�cations play inthe program development process.There are two kinds of entities involved in the process of developing a software system from aspeci�cation. On one hand we have software systems, modelled as algebras. On the other hand wehave speci�cations which describe classes of algebras. Both software systems and speci�cations may(and should) be presented in a structured way, using mechanisms such as parameterisation. Thisgives rise to both parametric (or generic) software systems, and parameterised speci�cations. It iseasy to confuse two distinct notions: speci�cations of parametric software systems, and parameterisedspeci�cations of software systems. The �rst is a (non-parameterised) speci�cation of a parametricalgebra. Extended ML-style functor speci�cations are of this kind. The second is a parameterisedspeci�cation of a (non-parametric) algebra. ASL-style and CLEAR-style parameterised speci�cationsare of this kind. Of course, it is possible to combine these two notions to obtain (for example)parameterised speci�cations of parametric algebras, etc.A technical consequence of the above considerations is that the semantic objects modelling para-meterised speci�cations and speci�cations of parametric algebras are quite di�erent.9



De�nition 4.1 The denotation of a parameterised speci�cation P with parameter signature �par andresult signature �res is a monotone function[[P ]] : Pow (Alg(�par)) ! Pow (Alg(�res))mapping classes of �par-algebras to classes of �res-algebras. The collection of all such functions iscalled Spec(�par) ! Spec(�res); we write P : Spec(�par) ! Spec(�res) to indicate the \type" of P . �We will use the notation of ASL to de�ne parameterised speci�cations. The de�nition of the applic-ation of a parameterised speci�cation P (De�nition 3.1) yields a monotone function [[P ]] as above(cf. Section 7.2). When needed, we will use the same notation with a parameter (requirement) spe-ci�cation instead of just a parameter signature (cf. Section 7). The denotation of a parameterisedspeci�cation P with parameter speci�cation SPpar and result signature �res is a monotone function[[P ]] : Pow([[SPpar]]) ! Pow(Alg (�res))mapping classes of SPpar-models to classes of �res-algebras.De�nition 4.2 The denotation of a speci�cation Q of �res-algebras parameterised by �par-algebrasis a class [[Q]] 2 Pow (Alg(�par) ! Alg(�res))of functions mapping �par-algebras to �res-algebras. The collection of all such functions is calledSpec(�par ! �res); we write Q : Spec(�par ! �res) to indicate the \type" of Q. �We will use a notation like �A:�par: SP [A] for speci�cations of parametric algebras. [[�A:�par: SP [A]]]is the class of functions F which map any �par-algebra A to an algebra F (A) 2 [[SP [A]]]. Here,SP [A] is a speci�cation in which A stands for a �par-algebra. A can be used in SP via a newspeci�cation-building operation which turns algebras into speci�cations: if A is a �-algebra then fAgis a �-speci�cation having A as its only model. We can readily generalise this and use an arbitrary spe-ci�cation rather than a signature to de�ne the class of algebras over which the \parameter" A ranges(cf. Section 7). The denotation of a speci�cation Q of �res-algebras parameterised by SPpar-modelsis a class [[Q]] 2 Pow ([[SPpar]] ! Alg (�res))of functions mapping SPpar-models to �res-algebras. Extended ML functor speci�cations may bemodelled as speci�cations of parametric algebras: functor F (X : SPpar) : SPres speci�es the class ofStandard ML functors F which are parametric algebras in the class de�ned by �X:SPpar: SPres.The following two simple examples illustrate the notions introduced above. Other examples willfollow in later sections.Example 4.3 Let Key =def enrich Natby sorts keyopns hash : key ! nat
10



where Nat is as de�ned in Section 2, and letHashTable1 =def �X : Spec(Key):enrich Xby sorts arrayopns empty : ! arrayused : nat � array ! boolput : nat � key� array ! arrayget : nat � array ! keyadd : key� array ! arrayputnear : nat� key� array ! arraypresent : key� array ! boolsearchnear : nat� key� array ! boolaxioms used(i; empty) = false: : : (axioms for arrays) : : :add(k; a) = putnear(hash(k); k; a)used(i; a) = false ) putnear(i; k; a) = put(i; k; a)used(i; a) = true ^ get(hash(k); a) = k )putnear(i; k; a) = aused(i; a) = true ^ get(hash(k); a) 6= k )putnear(i; k; a) = putnear(i+ 1; k; a)present(k; a) = searchnear(hash(k); k; a)used(i; a) = false ) searchnear(i; k; a) = falseused(i; a) = true ^ get(hash(k); a) = k )searchnear(i; k; a) = trueused(i; a) = true ^ get(hash(k); a) 6= k )searchnear(i; k; a) = searchnear(i + 1; k; a)(Each axiom is implicitly universally quanti�ed over all its free variables; this convention will be usedin examples throughout the rest of this paper.)HashTable1 is a parameterised speci�cation. Given a speci�cation SP describing a particularchoice for keys and perhaps constraining hash in some fashion (e.g. to have a particular subset of thenatural numbers as its range), HashTable1 (SP ) is a speci�cation of hash tables containing such keysand using such a hash function. For instance, letString =def enrich Natby sorts stringopns nil : ! stringa : ! stringb : ! stringc : ! string� : string � string ! stringhash : string ! nataxioms s � nil = snil � s = ss � (t � v) = (s � t) � vhash(nil) = 0Let �Key and �String be the signatures of Key and String respectively, and let � : �Key ! �String be11



the obvious signature morphism (mapping key to string and leaving the rest of the signature of Keyunchanged). Then HashString =def HashTable1(derive from String by �)speci�es hash tables containing strings, with the hash function constrained so that the empty string ishashed into position 0 of the table. Note that adding further axioms to String which constrain its classof models and then repeating the construction of HashString with this new version of String wouldyield a speci�cation with fewer models than HashString as above. This demonstrates the monotonicityof the function which HashTable denotes.The above example can be made slightly more realistic by adding a use of derive to the bodyof HashTable1 to hide some operations (e.g. putnear) and to change the name of the sort array tohashtable. �Example 4.4 LetHashTable2 =def �A : Key:enrich fAgby sorts arrayopns empty : ! arrayused : nat � array ! bool: : : (as in the previous example) : : :axioms used(i; empty) = false: : : (as in the previous example) : : :where Key is as in Example 4.3. HashTable2 is a speci�cation of a parametric algebra. If H is in theclass de�ned by HashTable2 , then H is a function mapping algebras to algebras. For any algebra Asatisfying the speci�cation Key, H(A) is an algebra which realizes hash tables containing the keys in Aand using the hash function in A. H(A) is required to satisfy the axioms in the body of HashTable2 forany A satisfying Key, so any H satisfying HashTable2 will be a universally applicable parameterisedimplementation of hash tables, in the sense that it is required to exhibit correct behaviour for anychoice of keys and any choice of hash function over those keys. �The above two examples illustrate the essential di�erence of intention underlying (instantiated) para-meterised speci�cations vs. speci�cations of parametric algebras. To realizeHashString (Example 4.3),the implementor must provide an implementation of hash tables for a hash function of his/her choice(subject only to the constraint that hash(nil) = 0). To realize HashTable2 (Example 4.4), the imple-mentor must provide an implementation of hash tables which works for any hash function, since thehash function will be supplied later as an argument.4.2 The Galois connectionThere is a natural connection between the semantic domains of parameterised speci�cations and spe-ci�cations of parametric algebras having the same parameter and result signatures. This relationshipis captured as follows. (The technicalities below do not depend on the fact that we deal with themeanings of speci�cations here; we just apply some standard ideas of lattice theory [Bir 48] to ourspeci�c concepts.) Note that all of the following extends to the case where we have a parameterspeci�cation instead of just a parameter signature.Recall that Spec(�par) ! Spec(�res) stands for the function space Pow(Alg(�par)) ! Pow (Alg(�res))with elements P (these are monotonic functions corresponding to the denotations of parameterised12



speci�cations P ). Similarly, Spec(�par ! �res) stands for Pow (Alg(�par) ! Alg (�res)) with ele-ments Q (these correspond to the denotations of speci�cations Q of parametric algebras). As usual,in examples we will avoid stressing the distinction between a (parameterised) speci�cation and itsdenotation, and use the same name to refer to both.De�nition 4.5 For any P 2 Spec(�par) ! Spec(�res), let P] 2 Spec(�par ! �res) be de�ned byP] = fF : Alg(�par) ! Alg (�res) j for all A 2 Alg (�par), F (A) 2 P(fAg)g:For any Q 2 Spec(�par ! �res), let Qy 2 Spec(�par) ! Spec(�res) be de�ned byQy(C) = fF (A) j F 2 Q; A 2 Cgfor any class C of �par-algebras. �Example 4.6 Recall the parameterised speci�cation HashTable1 in Example 4.3 and the speci�cationHashTable2 in Example 4.4. We have:HashTable1] = HashTable2HashTable2y = HashTable1 �Proposition 4.71. Spec(�par ! �res) forms a complete lattice with the set inclusion ordering.2. Spec(�par) ! Spec(�res) forms a complete lattice with the natural extension of the set inclusionordering on Spec(�res) = Pow (Alg(�res)): for P1;P2 2 Spec(�par) ! Spec(�res), P1 � P2 i� forall C � Alg (�par), P1(C) � P2(C).3. For Q1;Q2 2 Spec(�par ! �res), if Q1 � Q2 then Qy1 � Qy2.4. For P1;P2 2 Spec(�par) ! Spec(�res), if P1 � P2 then P]1 � P]2.5. For Q 2 Spec(�par ! �res), Q � (Qy)].6. For P 2 Spec(�par) ! Spec(�res), P � (P])y.Thus we have de�ned a Galois connection [Bir 48].Proof Immediate from the de�nitions, but note that 6 relies on the monotonicity of P. �Corollary 4.8 The maps ( )] and ( )y de�ned above are isomorphisms between the sublattices ofSpec(�par ! �res) and Spec(�par) ! Spec(�res) consisting of their closed elements, i.e. of paramet-erised speci�cations of the form (P])y and of speci�cations of parametric algebras of the form (Qy)],respectively. �De�nition 4.9 Q 2 Spec(�par ! �res) is called regular if for every family of functions FA 2 Q,A 2 Alg(�par), the function F : Alg(�par) ! Alg (�res) de�ned by F (A) = FA(A) for A 2 Alg(�par)is an element of Q as well. �13



Proposition 4.10 Q 2 Spec(�par ! �res) is regular i� it is closed, i.e. i� Q = (Qy)].Proof ((): Directly from the de�nition; for all P 2 Spec(�par) ! Spec(�res), P] is regular.(), �): By Proposition 4.7.5.(), �): Consider any F : Alg (�par) ! Alg(�res) such that F (A) 2 Qy(fAg) for all A 2 Alg (�par).The de�nition of Qy implies now that for all A 2 Alg(�par), there is FA 2 Q such that F (A) = FA(A).Thus F 2 Q since Q is regular. �De�nition 4.11 P 2 Spec(�par) ! Spec(�res) is called additive if for every class C � Alg (�par),P(C) = SfP(fAg) j A 2 Cg. �Fact 4.12 If P 2 Spec(�par) ! Spec(�res) is not additive then P 
 (P])y. �De�nition 4.13 P 2 Spec(�par) ! Spec(�res) is called globally inconsistent if P(C) = ; for allC � Alg(�par). �De�nition 4.14 P 2 Spec(�par) ! Spec(�res) is said to preserve consistency if P(C) 6= ; for allnon-empty C � Alg(�par). �Fact 4.15 If P 2 Spec(�par) ! Spec(�res) does not preserve consistency then P] is inconsistent and(P])y is globally inconsistent. �Proposition 4.16 P 2 Spec(�par) ! Spec(�res) is closed, i.e. P = (P])y, i� either P is globallyinconsistent, or P is additive and preserves consistency.Proof ()): Directly from the de�nition. For all Q 2 Spec(�par ! �res), Qy is additive. Moreover,either Q = ;, and then Qy is globally inconsistent, or Q 6= ;, and then Qy preserves consistency.((): If P is globally inconsistent, then P] = ; and so P = (P])y trivially. Otherwise, by additivityof P and of (P])y (the latter follows from the proof of the opposite implication, above) and byProposition 4.7.6, it is enough to show that P(fAg) � (P])y(fAg). For all A0 2 Alg(�par), P(fA0g) 6=;, since P preserves consistency. Consequently, for all B 2 P(fAg), there is F 2 P] such thatF (A) = B, and thus B 2 (P])y(fAg). �Corollary 4.17 There is a 1-1 correspondence between consistent regular speci�cations of parametricalgebras and additive parameterised speci�cations which preserve consistency. �Example 4.18 The parameterised speci�cation HashTable1 in Example 4.3 is additive and preservesconsistency. The speci�cation HashTable2 in Example 4.4 is regular and consistent. In fact, HashT-able1 and HashTable2 are in the correspondence mentioned in Corollary 4.17 (cf. Example 4.6). �Some explanation of the properties embodied in the above technicalities will make their signi�canceclearer.Q 2 Spec(�par ! �res) is regular i� it is a Cartesian product of a family of classes of algebrasindexed by �par-algebras. This is a natural condition which is met by all the speci�cations we aregoing to write (and indeed by all speci�cations expressible in Extended ML). The �-notation usedabove and later formally introduced in Section 7 for de�ning speci�cations of parametric algebras hasa semantics which may be decomposed into two stages. Consider �A:�par: SP [A], where SP [A] isa �res-speci�cation. First, this directly de�nes a function F : Alg(�par) ! Pow (Alg(�res)) whichmaps any �par-algebra A to the class of algebras [[SP [A]]]. This is then used to determine a class offunctions �A2Alg(�par)F(A) 2 Spec(�par ! �res) (� is used here as the Cartesian product symbol)which is the meaning of the speci�cation �A:�par: SP [A]. Clearly, any speci�cation de�ned in thisway is regular. Violating regularity would require use of speci�cation mechanisms which constrain14



the instantiation of a parametric algebra on an argument by relating it to the instantiation of thisparametric algebra on other arguments. For example, the \stability" of Standard ML functors (see[Sch 87], [ST 89], [ST 92]) is such a constraint. Thus, if a speci�cation language provided a way torequire stability of parametric algebras (Standard ML functors) it might allow non-regular classes offunctors to be speci�ed.With regard to additivity of parameterised speci�cations, we have assumed that all speci�cation-building operations (and therefore also parameterised speci�cations) are monotonic on model classes.This ensures that P(C) � SfP(fAg) j A 2 Cg for every P 2 Spec(�par) ! Spec(�res) and C �Alg(�par). Thus, the only way for a parameterised speci�cation to be non-additive is for the oppositeinclusion to fail. This may happen if it operates on the class of models of its argument as a wholerather than \pointwise". The following example of an ASL parameterised speci�cation shows thedi�erence.Example 4.19 Let �ab =def sorts sopns a :! sb :! sand �c =def sorts sopns c :! swith signature morphisms �ca; �cb : �c ! �ab where �ca(s) = �cb(s) = s, �ca(c) = a and �cb(c) = b.Now, consider the ASL parameterised speci�cationP =def �X:Spec(�ab): (derive from X by �ca) [ (derive from X by �cb):P is not additive. Consider two �ab-algebras, A;B with As = Bs = f0; 1g and aA = 0; bA = 1; aB =1; bB = 0. It is easy to see that [[P ]](fAg) = [[P ]](fBg) = ; while [[P ]](fA;Bg) = fC;Dg whereCs = Ds = f0; 1g, cC = 0 and cD = 1. �It is interesting to observe that each of the ASL speci�cation-building operations used in this example(and all those de�ned in Section 2) are additive. Paradoxically, it was nevertheless possible to use themto form a non-additive parameterised speci�cation. The reason is that there is a hidden non-additiveoperation built into the notation, namely the \diagonalisation" function which allows an argumentto be used repeatedly as in �X:Spec(�): (: : :X : : :X : : :). It is also possible to imagine full-
edgedspeci�cation-building operations which are non-additive. For example, one might like to de�ne aclass of algebras by �rst specifying the boundaries of the admissible behaviour and then applying aspeci�cation-building operation which �lls in all those algebras which exhibit behaviour within theseboundaries. Such an operation would be non-additive.Example 4.19 is also an example of a parameterised speci�cation which does not preserve con-sistency (e.g. [[P ]](fAg) = ;) without being globally inconsistent (e.g. [[P ]](fA;Bg) 6= ;). Among thespeci�cation-building operations de�ned in Section 2, derive, translate (with respect to injectivesignature morphisms), iso-close and abstract preserve consistency. A parameterised speci�cationpreserves consistency i� it is in principle realizable by a parametric algebra: for every model ofthe argument speci�cation there is a model of the result speci�cation. The use operation in thePLUSS speci�cation language is explicitly designed to have this property, as described in [Bid 88] (cf.[GM 88]). 15



Example 4.20 Let �Ord be the signature obtained by adding a sort elem and an operation lt :elem � elem ! bool to the signature of the speci�cation Bool de�ned in Section 2. Then, letSort =def �X : Spec(�Ord):enrich Xby sorts listopns nil : ! listcons : elem� list ! listis-in : elem� list ! boolis-sorted : list ! boolsort : list ! listaxioms is-in(x;nil) = falseis-in(x; cons(x; l)) = truex 6= y ) is-in(x; cons(y; l)) = is-in(x; l)is-sorted(nil) = trueis-sorted(cons(x; l)) = true ,(8y : elem: is-in(y; l) = true ) lt(y; x) = false)^ is-sorted(l) = trueis-in(x; l) = is-in(x; sort(l))is-sorted(sort(l)) = trueSort is a parameterised speci�cation. Given a speci�cation of data elements with a binary relation,it builds a speci�cation of lists of these elements together with an operation which sorts lists withrespect to the given relation.Here are some speci�cations which constitute admissible arguments for Sort :Ord =def enrich Boolby sorts elemopns lt : elem� elem! boolaxioms lt(x; y) = true ) lt(y; x) = falselt(x; y) = true ^ lt(y; z) = true ) lt(x; z) = trueThis speci�es a strict (i.e. irre
exive) partial ordering. Then, Sort(Ord) is a speci�cation of topologicalsorting. LOrd =def enrich Ordby axioms lt(x; y) = false ^ lt(y; x) = false ) x = yThis speci�es a total (linear) ordering. Then, Sort(LOrd) is a speci�cation of ordinary sorting, exceptthat the sort operation is permitted to remove duplicate elements.Tot =def enrich Boolby sorts elemopns lt : elem� elem! boolaxioms lt(x; y) = true9x; y : elem: x 6= yThis speci�es a \total" relation with at least two di�erent values of sort elem. Then, Sort(Tot) isinconsistent! (Suppose a and b are two di�erent values of sort elem; then according to the axiomsfor is-in and the penultimate axiom in the body of Sort, we have that sort(cons(a; cons(b;nil)))is either cons(a; cons(b;nil )) or cons(b; cons(a;nil )), or a list with duplicates for which the sameargument applies. Since the �rst axiom of Tot requires that lt (a; b) = lt(b; a) = true, we have16



is-sorted(cons(a; cons(b;nil))) = false and is-sorted(cons(b; cons(a;nil))) = false, so neither of thesetwo values satis�es the last axiom of Tot.) Thus Sort does not preserve consistency although it is notglobally inconsistent.Let SPSort [X] denote the body of Sort. Then Sort ] may be given explicitly as follows:Sort] = �A:�Ord: SPSort[fAg]Since Sort does not preserve consistency, Sort] is inconsistent and (Sort ])y is globally inconsistent(Fact 4.15). Thus Sort 
 (Sort])y. Intuitively, Sort ] is a speci�cation of a parametric algebra whichfor any set of elements with a binary relation builds an algebra of lists of elements together with, amongothers, an operation to sort lists with respect to the relation. Unfortunately, for non-antisymmetricbinary relations a sorting operation satisfying the axioms in Sort cannot exist, and so Sort ] cannotbe implemented (Sort ] is inconsistent).We can modify Sort, restricting the range of admissible parameters so that the binary relation ltis forced to be a (strict) partial ordering:dSort =def �X:Spec(Ord): SPSort[X]Then we have dSort] = �A:Spec(Ord): SPSort[fAg]It is easy to check that on the domain determined by Ord as above, dSort preserves consistency and isadditive, and so (Proposition 4.16) Sort = ( dSort])y. �4.3 Methodological consequencesThe upshot of the above deliberations is that there are two distinct things: parameterised speci�ca-tions, and speci�cations of parametric algebras. Corollary 4.17 characterises the proper subclasses ofthese two classes which essentially coincide. The properties of additivity and preserving consistencycharacterise the class of parameterised speci�cations which can be adequately viewed as consistentspeci�cations of parametric algebras. Regularity of a speci�cation of a parametric algebra ensuresthat it can be regarded as a parameterised speci�cation. This does not mean that these properties areto be viewed as requirements to be imposed on all parameterised speci�cations and speci�cations ofparametric algebras. We believe there is a role for both non-additive and non-consistency-preservingparameterised speci�cations in the process of software development. Non-regular speci�cations ofparametric algebras are useful as well, although in Extended ML [ST 89], [ST 91b] we decided to in-troduce the only potential non-regular speci�cation-building operation (the requirement of stability)at a di�erent level.Corollary 4.17 is not meant to suggest either that the subclasses of speci�cations having theseproperties should be identi�ed. There is an important methodological distinction between paramet-erised speci�cations and speci�cations of parametric algebras. Parameterised speci�cations are toolsfor building requirements speci�cations in a structured way. The structure which is thereby introducedmakes the requirements speci�cation easier to understand, reason about and use; it is not meant toimpose any restriction on the structure of the eventual implementation. In contrast, speci�cationsof parametric algebras are used in the process of designing an implementation. They are introducedfor the express purpose of imposing structure on the desired implementation, breaking the probleminto self-contained chunks which may be tackled independently. Once the job is completed, the resultis a collection of self-contained modules with precisely-speci�ed interfaces, all of which may later bereused in other systems. 17



The structure of the requirements speci�cation may suggest a possible way of decomposing thespeci�ed task into subtasks. However, if the parameterised speci�cations involved do not preserveconsistency then it will not be possible to provide implementations of the corresponding subtasks(Fact 4.15). In this case it is necessary to seek an alternative way of decomposing the problem. Lessdangerously, if the parameterised speci�cations involved are not additive then imposing the structureof the speci�cation on the solution may exclude some of the models of the original requirementsspeci�cation (Fact 4.12). In this case, it may be useful to seek an alternative way of decomposing theproblem which admits more, possibly better, solutions. Even when all the parameterised speci�cationsinvolved are both additive and preserve consistency, the structure of the requirements speci�cationmay not be the best structure for the implementation (for example, for e�ciency reasons) and so theimplementation team should not be compelled to use it. Thus, in any case, the designer should not beforbidden from seeking an alternative way of decomposing the problem; the need to eventually obtainan algebra which realizes the requirements speci�cation should be the only constraint. See [FJ 90] fora similar conclusion supported by evidence from a practical example.Example 4.21 The following simple example illustrates some of the points made above.Let Bunch =def reachableenrich Natby sorts elem;bunchopns empty : ! bunchadd : elem� bunch ! bunchremoveone : elem� bunch ! bunchcount : elem� bunch ! nataxioms count(a; empty) = 0count(a; add(a;B)) > 0 = truea 6= b) count(a; add(b;B)) = count(a;B)count(a;B) = 0 ) count(a; removeone(a;B)) = 0count(a;B) 6= 0 )count(a; removeone(a;B)) = count(a;B)� 1a 6= b) count(b; removeone(a;B)) = count(b;B)on fbunchgBunch is a generalisation of �nite sets, bags, lists, etc. The intention is that count counts the numberof occurrences of a given element in a bunch and removeone removes one occurrence of an elementfrom a bunch. The operation add is not constrained except that adding an element to a bunch doesnot change the number of occurrences of other elements in the bunch, and leaves in the bunch atleast one occurrence of the indicated element. In a realization of bunches using bags or lists, addwould add one occurrence of the indicated element. There are also realizations of bunches in whichadd would add more than one occurrence of the element, and even realizations in which, under some
18



circumstances, add would decrease the number of occurrences of the \added" element (as long as itdoes not remove them all).Set =def reachableenrich Natby sorts elem;bunchopns empty : ! bunchadd : elem� bunch ! bunchremoveone : elem� bunch ! bunchcount : elem� bunch ! nataxioms add(a; add(b;B)) = add(b; add(a;B))add(a; add(a;B)) = add(a;B)count(a; empty) = 0count(a; add(a;B)) = 1a 6= b) count(a; add(b;B)) = count(a;B)count(a;B) = 0 ) removeone(a;B) = Bcount(a;B) = 0 ) removeone(a; add(a;B)) = Bon fbunchgSet is a specialization of Bunch (in the sense that [[Set ]] � [[Bunch ]]) in which each element occurs atmost once in a bunch (so count is never greater than 1) and add is required to be idempotent andcommutative.Delete =def �X:Spec(Bunch): enrich Xby opns delete : elem� bunch ! bunchaxioms count(a;delete(a;B)) = 0a 6= b) count(a;delete(b;B)) = count(a;B)The parameterised speci�cation Delete takes any speci�cation SP with [[SP ]] � [[Bunch ]] and addsan operation delete which removes all occurrences of the indicated element from a bunch. Note thatDelete is additive and preserves consistency.The parameterised speci�cation Delete may be applied to the speci�cation Bunch:BunchDelete =def Delete(Bunch)Suppose that BunchDelete is the requirements speci�cation we are to implement. As a requirementsspeci�cation, this conveys exactly the same information as the following equivalent non-parameterisedspeci�cation: enrich reachableenrich Natby sorts elem;bunchopns empty : ! bunchadd : elem� bunch ! bunchremoveone : elem� bunch ! bunchcount : elem� bunch ! nataxioms : : :on fbunchgby opns delete : elem� bunch ! bunchaxioms : : : 19



The requirements speci�cation BunchDelete is correctly realized by any model of the followingenrichment of Set: SetDelete =def enrich Setby opns delete : elem� bunch ! bunchaxioms delete(a;B) = removeone(a;B)The de�nition of delete as removeone takes advantage of the fact that in Set, each element occurs atmost once in a bunch.Now, suppose we view the de�nitionBunchDelete =def Delete(Bunch)as a design speci�cation which decomposes the task of implementing BunchDelete into two subtasks:1. Implement Bunch.2. Implement Delete], where Delete] is given explicitly as follows:Delete] = �A:Bunch: enrich fAgby opns delete : elem� bunch ! bunchaxioms count(a;delete(a;B)) = 0a 6= b) count(a;delete(b;B)) = count(a;B)Suppose we regard SetDelete as consisting of two separate parts: an implementation of Bunch (i.e.Set) together with an enrichment of this which adds delete de�ned as removeone. This is not acorrect implementation of the design speci�cation. The �rst part is indeed a correct implementationof Bunch, but the second part is not a correct implementation of Delete]. It works only in the contextof the particular implementation of Bunch we have chosen since it takes advantage of some of itsproperties which are not shared by other possible implementations. Thus it disobeys the principle ofmodular decomposition by which separate modules are to be implemented independently. The naturalimplementation of Delete] would de�ne delete to repeatedly apply removeone until all occurrencesof the given element are removed. Applying this implementation to any model of Set gives thesame algebra as the extension embodied in SetDelete (this does not happen in all examples | seeExample 4.22) but the \code" would be quite di�erent. Most signi�cantly, the modular version wouldbe reusable in other contexts since its correctness is preserved under a change of the implementationof Bunch. �Example 4.22 A variation on the above example is the following. Consider an enrichment \Bunchof Bunch above by operations to choose an element of a non-empty bunch, to test whether a bunchis empty, and to form the union of two bunches. Let dSet be an analogous enrichment of Set, and let\Delete be like Delete but with the range of admissible parameters determined by \Bunch rather thanby Bunch. Then\Delete] = �A:\Bunch: enrich fAgby opns delete : elem� bunch ! bunchaxioms : : :One possible implementation of\Delete ] would code delete (a;B) by �rst initialising the result to empty,and then, while B is non-empty, choosing an element of B, removing it from B, and if the chosenelement is di�erent from a, adding it to the result. Such an implementation is quite natural under an20



assumption that the count operation is relatively \expensive" and the other operations are relatively\cheap" | which is quite likely under (for example) the most obvious list implementation of bunches.Applying this implementation of \Delete ] to an implementation of dSet yields, of course, an imple-mentation of \Delete (dSet ).However, if we were to realize \Delete(dSet ) directly, even assuming that we use a similar idea forthe implementation, then the most natural algorithm for delete (a;B) would proceed as above onlyto the point where the �rst (and only) occurrence of a in B is encountered. Then the search wouldstop, and the union of the result accumulated so far with the remainder of B would be the answer(since these two parts are disjoint, forming their union is cheap). The algebra thus obtained wouldbe di�erent from that obtained by instantiating the parametric implementation of \Delete ] sketchedabove. �5 Higher-order parameterisationThe ASL-style �-calculus approach to parameterised speci�cations, outlined in Section 3, extendsnaturally to a higher-order parameterisation mechanism. (A very limited form of this in the pushoutapproach to parameterisation is provided by parameterised parameter passing [EM 85].) By allowingboth the arguments and results of parameterised speci�cations to be parameterised speci�cations ofan arbitrary complexity, as suggested in [ST 88a], we obtain a hierarchy of higher-order parameterisedspeci�cations. This hierarchy is indexed by a class of types T de�ned as the least class such that:� For any signature �, � 2 T ; and� For any types �1; �2 2 T , �1!�2 2 T .De�nition 5.1 The semantic domain ParSpec(� ) of (denotations of) parameterised speci�cations oftype � 2 T is de�ned inductively as follows:� If � = �, then ParSpec(� ) =def Pow(Alg (�)) (ordered by inclusion); this will be written asSpec(�) as well.� If � = �1!�2, then ParSpec(� ) =def ParSpec(�1) ! ParSpec(�2), the class of monotone functionsfrom ParSpec(�1) to ParSpec(�2) (ordered by pointwise extension of the ordering on ParSpec(�2)).�This covers �rst-order parameterisation (see De�nition 4.1) since ParSpec(�1!�2) = Spec(�1) !Spec(�2). In general, ParSpec(: : :�1 : : :! : : :�2 : : :) is the same as (: : :Spec(�1) : : :! : : :Spec(�2) : : :).Similar de�nitions may be formulated for parameter speci�cations in place of parameter signatures,which will be done in Section 7. For now we will use an obvious modi�cation of the notation introducedin Section 3.Example 5.2 The requirements speci�cation in Example 4.21 may be rephrased using higher-orderparameterisation. The most natural way to view Bunch is as a parameterised speci�cation, paramet-erised by the type of elements. As before, Bunch serves as a parameter for Delete, which then becomesa higher-order parameterised speci�cation.Let Elem =def sorts elem21



andP-Bunch =def �ESP :Spec(Elem):reachableenrich ESP + Natby sorts bunchopns empty : ! bunchadd : elem� bunch ! bunchremoveone : elem� bunch ! bunchcount : elem� bunch ! nataxioms count(a; empty) = 0count(a; add(a;B)) > 0 = truea 6= b) count(a; add(b;B)) = count(a;B)count(a;B) = 0 ) count(a; removeone(a;B)) = 0count(a;B) 6= 0 )count(a; removeone(a;B)) = count(a;B)� 1a 6= b) count(b; removeone(a;B)) = count(b;B)on fbunchgLet �Bunch be the result signature of P-Bunch. Then P-Bunch : Spec(Elem) ! Spec(�Bunch ).P-Delete =def �BSP :Spec(Elem) ! Spec(�Bunch):�ESP :Spec(Elem):enrich BSP(ESP)by opns delete : elem� bunch ! bunchaxioms count(a;delete(a;B)) = 0a 6= b) count(a;delete(b;B)) = count(a;B)We now have P-Delete : (Spec(Elem) ! Spec(�Bunch)) ! (Spec(Elem) ! Spec(�Delete))where �Delete is �Bunch together with the new operation delete : elem � bunch ! bunch .We can thus apply P-Delete to P-Bunch, and then P-Delete(P-Bunch) : Spec(Elem) ! Spec(�Delete )is a parameterised speci�cation of bunches with the delete operation, parameterised by the type ofelements. Finally, P-Delete(P-Bunch)(Elem) : Spec(�Delete ) is a non-parameterised speci�cation ofbunches of arbitrary elements with the delete operation. This is the same as the requirements spe-ci�cation BunchDelete of Example 4.21. �Our earlier discussion said that it is often possible to turn a requirements speci�cation directlyinto a design speci�cation, leading towards an implementation having the same structure as therequirements speci�cation. Applying this design strategy to the above example naturally leads tothe need for higher-order parameterisation of software modules. We will be talking about softwaremodules (corresponding to P-Delete) parameterised by software modules (corresponding to P-Bunch)which are themselves parameterised (by a realization of Elem). To model this we need higher-orderparametric algebras. The generalisation is not di�cult: we introduce a hierarchy of higher-orderparametric algebras indexed by the class T of types.De�nition 5.3 The class Alg(� ) of parametric algebras of type � 2 T is de�ned inductively as follows:� If � = �, then Alg(� ) is the class of all �-algebras.22



� If � = �1!�2, then Alg (� ) =def Alg (�1) ! Alg (�2), the class of all functions from Alg(�1) toAlg(�2).The semantic domain Spec(� ) of (denotations of) speci�cations of parametric algebras of type � 2 Tis de�ned as Pow (Alg(� )), ordered by inclusion. �This covers �rst-order parameterisation (see De�nition 4.2), since Spec(�1!�2) as de�ned here is thesame as Spec(�1 ! �2) as de�ned there. This will be generalised further in Section 7. For now we willuse an obvious modi�cation of the notation introduced in Section 3 for speci�cations of parametricalgebras.As before, there is a natural connection between the semantic domains of parameterised spe-ci�cations and speci�cations of parametric algebras having the same type. The following de�nitiongeneralises De�nition 4.5.De�nition 5.4 For any type � 2 T , we de�ne by induction:� For any P 2 ParSpec(� ), let P] 2 Spec(� ) be de�ned by:{ If � = �, P] =def P.{ If � = �1!�2, then P] =def fF 2 Alg (� ) j for all A 2 Alg (�1), F (A) 2 P(fAgy)]g.� For any Q 2 Spec(� ), let Qy 2 ParSpec(� ) be de�ned by:{ If � = �, Qy =def Q.{ If � = �1!�2, then Qy(C) =def FA2C]fF (A) j F 2 Qgy for any C 2 ParSpec(�1), where tis the least upper bound in ParSpec(�2) with respect to the ordering of De�nition 5.1. �Proposition 4.7 and Corollary 4.8 carry over to this more general framework as well (the monotonicityof parameterised speci�cations is needed to show this). It is possible to further generalise this to thecase where we have parameter speci�cations rather than parameter types, but the details are ratherinvolved.Armed with the above technicalities, let us go back to our example.Example 5.5 Suppose thatBunchDelete =def P-Delete(P-Bunch)(Elem)is the requirements speci�cation we are to implement. Viewing this de�nition as a design speci�cation,we decompose the task of implementing BunchDelete into three subtasks:1. Implement Elem.
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2. Implement P-Bunch], where P-Bunch] is given explicitly as follows:P-Bunch] = �A:Elem:enrich fAg + Natby sorts bunchopns empty : ! bunchadd : elem� bunch ! bunchremoveone : elem� bunch ! bunchcount : elem� bunch ! nataxioms count(a; empty) = 0count(a; add(a;B)) > 0 = truea 6= b) count(a; add(b;B)) = count(a;B)count(a;B) = 0 ) count(a; removeone(a;B)) = 0count(a;B) 6= 0 )count(a; removeone(a;B)) = count(a;B)� 1a 6= b) count(b; removeone(a;B)) = count(b;B)3. Implement P-Delete(]), where P-Delete(]) is de�ned as a restriction of P-Delete] to the domainof interest as follows:P-Delete(]) =def �F :P-Bunch]:�A:Elem:enrich fF (A)gby opns delete : elem� bunch ! bunchaxioms count(a;delete(a;B)) = 0a 6= b) count(a;delete(b;B)) = count(a;B)Given any realization of these tasks, that is:1. any algebra A 2 [[Elem ]];2. any parametric algebra F 2 [[P-Bunch]]]; and3. any higher-order parametric algebra G 2 [[P-Delete(])]]an implementation of the requirement speci�cationBunchDelete may be constructed, namelyG(F )(A) 2[[BunchDelete]]. �We stress once more that turning a requirements speci�cation directly into a design speci�cation isnot the only way to proceed. It is important to allow the design speci�cation to take on a completelydi�erent structure from the requirements speci�cation if necessary.The above example illustrates that higher-order parameterisation is sometimes necessary to presentspeci�cations and to structure implementations in a natural way. Another more extended example isgiven in the appendix of [SST 90]; see also [Sok 90].6 Program developmentHigher-order parameterisation is not only useful for purposes of presentation, as we saw in the previoussection; it also comes in during the process of developing modular programs from speci�cations.The view of program development presented in [ST 88b], [ST 92] and further elaborated for theExtended ML framework in [ST 89] is based on the notion of a constructor implementation:24



De�nition 6.1 Let SP be a speci�cation of (parametric) algebras of type � 2 T and let SP1; : : : ; SPnbe speci�cations. A constructor from hSP1; : : : ; SPni to � is a function � : [[SP1]] ! : : : ! [[SPn]] !Alg(� ). We say that SP is implemented by hSP1; : : : ; SPni via �, written SP ����> hSP1; : : : ; SPni, iffor all A1 2 [[SP1]]; : : : ; An 2 [[SPn]], �(A1) � � � (An) 2 [[SP ]]. �If SP ����> hSP1; : : : ; SPni, then given any realizations A1 2 [[SP1]]; : : : ; An 2 [[SPn]], the constructor �yields a realization of SP , namely �(A1) � � � (An) 2 [[SP ]]. For technical convenience we have assumedhere that constructors, which may naturally be viewed as multi-argument functions, are given in theircurried form.The program development process builds a tree of constructor implementations having the originalrequirements speci�cation as its root and speci�cations of subtasks yet to be achieved as leaves.SP ����> 8>>>>>>><>>>>>>>: SP1 �1���> � � �...SPn �n���> 8>><>>: SPn1 �n1����> � � �� � �SPnm �nm����> � � �This process is �nished once a tree is obtained which has speci�cations with known implementations,given as parameterless constructors, as its leaves.SP ����> 8>>>>>>>><>>>>>>>>: SP1 �1���> hi...SPn �n���> 8>><>>: SPn1 �n1����> n SPn11 �n11����> hi� � �SPnm �nm����> hiThen the composition of the constructors in the tree yields a realization of the original requirementsspeci�cation. The above tree yields� (�1) � � � (�n(�n1(�n11)) � � � (�nm)) 2 [[SP ]]:An obvious observation here is that constructors (in their curried form) are parametric algebras.This view was presented in [ST 88b] but was limited there to speci�cations of non-parametricalgebras; in particular the type � of algebras speci�ed by SP was always a signature. In the currentframework it is natural to consider the generalisation of this view to the case where any of the spe-ci�cations involved in the development process is a speci�cation of (possibly higher-order) parametricalgebras.For example, one might wish to use an implementation such as SP ����> hSP1; SP2i where SP :Spec(�), SP1 : Spec(�1) and SP2 : Spec(�1 ! �). The constructor � would be a function � :[[SP1]] ! [[SP2]] ! Alg (�) de�ned by �(A1)(F2) = F2(A1). A correct implementation is obtainedprovided that for any A1 2 [[SP1]] and F2 2 [[SP2]], F2(A1) 2 [[SP ]]. This holds, for instance, if welet SP2 =def �A:SP1: SP , which decomposes the problem of implementing SP into the problem ofimplementing SP1 and (independently) implementing SP2. The latter is the problem of implementingSP given an (arbitrary) implementation of SP1.In general, higher-order parameterisation allows us to restrict to constructors which are of a par-ticularly simple form. Namely, any constructor implementation SP ����> hSP1; : : : ; SPni may be re-placed by the decomposition SP app����> hSP�; SP1; : : : ; SPni, where SP� = �X1:SP1: � � ��Xn:SPn: SPand app = �F :SP�: �X1:SP1: � � ��Xn:SPn: FX1 : : :Xn, and then the realization of SP� by the con-structor � (which is correct since SP ����> hSP1; : : : ; SPni means � 2 [[SP�]]). Such a decomposition25



captures the decision to realize SP in terms of realizations of SP1; : : : ; SPn, turning the problemof �nding the necessary construction into yet another subtask. If n = 0 then this is pointlesssince no progress is made towards a realization. Even if n > 0, from the methodological point ofview one may question whether it is appropriate to postpone the problem of �nding a constructorin this manner. This is exactly the controversy between advocates of the top-down developmentstyle (as captured by SP ����> hSP1; : : : ; SPni) and the bottom-up development style (as captured bySP app����> hSP�; SP1; : : : ; SPni). We believe that steps of both kinds are useful, and indeed in thisformulation the distinction is somewhat blurred, with a spectrum of possibilities between these twoextremes.Example 6.2 Example 5.5 may be rephrased as a higher-order constructor implementation stepBunchDelete ����> hElem;P-Bunch];P-Delete(])iwhere � : [[Elem]] ! [[P-Bunch]]] ! [[P-Delete(])]] ! Alg (�Delete) is de�ned by �(A)(F )(G) =defG(F )(A) for arbitrary A 2 [[Elem]], F 2 [[P-Bunch]]] and G 2 [[P-Delete(])]]. �If we restrict attention to the case in which all the speci�cations involved are Extended ML functorspeci�cations (recall that these amount to speci�cations of �rst-order parametric algebras), the frame-work obtained corresponds to the Extended ML formal program development methodology describedin [ST 89], [ST 91b] (modulo issues of behavioural equivalence). The main kind of development stepin this framework is the decomposition of an Extended ML functor speci�cation into a number ofsimpler Extended ML functor speci�cations. The constructor involved in this step describes howto build a functor which realizes the original functor speci�cation out of functors which realize thesimpler functor speci�cations.Example 6.3 A simple case is the decomposition of the speci�cationFSP =def �X:SPin: SPoutinto the two speci�cations GSP =def �X:SPin: SP 0HSP =def �Y :SP 0: SPoutvia the constructor �G:GSP: (�H:HSP: (�X:SPin: H(G(X))))This splits the task of implementing FSP into �rst implementing SP 0 given any model of SPin, andseparately implementing SPout given any model of SP 0. �Example 6.4 When the decomposition is as in Example 6.3, the implementor of HSP cannot usethe model of SPin which is available to the implementor of GSP . This suggests that a possibly more
exible decomposition of FSP might be into the speci�cationsGSP =def �X:SPin: SP 0HSP =def �X:SPin: (�Y :SP 0: SPout)via the constructor �G:GSP: (�H:HSP: (�X:SPin: H(X)(G(X))))The uncurried version of this (where HSP is a two-argument functor speci�cation) is the best wecould have done in the �rst-order framework described in [ST 89], [ST 91b]. �26



Example 6.5 We can use higher-order parameterisation to go further than in Example 6.4 and makethe realization of GSP available to the implementor of HSP . We decompose the task of implementingFSP into the speci�cations GSP =def �X:SPin: SP 0HSP =def �X:SPin: (�G:GSP: SPout)via the constructor �G:GSP: (�H:HSP: (�X:SPin: H(X)(G)))The implementor of HSP now has more powerful tools available to use in building a realization ofSPout. Previously, only a realization X of SPin and a particular realization G(X) of SP 0 were madeavailable; now G itself is available as well, which means that G(X) as well as applications of G toother algebras satisfying SPin can easily be obtained.Note that there is nothing methodologically ugly about this: there are two independent imple-mentation tasks to perform, one of implementing GSP and the other of implementing HSP , anda strict separation between the two tasks is preserved. The implementor of HSP is provided witha realization of GSP , but he can rely only on those features of this realization which are explicitlystated in GSP . �The use of higher-order parameterisation as in the above example is not merely a specious gen-eralisation. Consider the problem of implementing an interpreter for a programming language. Anobvious subtask of this is to implement stacks, since stacks are useful in various places including theparser (stacks of parse trees) and the evaluator (stacks of data values). Using �rst-order paramet-erisation as in Example 6.4, we would decompose the task of implementing the interpreter into thefollowing subtasks:1. Implement stacks of arbitrary elements.2. Implement parse trees.3. Implement data values.4. Implement the interpreter, using parse trees, data values, stacks of parse trees and stacks ofdata values.However, the implementor of subtask 4 may notice that yet another kind of stacks are required,perhaps in the symbol table. In a strict �rst-order regime, he/she would either have to re-implementstacks for this purpose, or else go back to the designer and ask for the speci�cation of his/her subtaskto be modi�ed to provide the new instantiation of stacks. But using higher-order parameterisation asin Example 6.5, subtask 4 would become4. Implement the interpreter, using parse trees, data values and stacks of arbitrary elements.Stacks of parse trees and of data values would be constructed during the realization of this subtask,as would stacks of other kinds of elements if the need arises. An alternative decomposition would beinto just two subtasks:1. Implement stacks of arbitrary elements.2. Implement the interpreter, using stacks of arbitrary elements.27



This leaves the implementation of parse trees and data values as potential lower-level subtasks of sub-task 2. Such a decomposition introduces a bottom-up 
avour into our top-down design methodology,as mentioned above. It may turn out that the implementor of subtask 2 does not need stacks at all;they are provided as tools which might come in handy for the task at hand.In some such cases, explicit higher-order parameterisation may be avoided. An environment ofpreviously-de�ned modules, all of which are available for use in subsequent module de�nitions, allowssome higher-order dependencies of the kind illustrated above to be left implicit. However, this trickdoes not work when dependencies become complex and deeply nested, and anyway it seems advisableto keep dependencies explicit rather than trying to sweep them under the carpet.7 A kernel speci�cation formalism7.1 Introducing the languageIn the preceding sections we have argued for the use of both parameterised speci�cations and spe-ci�cations of parametric algebras (and of their higher-order counterparts) in software speci�cationand development. In this section, we present a speci�cation formalism which extends in an essentialway the kernel speci�cation language presented in [ST 88a] by adding a simple yet powerful para-meterisation mechanism which allows us to de�ne and specify parametric algebras of arbitrary order,as well as extending the mechanism in [ST 88a] for de�ning �rst-order parameterised speci�cationsto the higher-order case. This is achieved by viewing speci�cations on one hand as speci�cations ofobjects such as algebras or parametric algebras, and on the other hand as objects themselves to whichfunctions (i.e. parameterised speci�cations) may be applied. Consequently, the language allows spe-ci�cations to be speci�ed by other speci�cations, much as in CLEAR [BG 80] or ACT ONE [EM 85]parameterisation where the parameter speci�cation speci�es the permissible argument speci�cations(see Section 3).The view of speci�cations as objects enables the use of a uniform parameterisation mechanism,functions de�ned by means of �-abstraction, to express both parameterised speci�cations and paramet-ric algebras. There is also a uniform speci�cation mechanism to specify such functions, �-abstraction(Cartesian-product speci�cation, closely related to the dependent function type constructor in e.g.NuPRL [Con 86]). This may be used to specify (higher-order) parametric algebras as well as (higher-order) parameterised speci�cations. There is no strict separation between levels, which means that itis possible to intermix parameterisation of objects and parameterisation of speci�cations, obtaining(for example) algebras which are parametric on parameterised speci�cations or speci�cations whichare parameterised by parametric algebras. We have not yet explored the practical implications of thistechnically natural generalisation.The language does not include notation for describing algebras, signatures, signature morphisms,or sets of sentences. Such notation must be provided separately, for example as done for ASL in[Wir 86]. The de�nition of the language is independent of this notation; moreover, it is essentiallyinstitution independent, with all the advantages indicated in [GB 84], [ST 88a].
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The language has just one syntactic category of interest, which includes both speci�cations andobjects that are speci�ed, with syntax as follows:Object = Signaturej impose Sentences on Objectj derive from Object by Signature-morphismj translate Object by Signature-morphismj minimal Object wrt Signature-morphismj iso-close Objectj abstract Object wrt Sentences via Signature-morphism 9>>>>>>>>>>>=>>>>>>>>>>>; Simple speci�cationsj Object [Objectj �Variable:Object:Objectj fObjectgj Spec(Object) 9>>>=>>>; Other speci�cationsj Variablej Algebra-expressionj �Variable:Object:Objectj Object(Object) 9>>>=>>>; Other objectsAs usual, we have omitted the \syntax" of variables. The other syntactic categories of the languageabove are algebra expressions, signatures, sets of sentences and signature morphisms | as mentionedabove, the details of these are not essential to the main ideas of this paper and we assume that theyare provided externally. Algebra expressions may contain occurrences of object variables. We willassume, however, that variables do not occur in signatures, signature morphisms and sentences, whichseems necessary to keep the formalism institution-independent. This requirement may seem overlyrestrictive, as it seems to disallow the components of a particular algebra to be used in axioms; onewould expect to be able to write something like �X:�: (: : :X:op : : :). Fortunately, using the power ofthe speci�cation-building operations included in the language, it is possible to de�ne a more convenientnotation which circumvents this restriction (see the appendix of [SST 90]).We have used the standard notation for �- and �-objects to suggest the usual notions of a freeand of a bound occurrence of a variable in a term of the language, as well as of a closed term.As usual, we identify terms which di�er only in their choice of bound variable names. We de�nesubstitution of objects for variables in the usual way: Obj[Obj 0=X] stands for the result of substitut-ing Obj 0 for all free occurrences of X in Obj in such a way that no unintended clashes of variablenames take place. This also de�nes the usual notion of �-reduction between objects of the language:(: : : (�X:SP: Obj)(Obj 0) : : :)!� (: : :Obj[Obj 0=X] : : :). Then, !�� is the re
exive and transitive closureof !�.The �rst seven kinds of speci�cations listed above (simple speci�cations) are taken directly from[ST 88a] (see Section 2). The particular choice of these seven operations is orthogonal to the restof the language and will not interfere with the further development in this paper. We have singledout the union operation | we will use it for arbitrary, not necessarily \simple" speci�cations (thisgeneralisation w.r.t. [ST 91a] makes the formalism more 
exible, but otherwise does not seem tocause any extra technical di�culties). The other three kinds of speci�cations are new. �-abstractionis used to specify parametric objects.3 To make this work, it must be possible to use objects inspeci�cations. The f g operation provides this possibility by allowing objects to be turned into(very tight) speci�cations. The next clause allows a speci�cation which de�nes a class C of objectsto be turned into a speci�cation which de�nes the class of speci�cations de�ning subclasses of C.This is compatible with the use of parameter speci�cations in parameterised speci�cations as in3The notation SP ! SP 0 is often used for �X:SP: SP 0 if X does not actually occur in SP 0.29



CLEAR and ACT ONE. For example, the declaration proc P (X : SP ) = : : : in CLEAR introducesa parameterised speci�cation P , where the parameter (or requirement) speci�cation SP describes theadmissible arguments of P . Namely, if SP de�nes a class of objects C = [[SP ]] then P may be applied toargument speci�cations SParg de�ning a subclass of C, i.e. such that [[SParg]] � [[SP ]] (we disregard theparameter �tting mechanism). In our formalism this would be written as P =def �X:Spec(SP ): : : : .The syntax of other objects is self-explanatory.The richness of the language may lead to some di�culty in recognizing familiar concepts whichappear here in a generalised form. The following comments might help to clarify matters:� A speci�cation is (an object which denotes) a class of objects. If the objects of this class arealgebras, then this speci�cation is a speci�cation in the usual sense.� �X:(: : :) : (: : :) denotes a class of mappings from objects to objects. If these objects are algebras,then this is a class of parametric algebras, i.e. a speci�cation of a parameterised program.� �X:(: : :) : (: : :) denotes a mapping from objects to objects. If these objects are speci�cations inthe usual sense, then this is a parameterised speci�cation.The semantics of the language, presented in the next section, gives more substance to the informalcomments above concerning the intended denotations of certain phrases.As pointed out above, we assume that the sublanguage of expressions de�ning algebras is to besupplied externally (with a corresponding semantics | see Section 7.2). Even under this assumption,it would be possible to include institution-independent mechanisms for building algebras from otheralgebras (amalgamation, reduct, free extension, etc.) in the language, which could lead to a powerfuland uniform calculus of speci�ed modular programs. This is an interesting possibility for future workbut it is outside the scope of this paper.7.2 SemanticsWe have chosen the syntax for objects in the language so that their semantics should be intuitivelyclear. We formalise it by de�ning for any environment �, which assigns meanings to variables, apartial function [[ ]]� mapping an object Obj to its meaning [[Obj]]�. It is de�ned below by structuralinduction on the syntax of objects. The use of the meta-variable SP instead of Obj in some placesbelow is intended to be suggestive (of objects denoting object classes, used as speci�cations) but hasno formal meaning. This convention will be used throughout the rest of the paper.Simple speci�cations:[[�]]� = Alg(�)[[impose � on SP ]]� = fA 2 [[SP ]]� j A j= �gif [[SP ]]� � Alg (�) and � � Sen(�) for some signature �[[derive from SP by �]]� = fA � j A 2 [[SP ]]�gif [[SP ]]� � Alg (�) and � : �0 ! � is a signature morphism for some signatures � and �0: : : similarly for the other forms, based on the semantics given in Section 2 : : :30



Other speci�cations:[[SP [ SP 0]]� = [[SP ]]� \ [[SP 0]]�if [[SP ]]� and [[SP 0]]� are classes of values[[fObjg]]� = f[[Obj]]�gif [[Obj]]� is de�ned[[�X:SP: SP 0]]� = �v2[[SP ]]�[[SP 0]]�[v=X]4,5if [[SP ]]� is a class of values and for each v 2 [[SP ]]�, [[SP 0]]�[v=X] is a class of values[[Spec(SP )]]� = Pow([[SP ]]�)if [[SP ]]� is a class of valuesOther objects:[[X]]� = �(X)[[A]]� = : : :assumed to be given externally : : :[[�X:SP: Obj]]� = fhv 7! [[Obj]]�[v=X]5i j v 2 [[SP ]]�gif [[SP ]]� is a class of values and for each v 2 [[SP ]]�, [[Obj]]�[v=X] is de�ned[[Obj(Obj 0)]]� = [[Obj]]�([[Obj 0]]�)if [[Obj]]� is a function and [[Obj 0]]� is a value in the domain of this functionIn the above de�nition, it is understood that a condition like \[[SP ]]� � Alg (�)" implicitly requiresthat [[SP ]]� is de�ned. An object's meaning is unde�ned unless the side-condition of the appropriatede�nitional clause holds.It is easy to see that the semantics of an object of the language depends only on the part ofthe environment which assigns meanings to variables which occur free in the object. In particular,the meaning of a closed object is independent from the environment. This allows us to omit theenvironment when dealing with the semantics of closed objects and write simply [[Obj]] to stand for[[Obj]]� for any environment � whenever Obj is closed.Of course, the above remark is true only provided that the sublanguage of algebra expressions andits semantics assumed to be given externally have this property. In the following, we will take this forgranted. We will also assume that the sublanguage satis�es the following substitutivity property: forany algebra expression A, variable X and object Obj, for any environment � such that v = [[Obj]]�is de�ned, [[A[Obj=X]]]� is de�ned if and only if [[A]]�[v=X] is de�ned, and if they are de�ned thenthey are the same. This ensures that the following expected fact holds for our language (the standardproof by induction on the structure of objects is omitted):Fact 7.1 For any objects Obj, Obj 0 and variable X, for any environment � such that v0 = [[Obj 0]]� isde�ned, [[Obj[Obj 0=X]]]� is de�ned if and only if [[Obj]]�[v0=X] is de�ned, and if they are de�ned then[[Obj[Obj 0=X]]]� = [[Obj]]�[v0=X] �Corollary 7.2 �-reduction preserves the meaning of objects. That is, for any objects Obj and Obj 0such that Obj!�� Obj 0, for any environment �, if [[Obj]]� is de�ned then so is [[Obj 0]]� and [[Obj]]� =[[Obj 0]]�. �4 � on the right-hand side of this de�nition denotes the usual Cartesian product of an indexed family of sets. Thatis, �x2SCx is the set of all functions with domain S mapping any x 2 S to an element of Cx.5 As usual, �[v=X] is the environment which results from � by assigning v to the variable X (and leaving the valuesof other variables unchanged). 31



The reader might feel uneasy about the fact that we have not actually de�ned here any domainof values, the elements of which are assigned to objects of the language as their meanings. A naiveattempt might have been as follows:V alues = Algebras j Pow (V alues) j V alues e! V aluesClearly, this leads to serious foundational problems, as the recursive domain de�nition involves \heavyrecursion" (cf. [BT 83]) and hence cannot have a set-theoretic solution (even assuming that we considerhere a set Algebras of algebras built within a �xed universe). However, since the formalism we introduceis not intended to cater for any form of self application of functions or non-well-foundedness of sets,the equation above attempts to de�ne a domain of values of objects which is undesirably rich. Thewell-formed6 objects of the language can easily be seen to form a hierarchy indexed by \types" (seeSection 7.4). Thus, we can de�ne a corresponding cumulative hierarchy of sets of values, and thende�ne the domain of the meanings of objects as the union of sets in the hierarchy, much in the styleof [BKS 88] (see [BT 83] where the idea of using hierarchies of domains in denotational semantics isdiscussed in more detail). Another, less \constructive", possibility is to work within a �xed universalset of values of objects containing the \set" of all algebras [Coh 81].7.3 Proving satisfactionWe are interested in determining whether or not given objects satisfy given speci�cations. We use theformal judgement Obj : SP to express the assertion that a closed object Obj satis�es a closed spe-ci�cation SP , i.e. that [[Obj]] 2 [[SP ]], and generalise it to X1 : SP1; : : : ;Xn : SPn ` Obj : SP statingthe assertion that an object Obj satis�es a speci�cation SP in the context X1 : SP1; : : : ;Xn : SPn, i.e.under the assumption that objects X1; : : : ;Xn satisfy speci�cations SP1; : : : ; SPn, respectively. Theinference rules listed below allow us to derive judgements of this general form. For the sake of clarity,though, we have decided to make contexts implicit in the rules and rely on the natural deductionmechanism of introducing and discharging assumptions (all of the form X : SP here) to describe theappropriate context manipulation. For example, in (R2) below, [X : SP ] is an assumption whichmay be used to derive SP 0 : Spec(SP 00), but is discharged when we apply the rule to derive itsconclusion. Whenever necessary, we will use the phrase \the current context" to refer to the sequenceof currently undischarged assumptions. We say that an environment � is consistent with a contextX1 : SP1; : : : ;Xn : SPn if for i = 1; : : : ; n, �(Xi) 2 [[SPi]]�.Simple speci�cations:� signature� : Spec(�) SP : Spec(�) � � Sen(�)impose � on SP : Spec(�)SP : Spec(�0) � : � ! �0derive from SP by � : Spec(�) SP : Spec(�) � : � ! �0translate SP by � : Spec(�0)SP : Spec(�) � : �0 ! �minimal SP wrt � : Spec(�) SP : Spec(�)iso-close SP : Spec(�)SP : Spec(�) �0 � Sen(�0) � : � ! �0abstract SP wrt �0 via � : Spec(�)6An intuitive understanding of the notion of well-formedness involved is su�cient here (we hope) | we introduce itformally in Section 7.3. 32



Other speci�cations:Obj : SPfObjg : Spec(SP ) (R1)SP : Spec(SPany) [X : SP ]SP 0 : Spec(SP 00)�X:SP: SP 0 : Spec(�X:SP: SP 00) (R2)SP : Spec(SP 0)Spec(SP ) : Spec(Spec(SP 0)) (R3)Union:SP1 : Spec(SP ) SP2 : Spec(SP )SP1 [ SP2 : Spec(SP ) (R4)SP1 [ SP2 : Spec(SPany) Obj : SP1 Obj : SP2Obj : SP1 [ SP2 (R5)�-expressions:SP : Spec(SPany) [X : SP ]Obj : SP 0�X:SP: Obj : �X:SP: SP 0 (R6)Obj : �X:SP: SP 0 Obj 0 : SPObj(Obj 0) : SP 0[Obj 0=X] (R7)Obj : SP SP !�� SP 0Obj : SP 0 (R8)Obj : SP SP 0 : Spec(SPany) SP 0!�� SPObj : SP 0 (R9)Trivial inference:Obj : SPanyObj : fObjg (R10)33



\Cut"Obj : SP SP : Spec(SP 0)Obj : SP 0 (R11)Semantic inference:SP : Spec(�) [[A]]� 2 [[SP ]]� for all � consistent with the current contextA : SP (R12)SP; SP 0 : Spec(�) [[SP ]]� � [[SP 0]]� for all � consistent with the current contextSP : Spec(SP 0) (R13)Some of these rules involve judgements (� signature, � � Sen(�), � : � ! �0) which are externalto the above formal system. This is a natural consequence of the fact that the language does notinclude any syntax for signatures, sentences, etc. More signi�cantly, there are two rules which involvemodel-theoretic judgements, referring to the semantics of objects given above.Following the usual practice, in the sequel we will simply write \Obj : SP" meaning \Obj : SP isderivable".The rules labelled Simple speci�cations characterise the well-formedness of �-speci�cations builtusing the underlying speci�cation-building operations included in the language. They directly incor-porate the \syntactic" requirements of Section 2 on the use of these operations. Rules (R1), (R2)and (R3) play a similar role for the other speci�cation-forming operations: singleton speci�cation,Cartesian-product speci�cation and Spec( ), respectively. Notice, however, that their speci�cationsare given here in a form which is as tight as possible. For example, for any SP : Spec(�) andObj : SP , rule (R1) allows us to deduce fObjg : Spec(SP ) rather than just fObjg : Spec(�).The �rst of the two rules related to the union operation, (R4), embodies the characterisation ofwell-formed union speci�cations. The other, (R5), gives the obvious way to prove that an objectsatis�es a (well-formed) union speci�cation. The two rules are not quite satisfactory, as they do notseem to su�ciently capture the interplay between union and the other operations | more work isneeded here.The rules related to �-expressions and their applications to arguments are quite straightforward.Rules (R6) and (R7) are the usual rules for �-expression introduction and application, respectively.The assumption SP : Spec(SPany) in rule (R6) asserts the well-formedness of the speci�cation SP(see also (R2), (R9), (R10)). Whenever the meta-variable SPany is used below, it will play the samerole as part of a well-formedness constraint. Notice that in order to prove �X:SP: Obj : �X:SP: SP 0,we have to prove Obj : SP 0 \schematically" for an arbitrary unknown X : SP , rather than for allvalues in the class [[SP ]]� (for the appropriate environments �).Rules (R8) and (R9) embody a part of the observation that �-reduction preserves the semantics ofobjects (Corollary 7.2). Rule (R8) allows for �-reduction and rule (R9) for well-formed �-expansionof speci�cations. A particular instance of the latter isObj 0 : SP 0[Obj=X] (�X:SP: SP 0)(Obj) : Spec(SPany )Obj 0 : (�X:SP: SP 0)(Obj)34



That is, in order to prove that an object satis�es a speci�cation formed by applying a parameterisedspeci�cation to an argument, it is su�cient to prove that the object satis�es the corresponding �-reduct.However, we have not incorporated full �-equality into our system; rules (R8) and (R9) introduceit only for speci�cations. In particular, we have not included the following rule, which would allowwell-formed �-expansion of objects:Obj : SP Obj 0 : SPany Obj 0!�� ObjObj 0 : SPAn instance of this would be:Obj1[Obj2=X] : SP (�X:SP2: Obj1)(Obj2) : SPany(�X:SP2: Obj1)(Obj2) : SPHence, in order to prove that a structured object (�X:SP2: Obj1)(Obj2) satis�es a speci�cation SP ,it would su�ce to show that the object is well-formed and to prove that its �-reduct Obj1[Obj2=X]satis�es the speci�cation. We think that this is not methodologically desirable: a proof of correctnessof a program should follow the structure of the program, without any possibility of 
attening it out. So,to prove (�X:SP2: Obj1)(Obj2) : SP we have to �nd an appropriate speci�cation for the parameterisedprogram �X:SP2: Obj1, say �X:SP2: Obj1 : �X:SP2: SP1 such that SP1[Obj2=X] = SP (actually,SP1[Obj2=X] : Spec(SP ) is su�cient).The other part of �-equality for objects, �-reduction, although not derivable in the system, isadmissible in it7 (see [ST 91a] for a proof sketch):Lemma 7.3 The following rule is an admissible rule of the systemObj : SP Obj!��Obj 0Obj 0 : SP �It might be interesting to enrich the system by the �-reduction rule for objects given in the abovelemma, or even more generally by some \operational semantics rules" for (the computable part of)the object language. This, however, would be quite orthogonal to the issues of object speci�cationconsidered in this paper. Therefore, to keep the system as small and as simple as possible, the rule isnot included in the system.Rules (R10) and (R11) embody trivial deductions which should be intuitively straightforward.Notice that SP : Spec(SP 0), as in the premise of (R11), asserts that speci�cation SP imposes atleast the same requirements as SP 0.Rules (R12) and (R13) refer directly to the semantics of objects. They embody the semanticveri�cation process which is a necessary component of inference in the above formal system. Theserules are deliberately restricted to the non-parametric case, since this is the point at which an externalformal system is required; parameterisation is handled by the other rules. We do not attempt here toprovide a formal system for proving the semantic judgements [[A]]� 2 [[SP ]]� and [[SP ]]� � [[SP 0]]� forall environments � consistent with the current context. This is an interesting and important researchtopic, which is however separate from the main concerns of this paper; some considerations and results7A rule is admissible in a deduction system if its conclusion is derivable in the system provided that all its premisesare derivable. This holds in particular if the rule is derivable in the system, that is, if it can be obtained by compositionof the rules in the system. 35



on this may be found in e.g. [ST 88a] and [Far 92]. It is not possible to give a set of purely \syntactic"inference rules which is sound and complete with respect to the semantics above because of the powerof the speci�cation mechanisms included in the language (this is already the case for the subset of thelanguage excluding parameterisation, presented in Section 2).As mentioned earlier, to make the rules as clear and readable as possible, the presentation of thesystem omits a full formal treatment of contexts. In particular, we should add two rules to derivejudgements that a context is well-formed (here, hi is the empty context):hi is a well-formed context� is a well-formed context X is not in � [�]SP : Spec(SPany)�;X : SP is a well-formed contextand then axioms X1 : SP1; : : : ;Xn : SPn ` Xk : SPk, for k = 1; : : : ; n, where X1 : SP1; : : : ;Xn : SPnis a well-formed context. It is important to realise that contexts are sequences, rather than sets, andso we allow the variables X1; : : : ;Xk to occur in SPk+1.We will continue omitting contexts throughout the rest of the paper. All the de�nitions andfacts given below (as well as above) are correctly stated for closed objects only, but are meant to benaturally extended to objects in a well-formed context. This will be done explicitly only within proofswhere it is absolutely necessary. Similarly, we will omit in the following the environment argument tothe semantic function for objects; all the environments thus implicitly considered are assumed to beconsistent with the corresponding context. We hope that this slight informality will contribute to thereadability of the paper without obscuring the details too much.The following theorem expresses the soundness of the formal system above with respect to thesemantics given earlier.Theorem 7.4 For any object Obj and speci�cation SP , if Obj : SP is derivable then [[Obj]] 2 [[SP ]](that is, [[SP ]] is de�ned and is a class of values and [[Obj]] is de�ned and is a value in this class).Proof (sketch) By induction on the length of the derivation and by inspection of the rules. Acomplete formal proof requires, of course, a careful treatment of free variables and their interpretation(cf. the remark preceding the theorem). Thus, for example, rule (R6) really stands for:� ` SP : Spec(SPany) �;X : SP ` Obj : SP 0 X is not in �� ` �X:SP: Obj : �X:SP: SP 0where � is a context. In the corresponding case of the inductive step we can assume that1. [[SP ]]� 2 [[Spec(SPany)]]� for all environments � consistent with context �, and2. [[Obj]]� 2 [[SP 0]]� for all environments � consistent with context �;X : SPand then we have to prove that [[�X:SP: Obj]]� 2 [[�X:SP: SP 0]]� for all environments � consistentwith context �. That is, taking into account the semantics of �- and �-expressions as given inSection 7.2, we have to prove that for all environments � consistent with context �� [[SP ]]� is de�ned and is a class of values | which follows directly from assumption (1) above,and then� for all values v 2 [[SP ]]�, 36



{ [[Obj]]�[v=X] is de�ned,{ [[SP 0]]�[v=X] is de�ned and is a class of values, and{ [[Obj]]�[v=X] 2 [[SP 0]]�[v=X],which in turn follow directly from assumption (2) above.The cases corresponding to the other rules of the system require similar, straightforward but tediousanalysis. Notice that the proofs about the rules concerning application and �-reduction, (R7), (R8)and (R9), crucially depend on Fact 7.1 and Corollary 7.2. �It is natural to ask if the above formal system is also complete with respect to the semantics.It turns out not to be complete. One reason for incompleteness is that the formal system does notexploit the semantical consequences of inconsistency. For example, for any inconsistent speci�cationSP we have that [[SP ]] 2 [[Spec(SPany )]] for any SPany such that [[SPany ]] is a class of values. Thecorresponding formal judgement SP : Spec(SPany ) is not derivable when (for example) SP and SPanyare simple speci�cations over di�erent signatures. If the formal parameter speci�cation in a �- or �-expression is inconsistent then similar di�culties arise (cf. [MMMS 87] for a discussion of the relatedissue of \empty types" in typed �-calculi). This topic deserves further study; it would be nice toidentify all sources of incompleteness and the e�ect of the deliberate omission of a rule allowing forwell-formed �-expansion of objects.De�nition 7.5 An object Obj is well-formed if Obj : SP for some SP . �This also de�nes the well-formed speci�cations since speci�cations are objects.Checking whether an expression in the language is well-formed must in general involve \semantic"veri�cation as embodied in rules (R12) and (R13). In fact, checking the well-formedness of objects isas hard as checking if they satisfy speci�cations: Obj : SP if and only if (�X:SP: (any constant))(Obj)is well-formed.An easy corollary to the soundness theorem is the following:Corollary 7.6 Any well-formed object Obj has a well-de�ned meaning [[Obj]]. �Since speci�cations do not form a separate syntactic category of the language, in the above discus-sion we have used the term \speci�cation" and the meta-variable SP rather informally, relying on anintuitive understanding of the role of the objects of the language. This intuitive understanding maybe made formal as follows:De�nition 7.7 An object SP is called a speci�cation if for some SPany , SP : Spec(SPany ). �Corollary 7.8 The meaning of a speci�cation is a class of values: if SP : Spec(SPany ) then [[SP ]] �[[SPany ]]. �Note that this covers ordinary �-speci�cations, speci�cations of (higher-order) parametric algebras,speci�cations of (higher-order) parameterised speci�cations, etc. The following theorem shows thatthis is indeed consistent with our previous informal use of the term.Theorem 7.9 If Obj : SP then SP is a speci�cation. �Even though this theorem captures an intuitively rather obvious fact, its inductive proof (given in[ST 91a], omitted here) is surprisingly long and relatively complicated. Unfortunately, this seems tobe typical of many proofs dealing with \syntactic" properties of �-calculi.37



7.4 Type-checkingInference in the system presented in the previous section has a purely \type-checking" componenton which the \veri�cation" component is in a sense superimposed. We try to separate this \type-checking" process below. The concept of type we use must cover signatures (as \basic types" ofalgebras) and \arrow types" (types of functions) which would be usual in any type theory, as well as\speci�cation types" which are particular to the formalism presented here: as we have stressed before,the type of a speci�cation is distinct from the type of objects the speci�cation speci�es.De�nition 7.10 The class of types T is de�ned as the least class such that:� for any signature �, � 2 T ;� for any types �1; �2 2 T , �1!�2 2 T ; and� for any type � 2 T , Spec(� ) 2 T . �Under the standard notational convention that arrow types of the form �!� 0 stand for �-types ofthe form �X:�: � 0 where X does not actually occur in � 0, types as de�ned above are well-formedspeci�cations.We de�ne type Type(Obj) for an object Obj of our system by induction as follows:Simple speci�cations:� signatureType(�) = Spec(�) Type(SP ) = Spec(�) � � Sen(�)Type(impose � on SP ) = Spec(�): : : and similarly for other simple speci�cations : : :Other speci�cations:Type(Obj) = �Type(fObjg) = Spec(� ) Type(SP ) = Spec(� )Type(Spec(SP )) = Spec(Spec(� ))Type(SP ) = Spec(� ) [Type(X) = � ]Type(SP 0) = Spec(� 0)Type(�X:SP: SP 0) = Spec(�!� 0)Union:Type(SP1) = Spec(� ) Type(SP2) = Spec(� )Type(SP1 [ SP2) = Spec(� )�-expressions:Type(SP ) = Spec(� ) [Type(X) = � ]Type(Obj) = � 0Type(�X:SP: Obj) = �!� 0 Type(Obj) = �!� 0 Type(Obj 0) = �Type(Obj(Obj 0)) = � 0Algebra expressions:A is an algebra expression denoting a �-algebraType(A) = �38



Note that the semantic inference rules (R12), (R13), the trivial inference rule (R10), the \cut"rule (R11), (R5) and the �-reduction and �-expansion rules (R8) and (R9), which do not introducenew well-formed objects, do not have counterparts in the above de�nition.Clearly, the above de�nition depends on a judgement whether or not an algebra expression denotesan algebra over a given signature. We will assume that such \type-checking" of algebra expressionsis de�ned externally in such a way that it is consistent with the semantics (i.e., if A is a well-formedalgebra expression denoting a �-algebra then indeed [[A]] 2 Alg(�)). Moreover, we will assume that itis substitutive: if A is an algebra expression denoting a �-algebra under an assumption Type(X) = �then for any object Obj with Type(Obj) = � , A[Obj=X] is an algebra expression denoting a �-algebraas well.The above rules (deliberately) do not de�ne Type(Obj) for all object expressions of our language.However, if a type is de�ned for an object, it is de�ned unambiguously. An object Obj is roughlywell-formed if its type Type(Obj) is de�ned. There are, of course, roughly well-formed objects thatare not well-formed. The opposite implication holds, though:Theorem 7.11 Type(Obj) is well-de�ned for any well-formed object Obj. In particular:1. If Obj : SP then Type(SP ) = Spec(Type(Obj)).2. If SP is a speci�cation then Type(SP ) = Spec(� ) for some type � .3. If Obj : �X:SP: SP 0 then Type(Obj) = �!� 0, where Type(SP ) = Spec(� ), for some types �and � 0. �We omit the proof here: the �rst part of the theorem follows by induction on the length of thederivation of Obj : SP (this proof is sketched in [ST 91a]). The other two parts follow directly fromthis.The above theorem states that a necessary condition for an object to satisfy a speci�cation is thatboth are roughly well-formed and the type of the object is consistent with the type of the speci�cation.Of course, nothing like the opposite implication holds. As pointed out earlier, proving that an objectsatis�es a speci�cation must involve a veri�cation process as embodied in the two rules of semanticinference.One might now expect that any well-formed object Obj \is of its type", i.e. Obj : Type(Obj).This is not the case, though. The problem is that both �- and �-expressions include parameterspeci�cations rather than just parameter types, and so functions denoted by �-expressions and speci�edby �-expressions have domains de�ned by speci�cations, not just by types. This is necessary formethodological reasons: we have to be able to specify permissible arguments in a more re�ned waythan just by giving their types. However, as a consequence, objects denoted by �- and �-expressionsin general do not belong to the domain de�ned by their types, and so we cannot expect that suchexpressions would \typecheck" to their types.To identify the purely \type-checking" component in our system we have to deal with objectswhere parameter speci�cations are replaced by their types. Formally, for any roughly well-formedobject Obj, its version Erase(Obj) with parameter speci�cations erased is de�ned by \rounding up"parameter speci�cations to parameter types. A full inductive de�nition is given in [ST 91a]; twocrucial cases are: Erase(�X:SP: SP 0) =def �X:�: Erase(SP 0)where Type(Erase(SP )) = Spec(� )Erase(�X:SP: Obj) =def �X:�: Erase(Obj)where Type(Erase(SP )) = Spec(� )39



Now, by a tedious but straightforward induction one may show that for any roughly well-formed objectObj, Erase(Obj) is well-formed and has the same type as Obj. Joining this with Theorem 7.11, weconclude that a necessary condition for an object Obj to satisfy a speci�cation is that Erase(Obj),the version of the object where parameter speci�cations have been \rounded up" to parameter types,has a type which is consistent with the type of the speci�cation. This necessary condition embodiesthe purely type-checking component of any proof that an object satis�es a speci�cation.It is important to realize that the type-checking of Erase(Obj) may be performed within theoriginal system, since Type(Erase(Obj)) = � if and only if Erase(Obj) : Spec(� ). Moreover, thiscan be done separately from the semantic veri�cation part, without any reference to the meaningsof objects and speci�cations. We present below the corresponding proper fragment of the originalsystem: Simple speci�cations:� signature� : Spec(�) SP : Spec(�) � � Sen(�)impose � on SP : Spec(�): : : and just as before for other simple speci�cations : : :Other speci�cations:Obj : �fObjg : Spec(� ) [X : � ]SP 0 : Spec(� 0)�X:�: SP 0 : Spec(�!� 0) SP : Spec(� )Spec(SP ) : Spec(Spec(� ))Union:SP1 : Spec(� ) SP2 : Spec(� )SP1 [ SP2 : Spec(� )�-expressions:[X : � ]Obj : � 0�X:�: Obj : �!� 0 Obj : �!� 0 Obj 0 : �Obj(Obj 0) : � 0Algebra expressions:A is an algebra expression denoting a �-algebraA : �We hope that a comparison of the above with the system presented in Section 7.3 will clearly illustratethe intuitive di�erence between typed �-calculi, like the one above, and \speci�ed" �-calculi, like theone in Section 7.3.7.5 An exampleExample 7.12 Let us look again at Example 5.2.First, since Elem is just a signature, Type(Elem) = Spec(Elem). Moreover, we haveElem : Spec(Elem)40



Then, P-Bunch as de�ned before is well-formed (modulo the necessary translation of +, enrichand reachable into the operations provided by the system) and has type Spec(Elem)!Spec(�Bunch ).Again, because Elem is a trivial speci�cation, we haveP-Bunch : Spec(Elem)!Spec(�Bunch)It is possible, however, to derive a much tighter speci�cation of P-Bunch than its type:P-Bunch : �E:Spec(Elem): Spec(P-Bunch(E))Then another, perhaps more adequate, version of P-Delete may be de�ned as follows:P-Delete0 =def �BSP :(�E:Spec(Elem): Spec(P-Bunch(E))):�ESP :Spec(Elem):enrich BSP(ESP)by opns delete : elem� bunch ! bunchaxioms count(a;delete(a;B)) = 0a 6= b) count(a;delete(b;B)) = count(a;B)Then Type(P-Delete0) = (Spec(Elem) ! Spec(�Bunch)) ! (Spec(Elem) ! Spec(�Delete))much as in Example 5.2. However, we do not haveP-Delete0 : (Spec(Elem) ! Spec(�Bunch)) ! (Spec(Elem) ! Spec(�Delete))The type of P-Delete 0, viewed as a speci�cation, requires the speci�ed objects (which are higher-order parameterised speci�cations) to be applicable to any speci�cation of the type Spec(Elem) !Spec(�Bunch), which is not the case with P-Delete 0 as de�ned here.We can, however, show thatP-Delete0 : (�E:Spec(Elem): Spec(P-Bunch(E))) ! (Spec(Elem) ! Spec(�Delete))and the tightest speci�cation we can derive for P-Delete 0 isP-Delete0 : �B:��E:Spec(Elem): Spec(P-Bunch(E))�: ��E:Spec(Elem): Spec(P-Delete0(B)(E))��8 Concluding remarksIn this paper we have discussed parameterisation and its role in the process of software speci�cationand development. We have especially stressed two points. The �rst is that there should be a cleardistinction between parameterised speci�cations and speci�cations of parameterised software:parameterised (program speci�cation) 6= (parameterised program) speci�cationBoth concepts are important and useful, but they are modelled by di�erent semantical objects and,more signi�cantly, they play di�erent roles in the process of software development. The methodologicalconsequences of this distinction were discussed in detail in Section 4.3.41



The second point is that it is natural and useful to generalise parameterisation to the higher-order case. Speci�cations of higher-order parametric program modules arise naturally and give extra
exibility in the process of systematic software development. This was discussed in Sections 5 and 6.Spurred by these methodological considerations, in Section 7 we introduced an institution-independentspeci�cation formalism that provides a notation for parameterised speci�cations and speci�cations ofparametric objects of an arbitrary order, as well as any mixture of these concepts. The formalismincorporates the kernel speci�cation-building operations described in [ST 88a] based on those in theASL speci�cation language [SW 83], [Wir 86]. The basic idea was to treat speci�cations, which specifyobjects, as objects themselves. This collapsing together of the two levels, that of objects and that oftheir speci�cations, led (perhaps surprisingly) to a well-behaved inference system for proving that anobject satis�es a speci�cation with a clearly identi�ed formal type-checking component.The formalism presented deals explicitly with two levels of objects involved in the process ofsoftware development: programs (viewed as algebras) and their speci�cations (viewed as classes ofalgebras) | both, of course, arbitrarily parameterised. Aiming at the development of an institution-independent framework, we decided to omit from our considerations yet another level of objectsinvolved, namely that of algebra components (such as data values and operations on them). Inparticular institutions, however, it may be interesting to explicitly consider this level as well, and tointermix constructs for dealing with this level with those for the other two levels mentioned above.This would lead to entities such as algebras parametric on data values, speci�cations parameterisedby functions on data, functions from algebras and speci�cations to data values, etc.Just as the kernel ASL-like speci�cation formalism it builds on, the presented system is too low-level to be directly useful in practice. We view it primarily as a kernel to be used as a semanticfoundation for the development of more user-friendly speci�cation languages. Easier to use notationscan be devised, with their semantics de�ned by translation into the formalism of Section 7.The material in Section 7 is more tentative than that in the remainder of the paper, and clearlysome of the details of the design of the speci�cation formalism deserve further consideration. Thechoice of operations used to build simple speci�cations is not essential; we have chosen here thoseof ASL (derive, translate, etc.) but any reasonably expressive set of operations would su�ce, andmost of the subsequent technical development would require little or no modi�cation. Adding e.g.an intersection operation (dual to union) to the present system would be completely unproblematic.A less straightforward extension would be to add recursion for building speci�cations as in [SW 83],[ST 88a]: for a parameterised speci�cation P , �x P would be a speci�cation denoting the greatest�xed point of the (monotone) function [[P ]] on classes of objects. Yet another thing to consider is thepossible bene�ts of making the ( )] and ( )y operators of Sections 4.2 explicitly available. It is notclear how the system of rules in Section 7.3 could be enriched to cope with these additions though.The presented system provides an appropriate foundation for the Extended ML speci�cation lan-guage and program development methodology as presented in [ST 89]. Indeed, one of the main stimulito write this paper was our inability to express the semantics of the current version of Extended MLdirectly in terms of the kernel speci�cation-building operations in ASL: Extended ML functor spe-ci�cations are speci�cations of parametric objects, and these were not present in ASL. The task ofwriting out a complete semantics of Extended ML in terms of the speci�cation formalism presentedhere remains to be done. We expect that some technicalities, like those which arise in connectionwith ML type inheritance, will cause the same problems as in [ST 89]. Some others, like the useof behavioural equivalence and the concept of functor stability in the Extended ML methodology,although directly related to the abstract operation in the formalism presented here, require furtherstudy in this more general framework. Finally, properties of ML functors such as persistency, whichcause di�culties in other speci�cation formalisms, will be easy to express here.One of the interesting possibilities the system presented in Section 7 o�ers is that it incorporates theconcept of speci�cation re�nement, cf. [ST 88b]. Namely, we can de�ne SP ���> SP 0 (read: SP 0 is a42



re�nement of SP | this is equivalent to SP id���>SP 0 in the notation of Section 6) as SP 0 : Spec(SP ).This also covers re�nements of speci�cations of (higher-order) parametric algebras, due to the followingderivable rule: [X : SP ]SP 0���>SP 00 (i.e. SP 00 : Spec(SP 0))�X:SP: SP 0���>�X:SP: SP 00 (i.e. �X:SP: SP 00 : Spec(�X:SP: SP 0))We can also \internalize" SP ����> hSP1; : : : ; SPni, for example as � : �X1:SP1: � � ��Xn:SPn: SP .The consequences of such an internalisation of development steps seem worth exploring. This was oneof the ideas underlying the design of the Spectral speci�cation language [KS 91] which can be seenas a higher-level and more user-friendly version of a subset of the formalism presented here.The formal properties of the system presented in Section 7 need much further study. For example,it seems that the \cut" rule should be admissible (although not derivable) in the remainder of thesystem. The standard properties of �-reduction, such as the Church-Rosser property and termination(on well-formed objects) should be carefully proven, probably by reference to the analogous propertiesof the usual typed �-calculus. For example, the termination property of �-reduction on the well-formedobjects of the language should follow easily from the observation that the Erase function introducedin Section 7.4 preserves �-reduction, which allows us to lift the corresponding property of the usualtyped �-calculus to our formalism. The system is incomplete, as pointed out earlier. It would beuseful to identify all the sources of this incompleteness, for example by characterising an interestingsubset of the language for which the system is complete. One line of research which we have notfollowed (as yet) is to try to encode the formalism we present here in one of the known type theories(for example, Martin-L�of's system [NPS 90], the calculus of constructions [CH 88] or LF [HHP 87]).It would be interesting to see both which of the features of the formalism we propose would be di�cultto handle, as well as which of the tedious proofs of some formal properties of our formalism (cf. theproofs sketched for Theorems 7.9 and 7.11 in [ST 91a]) would turn out to be available for free undersuch an encoding.Note added in proof.Our attention has recently been drawn to certain intriguing similarities between some of the rulespresented in Section 7.3 and those in the paper \Structural subtyping and the notion of power type"by Luca Cardelli in Proc. 15th ACM Symp. on Principles of Programming Languages, San Diego,70{79 (1988). Among other things, the Spec operator here is closely related to Cardelli's Powertype-formation operator, our \cut" rule (R11) corresponds to his Power elimination rule, and our rule(R3) corresponds to his Power subtyping rule.Acknowledgements: Thanks to David Aspinall, Jan Bergstra, Jordi Farr�es, John Fitzgerald, Marie-Claude Gaudel, Joseph Goguen, Claudio Hermida, Cli� Jones, Stefan Kahrs, Ed Kazmierczak, BerndKrieg-Br�uckner, Jacek Leszczy lowski, Fernando Orejas, Lincoln Wallen and Martin Wirsing for inter-esting discussions and suggestions on this topic. Thanks to the referees for comments on an earlierversion of the paper.This research was supported by the University of Edinburgh, the University of Bremen, the Tech-nical University of Denmark, the University of Manchester, and by grants from the Polish Academyof Sciences, the (U.K.) Science and Engineering Research Council, ESPRIT, and the Wolfson Found-ation.9 References[ Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n ]43
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