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The purpose of this chapter is to present the basic definitions and results on
which the following chapters rely. Most of this material is quite standard and
for that reason the presentation will be concise. More detailed presentations
with greater emphasis on motivation, exercises, and examples may be found
in [EM85, Wir90, LEW96, ST].

The most basic assumption of work on algebraic specification is that a
program is modeled as an algebra, that is, a set of data together with a
number of functions over this set. The branch of mathematics which deals
with algebras in a general sense (as opposed to the study of specific classes
of algebras, such as groups and rings) is called universal algebra or some-
times general algebra. This chapter presents the basics of universal algebra,
generalized to the many-sorted case as required to model programs which ma-
nipulate several kinds or sorts of data. Some extensions useful for modeling
more complex programs are sketched at the end of the chapter.

2.1 Many-sorted sets

When using an algebra to model a program which manipulates several sorts
of data, it is natural to partition the underlying set of values in the algebra
so that there is one set of values for each sort of data. It is often convenient
to manipulate such a family of sets as a unit in such a way that operations
on this unit respect the “typing” of data values.

Let S be a set (of sorts). An S-sorted set is an S-indexed family of sets
X = 〈Xs〉s∈S , which is empty ifXs is empty for all s ∈ S. The empty S-sorted
set is written ∅.

Let X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S be S-sorted sets. Union, intersection,
Cartesian product, disjoint union, inclusion (subset), and equality of X and
Y are defined as follows:

X ∪ Y = 〈Xs ∪ Ys〉s∈S
X ∩ Y = 〈Xs ∩ Ys〉s∈S
X × Y = 〈Xs × Ys〉s∈S
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X ]Y = 〈Xs ]Ys〉s∈S (where Xs ]Ys is the disjoint union of Xs and Ys)
X ⊆ Y iff Xs ⊆ Ys for all s ∈ S
X = Y iff X ⊆ Y and Y ⊆ X.

An S-sorted function f : X → Y is an S-indexed family of functions f =
〈fs : Xs → Ys〉s∈S ; X is called the domain of f , and Y is called its codomain.
An S-sorted function f : X → Y is an identity (an inclusion, surjective,
injective, bijective, . . . ) if for every s ∈ S, the function fs : Xs → Ys is
an identity (an inclusion, surjective, injective, bijective, . . . ). The identity
S-sorted function on X will be written as idX : X → X.

If f : X → Y and g : Y → Z are S-sorted functions, then their composition
f ;g : X → Z is the S-sorted function defined by (f ;g)s(x) = gs(fs(x)) for
s ∈ S and x ∈ Xs.

Let f : X → Y be an S-sorted function and X′ ⊆ X, Y ′ ⊆ Y be S-sorted
sets. The image of X′ under f is the S-sorted set f(X′) = 〈{fs(x) | x ∈
X′s}〉s∈S ⊆ Y . The coimage of Y ′ under f is the S-sorted set f−1(Y ′) =
〈{x ∈ Xs | fs(x) ∈ Y ′s}〉s∈S ⊆ X.

An S-sorted binary relation on X, written R ⊆ X ×X, is an S-indexed
family of binary relations R = 〈Rs ⊆ Xs × Xs〉s∈S . For s ∈ S and x, y ∈
Xs, xRsy (sometimes written xRy) means 〈x, y〉 ∈ Rs. R is an S-sorted
equivalence (relation) on X if it is reflexive (xRsx), symmetric (xRsy implies
yRsx), and transitive (xRsy and yRsz implies xRsz). The symbol ≡ is often
used for (S-sorted) equivalence relations.

Let ≡ be an S-sorted equivalence on X. If s ∈ S and x ∈ Xs, then the
equivalence class of x modulo ≡ is the set [x]≡s = {y ∈ Xs | x ≡s y}. The
quotient of X modulo ≡ is the S-sorted set X/≡ = 〈{[x]≡s | x ∈ Xs}〉s∈S .

Let f : X → Y be an S-sorted function. The kernel of f is the S-sorted
equivalence relation K(f) = 〈{〈x, y〉 ∈ Xs × Xs | fs(x) = fs(y)}〉s∈S ⊆
X ×X.

Subscripts selecting components of S-sorted sets (functions, relations,
. . . ) are often omitted where there is no danger of confusion.

2.2 Signatures and algebras

An algebra consists of named sets and named functions on these sets. The
set of names associated with an algebra is called its signature. The signature
of an algebra defines the syntax of the algebra; the algebra itself supplies the
semantics by assigning interpretations to the names.

A (many-sorted) signature is a pair Σ = 〈S,Ω〉, where S is a set (of sort
names) and Ω is an S∗ × S-sorted set (of operation names). Here, S∗ is the
set of finite (including empty) sequences of elements of S. We will sometimes
write sorts(Σ) for S and opns(Σ) for Ω. Σ is a subsignature of Σ′ = 〈S′, Ω′〉
if S ⊆ S′ and Ω ⊆ Ω′.
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Saying that f : s1×· · ·×sn → s is in Σ = 〈S,Ω〉means that s1 . . . sn ∈ S∗,
s ∈ S, and f ∈ Ωs1...sn,s. Then f is said to have arity s1 . . . sn and result sort
s. If n = 0, that is f : → s, we use the abbreviation f : s.

Many-sorted signatures will be referred to as algebraic signatures when it
is necessary to distinguish them from other kinds of signatures to be intro-
duced later. The above definition of signature permits overloading, since it is
possible to have different arities and result sorts for a single operation name.

In the rest of this section, let Σ = 〈S,Ω〉 be a signature.
A Σ-algebra A consists of an S-sorted set |A| of carrier sets (or carriers);

and, for each f : s1 × · · · × sn → s in Σ, a function (or operation) (f : s1 ×
· · · × sn → s)A : |A|s1 × · · · × |A|sn → |A|s. The class of all Σ-algebras will
be denoted by Alg(Σ).

If f : s1 × · · · × sn → s is in Σ for n = 0 (i.e., f : s), then |A|s1 × · · · ×
|A|sn is a singleton set containing the empty tuple 〈〉, and so (f : s)A may
be viewed as a constant denoting the value (f : s)A(〈〉) ∈ |A|s. Notice that
(f : s1×· · ·×sn → s)A is a total function; see Section 2.10 for several ways of
extending the definitions to cope with partial functions. Note also that there
is no restriction on the cardinality of |A|s; in particular, |A|s may be empty
(but not if, e.g., Ωε,s 6= ∅).

We always write fA in place of (f : s1 × · · ·× sn → s)A where there is no
possibility of confusion.

Example 2.1. Let S1 = {food , car} and let Ω1ε,food = {soup}, Ω1ε,car =
{vw}, Ω1food,food = {boil}, Ω1food car,car = {f}, and Ω1w,s = ∅ for all other
w ∈ S1∗, s ∈ S1. Then Σ1 = 〈S1, Ω1〉 is a signature which can be presented
in tabular form as follows:

Σ1 = sorts food , car
opns soup : food

vw : car
boil : food → food
f : food × car → car

Let |A1|food = {⊕,⊗}, |A1|car = {a, b, c}, soupA1 = ⊕ ∈ |A1|food, vwA1 =
b ∈ |A1|car and boilA1 : |A1|food → |A1|food = {⊕ 7→ ⊕,⊗ 7→ ⊕}, and let
fA1 : |A1|food × |A1|car → |A1|car be defined by the following table:

fA1 a b c
⊕ a c b
⊗ b c c

This defines a Σ1-algebra A1. Reference will be made to Σ1 and A1 in
examples throughout the rest of this chapter.

Let A and B be Σ-algebras. B is a subalgebra of A if |B| ⊆ |A|, and
if fB(b1, . . . , bn) = fA(b1, . . . , bn) for any f : s1 × · · · × sn → s in Σ and
b1 ∈ |B|s1, . . . , bn ∈ |B|sn.B is a proper subalgebra ofA if it is a subalgebra of
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A and |B| 6= |A|. A subalgebra of A is determined by an S-sorted subset |B| of
|A| such that for each f : s1×· · ·×sn → s in Σ and b1 ∈ |B|s1 , . . . , bn ∈ |B|sn ,
fA(b1, . . . , bn) ∈ |B|s.

The intersection of any family of (carriers of) subalgebras of A is a (carrier
of a) subalgebra of A. This implies that for any X ⊆ |A|, there is a least
subalgebra of A that contains X, called the subalgebra of A generated by X.
A is reachable if it has no proper subalgebra (equivalently, if A is generated
by ∅). It follows that every algebra has a unique reachable subalgebra.

Example 2.2. Let Σ1 = 〈S1, Ω1〉 and A1 be as in Example 2.1. Define
a Σ1-algebra B1 by |B1|food = {⊕}, |B1|car = {b, c}, soupB1 = ⊕ ∈
|B1|food, vwB1 = b ∈ |B1|car, boilB1 : |B1|food → |B1|food = {⊕ 7→ ⊕},
and fB1 : |B1|food × |B1|car → |B1|car = {〈⊕, b〉 7→ c, 〈⊕, c〉 7→ b}. B1 is the
subalgebra of A1 generated by ∅. That is, B1 is the reachable subalgebra of
A1.

2.3 Homomorphisms and congruences

A homomorphism between algebras is a function between the carrier sets
which preserves the operations. Similarly, a congruence relation on an algebra
is an equivalence which is preserved by the operations.

Throughout this section, let Σ = 〈S,Ω〉 be a signature and let A and B
be Σ-algebras.

A Σ-homomorphism h : A → B is an S-sorted function h : |A| → |B|
such that for all f : s1 × · · · × sn → s in Σ and a1 ∈ |A|s1, . . . , an ∈ |A|sn,
hs(fA(a1, . . . , an)) = fB(hs1(a1), . . . , hsn(an)).

Example 2.3. Let Σ1 = 〈S1, Ω1〉 and A1 be as in Example 2.1. Define a Σ1-
algebra B1 by |B1|food = |B1|car = {1, 2, 3}, soupB1 = 1 ∈ |B1|food, vwB1 =
2 ∈ |B1|car and boilB1 : |B1|food → |B1|food = {1 7→ 1, 2 7→ 3, 3 7→ 1}, where
fB1 : |B1|food × |B1|car → |B1|car is defined by the following table:

fB1 1 2 3
1 1 2 3
2 2 1 2
3 2 2 1
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Let h1 : |A1| → |B1| be the S1-sorted function such that h1food = {⊕ 7→
1,⊗ 7→ 3} and h1car = {a 7→ 1, b 7→ 2, c 7→ 2}. It is easy to verify that
h1 : A1→ B1 is a Σ1-homomorphism by checking the following:

h1food(soupA1) = soupB1
h1car(vwA1) = vwB1

h1food(boilA1(⊕)) = boilB1(h1food(⊕))
h1food(boilA1(⊗)) = boilB1(h1food(⊗))
h1car(fA1(⊕, a)) = fB1(h1food(⊕), h1car(a))
h1car(fA1(⊕, b)) = fB1(h1food(⊕), h1car(b))
h1car(fA1(⊕, c)) = fB1(h1food(⊕), h1car(c))
h1car(fA1(⊗, a)) = fB1(h1food(⊗), h1car(a))
h1car(fA1(⊗, b)) = fB1(h1food(⊗), h1car(b))
h1car(fA1(⊗, c)) = fB1(h1food(⊗), h1car(c)).

The identity function on the carrier of a Σ-algebra is a Σ-homomorphism,
and composition of Σ-homomorphisms yields another Σ-homomorphism.

Let h : A → B be a Σ-homomorphism, and let A′ be a subalgebra of
A. Let the image of A′ under h be the Σ-subalgebra h(A′) of B such that
|h(A′)| = h(|A′|), and fh(A′)(hs1(a1), . . . , hsn(an)) = hs(fA′(a1, . . . , an)) for
each f : s1 × · · · × sn → s in Σ and a1 ∈ |A′|s1, . . . , an ∈ |A′|sn. The coim-
age of a subalgebra B′ of B under h is a subalgebra h−1(B′) of A, defined
analogously.

A Σ-homomorphism h : A → B is a Σ-isomorphism if it has an inverse,
i.e., there is a Σ-homomorphism h−1 : B → A such that h;h−1 = id|A| and
h−1;h = id|B|. A homomorphism is an isomorphism iff it is bijective.

If there is an isomorphism from A to B, they are called isomorphic and we
write h : A ∼= B or just A ∼= B. Then ∼= (as a binary relation on Σ-algebras)
is reflexive, symmetric, and transitive, and is therefore an equivalence rela-
tion.

Two isomorphic algebras are typically regarded as indistinguishable for all
practical purposes: the only way in which they can differ is in the particular
choice of data values in the carriers.

Example 2.4. Let Σ1 = 〈S1, Ω1〉 and A1 be as in Example 2.1. Define a Σ1-
algebra B1 by |B1|food = {⊕,⊗}, |B1|car = {1, 2, 3}, soupB1 = ⊗ ∈ |B1|food,
vwB1 = 2 ∈ |B1|car , and boilB1 : |B1|food → |B1|food = {⊕ 7→ ⊗,⊗ 7→ ⊗},
where fB1 : |B1|food × |B1|car → |B1|car is defined by the following table:

fB1 1 2 3
⊕ 2 3 3
⊗ 1 3 2

Let i1 : |A1| → |B1| be the S1-sorted function such that i1food = {⊕ 7→
⊗,⊗ 7→ ⊕} and i1car = {a 7→ 1, b 7→ 2, c 7→ 3}. This defines a Σ1-
homomorphism i1 : A1→ B1 which is a Σ1-isomorphism, so A1 ∼= B1.
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A Σ-congruence on A is an (S-sorted) equivalence ≡ on |A| which respects
the operations of Σ: for all operations f : s1 × · · · × sn → s in Σ and values
a1, a

′
1 ∈ |A|s1, . . . , an, a′n ∈ |A|sn, if a1 ≡s1 a′1 and . . . and an ≡sn a′n then

fA(a1, . . . , an) ≡s fA(a′1, . . . , a′n).
The intersection of any family of Σ-congruences on A is a Σ-congruence

on A, which implies that for any S-sorted binary relation R on |A| there
exists a least (with respect to ⊆) Σ-congruence on A which includes R.

Let ≡ be a Σ-congruence on A. The quotient of A modulo ≡ is the
Σ-algebra A/≡ such that |A/≡| = |A|/≡, and fA/≡([a1]≡s1 , . . . , [an]≡sn ) =
[fA(a1, . . . , an)]≡s for each f : s1 × · · · × sn → s and a1 ∈ |A|s1, . . . , an ∈
|A|sn.

Example 2.5. Let Σ1 = 〈S1, Ω1〉 and A1 be as in Example 2.1, and let
≡ = 〈≡s〉s∈S1 be the S1-sorted congruence on |A1| defined by ≡food =
{〈⊕,⊕〉, 〈⊗,⊗〉} and ≡car = {〈a, a〉, 〈b, b〉, 〈b, c〉, 〈c, b〉, 〈c, c〉}. A1/≡ is the
Σ1-algebra defined by

|A1/≡|food = {{⊕}, {⊗}}, |A1/≡|car = {{a}, {b, c}},
soupA1/≡ = {⊕} ∈ |A1/≡|food, vwA1/≡ = {b, c} ∈ |A1/≡|car ,

boilA1/≡ : |A1/≡|food → |A1/≡|food = {{⊕} 7→ {⊕}, {⊗} 7→ {⊕}},

where fA1/≡ : |A1/≡|food×|A1/≡|car → |A1/≡|car is defined by the following
table:

fA1/≡ {a} {b, c}
{⊕} {a} {b, c}
{⊗} {b, c} {b, c}

The kernel of any Σ-homomorphism h : A → B is a Σ-congruence on
A. Moreover, if ≡ is a Σ-congruence on A, and hs(a) = [a]≡s for s ∈ S,
a ∈ |A|s, then 〈hs : |A|s → (|A|/≡)s〉s∈S is a Σ-homomorphism h : A→ A/≡.
Therefore, a binary relation on |A| is a Σ-congruence on A iff it is the kernel
of a Σ-homomorphism from A.

Proposition 2.6. Let ≡ be a Σ-congruence on A. If h : A → B is a Σ-
homomorphism such that ≡ ⊆ K(h), then there is a unique Σ-homomorphism
g : A/≡→ B such that hs(a) = gs([a]≡s) for all s ∈ S and a ∈ |A|s.

The above property characterizes quotient algebras up to isomorphism.
It follows in particular that for any Σ-homomorphism h : A→ B, A/K(h) is
isomorphic to h(A).

2.4 Term algebras

Throughout this section, let Σ = 〈S,Ω〉 be a signature and let X be an S-
sorted set (of variables), where x ∈ Xs for s ∈ S means that the variable
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x is of sort s (written x : s). Note that “overloading” of variable names is
permitted here, since there is no requirement that Xs and Xs′ be disjoint for
s 6= s′ ∈ S.

The Σ-algebra TΣ(X) of terms with variables X is the Σ-algebra defined
as follows:

• |TΣ(X)| is the least S-sorted set such that x ∈ |TΣ(X)|s for all s ∈ S
and x ∈ Xs, and f(t1, . . . , tn) ∈ |TΣ(X)|s for all f : s1 × · · · × sn → s in
Σ and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,
• for all f : s1×· · ·× sn → s in Σ and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn ,
fTΣ(X)(t1, . . . , tn) = f(t1, . . . , tn) ∈ |TΣ(X)|s.

Note the distinction between syntactic term formation f(t1, . . . , tn) and the
application of the operation named f . If s ∈ S and t ∈ |TΣ(X)|s, then t is a
Σ-term of sort s with variables X; the free variables of t is the set FV (t) ⊆ X
of variables that actually occur in t.

The Σ-algebra of ground terms is the Σ-algebra TΣ = TΣ(∅) of terms
without variables. If s ∈ S and t ∈ |TΣ|s, then t is a ground Σ-term.

Example 2.7. Let Σ1 = 〈S1, Ω1〉 be as in Example 2.1. Then TΣ1 is the
Σ1-algebra defined by

|TΣ1|food = {soup(), boil(soup()), boil(boil(soup())), . . . },

|TΣ1|car = {vw(), f(soup(), vw()), f(boil (soup()), vw()),
f(soup(), f(soup(), vw())), . . . }

where the operations of TΣ1 are the term-formation operations

soupTΣ1
= soup() ∈ |TΣ1|food, vwTΣ1 = vw() ∈ |TΣ1|car ,

boilTΣ1 : |TΣ1|food → |TΣ1|food = {soup() 7→ boil(soup()),
boil(soup()) 7→ boil(boil(soup())), . . .},

and similarly for f : food × car → car .

It is implicitly assumed above that the result sort of each term is de-
termined unambiguously. If the signature Σ and the set of variables X do
not ensure this property, then appropriate sort decorations must be added to
terms. We will henceforth assume that variables and constants (0-ary opera-
tions) of the same sort are distinct, which allows us to drop the parentheses
“()” in terms like boil(soup()) above. So, in the example we would have:

|TΣ1|food = {soup, boil(soup), . . .},

|TΣ1|car = {vw , f(soup , vw), f(boil (soup), vw), . . .}
In examples we will also use infix notation for binary operations when con-
venient.

Let A be a Σ-algebra, v : X → |A| be an S-sorted function, s ∈ S, and
t ∈ |TΣ(X)|s be a Σ-term of sort s. The value of t in A under the valuation
v is v#(t) ∈ |A|s, defined as follows:
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• v#(x) = v(x) for all s ∈ S and x ∈ Xs; and
• v#(f(t1, . . . , tn)) = fA(v#(t1), . . . , v#(tn)) for all f : s1 × · · · × sn → s

in Σ and t1 ∈ |TΣ(X)|s1 , . . . , tn ∈ |TΣ(X)|sn .

Proposition 2.8. For any Σ-algebra A and S-sorted function v : X → |A|,
v# : TΣ(X) → A is the unique Σ-homomorphism that extends v, i.e., such
that v#

s (x) = vs(x) for all s ∈ S, x ∈ Xs.

It is easy to see that the value of a term t ∈ |TΣ(X)| depends only on
the valuation of variables in FV (t). In particular, the value of a ground term
t ∈ |TΣ| does not depend on the valuation. Hence we write tA = ∅#(t), where
∅ : ∅ → |A| is the empty function, for the value of t in A.

The Σ-algebra A is reachable iff every element in |A| is the value of a
ground Σ-term, or equivalently, iff it is isomorphic to a quotient of TΣ . It
follows that there is a one-to-one correspondence between isomorphism classes
of reachable Σ-algebras and congruences on TΣ .

When the algebra A above is a term algebra TΣ(Y ) for some S-sorted
set Y , valuations are called substitutions (of terms in TΣ(Y ) for variables),
and the value of a term t under a substitution θ : X → |TΣ(Y )|, written t[θ],
is just the result of substituting θ(x) for all x in t in the usual sense. We
write t[x 7→ u] for the result of replacing x in t by u, regarding x 7→ u as a
shorthand for the obvious substitution which is the identity on all variables
in X other than x (here, Y is X ∪ FV (u)).

2.5 Signature morphisms

A signature morphism defines a mapping from the sort and operation names
in one signature to those in another signature, in such a way that the arity
and result sort of operations are respected.

More formally, let Σ = 〈S,Ω〉 andΣ′ = 〈S′, Ω′〉 be signatures. A signature
morphism σ : Σ → Σ′ is a pair σ = 〈σsorts, σopns〉 where σsorts : S → S′ and
σopns = 〈σw,s : Ωw,s → Ω′σ∗sorts(w),σsorts(s)〉w∈S∗,s∈S (where for w = s1 . . . sn ∈
S∗, σ∗sorts(w) = σsorts(s1) . . . σsorts(sn)). Both σsorts and σopns (and its com-
ponents σw,s for all w ∈ S∗, s ∈ S) will be denoted by σ.

Signature morphisms as defined above will be referred to as algebraic
signature morphisms when it is necessary to distinguish them from other
kinds of signature morphisms to be introduced later.

Example 2.9. Let Σ = 〈S,Ω〉 be the signature

sorts warm, cold, vehicle
opns borscht : cold

heat : cold → warm
heat : warm → warm
h : warm × vehicle → vehicle
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Let Σ1 = 〈S1, Ω1〉 be the signature in Example 2.1. Define σsorts : S → S1
and σopns = 〈σw,s : Ωw,s → Ω1σ∗sorts(w),σsorts(s)〉w∈S∗,s∈S by σsorts = {warm 7→
food , cold 7→ food , vehicle 7→ car}, σε,cold = {borscht 7→ soup}, σcold,warm =
{heat 7→ boil}, σwarm,warm = {heat 7→ boil}, σwarm vehicle,vehicle = {h 7→ f},
and σw,s = ∅ for all other w ∈ S∗, s ∈ S. Then σ : Σ → Σ1 is a signature
morphism.

In the rest of this section, let σ : Σ → Σ′ be a signature morphism.
This gives rise to a translation of Σ-terms to Σ′-terms, and of Σ′-algebras
and homomorphisms to Σ-algebras and homomorphisms, as defined below.
Note that the direction of translation of algebras and homomorphisms is
“backwards” with respect to the direction of the signature morphism.

Let A′ be a Σ′-algebra. The σ-reduct of A′ is the Σ-algebra A′ σ such that
|A′ σ |s = |A′|σ(s) for all s ∈ S, and fA′ σ = σ(f)A′ for all f : s1×· · ·×sn → s

in Σ. Similarly, if h′ : A′ → B′ is a Σ′-homomorphism, the σ-reduct of h′ is
the Σ-homomorphism h′ σ : |A′ σ| → |B′ σ| such that (h′ σ)s = h′σ(s) for all
s ∈ S.

If Σ is a subsignature of Σ′, then we write A′ Σ for A′ σ where σ : Σ → Σ′

is the obvious signature inclusion (and similarly for homomorphisms). Then
A′ Σ is just A′ with some carriers and/or operations removed.

Example 2.10. Let σ : Σ → Σ1 and A1 be as in Examples 2.9 and 2.1 re-
spectively. Then A1 σ is the Σ-algebra such that |A1 σ|warm = |A1 σ|cold =
{⊕,⊗} = |A1|food, |A1 σ |vehicle = {a, b, c} = |A1|car, borschtA1 σ = ⊕ =
soupA1, (heat : cold → warm)A1 σ = {⊕ 7→ ⊕,⊗ 7→ ⊕} = boilA1,
(heat : warm → warm)A1 σ = {⊕ 7→ ⊕,⊗ 7→ ⊕} = boilA1 and hA1 σ =
{〈⊕, a〉 7→ a, 〈⊕, b〉 7→ c, . . .} = fA1.

Let X be an S-sorted set of variables such that Xs and Xs′ are disjoint
for s 6= s′ ∈ S. Define X′ = 〈

⋃
σ(s)=s′ Xs〉s′∈S′ . The translation of a Σ-term

t ∈ |TΣ(X)| by σ is the Σ′-term σ(t) ∈ |TΣ′(X′)| obtained by replacing each
operation name f in t by σ(f). (The disjointness assumption on X is for
notational convenience only. It may be avoided by taking the disjoint union
in the definition of X′.)

Example 2.11. Let σ : Σ → Σ1 be the signature morphism in Example 2.9,
where Σ = 〈S,Ω〉 and Σ1 = 〈S1, Ω1〉. Let X be the S-sorted set of variables
x : cold , x′ : warm, y : warm, z : vehicle. The S1-sorted set of variables X′ is
then x : food , x′ : food , y : food , z : car , and

σ(h(heat(x), h(x′, z))) = f(boil (x), f(x′, z)),

σ(h(x′, h(heat(heat (borscht)), z))) = f(x′, f(boil(boil(soup)), z)),

and so on.

The following result states that the value of a term is invariant under
change of signature.
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Proposition 2.12. Let X be an S-sorted set of variables such that Xs and
Xs′ are disjoint for s 6= s′ ∈ S, and X′ = 〈

⋃
σ(s)=s′ Xs〉s′∈S′. Let A′ be

a Σ′-algebra and v′ : X′ → |A′| be a valuation. Define v : X → |A′ σ| by
vs(x) = v′σ(s)(x) for s ∈ S and x ∈ Xs. Then for any Σ-term t ∈ |TΣ(X)|,
v#(t) = (v′)#(σ(t)). In particular, if t is a ground term, then tA′ σ = σ(t)A′ .

2.6 Equations

In the simple algebraic specifications considered in this chapter, equations
are used as axioms to constrain the permitted behaviour of operations.

Throughout this section, let Σ = 〈S,Ω〉 be a signature.
A Σ-equation ∀X. t = t′ consists of an S-sorted set X (of variables) such

that Xs and Xs′ are disjoint for s 6= s′ ∈ S, and two Σ-terms t, t′ ∈ |TΣ(X)|s
for some sort s ∈ S. A Σ-equation ∀∅. t = t′, sometimes abbreviated t = t′,
is called a ground (Σ-) equation.

A Σ-algebra A satisfies (or, is a model of ) a Σ-equation ∀X. t = t′,
written A |=Σ ∀X. t = t′, if for every (S-sorted) function v : X → |A|,
v#(t) = v#(t′).

A satisfies (or, is a model of) a set Φ of Σ-equations, written A |=Σ Φ,
if A |=Σ ϕ for every equation ϕ ∈ Φ. A class A of Σ-algebras satisfies a
Σ-equation ϕ, written A |=Σ ϕ, if A |=Σ ϕ for every A ∈ A. Finally, a class
A of Σ-algebras satisfies a set Φ of Σ-equations, written A |=Σ Φ, if A |=Σ Φ
for every A ∈ A. We sometimes write |= in place of |=Σ where Σ is obvious.

The explicit quantification over X in a Σ-equation ∀X. t = t′ is essential.
For example, if |A|s = ∅ but Xs 6= ∅ for some s in S, then A trivially satisfies
any equation ∀X. t = t′. Thus variables in X may influence satisfaction even
if they do not actually occur in t or t′.

Satisfaction ofΣ-algebras is preserved under subalgebras and homomorphic
images: if A |= ϕ then ϕ is satisfied by any subalgebra of A and by any ho-
momorphic image of A (and thus by any algebra isomorphic to A).

Let σ : Σ → Σ′ be a signature morphism. The translation of Σ-terms to
Σ′-terms defined above extends in the obvious way to a translation of Σ-
equations to Σ′-equations. We will write σ(∀X. t = t′) for ∀X′. σ(t) = σ(t′),
where X′s′ =

⋃
σ(s)=s′ Xs for each s′ ∈ S′ as above.

An important result that brings together some of the main definitions
above is as follows:

Lemma 2.13 (Satisfaction Lemma [BG80]). If σ : Σ → Σ′ is a signa-
ture morphism, ϕ is a Σ-equation, and A′ is a Σ′-algebra, then A′ |=Σ′ σ(ϕ)
iff A′ σ |=Σ ϕ.

This states that the translations of syntax (terms, equations) and semantics
(algebras) induced by signature morphisms are coherent with the definition
of satisfaction. The proof follows from Proposition 2.12.
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2.7 Presentations and theories

A signature, together with a set of equations over that signature, constitutes a
simple form of specification. We refer to these as flat (meaning unstructured)
specifications in order to distinguish them from the structured specifications
to be introduced in later chapters.

Throughout this section, let Σ be a signature.
A presentation (also known as a flat specification) is a pair 〈Σ,Φ〉 where

Φ is a set of Σ-equations (called the axioms of 〈Σ,Φ〉). A presentation 〈Σ,Φ〉
is sometimes referred to as a Σ-presentation.

A model of a presentation 〈Σ,Φ〉 is a Σ-algebra A such that A |=Σ Φ.
ModΣ(Φ) is the class of all models of 〈Σ,Φ〉. Taking 〈Σ,Φ〉 to denote the
semantic object ModΣ(Φ) is sometimes called taking its loose semantics.

Example 2.14. Let Bool = 〈ΣBool , ΦBool〉 be the following presentation.

Bool = sorts bool
opns true : bool

false : bool
¬ : bool → bool
∧ : bool × bool → bool

axioms ¬true = false
¬false = true
∀p:bool . p ∧ true = p
∀p:bool . p ∧ false = false
∀p:bool . p ∧ ¬p = false

Define ΣBool -algebras A1, A2, and A3 as follows:

|A1|bool = {?} |A2|bool = {a, b, c} |A3|bool = {1, 0}
trueA1 = ? trueA2 = a trueA3 = 1
falseA1 = ? falseA2 = b falseA3 = 0
¬A1 = {? 7→ ?} ¬A2 = {a 7→ b,

b 7→ a,
c 7→ c}

¬A3 = {1 7→ 0,
0 7→ 1}

∧A1 ?
? ?

∧A2 a b c
a a b b
b b b b
c c b b

∧A3 1 0
1 1 0
0 0 0

Each of these algebras is a model of Bool . (Reference will be made to Bool
and to A1, A2, and A3 in later sections of this chapter.)

For any class A of Σ-algebras, ThΣ(A) (the theory of A) denotes the set
of all Σ-equations satisfied by each Σ-algebra in A:

ThΣ(A) = {ϕ | ϕ is a Σ-equation and A |=Σ ϕ}.
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The closure of a set Φ of Σ-equations is the set ClΣ(Φ) = ThΣ(ModΣ(Φ));
Φ is closed if Φ = ClΣ(Φ).

Proposition 2.15. For any sets Φ and Ψ of Σ-equations and classes A,B
of Σ-algebras:

1a. If Φ ⊆ Ψ then ModΣ(Ψ) ⊆ ModΣ(Φ).
1b. If A ⊆ B then ThΣ(B) ⊆ ThΣ(A).
2a. Φ ⊆ ThΣ(ModΣ(Φ)).
2b. A ⊆ ModΣ(ThΣ(A)).
3a. ModΣ(Φ) = ModΣ(ThΣ(ModΣ(Φ))).
3b. ThΣ(A) = ThΣ(ModΣ(ThΣ(A))).

A Σ-equation ϕ is a semantic (or model-theoretic) consequence of a set Φ
ofΣ-equations, written Φ |=Σ ϕ, if ϕ ∈ ClΣ(Φ) (equivalently, if ModΣ(Φ) |=Σ

ϕ). We will write Φ |= ϕ instead of Φ |=Σ ϕ where the signature Σ is obvious.

Proposition 2.16. Semantic consequence is preserved by translation along
signature morphisms: for any signature morphism σ : Σ → Σ′, set Φ of Σ-
equations, and Σ-equation ϕ,

if Φ |=Σ ϕ then σ(Φ) |=Σ′ σ(ϕ).

Proposition 2.17. Let σ : Σ → Σ′ be a signature morphism and let Φ′ be a
closed set of Σ′-equations. Then σ−1(Φ′) is a closed set of Σ-equations.

A theory is a presentation 〈Σ,Φ〉 such that Φ is closed. A presentation
〈Σ,Φ〉 (where Φ need not be closed) presents the theory 〈Σ,ClΣ(Φ)〉. A
theory 〈Σ,Φ〉 is sometimes referred to as a Σ-theory. For any theories 〈Σ,Φ〉
and 〈Σ′, Φ′〉, a theory morphism σ : 〈Σ,Φ〉 → 〈Σ′, Φ′〉 is a signature morphism
σ : Σ → Σ′ such that σ(ϕ) ∈ Φ′ for every ϕ ∈ Φ.

Example 2.18. Let Σ be the signature

Σ = sorts s, b
opns tt : b

ff : b
not : s→ b
and : s× b→ b

and recall the presentation Bool = 〈ΣBool , ΦBool〉 in Example 2.14. Define
a signature morphism σ : Σ → ΣBool by σsorts = {s 7→ bool , b 7→ bool},
σε,b = {tt 7→ true,ff 7→ false}, σs,b = {not 7→ ¬}, and σs b,b = {and 7→
∧}. Let Φ = { ∀x:s. and(x, and(x, not(x))) = ff , ∀x:s. and(x,ff ) = ff }.
Then ClΣ(Φ) includes Σ-equations that were not in Φ, such as the equation
∀x, y:s. and(y, and (x, and(x, not(x)))) = ff . The presentations 〈Σ,ClΣ(Φ)〉
and 〈ΣBool ,ClΣBool(ΦBool )〉 are theories – the latter is the theory presen-
ted by Bool – and σ : 〈Σ,ClΣ(Φ)〉 → 〈ΣBool ,ClΣBool(ΦBool)〉 is a theory
morphism.
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Proposition 2.19. Let σ : Σ → Σ′ be a signature morphism, Φ be a set of
Σ-equations, and Φ′ be a set of Σ′-equations. Then the following conditions
are equivalent:

1. σ is a theory morphism σ : 〈Σ,ClΣ(Φ)〉 → 〈Σ′,ClΣ′(Φ′)〉.
2. σ(Φ) ⊆ ClΣ′(Φ′).
3. For every A′ ∈ModΣ′(Φ′), A′ σ ∈ModΣ(Φ).

2.8 Equational calculus

The set of consequences of a presentation 〈Σ,Φ〉 has been defined in a model-
theoretic way. In this section we present a calculus for deriving consequences
of a set of equational axioms in a “syntactic” way. It turns out that these
two notions of consequence coincide.

A Σ-equation ϕ is a syntactic (or proof-theoretic) consequence of Φ, writ-
ten Φ `Σ ϕ, if ϕ can be derived from Φ by application of the following
inference rules:

Reflexivity: ∀X. t = t
t ∈ |TΣ(X)|

Symmetry:
∀X. t = t′

∀X. t′ = t

Transitivity:
∀X. t = t′ ∀X. t′ = t′′

∀X. t = t′′

Congruence:
∀X. t1 = t′1 · · · ∀X. tn = t′n
∀X. f(t1, . . . , tn) = f(t′1, . . . , t

′
n)

for f : s1 × · · · × sn → s and ti, t′i ∈ |TΣ(X)|si for i ≤ n

Instantiation:
∀X. t = t′

∀Y. t[θ] = t′[θ]
θ : X → |TΣ(Y )|

Example 2.20. Recall the presentation Bool = 〈ΣBool , ΦBool〉 from Ex-
ample 2.14. The following derivation proves ΦBool `ΣBool ∀p:bool . ¬(p ∧
¬false) = ¬p:

∀p:bool . p = p

¬false = true
∀p:bool . ¬false = true

∀p:bool . p ∧ ¬false = p ∧ true
∀p:bool . ¬(p ∧ ¬false) = ¬(p ∧ true)

∀p:bool . p ∧ true = p

∀p:bool . ¬(p ∧ true) = ¬p
∀p:bool . ¬(p ∧¬false) = ¬p
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As mentioned above, `Σ is both sound (only valid consequences may be
derived) and complete (all valid consequences may be derived) for |=Σ.

Theorem 2.21. For any set Φ of Σ-equations and any Σ-equation ϕ, Φ `Σ
ϕ if and only if Φ |=Σ ϕ.

Simplifying the above calculus by omitting explicit quantifiers in equa-
tions yields an unsound system because algebras may have empty carrier
sets. In particular, unused variables cannot always be removed from equa-
tions. The instantiation rule allows quantified variables to be eliminated when
it is sound to do so [GM85].

2.9 Initial models

The class of algebras given by the loose semantics of aΣ-presentation always
includes degenerate Σ-algebras with a single value of each sort in Σ, and
usually includes unreachable Σ-algebras. Equational axioms are not sufficient
to eliminate such obviously undesired models. One standard remedy is to take
the so-called initial semantics of presentations.

Let A be a model of a presentation 〈Σ,Φ〉. We say that A contains junk
if it is not reachable, and that A contains confusion if it satisfies a ground
Σ-equation that is not in ClΣ(Φ).

Example 2.22. Recall the presentation Bool = 〈ΣBool , ΦBool〉 and its mod-
els A1, A2, and A3 given in Example 2.14.A1 contains confusion (A1 |=ΣBool
true = false 6∈ ClΣBool(ΦBool)) but not junk; A2 contains junk (there is no
ground ΣBool -term t such that tA2 = c ∈ |A2|bool) but not confusion; A3
contains neither junk nor confusion. There are models of Bool containing
both junk and confusion.

A Σ-algebra A ∈ ModΣ(Φ) is an initial model of 〈Σ,Φ〉 if for every
B ∈ModΣ(Φ) there is a unique Σ-homomorphism h : A→ B.

The initial models of an equational presentation are those that have no
junk and no confusion. An initial model may be constructed as a quotient of
the algebra TΣ of ground Σ-terms by the least congruence generated by the
axioms:

Theorem 2.23. 〈Σ,Φ〉 has an initial model.

Proof sketch. An initial model of 〈Σ,Φ〉 is the quotient TΣ/≡Φ, where ≡Φ
is the Σ-congruence generated by Φ: t ≡Φ t′ ⇐⇒ Φ |=Σ ∀∅. t = t′, for
all t, t′ ∈ |TΣ|. The existence and uniqueness of a Σ-homomorphism from
TΣ/≡Φ to any B ∈ModΣ(Φ) follows from Proposition 2.6. ut
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Example 2.24. The model TΣBool/≡ΦBool of Bool (see Example 2.14) is defined
as follows:
|TΣBool/≡ΦBool |bool = {[true]≡ΦBool , [false]≡ΦBool}
trueTΣBool/≡ΦBool = [true]≡ΦBool

falseTΣBool/≡ΦBool
= [false]≡ΦBool

¬TΣBool/≡ΦBool = {[true]≡ΦBool 7→ [false]≡ΦBool , [false]≡ΦBool 7→ [true]≡ΦBool}

∧TΣBool/≡ΦBool [true]≡ΦBool [false]≡ΦBool

[true]≡ΦBool [true]≡ΦBool [false]≡ΦBool

[false]≡ΦBool [false]≡ΦBool [false]≡ΦBool

where
[true]≡ΦBool = {true,¬false,¬(false ∧ true),¬(false ∧ ¬false), . . .},
[false]≡ΦBool = {false,¬true,¬(true ∧ true),¬(true ∧ ¬false), . . .}.

This is an initial model of Bool by the proof sketched for Theorem 2.23.
ΣBool -homomorphisms from TΣBool/≡ΦBool to A1, A2, and A3 are as fol-
lows:

h1 : TΣBool/≡ΦBool → A1
h1bool = {[true]≡ΦBool 7→ ?, [false]≡ΦBool 7→ ?}

h2 : TΣBool/≡ΦBool → A2
h2bool = {[true]≡ΦBool 7→ a, [false]≡ΦBool 7→ b}

h3 : TΣBool/≡ΦBool → A3
h3bool = {[true]≡ΦBool 7→ 1, [false]≡ΦBool 7→ 0}

Taking a presentation to denote the (non-empty) class of its initial models
is called taking its initial semantics. The initiality property identifies a model
of 〈Σ,Φ〉 up to isomorphism: any two initial models are isomorphic, and any
model isomorphic to an initial model is itself initial. We therefore refer to the
initial model of a presentation.

Example 2.25. A3 is an initial model of Bool (see Example 2.14) since it
is isomorphic to TΣBool/≡ΦBool . On the other hand, A1 and A2 are not
isomorphic to A3 and hence are not initial models. This can be checked
directly as well: for example, @h : A1→ A2 and @h : A1→ A3.

2.10 Variations on a theme

The simple specification framework presented above is the classical one in the
field of algebraic specifications. A wide variety of modifications have been
made to increase its expressive power and to take account of the various
features of software systems which it does not handle adequately. This section
is devoted to a sketch of some of these modifications; details may be found
in the cited references.
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2.10.1 Conditional equations

Equational axioms can be generalized to (positive) conditional equational
axioms of the form ∀X. t1 = t′1 ∧ . . . ∧ tn = t′n ⇒ t0 = t′0. A Σ-algebra
A satisfies such an axiom if for every (S-sorted) function v : X → |A|, if
v#(t1) = v#(t′1) and . . . and v#(tn) = v#(t′n), then v#(t0) = v#(t′0). With
these changes, most results still apply with appropriate minor modifications.
For example, any presentation 〈Σ,Φ〉, where Φ is a set of conditional Σ-
equations, has an initial model which can be constructed in a similar way as
in the proof of Theorem 2.23 (see, e.g., [MT92]). There is also a sound and
complete proof system for conditional equational consequence [Sel72].

2.10.2 Partial algebras

An obvious way to generalize the standard definition of an algebra is to al-
low partial functions as interpretations of operation names. Homomorphisms
between such partial algebras are required to preserve definedness of opera-
tions, and (as usual) their results when these are defined. Term evaluation
is defined as in ordinary algebras, except that terms need not have defined
values. An equation ∀X. t = t′ is satisfied in a partial algebra A when for
all valuations v : X → |A|, the values of t and t′ under v either are defined
and equal, or are both undefined. Additional axioms are required to assert
definedness: ∀X. D(t) holds in A when the value of t is defined under all
valuations of X in A. Every presentation 〈Σ,Φ〉, where Φ is a set of Σ-
equations and definedness formulas, has an initial model which contains no
junk, is minimally defined (i.e., the value of a ground term t is defined only
if Φ |=Σ ∀∅. D(t)), and contains no confusion, i.e., the values of two ground
terms t, t′ are defined and equal only if Φ |=Σ ∀∅. t = t′.

This is one possible approach to the specification of partial algebras,
following [BW82]. There are various other choices for the basic definitions
[Rei87, Bur86].

2.10.3 Error algebras

To model operations that may produce erroneous or exceptional results, we
can partition each of the carrier sets of an algebra into an error part and
an OK part. Operations in signatures are classed as safe or unsafe, where
the former are required to yield OK values when applied to OK arguments.
Homomorphisms are required to preserve OK-ness. Like operations, variables
in equations are classed as safe or unsafe; the former range over OK values
only, while the latter range over all values. Again, all presentations have initial
models, in which operations propagate errors unless otherwise specified.

The details of this approach may be found in [GDLE84]. Again, there are
many other approaches, see for instance [Gog78] or [BBC86].
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2.10.4 Order-sorted algebras

In order to model sort inclusion and coercions, signatures may be enriched
with an order relation on the set of sorts. An order-sorted Σ-algebra A is re-
quired to respect the sort ordering in the order-sorted signature Σ: if s ≤ s′
in Σ then we require that |A|s ⊆ |A|s′ . Overloading is forced by requiring
operations to be applicable to values from subsorts of their argument sorts
and to yield results in supersorts of their result sorts. Under certain condi-
tions terms are guaranteed to have least sorts and unambiguous values. Then
once more, all presentations have initial models and there is a version of the
equational calculus that is sound and complete for order-sorted satisfaction.

For details see [GM85]. Alternative approaches are [Gog84, Poi84, Smo86];
see also [Mos93, GD94, CHKM97].

2.10.5 First-order predicate logic

Signatures may be modified to enable them to include (typed) predicate
names in addition to operation names, e.g., ≤ : nat × nat . Atomic formu-
las are then formed by applying predicates to terms; in first-order predicate
logic with equality, the predicate =: s×s is implicitly available for any sort s.
Formulas are built from atomic formulas using the usual logical connectives
and quantifiers. Algebras are modified to include relations on their carriers
to interpret predicate names (giving what are sometimes called relational
structures). Homomorphisms are required to preserve predicates as well as
operations. The satisfaction of a sentence (a formula without free variables)
by an algebra is as usual in first-order logic. Presentations involving predicates
and first-order axioms do not always have initial models or even reachable
models. Details of first-order predicate logic for use in algebraic specifications
may be found in, e.g., [GB92].

2.10.6 Higher-order functions

Higher-order functions (which take functions as parameters and/or return
functions as results) can be accommodated by interpreting certain sort names
as (subsets of) function spaces. Given a set S of (base) sorts, let S→ be the
closure of S under formation of function types: S→ is the smallest set such
that S ⊆ S→ and for all s1, . . . , sn, s ∈ S→, s1 × · · · × sn → s ∈ S→. Then a
higher-order signature Σ is a pair 〈S,Ω〉 where Ω is an S→-indexed set of op-
eration names. This determines an ordinary signature Σ→ comprised of the
sort names S→ and the operation names in Ω (as constants of sorts in S→)
together with operation names apply : (s1×· · ·× sn → s)× s1 ×· · ·× sn → s
for every s1, . . . , sn, s ∈ S→. A higher-order Σ-algebra is just an ordinary
(total) Σ→-algebra, and analogously for the definitions of higher-order Σ-
homomorphism, higher-order Σ-equation, higher-order presentation, etc. A
higher-order Σ-algebra A is extensional if for all sorts s1×· · ·×sn → s ∈ S→
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and values f, g ∈ |A|s1×···×sn→s, f = g whenever applyA(f, a1, . . . , an) =
applyA(g, a1, . . . , an) for all a1 ∈ |A|s1 , . . . , an ∈ |A|sn. In an extensional al-
gebra A, every carrier |A|s1×···×sn→s is isomorphic to a subset of the function
space |A|s1×· · ·×|A|sn → |A|s. Higher-order equational presentations always
have initial extensional reachable models. See [MTW88] for details, and for
alternative approaches see, e.g., [Poi86, Mei92].

2.10.7 Polymorphic types

Programming languages such as Standard ML [Pau96] can be used to define
polymorphic types such as α list and polymorphic values such as the func-
tion head :∀α. α list → α. To specify such types and functions, signatures
are modified to contain type constructors in place of sort names. Terms built
using these type constructors and type variables (such as α above) are the
polymorphic types of the signature. The set Ω of operation names is then
indexed by non-empty sequences of polymorphic types, where f ∈ Ωt1...tn,t
means f : ∀FV (t1) ∪ . . .∪ FV (tn) ∪FV (t). t1 × · · · × tn → t. There are vari-
ous choices for algebras over such signatures. The most straightforward is to
require each algebra A to incorporate a (single-sorted) algebra of carriers,
Carr(A), having sets which interpret types as values and an operation to
interpret each type constructor. Then, for each operation f ∈ Ωt1...tn,t and
for each instantiation of type variables i : V → |Carr(A)|, A has to provide
a function fA,i : i#(t1) × · · · × i#(tn) → i#(t). Various conditions may be
imposed to ensure that the interpretation of polymorphic operations is para-
metric, by requiring fA,i and fA,i′ to be appropriately related for different
type variable instantiations i, i′. Axioms contain (universal) quantifiers for
type variables in addition to quantifiers for ordinary variables, as in System F
[GLT89]; alternatively, type-variable quantification may be left implicit, as
in Extended ML [KST97].

2.10.8 Non-deterministic functions

Non-deterministic functions may be handled by interpreting operation names
in algebras as relations or, equivalently, as set-valued functions. Homomorph-
isms are required to preserve possible values of functions: for any homomorph-
ism h : A → B and operation f : s1 × · · · × sn → s, if a is a possible value
of fA(a1, . . . , an) then hs(a) is a possible value of fB(hs1(a1), . . . , hsn(an)).
Universally quantified inclusions between sets of possible values may be used
as axioms: t ⊆ t′ means that every possible value of t is a possible value of
t′. See [Nip86, Huß89, BS93, BK98] for details.

2.10.9 Continuous algebras

Following [Sco76], partial functions may be specified as least solutions of re-
cursive equations. To accommodate this, we can use continuous algebras, i.e.,
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ordinary (total) Σ-algebras with carriers that are complete partially ordered
sets (so-called cpos) and operation names interpreted as continuous func-
tions on these sets. The “bottom” element ⊥ of the carrier for a sort, if it
exists, represents the completely undefined value of that sort. The order on
carriers induces an order on (continuous) functions in the usual fashion. A
homomorphism between continuous algebras is required to be continuous as
a function between cpos. For details see, e.g., [GTWW77]. It is possible to
define a language of axioms that allows direct reference to least upper bounds
of chains and/or to the order relation itself (see, e.g., [TW86]).
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[Poi84] A. Poigné. Another look at parameterization using algebraic specifica-
tions with subsorts. In Proc. 11th Symp. on Mathematical Foundations
of Computer Science, volume 176 of Lecture Notes in Computer Sci-
ence, pages 471–479. Springer, 1984.
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