
Algebraic speci�cation and formal methods for programdevelopment: what are the real problems?Donald Sannella� Andrzej Tarleckiy1 IntroductionThe long-term goal of work on algebraic speci�cation is formal development of correct programs fromspeci�cations via veri�ed-correct re�nement steps. De�ne a real problem to be an unsolved problemwhich lies on (or near) the path between the current state of the art and this ultimate goal. Long-termprogress depends on solving these problems, so it seems worthwhile to attack the real problems beforeworrying about other issues.It is perhaps surprising that there is little agreement concerning what these problems are, at leastif one takes the problems being tackled as an indication of what various researchers think the realproblems are. Some sort of consensus seems desirable to promote e�ective joint progress towards ourcommon goal.We list below some (not all) of what we think are the real problems. In an attempt to sparkcontroversy, some things which we think are not real problems are also listed. Neither of these lists isexhaustive.2 Some real problems and some non-problemsThe process of developing a program from a speci�cation begins with a requirements speci�cation. The�rst issue is how this requirements speci�cation comes into being. This is the topic of requirementsengineering, which is as yet in its infancy. Much work is needed here; the central problem is how tobridge the gap between the completely informal ideas and goals of the customer and the completelyformal language of algebraic speci�cations.Problem Requirements engineering: evolving accurate formal requirements speci�cations frominformal ideas.Once a version of the requirements speci�cation exists, it is necessary to ensure that it reects thecustomer's real intentions and needs. There are two aspects of this problem: the methodological oneof knowing what to check and phrasing the property to be checked in an appropriate formalism, andthe technical one of checking whether a formal requirements speci�cation ensures such a property.Theorem-proving technology, needed elsewhere in the program development process anyway, solvesthe latter problem if the property is expressed as a logical formula.Problem Speci�cation testing: checking that a requirements speci�cation reects the customer'sintentions.A traditional approach to solving this problem is to force the speci�cation to be written in an \execut-able" speci�cation language so that the customer can run examples to check if the results obtained�FB3 | Mathematik/Informatik, Universit�at Bremen, Bremen, West Germany.yInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.1



are the desired ones. We think that this is a bad idea. There is a fundamental tradeo� betweenexecutability and expressiveness, and it is clearly the latter which is of central importance in a lan-guage intended for writing requirements speci�cations. Demanding that requirements speci�cationsbe written in an executable speci�cation language is not much di�erent from requiring that they bewritten in a high-level programming language like ML. As a result, most of the alleged bene�ts offormally developing programs from speci�cations are sacri�ced before the development process haseven begun.Non-problem Making requirements speci�cations executable.Perhaps it would be more accurate to say that this is a non-solution to the problem of speci�cationtesting.All speci�cations which arise during the development process need to be built in a structuredway from relatively small units. Work on building structured speci�cations has concentrated bothon foundational aspects of the problem (semantics, elementary structuring mechanisms, etc.) andon the design of user-friendly speci�cation languages and notations. Languages have been proposedwith various combinations of features. The design of such languages and their foundations is a non-problem in the sense that there are a number of well-developed approaches. Nevertheless, we list itas a problem since none of these approaches is manifestly perfect and so other approaches are worthexploring.Problem Design of a \perfect" speci�cation language.The structure of a speci�cation incorporates intangible aspects of the speci�er's knowledge of theproblem being speci�ed and is essential to the understanding of the speci�cation. This structure isnot only a matter of presentation but can play an important role in its use. For this reason, dealingwith structured speci�cations by \normalizing out" the structure (if this is an option) is to be avoidedwhen possible. It is not always possible to convert speci�cations to some simple normal form, forexample to a at speci�cation; this is not a problem since there is no good reason to do this.Non-problem Normalizing structured speci�cations to unstructured speci�cations.This is related to the issue of normalizing structure on other levels, for example the structure of animplementation or the modular structure of a system. We see no practical reason to care whether ornot various ways of composing things give things which can be presented in some standard form. Thiscomposition must be meaningful on the semantic level (given the semantics of component present-ations, the semantics of the composition of these presentations must be well-de�ned) but it is notnecessary to insist that this composition has a presentation in the same form as the components.Non-problem Syntactic composability of module presentations, implementation presentations, etc.Speci�cation languages and software development frameworks should be made independent fromthe particular logical system used to write axioms insofar as this is possible. This is desirable in orderto allow di�erent logics to be used for di�erent purposes, thereby broadening the range of problemsto which such languages and frameworks may be applied. It follows that their foundations shouldbe expressed in logic-independent terms, which may be accomplished by working within an arbitrarylogical system encoded (for example) as a so-called institution.Methods of de�ning speci�cation languages and other aspects of software development frameworksin the context of an arbitrary institution are relatively well-established. What is not so clear is therelationship between model-theoretic formulations of general logic (such as institutions) and proof-theoretic formulations (such as Edinburgh LF or Isabelle). Appropriate connections are required inmake full use of theorem-proving tools being developed for the proof-theoretic approaches in programdevelopment frameworks based on model-theoretic approaches.Problem Establishing satisfactory connections between model-theoretic and proof-theoretic formu-lations of general logic. 2



The motivation for developing systems which are not dependent on any particular logical system isthat no single logical system is clearly adequate for all purposes. In most practical situations it isnecessary to use heterogeneous logics which contain constructs for dealing with di�erent features ofcomputation | parallelism, side-e�ects, non-determinism, polymorphism, higher-order functions, etc.Some of these features are still not adequately understood on the algebraic level, even when consideredin isolation from other features. It makes sense to develop complex logics from simpler logics in astructured fashion, just as complex speci�cations are built in a structured fashion from simpler units.Methods for building complex logics in this fashion are only beginning to be explored.Problem Development of algebraically-based logics for dealing with more features of computation,and of methods for building complex heterogeneous logics from simple logics in a structured fashion.The development of programs from speci�cations takes place via a sequence of implementationsteps. Between each step (or during steps, depending on the formalism in question) the speci�cationmay be decomposed into a number of smaller speci�cations which are then implemented separately.This gives rise to a tree of implementation steps with program fragments at the leaves. Vertical andhorizontal composability theorems guarantee that if all the individual implementation steps are correctthen the program which results from an appropriate combination of all these program fragments willbe a correct implementation of the original speci�cation.The basic foundations of this style of program development have been well-studied. But so farthis technology has not been applied much except to toy examples. There are at least two reasonsfor this. First of all, it is di�cult to come up with implementation steps. Schematic transformationrules which are guaranteed to produce correct implementation steps are useful at some stages of theimplementation process, but heuristic methods which hint at reasonable directions in which to proceedare also needed. This is the main creative step in program development and so no complete solutionis to be expected, but the topic is worthy of investigation. It is quite possible that such methods willbe speci�c to problems coming from certain subject areas (e.g. databases, text manipulation, etc.).Second, it is di�cult to prove the correctness of implementation steps once they have been proposed.Proofs are especially di�cult when behavioural equivalence is involved. Both of these topics needfurther work.Problem Methods (possibly heuristic methods) which make it easier to come up with implementationsteps.Problem Methods for proving the correctness of implementation steps, especially when behaviouralequivalence is involved.Another method for developing programs from speci�cations is via the \proofs as programs" paradigmwhereby a constructive proof of a theorem of the form 8X:9Y:R(X;Y ) gives rise to a program whichtakes X as input and produces Y as output such that R(X;Y ) holds. The relationship between thesetwo methods needs to be understood better. If an appropriate relationship can be established thenbene�ts should ow in both directions.One of the great bene�ts of formally developing software from speci�cations is the possibility ofreusing some program modules in later projects. One may imagine formal program developmentbecoming almost practically feasible in spite of its great unitary cost because of the potential ofspreading this cost over many di�erent projects. It is therefore very important to know under whichconditions implementations of speci�cations may be reused. This seems like an important questionbut it is not a problem which needs to be solved, if the program development framework is set upproperly. Suppose that the speci�cation SP is implemented by the program module P . If SP recursas the speci�cation of a module in the design speci�cation of another project, then P is reusable byde�nition (or else there is something seriously wrong with the program development framework). IfSP recurs as part of a requirements speci�cation, then it is premature to worry about implementationand so the question of reusing P does not arise. 3



Non-problem Conditions under which implementations of speci�cations may be reused.The eventual practical feasibility of formal program development hinges on the availability ofcomputer-aided tools to support various development activities. This is necessary both because ofthe sheer amount of (mostly clerical) work involved and because of the need to avoid the possibilityof human error. Existing systems tend to concentrate on one or two aspects of the speci�cation andformal development process. It is clear that an integrated environment to support formal developmentwould include a wide variety of tools. Much more work is needed here. At this stage it is even di�cultto say de�nitely what is needed.Problem Development of tools to support speci�cation and formal development.A number of support tools have already been developed, but so far the main emphasis has been onmaking speci�cations executable using term rewriting which we have argued above is a non-problem.There is de�nitely a role for term rewriting in a support system for formal program development, butit seems to us that this is a subtopic of the much more general problem of theorem proving. Onetopic which has been widely ignored is how to prove theorems about structured speci�cations. Thestructure of speci�cations introduces extra problems, since structured speci�cations cannot alwaysbe reduced to at speci�cations. On the other hand, there is some indication that the structure ofspeci�cations can be helpful in guiding proof search.Problem Theorem proving in structured speci�cations.One would hope that institution-independent foundations for speci�cation and formal developmentwould be reected at the level of support tools. The practicalities of this are very unclear, althoughsome progress has already been made in the area of theorem proving.Problem Translating institution-independence of foundations to the level of support tools.Another problem is the way in which such a collection of tools is integrated to form an environment.There are many issues here, including such things as the choice of an appropriate user interface andhow tightly the components of a support system should be coupled.Problem Architecture of environments to support formal program development.3 ConclusionThe above list of problems and non-problems reects our current state of thinking about these topics.When something is listed as a non-problem, this is not to be interpreted as an assertion that it isuninteresting or not worth studying; it is merely a statement that we do not see how \solving" itwill contribute much to progress towards the ultimate goal of formally developing programs fromspeci�cations. We hope that people who do not share our view will take this is as an invitation toexplain their motivation with respect to this goal, or with respect to some other explicitly-statedultimate goal.AcknowledgementsThe ideas in this note were presented by DS during a panel discussion at a meeting of the COM-PASS working group in Bremen in October 1989. The other panelists were Egidio Astesiano, MichelBidoit, Hans-Dieter Ehrich, Bernd Krieg-Br�uckner, and Fernando Orejas. We thank these peopleand the audience for the ensuing discussion which suggested ways of re�ning the presentation herein.Thanks also to Stefan Soko lowski for comments on a draft. DS received travel support from theCOMPASS working group which is funded by ESPRIT.4


