Refinement of Structured Specifications

$\frac{\text{for all } \varphi \in \Phi, SP \vdash \varphi}{SP \vdash \langle Sig[SP], \Phi \rangle}$
$\frac{SP \vdash SP_1 \qquad SP \vdash SP_2}{SP \vdash SP_1 \cup SP_2}$
$\frac{SP' \text{ hide via } \sigma \vdash SP}{SP' \vdash SP \text{ with } \sigma}$
$\frac{\widehat{SP} \vdash SP'}{SP \vdash SP' \text{ hide via } \sigma} \xrightarrow{\sigma: SP \to \widehat{SP} \text{ admits}} \text{model expansion}$

Clarifications: INS = $\langle \text{Sign}, \text{Sen} : \text{Sign} \to \text{Set}, \text{Mod} : \text{Sign}^{op} \to \text{Cat}, \langle \models_{\Sigma} \subseteq |\text{Mod}(\Sigma)| \times \text{Sen}(\Sigma) \rangle_{\Sigma \in |\text{Sign}|} \rangle$ is an institution that defines the logical system used for specifications, and SP, SP_1 , SP_2 , SP' and \overline{SP} are structured specifications over INS. Structured specifications in INS are built from basic specifications $\langle \Sigma, \Phi \rangle$ where $\Sigma \in |\text{Sign}|$ and $\Phi \subseteq \text{Sen}(\Sigma)$, the union of Σ -specifications $SP_1 \cup SP_2$, the translation "SP with σ " of SP along a signature morphism $\sigma : \Sigma \to \Sigma'$, and hiding "SP hide via σ " for hiding the symbols in SPnot occurring in the image of $\sigma : \Sigma' \to \Sigma$. Sig[SP] is the signature of SP and $Mod[SP] \subseteq |\text{Mod}(Sig[SP])|$ is the class of models of SP. A signature morphism $\sigma : Sig[SP] \to Sig[SP']$ is a specification morphism $\sigma : SP \to SP'$ if for every $M' \in Mod[SP']$, $\text{Mod}(\sigma)(M') \in Mod[SP]$. Then σ admits model expansion if $\text{Mod}(\sigma) : Mod[SP'] \to Mod[SP]$ is surjective. The judgement $SP \vdash \varphi$ is entailment for structured specifications which is required to be sound: $SP \vdash \varphi$ implies $M \models_{Sig[SP]} \varphi$ for every $M \in Mod[SP]$.

The judgement $SP \vdash SP'$ is meant to capture that SP refines (or entails) SP', that is, Sig[SP] = Sig[SP'] and $Mod[SP] \subseteq Mod[SP']$.

History: The first proof systems for refinement of structured specifications were given by Farrés-Casals [1] and Wirsing [2]. The above presentation can be found in [4], Sect. 9.3.

Remarks: The calculus is sound; it is complete if the underlying entailment system for structured specifications is complete [2, 4]. [3] provides additional rules for observability operators to support refinement by observational abstraction.

- Jordi Farrés-Casals. "Proving Correctness of Constructor Implementations". In: Mathematical Foundations of Computer Science 1989, MFCS'89, Porabka-Kozubnik, Poland, August 28 - September 1, 1989, Proceedings. Vol. 379. Lecture Notes in Computer Science. Springer, 1989, pp. 225–235.
- [2] Martin Wirsing. "Structured Specifications: Syntax, Semantics and Proof Calculus". In: *Logic and Algebra of Specification, Proceedings of the NATO Advanced Institute, 1991.* Vol. 94. Springer, 1993.
- [3] Rolf Hennicker. *Structured Specifications with Behavioural Operators: Semantics, Proof Methods and Applications*. Habilitation thesis. LMU Munich, 1997.
- [4] Donald Sannella and Andrzej Tarlecki. *Foundations of Algebraic Specification and Formal Software Development*. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2012.

Entry 29 by: Rolf Hennicker, Donald Sannella , Andrzej Tarlecki , Martin Wirsing