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Abstract

We reflect on our experiences from work on the design and semantic under-
pinnings of Extended ML, a specification language which supports the specific-
ation and formal development of Standard ML programs. Our aim is to isolate
problems and issues that are intrinsic to the general enterprise of designing
a specification language for use with a given programming language. Con-
sequently the lessons learned go far beyond our original aim of designing a
specification language for ML.

1 Introduction

There are many different approaches to the problem of producing correct software
systems in a given programming language. One line of attack involves the use of
a specification language that is tailor-made to specifying and verifying properties of
programs written in that particular programming language. This typically involves
the use of a logical language that is appropriate for writing assertions about entities
arising in programs written in that programming language. Some examples are: Anna
[LvH+87] for use with Ada; Larch [GH93] adapted to the programming language in
question via use of an appropriate “interface language”, e.g. Larch/C++ [Lea96];
and our favourite, Extended ML [KST97] for use with Standard ML. Closely related
is work on logics for reasoning about programs written in particular programming
languages, e.g. Haskell [Tho93]. Although most of the details of this enterprise are
specific to the particular programming language at hand, certain problems and issues
are common to all programming languages or to a class of languages.

In this paper, we reflect on our experiences from work on the design and semantic
underpinnings of Extended ML with emphasis on some of the more general lessons
learned. The topics we cover range from the very general to the somewhat specific:
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Sect. 4 on the relationship between models of programs and models of specifications
applies to any programming language; Sect. 5 on adding logical formulae to a language
with a Hindley-Milner (implicitly polymorphic) type system is relevant to any pro-
gramming language having such a type system; most of Sect. 6 on indistinguishability
is relevant mainly to ML and fragments of ML. We begin with a brief description of
Extended ML to provide some context for the rest of the paper.

2 Extended ML in brief

Extended ML (EML) is a wide-spectrum language for the specification and devel-
opment of modular Standard ML (SML) programs. “Wide-spectrum” means that it
encompasses both specifications and programs, as well as hybrids between the two.
These hybrids arise as the intermediate stages of the process that turns a formal
specification into a concrete program that implements it.

EML was conceived in the mid-1980s [ST85], combining ideas from algebraic spe-
cification and the then rapidly evolving functional programming language ML. Once
ML was standardised and given a formal semantics in 1990 [MTH90], a project was
set up to do the same with EML, resulting in its formal definition in 1994 [KST94].

We are not going to describe the features of EML in any but the most superficial
detail. See [KST97] for more details and a gentle but thorough introduction to the
EML semantics. A programmer-oriented introduction is [San91].

We can roughly describe EML as an extension of SML (minus some of its imper-
ative features) with the following specification features:

• placeholders for expressions, type expressions, and structure1 expressions; these
are used to express incomplete programs, which are useful entities during pro-
gram development

• axioms in structures; these are used to narrow down the possible choices for
replacing placeholders

• axioms in signatures1; these demand and/or export properties of the implement-
ing structure

• first-order logic with equality as the language for axioms.

This is a gross simplification and we shall have to expand on some of this later on.
The definition of EML [KST94] is an extension of the definition of SML [MTH90] by
(among other things) a definition of the meaning of axioms and what it means for a
structure to satisfy the axioms in a signature.

3 Fundamental principles

Suppose we are given a programming language P and the task of designing a specific-
ation language S suitable for the specification and development of P -programs.

1“Structure” is ML-speak for module, “signature” for module interface.
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Is this always possible? Which features should S contain, which primitives, which
logical connectives? Equally importantly: which features should S not contain? To a
certain extent one can answer these questions generically.

Different specification languages have different aims. Near one extreme would
be a specification language that is intended as a formal notation for documenting
programs, or as a vehicle for requirements capture, with no way to verify with any
degree of formality that a given program satisfies a given specification. Then there
is no need to make a formal connection between P and S, and indeed S may be
appropriate for a range of programming languages. Near the opposite extreme would
be specification languages like EML where a central aim is to enable proofs about
specifications, and proofs that a given program satisfies a given specification. Here a
formal connection between P and S is essential to establish the soundness of inference
rules used in proofs that connect P -programs and S-specifications. Our concern in
this paper is with specification languages of the latter kind.

Given that aim, it is not possible to come up with a meaningful specification
language for P unless P has a formal semantics. Without a formal semantics for
P we are not certain what P -programs are supposed to do, making it impossible to
establish reliably any property of any P -program or to prove interesting relationships
between P -programs and S-specifications. Unfortunately, this requirement rules out
most present-day programming languages.

The design of S is constrained by the properties of the semantics of P . For
example, the properties of P -programs we can express in S should not transcend the
properties we can establish from the formal semantics of P . This is closely related to
the reason why we need a formal semantics for P in the first place.

For instance, the dynamic semantics of SML [MTH90] defines the result of eval-
uating an expression in a particular environment and a given state. But it does not
specify the required time and space resources for such an evaluation. The size of
the derivation of the evaluation judgement (built from instances of the rules of the
semantics) indicates the required resources in a naive evaluation model, but this in-
formation is unreliable — SML compilers are not forced to stick to the evaluation
model implicitly suggested by the SML semantics and hardly any of them do so. This
means that any specification language for SML should abstain from specifying the
efficiency and/or complexity of a program.

One may object: people do reason about the efficiency of SML programs, don’t
they? But if compilers are allowed to modify the performance of a program by optim-
ising it (which in some cases may even slow it down) then the observed performance
becomes compiler-dependent. In other words: efficiency is a property of the machine
program the compiler chooses to realize a source program, rather than a property of
source programs themselves. When we reason about the efficiency of programs we
assume that the compiler is not clever enough to significantly depart from the naive
evaluation model given by the operational semantics. There is no formal justification
for such an assumption.

If P is a typed language, it is natural to exploit its type system both to coordinate
the required link with S and to provide the basis of a type system for S. Although
the utility of a type system for specifications as such is a matter of some debate — see
e.g. [LP97] — we can hardly avoid mentioning types in S when asserting properties
of typed programs in P . For example, when specifying the behaviour of a function

3



f : t→ t′ it is often necessary to quantify over the values of type t. Apart from this,
there is also the important design issue of making P -programmers feel “at home”
when writing S-specifications. It therefore seems desirable that the type system for
S be as close as possible to the type system for P . When, as in the case of EML, P
is a subset of S, the type system of S should be a conservative extension of the type
system of P : a P -expression e has a P -type t in S iff e has type t in P .

4 Models of programs vs. models of specifications

The semantics of the programming language P will assign models to programs of P .
For each P -program p, its model [[p]] will contain some assortment of mathematical
objects modelling the components of p, including (for example) the functions defined
by p.

Any specification language S needs a semantics which defines the meaning [[s]] of
each S-specification s. This is a necessary basis for specification-based proof: proof
that a given program satisfies a given specification; proof that one specification is a
refinement of another; or proof that all programs satisfying a given specification will
satisfy a given property. When we design a specification language S for use with a
programming language P , it is natural to define the meaning of an S-specification as
the class of all P -models (i.e. models of well-formed P -programs) having the indicated
components and satisfying the requirements spelled out in the specification (see e.g.
[ST97]). This enables us to say that a P -program p satisfies an S-specification s
exactly when the model of p is in the class of models determined by s: [[p]] ∈ [[s]].

The expressiveness of P dictates the structure of models of P -programs. For
instance, if P provides constructs for defining non-deterministic functions, models
of P -programs containing such functions will need to model them using something
more exotic than ordinary set-theoretic functions. Even if P does not provide such
constructs, provided P is sufficiently expressive (that is: unless it is extremely inex-
pressive), functions in P -programs cannot be modelled by arbitrary set-theoretic func-
tions. For example, the untyped λ-calculus requires a domain D of values such that
D ∼= D → D; here D → D cannot be the whole function space (since D ∼= D → D
implies |D| = |D → D| = |D||D| i.e. |D| = 1) so it is taken to be the space of con-
tinuous functions [Gun92]. Another source of restrictions on models of P -programs
is the desire to reflect more accurately the constraints that P imposes. For instance,
no matter what P is, no P -program will contain definitions of non-computable func-
tions and so it would be natural to take only computable functions in P -models. In
SML, each function is modelled as a closure which contains the expression used in
defining the function, so we get only the SML-expressible functions [MTH90]. Of
course, all of these are computable, but not all computable functions of a given type
are SML-expressible [Kah96].

Putting these together (the decision to interpret S-specifications using classes of
P -models and the imposition of computability and other restrictions on P -models)
leads to a possible problem, as the following example from [ST96] illustrates.

Example 1 Let ϕequiv be a sentence which asserts that equiv(n,m) = true iff the
Turing machines with Gödel numbers n and m compute the same partial function
(this is expressible in first-order logic with equality, since the equivalence of TMs is

4



arithmetical [Rog67]). Now consider the following specification:

local val equiv : nat * nat -> bool
axiom ϕequiv

in val opt : nat -> nat
axiom forall n:nat => equiv(opt(n),n) = true

end

This specifies an optimizing function opt transforming TMs to equivalent TMs. (Ax-
ioms could be added to require that the output of opt is at least as efficient as its
input.) If functions in P -models are required to be computable (and the semantics
of specifications is compositional with models of local s in s′ end obtained by forget-
ting the s-components of models of s; s′) then this specification will have no models
because there is no computable function equiv satisfying ϕequiv. Yet there are com-
putable functions opt having the required property, for instance the identity function
on nat. Thus this specification disallows P -programs that provide exactly the re-
quired functionality. 2

The example is expressed in terms of Gödel encodings of Turing machines where its
practical utility may not be apparent, but exactly the same example could be phrased
in terms of program fragments in a real programming language and a specification
like the one above (and exhibiting exactly the same problem) could then appear as
part of the specification of an optimizing compiler or program transformation system.

Here are three ways around this problem:

1. Treat local functions differently from “exported” functions, allowing them to
be non-computable. Programs are not required to implement local functions in
specifications anyway.

2. Relax the computability requirement on all functions.

3. Prohibit local functions in specifications.

The second solution seems simpler than the first because it is uniform. This is the
approach taken by EML, where each function is modelled as an EML-expressible
closure — still a closure, but where the expression in the closure is allowed to include
“logical” constructs such as universal and existential quantifiers rather than being
expressible using just the constructs of SML [KST94, KST97]. The third solution is
unattractive since it sacrifices a great deal of expressive power.

Relaxing conditions on models needs to be done with care. Restrictions needed
to ensure that models exist are still required (see the discussion of the untyped λ-
calculus above). And there is a “logical” limit on expressibility: provided S extends
Peano arithmetic, Gödel’s fixpoint theorem can be applied to show that if satisfaction
of the closed formulae of S can be defined in S itself (e.g. as a total function of type
formula -> bool), then S is necessarily inconsistent.2 It appears that any attempt
to define EML satisfaction in EML yields a function that fails to terminate in some
cases.

2Thanks to Martin Hofmann for this observation.
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5 Parametricity

The kernel type system of most functional programming languages these days is
Hindley-Milner polymorphism [Mil78], i.e. shallow, implicit polymorphism. (“Shal-
low”, means that all type quantifiers occur outermost; “implicit” means that type
abstraction and application are syntactically suppressed.) SML needs some modi-
fications to cope soundly with imperative features, but we can ignore this for the
moment.

The implicitness of type abstraction and type application strongly limits the op-
tions for possible extensions of the type system, should an extension be required to
accommodate the specification logic: type inference and type checking for System F
are undecidable [Wel94], as is type inference for Hindley-Milner polymorphism with
the addition of proper polymorphic recursion [KTU93].

5.1 Prerequisites for implicit polymorphism

Why do we get away with implicit polymorphism? That is, why are we satisfied with
the particular choices of type abstraction and type application selected by the type
inference algorithm?

There are two fundamental reasons why this is so:

1. There is a best possible choice — and the type inference algorithm picks it.

2. Whatever choice is made, the outcome of evaluation is not affected.

The mentioned best possible choice is the so-called “principal” or “most general” type.
The principal type subsumes all other possible types, in a technical sense which we
can ignore here. In a certain sense, choosing the principal type is like3 making no
choice at all, leaving all options open.

The second reason is much more important.
Since type applications are implicit, the types inferred for expressions by the type

inference algorithm are to a certain degree arbitrary. Consider the inference rule for
type-checking function application:

Γ ` e1 : σ → τ Γ ` e2 : σ
Γ ` e1 e2 : τ

When we infer the type of an application term e1e2, the rule requires that the argument
type of the function e1 and the type of the actual parameter e2 agree — these are the
two occurrences of σ in the premise of the rule. The type inference algorithm makes
sure that this is the case, but this does not necessarily completely determine the type
σ, since it is possible that different types have this property. We would not want these
arbitrary choices to influence the computation in any way.

Other arbitrary choices arise when type variables are implicitly abstracted at de-
claration level. All type variables are abstracted that can possibly be abstracted (i.e.
those in the type that do not occur free in the context), and the order of abstraction
is arbitrary. Again, these arbitrary choices should not influence the computation.

3There are a couple of involved technical reasons why this is not quite true for SML, even after
the 1997 revision [MTHM97]. For our purposes this is a side-issue.
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There are several (related) ways of capturing this idea, e.g. Reynolds’ notion of
parametricity [Rey83] and Wadler’s theorems for free [Wad89]. Essentially, type quan-
tification can be manipulated in this implicit manner because types do not interfere
with computation in System F.

More concretely, one can view type inference as a process that inserts type conver-
sion functions, in addition to type abstractions and applications, whenever necessary
to generate an explicitly typed program. Parametricity requires that these conver-
sions are isomorphisms; this may not be the case — see [Cos92] — but for purposes
of evaluation, verification and analysis of programs it is sufficient if they behave like
isomorphisms: in other words, the function that converts back and forth should be
indistinguishable from the identity function. (An informal understanding of indistin-
guishability will suffice for now. See Sect. 6.1 below for a definition.)

From what we have already seen, it should be clear that we need isomorphisms
∀α.∀β. τ ∼= ∀β.∀α. τ since we abstract type variables in an arbitrary order, and
∀α. τ ∼= τ (if α /∈ FV(τ )) since we only abstract type variables that occur. There are
more such requirements4, but these two are sufficient to make our points.

It is not difficult to formulate the required isomorphisms in System F. We will
write Λα.t and t[τ ] to denote type abstraction and type application on term level,
respectively.

We can express the commutativity isomorphism (in both directions) by

ι = λx : (∀α.∀β.τ ).Λγ.Λδ.x[δ][γ]

It is easy to check that ι ◦ ι is βη-convertible5 to the identity function, and so ι
is an isomorphism. More problematic is the conversion between τ and ∀α.τ (with
α /∈ FV(τ )). The required maps are

ι1 = λx : τ.Λα.x ι2 = λx : (∀α.τ ).x[1]

where 1 is the unit type (or any other chosen type). Again, ι2 ◦ ι1 can easily be
seen to be βη-convertible to the identity. However, while ι1 ◦ ι2 is βη-convertible to
λx : (∀α.τ ).Λβ.x[1], it is not convertible to the identity function. We therefore require
that λx : (∀α.τ ).Λβ.x[1] is indistinguishable from the identity function whenever α
is not free in τ . In this case, the required property can be proven in an extension of
System F with “Axiom C” from [LMS93]. Turning this back into English: if the type
of a term t does not depend on the type parameter then neither should the value of t
itself be affected by it.

Extensions of the purely functional sublanguage with other features should pre-
serve the property that ι1 ◦ ι2 is indistinguishable from the identity function. This
requirement applies to various forms of language extension including an extension
with logical formulae or imperative features.

4Another one is ∀α.(τ1×τ2) ∼= (∀α.τ1)×(∀α.τ2) which is needed since SML supports simultaneous
declarations.

5To be precise, for call-by-value languages such as SML we need to restrict βη-conversion to
values, as in Moggi’s λc-calculus [SW96]. Under this restriction, we can reasonably assume that
βη-convertible expressions are indistinguishable, even when the language is extended.
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5.2 Assessing the logic

Quantification over values in a typed language P is itself necessarily typed, i.e. we
quantify over values of a particular type. For example, if we specify the reverse
function for lists then we are not concerned with what it would do if applied to
numbers or functions — the type system of P is supposed to prevent that.

There is a problem with typed quantification which arises from the fact that the
truth value of a formula may depend on the type of quantification. The simplest
example is the following:

forall x:t => false

This formula is false, unless t is an empty type, in which case it is true. In EML,
we view a type as empty if it has no values. There are indeed empty types in SML
and EML, e.g. datatype t = C of t.

The example is perhaps unconvincing, first because in languages with lazy eval-
uation one would normally regard ⊥ as inhabiting any type, and second because it
resembles the empty-sort problem in algebraic specification [GM85, PW84] which can
be dealt with by banning empty sorts altogether, considering that their usefulness for
specification and programming is rather limited. However, the problem goes deeper
than that; consider the following EML formula:

forall (x,y:t) => x == y

(Here, == is EML logical equality, see Sect. 6.) Again, this formula is true if t is an
empty type, but it is also true if t is a singleton type, like unit. In general, first
order logic with equality allows one to distinguish finite types from infinite types and
also finite types of different cardinality.

The above example shows that the problem already appears for universally quan-
tified equations. Here is another example of the same thing, which relies on the use
of a function:

forall (xs: t list) => rev xs == xs

If rev is ordinary list reversal then this formula implicitly specifies the same property
as the previous one: x==hd[x,y]==hd(rev[y,x])==hd[y,x]==y.

These examples show that the truth value of a logical formula can depend on
the type of quantification. Indirectly, this means that its truth value can depend
on the assignment of types to type variables, and therefore formulae for which this
assignment can vary may have varying truth values. Since the type of a formula is just
bool, the addition of typed quantification breaks the required isomorphism between
bool and ∀α.bool.

After making this observation it should not come as a surprise to observe that im-
plicit polymorphism has some rather uneasy interactions with formulae. These do not
occur often; in EML one has to employ the available forms of explicit polymorphism
to contrive unpleasant examples. Here is one:

type ’a dummy = bool
val b:’a dummy = forall (x,y:’a) => x==y
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The variable b is bound to a boolean value, but is it true or false? Morally, this
should depend on the type application at each instance of b, being true iff the argu-
ment type has at most one element. But type application is implicit in ML and in
this case we cannot reconstruct what the type argument is as it is not retained by our
implicit conversion ι2.

The problem is aggravated by the identification of formulae and boolean expres-
sions. As a consequence of this identification, formulae can appear within arbitrary
expressions, exporting the observed type dependency to values of all types.

Of course, one can argue that in view of the evident type-dependency of the lo-
gic one should abandon implicit polymorphism and make all type abstractions and
applications explicit. There are just two problems with this: firstly, implicit poly-
morphism is such a successful design feature because it combines the benefits of a
strong type system (soundness) with the benefits of an untyped language (you do
not have to write types); secondly, an explicitly typed wide-spectrum language would
co-exist rather uneasily with an associated implicitly typed programming language.

EML sidesteps the problem of type-dependency by giving type-dependent expres-
sions in axioms no value, and taking an arbitrary choice from among the possible
values of type-dependent expressions that are not within axioms. The solution for
axioms is satisfactory because we are concerned only with whether axioms are sat-
isfied or not, and when an axiom has no value it is regarded as not being satisfied.
The solution for type-dependent expressions outside axioms is less satisfactory but it
seems adequate for practical purposes since this situation is very rarely encountered.

5.3 Imperative features

At this point it is perhaps worth pointing out that the addition of logical features is
not the only language extension that sits uneasily with implicit polymorphism.

It is well known that imperative features such as references endanger the soundness
of a polymorphic type system [Dam85, Tof88, Wri95]. What is perhaps less well-known
is that the associated problems can largely be attributed to the implicitness of the
polymorphism. One of the proposals in Xavier Leroy’s thesis [Ler92] to circumvent the
known soundness problems with polymorphic references is to make type abstraction
explicit. Technically, this is achieved by having two different kinds of let-binding,
a polymorphic one and a monomorphic one; whenever a let-bound variable is used
which originates from a polymorphic let then we have an implicit type application
which — in Leroy’s suggested semantics — forces a new evaluation of the associated
expression. In other words, Leroy only makes the type abstraction explicit; for his
purposes he does not need to know the type parameter of the type application, the
fact that there is some type application is sufficient.

The key to Leroy’s idea is that type abstractions are treated as value abstrac-
tions — the evaluation of the body of the abstraction is delayed until a parameter is
provided. The problem that this circumvents is again the fact that ι1 ◦ ι2 is not in-
distinguishable from the identity function in System F extended with references. But
this time it is βη-convertible to the identity function if η-conversion is unrestricted,
which shows that unrestricted η-conversion is unsound in the presence of side-effects.
There is a difference between passing t and Λα.t[α] as a parameter: for t we generate
references once, for Λα.t[α] we generate references at each type application separately.
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6 Logical equality and indistinguishability

The concept of equality is much underestimated in mainstream mathematics. The
general attitude seems to be: what could be simpler than that? Consequently, equal-
ity is viewed as a primitive concept in set theory, in universal algebra, and thus in
algebraic specification. In type theory, equality is no longer a primitive concept, and
some type theories even have more than one notion of equality.

Considering the origins of EML in algebraic specification, it should not come as a
surprise that the EML logic contains t==u (so-called logical equality) as one form of
atomic formulae. Logical equality is defined using the notion of indistinguishability
in order to make it extensional on function types [KST97]. Some problems that arise
with the use of indistinguishability are discussed in the rest of this section.

6.1 Indistinguishability

Two expressions exp1 and exp2 of type τ are indistinguishable if and only if for any
context C[ ] of type unit with a hole of type τ we have that the evaluation of C[exp1]
terminates iff the evaluation of C[exp2] terminates (cf. e.g. [Ong95]). One can always
distinguish “genuinely” different values (such as 0 and 1, or true and false) in this
way.

The choice of unit as the result type for the distinguishing contexts is somewhat
arbitrary, except that expressions of type unit are only distinguished by their termin-
ation behaviour. An obvious alternative would be bool and distinguishing contexts
returning true and false, respectively. If C[exp1] = true and C[exp2] = false
then there is obviously a context C ′ that distinguishes exp1 and exp2 in the above
sense. However, with this choice we would not even be able to distinguish the totally
undefined function undef from any other function. This would make indistinguishabil-
ity non-transitive since we would have f==undef==g for any two functions f, g having
the same type. But in a system like the typed λ-calculus where evaluation always
terminates, this choice is perfectly reasonable.

Indistinguishability is a difficult relationship. Clearly, it is not decidable, but
worse than that, it is neither semi-decidable nor co-semi-decidable. The theory of
β-conversion (for untyped λ-calculus) is not recursive either, but at least it is r.e.
and so there is a complete proof system that enables us to establish β-convertibility
whenever it holds. With typed λ-calculi (without general recursion) we typically
have that indistinguishability is co-r.e., because we can enumerate the distinguishing
contexts and evaluation always terminates,6 but not r.e., because equality in the fully
abstract model is undecidable; thus, we can at least have a proof system to refute
indistinguishability in that setting.

For a system like SML where termination is not guaranteed, we have the worst of
both worlds: indistinguishability is defined in terms of distinguishing contexts (which
we can enumerate), but even if the context C[ ] is given, comparing the termination
behaviour of C[exp1] and C[exp2] requires a solution to the halting problem, in general.

Proposition 1 Indistinguishability for SML is neither semi-decidable nor co-semi-
decidable.

6Since evaluation always terminates, here we define indistinguishability via contexts of type bool
returning true or false.
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Proof: Suppose that indistinguishability were co-semi-decidable, i.e. that distin-
guishability were semi-decidable. Then we would be able to decide the halting problem
for any program t by comparing the constant c with the expression (t; c) (which com-
putes t, throws it away and then returns c). This solves the halting problem for t,
because we can distinguish c from (t; c) iff t fails to halt: if t fails to halt then the
semi-decision procedure would terminate; so we just have to run the evaluation of t
in parallel and wait to see which process terminates first.

Suppose that indistinguishability were semi-decidable. A similar argument applies,
where we compare t with a looping program. 2

The above argument can easily be adapted to languages other than SML.
Proposition 1 says that whatever proof system we may come up with to support

formal proofs and/or refutations of indistinguishability, it will be incomplete in the
strong sense that there will be indistinguishable expressions which the system will fail
to certify as indistinguishable as well as distinguishable expressions which it will fail
to distinguish.

6.2 Indistinguishability in the presence of impure features

The computational sublanguage of EML is not quite a “pure” functional program-
ming language. Although references and input/output were omitted, exceptions were
retained in the hope that they would not upset reasoning about programs too much.
This hope turned out to be misplaced.

One aspect of ML exceptions can be expressed by so-called names. Names can
be generated using a new function, and names can be compared for equality where
separately-generated names are not equal. The type of names can be implemented
in SML in various ways: using references (e.g. via unit ref and the equality of
references, or an abstype with a local counter); or just via exceptions:

abstype name = A of exn * (exn -> bool)
with fun new f = let exception X

in f(A(X,fn X=>true| z=> false))
end

fun eq(A(_,f),A(e,_)) = f e
end

As type of new we have (name->’a)->’a which exactly corresponds to the idea that
new is a variable binder, i.e. we write new (fn x=>a) for the expression a with the
new name x.

Reasoning about indistinguishability of programs containing names is notoriously
difficult [PS93], to the point where for certain “obviously” equivalent expressions, no
syntactic method of establishing indistinguishability is known. So, this is already bad
news. What makes the situation worse is that the very presence of names affects
indistinguishability of ordinary applicative programs:

Example 2 Consider the functions g1 and g2, defined as follows:

fun g1 f x = (f x, f x)
fun g2 f x = let val z=f x in (z,z) end

11



The functions g1 and g2 are clearly indistinguishable in a purely applicative call-by-
value language.7 However, in the presence of names we can write the function C which
distinguishes them: C g1 is false while C g2 is true.

fun C g = eq(g new (fn x=>x))
2

Notice that the result of post-composing g1 or g2 with either the first or second
projection is indistinguishable (even in the presence of names) from ordinary function
application. If follows that pairing is not a categorical product.

In EML we do not have names as a primitive; we have exceptions which — as
we have seen — are expressive enough to encode names. However, they are more
expressive than names, in the sense that the presence of exceptions allows even more
applicative programs to be distinguished than names do.

Example 3 Consider the functions andl and andr, defined as follows:

fun andl a b () = if a() then b() else false
fun andr a b () = if b() then a() else false

The functions andl and andr are indistinguishable in applicative contexts and remain
indistinguishable if we have names at our disposal. However, in the presence of ex-
ceptions we can write the function C which distinguishes them: C andr is false and
C andl is true.

exception A
fun nothing() = raise A
fun ff() = false

fun C a = a nothing ff () handle _ => true
2

If we further add references and/or input/output then even more applicative pro-
grams can be distinguished. Here is an example of two functions that are indistin-
guishable in the presence of exceptions but distinguishable by references.

Example 4 Consider the functions r1 and r2, defined as follows:

fun r1 g x = (g x; g x)
fun r2 g x = g x

The functions r1 and r2 are indistinguishable in the absence of references: if g x fails
to terminate or raises an exception e then so will both r1 g x and r2 g x; otherwise
the resulting values could only differ in freshly generated exception names, but then
these sets of names are isomorphic. But the following function C distinguishes them:
C r1 is 3 and C r2 is 2.

7In our examples, we nonchalantly claim the indistinguishability of particular expressions in cer-
tain sublanguages of SML without proof. One could establish these formally by using and combining
techniques from the literature, e.g. applicative bisimulations [Abr90] and applicative equivalences
[PS93].
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fun C r =
let val x = ref 1

fun g y = y := !y + 1
in r g x; !x
end

2

Fans of pure functional languages might be feeling smug at this point, since all our
problems appear to be caused by just the features that are absent in pure languages.
But this reaction misses an important point, since it is well-known that monads can be
used to model imperative features within pure functional languages [Mog89], [PW93].
It follows that all the problems of reasoning about these features are already present
in the applicative world.

Example 5 Consider the following definition of a “clock” monad:

type ’a clock = int -> ’a
fun unit x = fn _ => x
infix >>=
fun x >>= f = fn n => f (x n)(n+1)

This is not a monad in the categorical sense since the coherence laws do not hold,
but for our purposes this does not matter. It is simply a program fragment which we
could write if we were inclined to do so. The idea is to view the integer parameter of
clock as the current time, so that each expression in the monad world can access the
current time, while function application (>>=) makes time advance, because the result
of application is interpreted one clock tick after the interpretation of the argument.
One can use clock to simulate names as follows:

abstype name = A of int
with fun new f = f o A

fun eq(A n,A m) = unit (m=n)
end

Now new and eq do not return name and bool but name clock and bool clock,
respectively. We can now translate Example 2 into this setting:

fun g1’ f x = f x >>= (fn r => f x >>= (fn s => unit (r,s)))
fun g2’ f x = f x >>= (fn z => unit (z,z))
fun C’ g = (g new (fn x=>x) >>= eq) 0

The functions g1’ and g2’ are the monadic translations of g1 and g2, respectively. If
the corresponding monad were the identity monad — with unit the identity function
and >>= being reverse function application — then they would be identical to the
original versions g1 and g2. But in the clock monad, the function C’ distinguishes
g1’ from g2’. 2

The lesson we can learn from this is the following: if indistinguishability is such a
difficult relationship in the presence of names that we have to resort to denotational
methods to prove it, then it is just as difficult in the absence of names — we still
need denotational methods. The only difference is that names pull the problem a few
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grades down the type hierarchy, making it omnipresent. But if we were looking for
a general method to prove indistinguishability, one that operates on all types, then
sticking to a pure language does not avoid the inherent problem. Indistinguishability
is difficult!

Moreover it is a rather volatile relation: any additional features8 chosen by an SML
implementor for the library of his or her implementation may affect indistinguishab-
ility. As one of our earlier examples has shown, the indistinguishability relations of
SML and EML differ because SML has references which can be used to distinguish
otherwise equivalent applicative programs while these are absent in EML. Thus, SML
programs developed in the EML formalism may only be partially correct in the sense
that equivalences required in the specification which hold in the absence of references
may fail to hold in their presence.

7 Conclusion

The design of EML unmasked more problems and issues than we have been able to
cover above. We have concentrated on those that are of more general interest, and
that are relatively easy to explain. One class of interesting issues that are rather
difficult to explain in the space available involve SML’s module language, concerning
e.g. the interpretation of module interfaces and the treatment of module components
that are not exposed by the interface. All of the issues discussed above pertain to
SML’s core language for defining the components of modules (types, values, etc.).

Some of the problems discussed above arose from our attempt to combine spe-
cification features with programming features in a single language. It is unclear to us
whether all of the problems mentioned will arise if the specification and programming
languages are decoupled as they are in the Larch “two-tiered” approach [GH93]. Our
feeling is that the same problems, or some of them, may well re-emerge in a different
form, but we have no concrete evidence for this assertion. Direct comparisons are
difficult because the preliminary work on Larch/ML in [WRZ93] was (to the best of
our knowledge) never followed up.

Prior to 1990, work on EML (by the second author and Andrzej Tarlecki) focussed
on the use of ML-style modules in specification and formal development. The features
of SML’s core language and the specification constructs required at that level were
viewed as one possible instantiation of this general picture [ST86]. Only when we
looked at these features in excruciating detail while working on the semantics of
EML did we discover problems like those described above. This makes us skeptical of
attempts to connect specifications and programs on an informal level without reference
to formal definitions of both languages. Even if the aim is not formal proofs of
correctness, programming languages are complicated enough that there are bound to
be hidden problems. Undertaking the detailed analysis that is required when writing
a semantics appears to be the best way of exposing these.
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