
A kernel speci�cation formalism with higher-order parameterisation�Donald Sannellay Andrzej TarleckizAbstractA speci�cation formalism with parameterisation of an arbitrary order is presented. It isgiven a denotational-style semantics, accompanied by an inference system for proving thatan object satis�es a speci�cation. The inference system incorporates, but is not limitedto, a clearly identi�ed type-checking component.Special e�ort is made to carefully distinguish between parameterised speci�cations,which denote functions yielding classes of objects, and speci�cations of parameterisedobjects, which denote classes of functions yielding objects. To deal with both of these ina uniform framework, it was convenient to view speci�cations, which specify objects, asobjects themselves, and to introduce a notion of a speci�cation of speci�cations.The formalism includes the basic speci�cation-building operations of the ASL speci�c-ation language. This choice, however, is orthogonal to the new ideas presented. Theformalism is also institution-independent, although this issue is not explicitly discussed atany length here.1 IntroductionThe most basic assumption of work on algebraic speci�cation is that software systems are modelledas algebras. The signature of the algebra gives the names of data types and of operations, and thealgebra itself gives the semantics of the particular realisations of these data types and operations inthe system. Consequently, to specify a software system viewed in this way means to give a signatureand de�ne a class of algebras over this signature, that is, describe a class of admissible realisations ofthe types and operations.The standard way to give a speci�cation of a system in work on algebraic speci�cation is to presenta list of axioms over a given signature and describe in this way the properties that the operations ofthe system are to satisfy. This view of algebraic speci�cation is perhaps the simplest possible, buthas a number of disadvantages. Most notably, any speci�cation of a real software system given in thisstyle would comprise a very long, unstructured, and hence unmanageable list of axioms.An obvious solution to this problem is to devise a speci�cation language to build speci�cations ina structured fashion, using some speci�cation-building operations to form complex speci�cations byputting together smaller and presumably well-understood pieces. The need for structure in speci�c-ations is universally recognized, and mechanisms for structuring speci�cations appear in all modernalgebraic speci�cation languages including CLEAR [BG 80], CIP-L [Bau 85], ASL [SW 83], [Wir 86],ACT ONE [EM 85], PLUSS [BGM 89] and the Larch Shared Language [GHW 85].An important structuring mechanism is parameterisation. A parameterised speci�cation P maybe applied to any non-parameterised speci�cation SParg �tting a certain signature �par (or parameterspeci�cation SPpar) to yield a speci�cation P (SParg). Hence, parameterised speci�cations are trans-formations mapping (argument) speci�cations to (result) speci�cations. A standard example is a spe-ci�cation Stack-of-X which takes a speci�cation of stack elements and produces a speci�cation of stacks�Much of the material presented here has been included in a very preliminary form in Section 6 of [SST 90].yLFCS, Department of Computer Science, University of Edinburgh, Edinburgh, Scotland.zInstitute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.1

containing those elements. All the speci�cation languages mentioned above provide a parameterisa-tion mechanism, although the exact technicalities vary considerably1. In some algebraic speci�cationframeworks, parameterisation is implicit in the sense that no distinction is made between paramet-erised and non-parameterised speci�cations (see for example LOOK [ETLZ 82], ASPIK [Vo� 85] andthe uni�ed algebra framework [Mos 89a], [Mos 89b]) but the idea is the same.Quite similarly, adequate structuring mechanisms are needed to organise programs to facilitatetheir development and understanding (and to enable separate compilation of program components).Many modern programming languages, beginning with Simula [DMN 70] and including Modula-2[Wirth 88], CLU [Lis 81], Ada [Ada 80] and Standard ML [MTH 90] provide some notion of a programmodule to allow the programmer to structure the code being written. Again, an important structuringmechanism here is parameterisation. A parameterised program module F (an ML functor [MacQ 86],cf. [Gog 84]) may be applied to any non-parameterised program module Aarg matching a given importinterface Apar. The result is a non-parameterised program module F (Aarg), a version of F in which thetypes and functions in Apar have been instantiated to the matching types and functions in Aarg . Anexample of a parameterised program module is a parser module which takes a lexical analyser moduleas argument. Since we model programs as algebras, such parameterised program modules are naturallymodelled as functions mapping (argument) algebras to (result) algebras, i.e., algebras parameterisedby other algebras. Somewhat informally, we will refer to such objects as parametric algebras (cf.algebra modules in OBSCURE [LL 88]). It is important to realise that such parametric algebrasmodel self-contained programming units, and hence may correspond to independent programmingtasks in the process of development of a software system.A common drawback of the speci�cation languages mentioned above is that they are predomin-antly concerned with speci�cations of non-parametric algebras without any provision for the struc-turing mechanisms used to construct complex programs (algebras) in a modular way. In particular,they do not provide any explicit concept of a speci�cation of parametric algebras. In some speci�ca-tion frameworks this comes in, but only implicitly as an alternative interpretation of the concept ofparameterised speci�cation used in the formalism. For example, the \parameterised speci�cations" ofACT ONE [EM 85] are interpreted both as means of transforming speci�cations, i.e., parameterisedspeci�cations in our sense, and as a description of a certain functor on algebras, i.e., of a parametricalgebra in our sense. Unfortunately, this dual view of \parameterised speci�cations" imposes in e�ecta requirement that the structure of a program implementing a speci�cation, composed of (possiblyparametric) algebras, must follow the structure of the speci�cation, composed of (possibly paramet-erised) speci�cations. This not only violates the principle that a requirements speci�cation is todescribe the what without indicating the how of the system, but also is not acceptable from a practicalpoint of view (see [FJ 90] for a realistic example of a speci�cation with a structure entirely di�erentfrom the structure of a software system it describes). We have discussed this issue in much detail in[SST 90], where our conclusion was summarised by the following slogan:parameterised (program speci�cation) 6= (parameterised program) speci�cationIn short, we want a speci�cation language where one can formulate both parameterised speci�cationson one hand and speci�cations of parameterised programs on the other.Another idea for which we have argued in [SST 90] is an extensive use of higher-order paramet-erisation. Higher-order parameterisation arises not only because higher-order parametric algebrasand their speci�cations are natural to consider from the semantic point of view, but more importantlybecause they are desirable from the methodological point of view: the use of higher-order paramet-erisation gives more exibility in the process of systematic software development. In our opinion,this issue again has not been given proper attention in the speci�cation languages mentioned above.1In particular, the phrase \parameterised speci�cation" has been reserved in some work on algebraic speci�cation(see e.g. [Ehr 82] or [EKTWW 84]) for a formal object (a pair of speci�cations) which determines a parameterisedspeci�cation in our sense via so called \parameter passing". We could not think of a better phrase to name \speci�cationsthat are parameterised by other speci�cations", hence the terminological clash.2

Some parameterisation mechanisms used there may be straightforwardly extended to higher-order (forexample, such a possibility exists in COLD{K [FJKR 87] and has been considered for ASL [SW 83],[ST 88]). We believe that all the bene�ts of higher-order parameterisation come to light only in thecontext of a careful distinction between parameterised speci�cations and speci�cations of parametricalgebras.In this paper we present our �rst attempt to incorporate the two methodological ideas sketchedabove into a speci�cation language. We propose here a speci�cation formalism which builds onthe simple yet powerful speci�cation-building operations of ASL (this choice is not essential for thedevelopment presented in this paper) and incorporates a parameterisation mechanism capable ofdescribing parametric algebras of an arbitrary order and their speci�cations, as well as parameterisedspeci�cations of an arbitrary order. It was possible to use a single parameterisation mechanismin all these situations because our formalism gives arbitrary speci�cations the status of �rst-levelobjects. Thus, speci�cations which are primarily used to specify \simpler" objects of the language,are themselves treated also as objects, which in turn may be speci�ed, passed as arguments to functionsand arise as results of function application.The parameterisation mechanism added is inspired by the �-abstraction mechanism of typed �-calculi (thus, it generalises the original parameterisation mechanism of ASL [SW 83], [ST 88]). Itis important to realise that although the objects of the formalism we propose look like typed �-expressions, the underlying intuition is slightly di�erent. We like the phrase speci�ed �-calculus as apossible indication of the di�erence. In typed �-calculi, the admissible arguments of a function de�nedby a �-expression are described just by stating their required type; it is intuitively expected that itwill be easy to determine statically whether or not application of such a function to an argument iswell-formed. This is in contrast with the situation in speci�ed �-calculi such as the formalism wepropose: the admissible arguments are speci�ed here rather than just being characterised by a type,and so a full-blown veri�cation process is required to determine well-formedness of application.The paper is organised as follows. Section 2 lists the usual algebraic prerequisites we assume thereader to be familiar with and recalls, for the sake of completeness of the de�nitions given later, thespeci�cation-building operations of ASL. A brief informal description of the language we propose,including its syntax, is given in Section 3. A denotational-style semantics of the language is inSection 4. Section 5 studies the well-formedness and veri�cation of the objects of the language. Wepoint out that the two are necessarily intertwined, and present a formal system to derive judgements ofthe form Obj : SP stating that an object Obj satis�es a speci�cation SP . Some basic properties of thesystem are then proved in the second part of the section. Although it is impossible to determine well-formedness of objects of the language using purely \static" type-checking technology, the veri�cationprocess as presented in Section 5 contains an intuitively clear type-checking component. We introducea notion of type appropriate for our language in Section 6, and then use it to separate this \type-checking" component from the veri�cation process. Finally, a summary of the topics presented in thepaper and some discussion of directions for further work is given in Section 7.2 PreliminariesThroughout the paper we assume that the reader is familiar with the basic concepts of logic and uni-versal algebra. In particular we will freely use the notions of: algebraic many-sorted signature, usuallydenoted by �, �0, �1, etc.; algebraic signature morphism � : � ! �0; �-algebra; �-homomorphism; �-isomorphism; �-equation; �rst-order �-sentence (the set of all �-sentences will be denoted by Sen(�));and satisfaction relation between �-algebras and �-sentences. These all have the usual de�nitions (seee.g. [ST 88]) and a standard, hopefully self-explanatory notation is used to write them down. We willalso use the standard notation and concepts of �-calculus, in particular, free and bound occurrencesof variables, substitution, �-reduction etc., cf. [Bar 84].For any signature �, the class of all �-algebras is denoted by Alg(�). We will identify this withthe category of �-algebras and �-homomorphisms whenever convenient. If � : � ! �0 is a signature3

morphism then � : Alg(�0) ! Alg(�) is the reduct functor de�ned in the usual way (the notation� is sometimes used when � is obvious).The most essential feature of any speci�cation formalism is that every speci�cation SP over a givensignature � (we will say that SP is a �-speci�cation) unambiguously determines a class of �-algebras(sometimes referred to as models of the speci�cation) [[SP]] 2 Pow (Alg(�))2. See [ST 88] for a moreextensive discussion of the semantics of speci�cations.As a starting point for the presentation of speci�cations in this paper, we recall here the simple yetpowerful speci�cation-building operations de�ned in [ST 88] (with the slight di�erence that signaturesare regarded as speci�cations in their own right here with impose � on � in place of h�;�i). Thesewere in turn based on the ASL speci�cation language [SW 83], [Wir 86]. Even though the particularchoice of speci�cation-building operations is not important for the purposes of this paper, we givehere their full formal de�nitions to make the paper self-contained. We refer the reader to [ST 88] fora full explanation of the motivation, intuitive understanding and technical machinery behind thesede�nitions.� If � is a signature, then � is a �-speci�cation with the semantics:[[�]] = Alg (�)� If SP is a �-speci�cation and � is a set of �-sentences, then impose � on SP is a �-speci�cation with the semantics:[[impose � on SP]] = fA 2 [[SP]] j A j= �g� If SP is a �-speci�cation and � : �0 ! � is a signature morphism, then derive from SP by �is a �0-speci�cation with the semantics:[[derive from SP by �]] = fA � j A 2 [[SP]]g� If SP is a �-speci�cation and � : � ! �0 is a signature morphism, then translate SP by �is a �0-speci�cation with the semantics:[[translate SP by �]] = fA0 2 Alg(�0) j A0 � 2 [[SP]]g� If SP and SP 0 are �-speci�cations, then SP [SP 0 is a �-speci�cation with the semantics:[[SP [SP 0]] = [[SP]]\ [[SP 0]]� If SP is a �-speci�cation and � : �0 ! � is a signature morphism, then minimal SP wrt �is a �-speci�cation with the semantics:[[minimal SP wrt �]] = fA 2 [[SP]] j A is minimal in Alg(�) w.r.t. �g3where a �-algebra A is minimal w.r.t. � if it has no non-trivial subalgebra with an isomorphic�-reduct (cf. [ST 88]).� If SP is a �-speci�cation, then iso-close SP is a �-speci�cation with the semantics:[[iso-close SP]] = fA 2 Alg(�) j A is isomorphic to B for some B 2 [[SP]]g2Pow(X), for any class X, denotes the \class of all subclasses" of X. This raises obvious foundational di�culties.We disregard these here, as they may be resolved in a number of standard ways. For example, for the purposes ofthis paper we could assume that algebras are built within an appropriate universal set, and deal with sets, rather thanclasses, of algebras. 4

� If SP is a �-speci�cation, � : � ! �0 is a signature morphism and �0 is a set of �0-sentences,then abstract SP wrt �0 via � is a �-speci�cation with the semantics:[[abstract SP wrt �0 via �]] = fA 2 Alg(�) j A ���0 B for some B 2 [[SP]]gwhere A ���0 B means that A is observationally equivalent to B w.r.t. �0 via �. The concept ofobservational equivalence used here covers as special cases the di�erent notions of behaviouralequivalence with respect to a set of observable sorts which appear in the literature. The set �0contains formulae over � (with \free variables" introduced by �) intended to characterise therelevant aspects of the \behaviour" of �-algebras. If no free variables are involved (� is theidentity morphism on �) then A ���0 B holds i� A and B satisfy exactly the same sentencesfrom �0. (See [ST 87], [ST 88] for details.)The above de�nitions were given in [ST 88] in the framework of an arbitrary institution [GB 84].This means that the speci�cation-building operations de�ned above are actually independent of theunderlying logical system, that is, of the particular de�nitions of the basic notions of signature, algebra,sentence and satisfaction relation. This is an important advantage: we can use the operations in anarbitrary logical system (formalised as an institution) without having to rede�ne them each time wedecide to modify the underlying notions; see [GB 84] and [ST 88] for a discussion of this issue.3 Introducing the languageThe speci�cation formalism we develop in this paper extends in an essential way the kernel speci�c-ation language presented in [ST 88] by adding a simple yet powerful parameterisation mechanismwhich allows us to de�ne and specify parametric algebras of arbitrary order, as well as extending themechanism in [ST 88] for de�ning �rst-order parameterised speci�cations to the higher-order case.This is achieved by viewing speci�cations on one hand as speci�cations of objects such as algebras orparametric algebras, and on the other hand as objects themselves to which functions (i.e. paramet-erised speci�cations) may be applied. Consequently, the language allows speci�cations to be speci�edby other speci�cations, much as in CLEAR [BG 80] or ACT ONE [EM 85] parameterisation wherethe parameter speci�cation speci�es the permissible argument speci�cations.The view of speci�cations as objects enables the use of a uniform parameterisation mechanism,functions de�ned by means of �-abstraction, to express both parameterised speci�cations and paramet-ric algebras. There is also a uniform speci�cation mechanism to specify such functions, �-abstraction(Cartesian-product speci�cation, closely related to the dependent function type constructor in e.g.NuPRL [Con 86]). This may be used to specify (higher-order) parametric algebras as well as (higher-order) parameterised speci�cations. There is no strict separation between levels, which means that itis possible to intermix parameterisation of objects and parameterisation of speci�cations, obtaining(for example) algebras which are parametric on parameterised speci�cations or speci�cations whichare parameterised by parametric algebras. We have not yet explored the practical implications of thistechnically natural generalisation.The language does not include notation for describing algebras, signatures, signature morphisms,or sets of sentences. Such notation must be provided separately, for example as done for ASL in[Wir 86]. The de�nition of the language is independent of this notation; moreover, it is essentiallyinstitution independent, with all the advantages indicated in [GB 84], [ST 88].The language has just one syntactic category of interest, which includes both speci�cations and3This is slightly di�erent from the de�nition in [ST 88].5

objects that are speci�ed, with syntax as follows:Object = Signaturej impose Sentences on Objectj derive from Object by Signature-morphismj translate Object by Signature-morphismj Object [Objectj minimal Object wrt Signature-morphismj iso-close Objectj abstract Object wrt Sentences via Signature-morphism 9>>>>>>>>>>>>>=>>>>>>>>>>>>>; Simple speci�cationsj �Variable:Object:Objectj fObjectgj Spec(Object) 9>=>; Other speci�cationsj Variablej Algebra-expressionj �Variable:Object:Objectj Object(Object) 9>>>=>>>; Other objectsAs usual, we have omitted the \syntax" of variables. The other syntactic categories of the languageabove are algebra expressions, signatures, sets of sentences and signature morphisms | as mentionedabove, the details of these are not essential to the main ideas of this paper and we assume that theyare provided externally. Algebra expressions may contain occurrences of object variables. We willassume, however, that variables do not occur in signatures, signature morphisms and sentences, whichseems necessary to keep the formalism institution-independent. This requirement may seem overlyrestrictive, as it seems to disallow the components of a particular algebra to be used in axioms; onewould expect to be able to write something like �X:�: (: : :X:op : : :). Fortunately, using the power ofthe speci�cation-building operations included in the language, it is possible to de�ne a more convenientnotation which circumvents this restriction (see Appendix A in [SST 90]).We have used the standard notation for �- and �-objects to suggest the usual notions of a freeand of a bound occurrence of a variable in a term of the language, as well as of a closed term.As usual, we identify terms which di�er only in their choice of bound variable names. We de�nesubstitution of objects for variables in the usual way: Obj[Obj 0=X] stands for the result of substitut-ing Obj 0 for all free occurrences of X in Obj in such a way that no unintended clashes of variablenames take place. This also de�nes the usual notion of �-reduction between objects of the language:(: : : (�X:SP: Obj)(Obj 0) : : :)!� (: : :Obj[Obj 0=X] : : :). Then, !�� is the reexive and transitive closureof !�.The �rst eight kinds of speci�cations listed above (simple speci�cations) are taken directly from[ST 88] (see Section 2). The particular choice of these eight operations is orthogonal to the rest ofthe language and will not interfere with the further development in this paper. The other three kindsof speci�cations are new. �-abstraction is used to specify parametric objects. To make this work, itmust be possible to use objects in speci�cations. The f g operation provides this possibility by allow-ing objects to be turned into (very tight) speci�cations. The next clause allows a speci�cation whichde�nes a class C of objects to be turned into a speci�cation which de�nes the class of speci�cationsde�ning subclasses of C. This is compatible with the use of parameter speci�cations in parameterisedspeci�cations as in CLEAR and ACT ONE. For example, the declaration proc P (X : SP) = : : : inCLEAR introduces a parameterised speci�cation P , where the parameter (or requirement) speci�ca-tion SP describes the admissible arguments of P . Namely, if SP de�nes a class of objects C = [[SP]]then P may be applied to argument speci�cations SParg de�ning a subclass of C, i.e. such that[[SParg]] � [[SP]] (we disregard the parameter �tting mechanism). In our formalism this would bewritten as P � �X:Spec(SP): : : :.The syntax of other objects is self-explanatory.The richness of the language may lead to some di�culty in recognizing familiar concepts whichappear here in a generalised form. The following comments might help to clarify matters:6

� A speci�cation is (an object which denotes) a class of objects. If the objects of this class arealgebras, then this speci�cation is a speci�cation in the usual sense.� �X: : : : : : : : denotes a class of mappings from objects to objects. If these objects are algebras,then this is a class of parametric algebras, i.e. a speci�cation of a parameterised program.� �X: : : : : : : : denotes a mapping from objects to objects. If these objects are speci�cations inthe usual sense, then this is a parameterised speci�cation.The semantics of the language, presented in the next section, gives more substance to the informalcomments above concerning the intended denotations of certain phrases.As pointed out above, we assume that the sublanguage of expressions de�ning algebras is to besupplied externally (with a corresponding semantics | see Section 4). Even under this assumption,it would be possible to include institution-independent mechanisms for building algebras from otheralgebras (amalgamation, reduct, free extension, etc.) in the language, which could lead to a powerfuland uniform calculus of speci�ed modular programs. This is an interesting possibility for future workbut it is outside the scope of this paper.4 SemanticsWe have chosen the syntax for objects in the language so that their semantics should be intuitivelyclear. We formalise it by de�ning for any environment �, which assigns meanings to variables, apartial function [[]]� mapping an object Obj to its meaning [[Obj]]�. It is de�ned below by structuralinduction on the syntax of objects. The use of the meta-variable SP instead of Obj in some placesbelow is intended to be suggestive (of objects denoting object classes, used as speci�cations) but hasno formal meaning. This convention will be used throughout the rest of the paper.Simple speci�cations:[[�]]� = Alg(�)[[impose � on SP]]� = fA 2 [[SP]]� j A j= �gif [[SP]]� � Alg (�) and � � Sen(�) for some signature �[[derive from SP by �]]� = fA � j A 2 [[SP]]�gif [[SP]]� � Alg (�) and � : �0 ! � is a signature morphism for some signatures � and �0: : : similarly for the other forms, based on the semantics given in Section 2 : : :Other speci�cations:[[fObjg]]� = f[[Obj]]�gif [[Obj]]� is de�ned[[�X:SP: SP 0]]� = �v2[[SP]]�[[SP 0]]�[v=X]4,5if [[SP]]� is a class of values and for each v 2 [[SP]]�, [[SP 0]]�[v=X] is a class of values[[Spec(SP)]]� = Pow ([[SP]]�)if [[SP]]� is a class of values
7

Other objects:[[X]]� = �(X)[[A]]� = : : :assumed to be given externally : : :[[�X:SP: Obj]]� = fhv 7! [[Obj]]�[v=X]5i j v 2 [[SP]]�gif [[SP]]� is a class of values and for each v 2 [[SP]]�, [[Obj]]�[v=X] is de�ned[[Obj(Obj 0)]]� = [[Obj]]�([[Obj 0]]�)if [[Obj]]� is a function and [[Obj 0]]� is a value in the domain of this functionIn the above de�nition, it is understood that a condition like \[[SP]]� � Alg (�)" implicitly requiresthat [[SP]]� is de�ned. An object's meaning is unde�ned unless the side-condition of the appropriatede�nitional clause holds.It is easy to see that the semantics of an object of the language depends only on the part of theenvironment which assigns meanings to variables which occur free in the object. In particular, themeaning of a closed object is independent from the environment. That is, for any closed object Objand environments � and �0, [[Obj]]� is de�ned if and only if [[Obj]]�0 is de�ned and if they are de�nedthen [[Obj]]� = [[Obj]]�0. This allows us to omit the environment when dealing with the semantics ofclosed objects and write simply [[Obj]] to stand for [[Obj]]� for any environment � whenever Obj isclosed.Of course, the above remark is true only provided that the sublanguage of algebra expressions andits semantics assumed to be given externally have this property. In the following, we will take this forgranted. We will also assume that the sublanguage satis�es the following substitutivity property: forany algebra expression A, variable X and object Obj, for any environment � such that v = [[Obj]]�is de�ned, [[A[Obj=X]]]� is de�ned if and only if [[A]]�[v=X] is de�ned, and if they are de�ned thenthey are the same. This ensures that the following expected fact holds for our language (the standardproof by induction on the structure of objects is omitted):Fact 4.1 For any objects Obj, Obj 0 and variable X, for any environment � such that v0 = [[Obj 0]]� isde�ned, [[Obj[Obj 0=X]]]� is de�ned if and only if [[Obj]]�[v0=X] is de�ned, and if they are de�ned then[[Obj[Obj 0=X]]]� = [[Obj]]�[v0=X] 2Corollary 4.2 �-reduction preserves the meaning of objects. That is, for any objects Obj and Obj 0such that Obj!�� Obj 0, for any environment �, if [[Obj]]� is de�ned then so is [[Obj 0]]� and [[Obj]]� =[[Obj 0]]�. 2The above semantics is overly permissive in comparison with the semantics given to simple speci�c-ations in Section 2 and [ST 88] in the sense that it assigns meanings to some speci�cations which wouldbe considered ill-formed according to the de�nitions given there. This is caused by the \polymorphic"character of the empty class of algebras. For example, if SP is an inconsistent �-speci�cation (i.e.,assuming SP is closed, [[SP]] = ;) then impose � on SP has a well-de�ned meaning (the emptyclass of algebras) even if � is a set of sentences over a signature which is completely unrelated to �.Generalising the treatment in Section 2 in the present context is possible via the notion of type to beintroduced in Section 6. However, the use of speci�cations (rather than signatures and types) to con-strain formal parameters makes such a type system insu�ciently descriptive to ensure well-formednessof speci�cations. For this, full-blown veri�cation, rather than just type-checking, is required. We willdiscuss this issue in more detail in the following sections.4 � on the right-hand side of this de�nition denotes the usual Cartesian product of an indexed family of sets. Thatis, �x2SCx is the set of all functions with domain S mapping any x 2 S to an element of Cx.5 As usual, �[v=X] is the environment which results from � by assigning v to the variable X (and leaving the valuesof other variables unchanged). 8

The reader might feel uneasy about the fact that we have not actually de�ned here any domainof values, the elements of which are assigned to objects of the language as their meanings. A naiveattempt might have been as follows:V alues = Algebras j Pow (V alues) j V alues e! V aluesClearly, this leads to serious foundational problems, as the recursive domain de�nition involves \heavyrecursion" (cf. [BT 83]) and hence cannot have a set-theoretic solution (even assuming that we considerhere a set Algebras of algebras built within a �xed universe). However, since the formalism we introduceis not intended to cater for any form of self application of functions or non-well-foundedness of sets,the equation above attempts to de�ne a domain of values of objects which is undesirably rich. Thewell-formed6 objects of the language can easily be seen to form a hierarchy indexed by \types" (seeSection 6). Thus, we can de�ne a corresponding cumulative hierarchy of sets of values, and thende�ne the domain of the meanings of objects as the union of sets in the hierarchy, much in the styleof [BKS 88] (see [BT 83] where the idea of using hierarchies of domains in denotational semantics isdiscussed in more detail). Another, less \constructive", possibility is to work within a �xed universalset of values of objects containing the \set" of all algebras [Coh 81].5 Proving satisfactionWe are interested in determining whether or not given objects satisfy given speci�cations. We use theformal judgement Obj : SP to express the assertion that a closed object Obj satis�es a closed spe-ci�cation SP , i.e. that [[Obj]] 2 [[SP]], and generalise it to X1 : SP1; : : : ;Xn : SPn ` Obj : SP statingthe assertion that an object Obj satis�es a speci�cation SP in the context X1 : SP1; : : : ;Xn : SPn, i.e.under the assumption that objects X1; : : : ;Xn satisfy speci�cations SP1; : : : ; SPn, respectively. Theinference rules listed below allow us to derive judgements of this general form. For the sake of clarity,though, we have decided to make contexts implicit in the rules and rely on the natural deductionmechanism of introducing and discharging assumptions (all of the form X : SP here) to describe theappropriate context manipulation. For example, in (R2) below, [X : SP] is an assumption whichmay be used to derive SP 0 : Spec(SP 00), but is discharged when we apply the rule to derive itsconclusion. Whenever necessary, we will use the phrase \the current context" to refer to the sequenceof currently undischarged assumptions. We say that an environment � is consistent with a contextX1 : SP1; : : : ;Xn : SPn if for i = 1; : : : ; n, �(Xi) 2 [[SPi]]�.Simple speci�cations:� signature� : Spec(�) SP : Spec(�) � � Sen(�)impose � on SP : Spec(�)SP : Spec(�0) � : � ! �0derive from SP by � : Spec(�) SP : Spec(�) � : � ! �0translate SP by � : Spec(�0)SP : Spec(�) SP 0 : Spec(�)SP [SP 0 : Spec(�) SP : Spec(�) � : �0 ! �minimal SP wrt � : Spec(�)SP : Spec(�)iso-close SP : Spec(�) SP : Spec(�) �0 � Sen(�0) � : � ! �0abstract SP wrt �0 via � : Spec(�)6An intuitive understanding of the notion of well-formedness involved is su�cient here (we hope) | we introduce itformally in Section 5. 9

Other speci�cations:Obj : SPfObjg : Spec(SP) (R1)SP : Spec(SPany) [X : SP]SP 0 : Spec(SP 00)�X:SP: SP 0 : Spec(�X:SP: SP 00) (R2)SP : Spec(SP 0)Spec(SP) : Spec(Spec(SP 0)) (R3)�-expressions:SP : Spec(SPany) [X : SP]Obj : SP 0�X:SP: Obj : �X:SP: SP 0 (R4)Obj : �X:SP: SP 0 Obj 0 : SPObj(Obj 0) : SP 0[Obj 0=X] (R5)Obj : SP SP !�� SP 0Obj : SP 0 (R6)Obj : SP SP 0 : Spec(SPany) SP 0!�� SPObj : SP 0 (R7)Trivial inference:Obj : SPanyObj : fObjg (R8)\Cut"Obj : SP SP : Spec(SP 0)Obj : SP 0 (R9)
10

Semantic inference:SP : Spec(�) [[A]]� 2 [[SP]]� for all � consistent with the current contextA : SP (R10)SP; SP 0 : Spec(�) [[SP]]� � [[SP 0]]� for all � consistent with the current contextSP : Spec(SP 0) (R11)Some of these rules involve judgements (� signature, � � Sen(�), � : � ! �0) which are externalto the above formal system. This is a natural consequence of the fact that the language does notinclude any syntax for signatures, sentences, etc. More signi�cantly, there are two rules which involvemodel-theoretic judgements, referring to the semantics of objects given above.Following the usual practice, in the sequel we will simply write \Obj : SP" meaning \Obj : SP isderivable".The rules labelled Simple speci�cations characterise the well-formedness of �-speci�cations builtusing the underlying speci�cation-building operations included in the language. They directly incor-porate the \syntactic" requirements of Section 2 on the use of these operations. Rules (R1), (R2)and (R3) play a similar role for the other speci�cation-forming operations: singleton speci�cation,Cartesian-product speci�cation and Spec(), respectively. Notice, however, that their speci�cationsare given here in a form which is as tight as possible. For example, for any SP : Spec(�) andObj : SP , rule (R1) allows us to deduce fObjg : Spec(SP) rather than just fObjg : Spec(�).The rules related to �-expressions and their applications to arguments are quite straightforward.Rules (R4) and (R5) are the usual rules for �-expression introduction and application, respectively.The assumption SP : Spec(SPany) in rule (R4) asserts the well-formedness of the speci�cation SP(see also (R2), (R7), (R8)). Whenever the meta-variable SPany is used below, it will play the samerole as part of a well-formedness constraint. Notice that in order to prove �X:SP: Obj : �X:SP: SP 0,we have to prove Obj : SP 0 \schematically" for an arbitrary unknown X : SP , rather than for allvalues in the class [[SP]]� (for the appropriate environments �).Rules (R6) and (R7) embody a part of the observation that �-reduction preserves the semantics ofobjects (Corollary 4.2). Rule (R6) allows for �-reduction and rule (R7) for well-formed �-expansionof speci�cations. A particular instance of the latter isObj 0 : SP 0[Obj=X] (�X:SP: SP 0)(Obj) : Spec(SPany)Obj 0 : (�X:SP: SP 0)(Obj)That is, in order to prove that an object satis�es a speci�cation formed by applying a parameterisedspeci�cation to an argument, it is su�cient to prove that the object satis�es the corresponding �-reduct.However, we have not incorporated full �-equality into our system; rules (R6) and (R7) introduceit only for speci�cations. In particular, we have not included the following rule, which would allowwell-formed �-expansion of objects:Obj : SP Obj 0 : SPany Obj 0!�� ObjObj 0 : SPAn instance of this would be:Obj1[Obj2=X] : SP (�X:SP2: Obj1)(Obj2) : SPany(�X:SP2: Obj1)(Obj2) : SPHence, in order to prove that a structured object (�X:SP2: Obj1)(Obj2) satis�es a speci�cation SP ,it would su�ce to show that the object is well-formed and to prove that its �-reduct Obj1[Obj2=X]11

satis�es the speci�cation. We think that this is not methodologically desirable: a proof of correctnessof a program should follow the structure of the program, without any possibility of attening it out. So,to prove (�X:SP2: Obj1)(Obj2) : SP we have to �nd an appropriate speci�cation for the parameterisedprogram �X:SP2: Obj1, say �X:SP2: Obj1 : �X:SP2: SP1 such that SP1[Obj2=X] = SP (actually,SP1[Obj2=X] : Spec(SP) is su�cient).The other part of �-equality for objects, �-reduction, although not derivable in the system, isadmissible in it7:Lemma 5.1 The following rule is an admissible rule of the systemObj : SP Obj!��Obj 0Obj 0 : SPProof (sketch) It is su�cient to consider the case Obj!� Obj 0 (then the more general case followsby easy induction on the length of the reduction sequence). We will need an additional lemma:Lemma 5.2 The following rule is an admissible rule of the systemObj : SP [X : SP]Obj 0 : SP 0Obj 0[Obj=X] : SP 0[Obj=X]Proof (idea) By obvious induction on the derivation of Obj 0 : SP 0, by inspection of the rulesof the system. 2The proof now is by induction on the derivation of Obj : SP . The only essential case is that of rule(R5) where a �-reduct may be introduced. So, in (R5) let Obj be �X:SP1: Obj1, and suppose that�X:SP1: Obj1 : �X:SP: SP 0 and Obj 0 : SP . We can assume that �X:SP1: Obj1 : �X:SP: SP 0 hasbeen derived using (R4): we can show that no generality is lost since (R4) is the only rule introducing�-expressions. Hence, we have that Obj1 : SP 0 under the assumption X : SP . Thus, by Lemma 5.2,Obj1[Obj 0=X] : SP 0[Obj 0=X], which is what we need to show. All the other cases of the inductiveproof are easy; for example:(R1): What we have to show is that whenever Obj : SP and fObjg!�Obj 0 then Obj 0 : Spec(SP).Since fObjg!�Obj 0 , Obj 0 has to be of the form fObj 00g where Obj!�Obj 00. By the inductiveassumption, Obj : SP and Obj!�Obj 00 imply Obj 00 : SP , and so using the same rule we derivefObj 00g : Spec(SP).(R6): One of the assumptions of the rule is Obj : SP . Hence, by the inductive assumption, Obj 0 : SP ,and so using the same rule we can conclude that indeed Obj 0 : SP 0. 2It might be interesting to enrich the system by the �-reduction rule for objects given in the abovelemma, or even more generally by some \operational semantics rules" for (the computable part of)the object language. This, however, would be quite orthogonal to the issues of object speci�cationconsidered in this paper. Therefore, to keep the system as small and as simple as possible, the rule isnot included in the system.Rules (R8) and (R9) embody trivial deductions which should be intuitively straightforward. Noticethat SP : Spec(SP 0), as in the premise of (R9), asserts that speci�cation SP imposes at least thesame requirements as SP 0.7A rule is admissible in a deduction system if its conclusion is derivable in the system provided that all its premisesare derivable. This holds in particular if the rule is derivable in the system, that is, if it can be obtained by compositionof the rules in the system. 12

Rules (R10) and (R11) refer directly to the semantics of objects. They embody the semanticveri�cation process which is a necessary component of inference in the above formal system. Theserules are deliberately restricted to the non-parametric case, since this is the point at which an externalformal system is required; parameterisation is handled by the other rules. We do not attempt here toprovide a formal system for proving the semantic judgements [[A]]� 2 [[SP]]� and [[SP]]� � [[SP 0]]� forall environments � consistent with the current context. This is an interesting and important researchtopic, which is however separate from the main concerns of this paper; some preliminary considerationsand results on this may be found in e.g. [ST 88] and [Far 89]. It is not possible to give a set of purely\syntactic" inference rules which is sound and complete with respect to the semantics above becauseof the power of the speci�cation mechanisms included in the language (this is already the case for thesubset of the language excluding parameterisation, presented in Section 2).As mentioned earlier, to make the rules as clear and readable as possible, the presentation of thesystem omits a full formal treatment of contexts. In particular, we should add two rules to derivejudgements that a context is well-formed (here, hi is the empty context):hi is a well-formed context� is a well-formed context X is not in � [�]SP : Spec(SPany)�;X : SP is a well-formed contextand then axioms X1 : SP1; : : : ;Xn : SPn ` Xk : SPk, for k = 1; : : : ; n, where X1 : SP1; : : : ;Xn : SPnis a well-formed context. It is important to realise that contexts are sequences, rather than sets, andso we allow the variables X1; : : : ;Xk to occur in SPk+1.We will continue omitting contexts throughout the rest of the paper. All the de�nitions andfacts given below (as well as above) are correctly stated for closed objects only, but are meant to benaturally extended to objects in a well-formed context. This will be done explicitly only within proofswhere it is absolutely necessary. Similarly, we will omit in the following the environment argument tothe semantic function for objects; all the environments thus implicitly considered are assumed to beconsistent with the corresponding context. We hope that this slight informality will contribute to thereadability of the paper without obscuring the details too much.The following theorem expresses the soundness of the formal system above with respect to thesemantics given earlier.Theorem 5.3 For any object Obj and speci�cation SP , if Obj : SP is derivable then [[Obj]] 2 [[SP]](that is, [[SP]] is de�ned and is a class of values and [[Obj]] is de�ned and is a value in this class).Proof (sketch) By induction on the length of the derivation and by inspection of the rules. Acomplete formal proof requires, of course, a careful treatment of free variables and their interpretation(cf. the remark preceding the theorem). Thus, for example, rule (R4) really stands for:� ` SP : Spec(SPany) �;X : SP ` Obj : SP 0 X is not in �� ` �X:SP: Obj : �X:SP: SP 0where � is a context. In the corresponding case of the inductive step we can assume that1. [[SP]]� 2 [[Spec(SPany)]]� for all environments � consistent with context �, and2. [[Obj]]� 2 [[SP 0]]� for all environments � consistent with context �;X : SPand then we have to prove that [[�X:SP: Obj]]� 2 [[�X:SP: SP 0]]� for all environments � consistentwith context �. That is, taking into account the semantics of �- and �-expressions as given inSection 4, we have to prove that for all environments � consistent with context �13

� [[SP]]� is de�ned and is a class of values | which follows directly from assumption (1) above,and then� for all values v 2 [[SP]]�,{ [[Obj]]�[v=X] is de�ned,{ [[SP 0]]�[v=X] is de�ned and is a class of values, and{ [[Obj]]�[v=X] 2 [[SP 0]]�[v=X],which in turn follow directly from assumption (2) above.The cases corresponding to the other rules of the system require similar, straightforward but tediousanalysis. Notice that the proofs about the rules concerning application and �-reduction, (R5), (R6)and (R7), crucially depend on Fact 4.1 and Corollary 4.2. 2It is natural to ask if the above formal system is also complete with respect to the semantics.It turns out not to be complete. One reason for incompleteness is that the formal system does notexploit the semantical consequences of inconsistency. For example, for any inconsistent speci�cationSP we have that [[SP]] 2 [[Spec(SPany)]] for any SPany such that [[SPany]] is a class of values. Thecorresponding formal judgement SP : Spec(SPany) is not derivable when (for example) SP and SPanyare simple speci�cations over di�erent signatures. If the formal parameter speci�cation in a �- or �-expression is inconsistent then similar di�culties arise (cf. [MMMS 87] for a discussion of the relatedissue of \empty types" in typed �-calculi). This topic deserves further study; it might be that thesystem is complete when inconsistencies are excluded and perhaps some additional restrictions on theobjects and speci�cations involved are imposed (although the deliberate omission of a rule allowingfor well-formed �-expansion of objects makes this unlikely).De�nition 5.4 An object Obj is well-formed if Obj : SP for some SP . 2This also de�nes the well-formed speci�cations since speci�cations are objects.Checking whether an expression in the language is well-formed must in general involve \semantic"veri�cation as embodied in rules (R10) and (R11). In fact, checking the well-formedness of objects isas hard as checking if they satisfy speci�cations: Obj : SP if and only if (�X:SP: (any constant))(Obj)is well-formed.An easy corollary to the soundness theorem is the following:Corollary 5.5 Any well-formed object Obj has a well-de�ned meaning [[Obj]]. 2Since speci�cations do not form a separate syntactic category of the language, in the above discus-sion we have used the term \speci�cation" and the meta-variable SP rather informally, relying on anintuitive understanding of the role of the objects of the language. This intuitive understanding maybe made formal as follows:De�nition 5.6 An object SP is called a speci�cation if for some SPany , SP : Spec(SPany). 2Corollary 5.7 The meaning of a speci�cation is a class of values: if SP : Spec(SPany) then [[SP]] �[[SPany]]. 2Note that this covers ordinary �-speci�cations, speci�cations of (higher-order) parametric algebras,speci�cations of (higher-order) parameterised speci�cations, etc. The following theorem shows thatthis is indeed consistent with our previous informal use of the term.Theorem 5.8 If Obj : SP then SP is a speci�cation.Proof We prove that SP : Spec(SPany) for some SPany by induction on the derivation of Obj : SP ,by inspection of the rules of the system: 14

Simple speci�cations: The rules for simple speci�cations cause no problem. For any signature �,Spec(�) is indeed a speci�cation as we have Spec(�) : Spec(Spec(�)), which may be derivedby using the rule introducing �, and then the rule of Spec()-introduction (R3).(R1): By the inductive assumption we have SP : Spec(SPany), from which we can derive Spec(SP) :Spec(Spec(SPany)).(R2): We need the following lemma:Lemma 5.9 If an object Spec(SP) is well-formed then SP is a speci�cation.Proof We proceed by induction on a derivation of the well-formedness of Spec(SP), byinspection of the possible last rules in the derivation:(R3): Clearly, we have here SP : Spec(SP 0) as the assumption for the use of this rule.(R6), (R7), (R8), (R9): Let Obj be Spec(SP). One of the premises of each of these rulesimplies the well-formedness of Spec(SP) and so the inductive assumption implies thatSP is a speci�cation.(R11): As in the previous case, but take SP to be Spec(SP). (In fact, this case is vacuoussince Spec(SP) : Spec(�) is not derivable anyway.)Notice that only the �rst case of the above was essential: it is su�cient to analyse only therules that may be used to \build" objects of the form we consider (the Spec()-introductionrule (R3) in this case). We have relied on a similar remark in the proof of Lemma 5.1. 2By the inductive assumption (of the proof of the theorem) we have that under the assump-tion X : SP , Spec(SP 00) is well-formed, and so using the above lemma we conclude thatSP 00 : Spec(SP 0any). Hence, we can derive �X:SP: SP 00 : Spec(�X:SP: SP 0any), and thenSpec(�X:SP: SP 00) : Spec(Spec(�X:SP: SP 0any)).(R3): By the inductive assumption, Spec(SP 0) : Spec(SPany), which entails Spec(Spec(SP 0)) :Spec(Spec(SPany)).(R4): By the inductive assumption we have that under the assumption X : SP , SP 0 : Spec(SP 0any),and so we can derive �X:SP: SP 0 : Spec(�X:SP: SP 0any).(R5): The inductive assumption implies that �X:SP: SP 0 is well-formed. We prove that this impliesthat SP 0 is a speci�cation under the assumption X : SP . The proof is by induction on thederivation of the well-formedness of �X:SP: SP 0, by inspection of the possible last rules usedin the derivation. As in the proof of Lemma 5.9, it is su�cient to analyse the �-introductionrule (R2). Since what we need is one of the assumptions for the applicability of this rule, we canindeed conclude that SP 0 : Spec(SP 00) under the assumption X : SP . Hence, by Lemma 5.2we conclude that SP 0[Obj 0=X] : Spec(SP 00[Obj 0=X]).(R6): By the inductive assumption applied to one of the premises of this rule, SP is a speci�cation.Thus, since SP !�� SP 0, by Lemma 5.1 it follows that SP 0 is a speci�cation as well.(R7): Trivial.(R8): From the premise of the rule, we can directly derive fObjg : Spec(SPany).(R9): By the inductive assumption, from the premise of the rule it follows that Spec(SP 0) is well-formed. Thus, by Lemma 5.9, SP 0 is a speci�cation.(R10): Trivial.(R11): From the premise SP 0 : Spec(�), we derive Spec(SP 0) : Spec(Spec(�)).15

This completes the proof of the theorem. 2It is perhaps surprising how long and relatively complicated the proof of an intuitively rather obviousfact has become here. Unfortunately, this seems to be typical of many proofs dealing with \syntactic"properties of �-calculi.6 Type-checkingInference in the system presented in the previous section has a purely \type-checking" componenton which the \veri�cation" component is in a sense superimposed. We try to separate this \type-checking" process below. The concept of type we use must cover signatures (as \basic types" ofalgebras) and \arrow types" (types of functions) which would be usual in any type theory, as well as\speci�cation types" which are particular to the formalism presented here: as we have stressed before,the type of a speci�cation is distinct from the type of objects the speci�cation speci�es.De�nition 6.1 The class of types T is de�ned as the least class such that:� for any signature �, � 2 T ;� for any types �1; �2 2 T , �1!�2 2 T ; and� for any type � 2 T , Spec(�) 2 T . 2Under the standard notational convention that arrow types of the form �!� 0 stand for �-types ofthe form �X:�: � 0 where X does not actually occur in � 0, types as de�ned above are well-formedspeci�cations.We de�ne type Type(Obj) for an object Obj of our system by induction as follows:Simple speci�cations:� signatureType(�) = Spec(�) Type(SP) = Spec(�) � � Sen(�)Type(impose � on SP) = Spec(�): : : and similarly for other simple speci�cations : : :Other speci�cations:Type(Obj) = �Type(fObjg) = Spec(�) Type(SP) = Spec(�)Type(Spec(SP)) = Spec(Spec(�))Type(SP) = Spec(�) [Type(X) = �]Type(SP 0) = Spec(� 0)Type(�X:SP: SP 0) = Spec(�!� 0)�-expressions:Type(SP) = Spec(�) [Type(X) = �]Type(Obj) = � 0Type(�X:SP: Obj) = �!� 0 Type(Obj) = �!� 0 Type(Obj 0) = �Type(Obj(Obj 0)) = � 0Algebra expressions:A is an algebra expression denoting a �-algebraType(A) = �16

Note that the semantic inference rules (R10), (R11), the trivial inference rule (R8), the \cut" rule (R9),and the �-reduction and �-expansion rules (R6) and (R7), which do not introduce new well-formedobjects, do not have counterparts in the above de�nition.Clearly, the above de�nition depends on a judgement whether or not an algebra expression denotesan algebra over a given signature. We will assume that such \type-checking" of algebra expressionsis de�ned externally in such a way that it is consistent with the semantics (i.e., if A is a well-formedalgebra expression denoting a �-algebra then indeed [[A]] 2 Alg(�)). Moreover, we will assume that itis substitutive: if A is an algebra expression denoting a �-algebra under an assumption Type(X) = �then for any object Obj with Type(Obj) = � , A[Obj=X] is an algebra expression denoting a �-algebraas well.The above rules (deliberately) do not de�ne Type(Obj) for all object expressions of our language.However, if a type is de�ned for an object, it is de�ned unambigously. An object Obj is roughlywell-formed if its type Type(Obj) is de�ned. There are, of course, roughly well-formed objects thatare not well-formed. The opposite implication holds, though:Theorem 6.2 Type(Obj) is well-de�ned for any well-formed object Obj. In particular:1. If Obj : SP then Type(SP) = Spec(Type(Obj)).2. If SP is a speci�cation then Type(SP) = Spec(�) for some type � .3. If Obj : �X:SP: SP 0 then Type(Obj) = �!� 0, where Type(SP) = Spec(�), for some types �and � 0.Proof The �rst part of the theorem follows by induction on the length of the derivation (we sketchthis proof below). The other two parts follow directly from this.Let us �rst rephrase the �rst part of the theorem taking contexts describing free variables explicitlyinto account, which is perhaps not entirely obvious here:10: If Obj : SP is derivable under assumptions X1 : SP1; : : : ;Xn : SPn where Type(SP1) =Spec(�1), : : : , Type(SPn) = Spec(�n), then Type(SP) = Spec(Type(Obj)) under the assump-tions Type(X1) = �1, : : : , Type(Xn) = �n.Now, we prove this part of the theorem by induction on the derivation of Obj : SP , by inspection ofthe rules:Simple speci�cations: The rules for simple speci�cations cause no problem, since using the inductiveassumption we conclude that each well-formed speci�cation SP in the conclusion of these ruleshas type Type(SP) = Spec(�), and Type(Spec(�)) = Spec(Spec(�)).(R1): By the inductive assumption we have Type(SP) = Spec(Type(Obj)), hence Type(Spec(SP)) =Spec(Type(SP)) = Spec(Spec(Type(Obj))) = Spec(Type(fObjg)).(R2): We need the following lemma:Lemma 6.3 If Spec(SP) has a type then SP has a type of the form Spec(�).Proof Obvious, since the only way to derive a type for Spec(SP) is using the ruleType(SP) = Spec(�)Type(Spec(SP)) = Spec(Spec(�))which requires that indeed Type(SP) = Spec(�) for some type � . 217

By the inductive assumption (of the proof of the theorem) under the assumption Type(X) = �where Type(SP) = Spec(�), Spec(SP 00) has a type, and so using the above lemma we concludethat Type(SP 00) = Spec(� 00) for some type � 00. Hence, we can derive Type(�X:SP: SP 00) =Spec(�!� 00), and then Type(Spec(�X:SP: SP 00)) = Spec(Spec(�!� 00)).On the other hand, by the inductive assumption again, under the assumption Type(X) = � ,Type(Spec(SP 00)) = Spec(Type(SP 0)). Hence, Spec(Spec(� 00)) = Spec(Type(SP 0)), and soType(SP 0) = Spec(� 00). Thus, Type(�X:SP: SP 0) = Spec(�!� 00), which completes the proofin this case.(R3): By the inductive assumption, Spec(Type(SP)) = Type(Spec(SP 0)), which easily impliesSpec(Type(Spec(SP))) = Type(Spec(Spec(SP 0))).(R4): By the inductive assumption, using Lemma 6.3, we have that Type(SP) = Spec(�) for sometype � , and then under the assumption Type(X) = � , Type(SP 0) = Spec(� 0) where � 0 =Type(Obj). Thus, we can derive both Type(�X:SP: Obj) = �!� 0 and Type(�X:SP: SP 0) =Spec(�!� 0)(R5): The inductive assumption implies that Type(SP) = Spec(�) where � = Type(Obj 0), andthat Type(�X:SP: SP 0) = Spec(Type(Obj)). Since there is only one rule which allows usto derive a type for the �-expression, by a direct analysis of this rule we can conclude thatunder the assumption Type(X) = � , Type(SP 0) = Spec(� 0) for some type � 0. Moreover,Type(�X:SP: SP 0) = Spec(�!� 0), which implies Type(Obj) = �!� 0. Hence, we can deriveType(Obj(Obj 0)) = � 0.Lemma 6.4 For any object Obj 0, variable X and type � , if Type(Obj 0) = � 0 under theassumption Type(X) = � , then for any object Obj such that Type(Obj) = � , we haveType(Obj 0[Obj=X]) = � 0.Proof By obvious induction on the derivation of Type(Obj 0) = � 0, by inspection of theclauses in the de�nition of Type(). 2Hence, by the above lemma we conclude that Type(SP 0[Obj 0=X]) = Spec(� 0), which completesthe proof in this case.(R6): We need the following lemma:Lemma 6.5 �-reduction preserves types of objects. That is, for any object Obj such thatType(Obj) = � , if Obj!��Obj 0 then Type(Obj 0) = � .Proof (sketch) It is su�cient to show the lemma for Obj!� Obj 0. The proof pro-ceeds by induction on the derivation of the type of Obj. The only non-trivial case isthat of application, where a �-reduct may be introduced. So, assume that Obj is aroughly well-formed object of the form (�X:SP: Obj1)(Obj2). Then, for some types �and � 0, Type((�X:SP: Obj1)(Obj2)) = � 0, Type(�X:SP: Obj1) = �!� 0, Type(Obj2) = � ,Type(SP) = Spec(�) and under the assumption Type(X) = � , Type(Obj1) = � 0. Hence,by Lemma 6.4, Type(Obj1[Obj2=X]) = � 0, which is what is needed in this case. 2Now, by the inductive assumption applied to one of the premises of the rule we have thatSpec(Type(Obj)) = Type(SP). Then, since SP !�� SP 0, by the above lemma we have indeedSpec(Type(Obj)) = Type(SP 0).(R7): Similarly as in the previous case.(R8), (R9), (R10), (R11): Easy use of the inductive assumption. 218

The above theorem states that a necessary condition for an object to satisfy a speci�cation is thatboth are roughly well-formed and the type of the object is consistent with the type of the speci�cation.Of course, nothing like the opposite implications holds. As pointed out earlier, proving that an objectsatis�es a speci�cation must involve a veri�cation process as embodied in the two rules of semanticinference.One might now expect that any well-formed object Obj \is of its type", i.e. Obj : Type(Obj).This is not the case, though. The problem is that both �- and �-expressions include parameterspeci�cations rather than just parameter types, and so functions denoted by �-expressions and speci�edby �-expressions have domains de�ned by speci�cations, not just by types. This is necessary formethodological reasons: we have to be able to specify permissible arguments in a more re�ned waythan just by giving their types. However, as a consequence, objects denoted by �- and �-expressionsin general do not belong to the domain de�ned by their types, and so we cannot expect that suchexpressions would \typecheck" to their types.To identify the purely \type-checking" component in our system we have to deal with objectswhere parameter speci�cations are replaced by their types. Formally, for any roughly well-formedobject Obj, its version Erase(Obj) with parameter speci�cations erased is de�ned by induction asfollows: Speci�cations:Erase(�) =def �Erase(impose � on SP) =def impose � on Erase(SP): : : and similarly for other simple speci�cations : : :Erase(fObjg) =def fErase(Obj)gErase(�X:SP: SP 0) =def �X:�: Erase(SP 0)where Type(SP) = Spec(�)Erase(Spec(SP)) =def Spec(Erase(SP))Other objects:Erase(A) =def AErase(�X:SP: Obj) =def �X:�: Erase(Obj)where Type(SP) = Spec(�)Erase(Obj(Obj 0)) =def Erase(Obj)(Erase(Obj 0))We have chosen here to de�ne Erase(A) = A for all algebra expressions A. Alternatively, we couldleave this case out again, and require a de�nition to be provided externally. For example, one mightwant that Erase(A[Obj=X]) = Erase(A[Erase(Obj)=X]) (which would not necessarily hold under theabove de�nition). The only property we need is that if A is an algebra expression denoting a �-algebrathen so is Erase(A).Theorem 6.6 For any roughly well-formed object Obj, Erase(Obj) : Type(Obj) (hence, Erase(Obj)is well-formed).Proof (idea) Again, the extension to objects with free variables is not entirely clear. What we meanis: if Type(Obj) = � under the assumptions Type(X1) = �1, : : : , Type(Xn) = �n then Erase(Obj) :Type(Obj) under the assumptions X1 : �1; : : : ;Xn : �n. This may be proved by straightforwardinduction on the derivation of the type of Obj. 2Joining this with Theorem 6.2, we conclude that a necessary condition for an object to satisfy aspeci�cation is that the version of the object where parameter speci�cations have been \roundedup" to parameter types has a type which is consistent with the type of the speci�cation. Thisnecessary condition embodies the purely type-checking component of any proof that an object satis�esa speci�cation. 19

Corollary 6.7 For any roughly well-formed object Obj, Type(Erase(Obj)) = Type(Obj).Proof This follows directly from Theorems 6.6 and 6.2 since for any type � , Type(�) = Spec(�),which may easily be established by an obvious induction on the structure of types. 2The above corollary, when the equality is read from right to left, may be viewed as an alternativede�nition of the type of a roughly well-formed object. The type-checking of Erase(Obj) may beperformed within the original system separately from the semantic veri�cation part, without anyreference to the meanings of objects and speci�cations. We present below the corresponding properfragment of the original system: Simple speci�cations:� signature� : Spec(�) SP : Spec(�) � � Sen(�)impose � on SP : Spec(�): : : and just as before for other simple speci�cations : : :Other speci�cations:Obj : �fObjg : Spec(�) [X : �]SP 0 : Spec(� 0)�X:�: SP 0 : Spec(�!� 0) SP : Spec(�)Spec(SP) : Spec(Spec(�))�-expressions:[X : �]Obj : � 0�X:�: Obj : �!� 0 Obj : �!� 0 Obj 0 : �Obj(Obj 0) : � 0Algebra expressions:A is an algebra expression denoting a �-algebraA : �We hope that a comparison of the above with the system presented in Section 5 should clearly illustratethe intuitive di�erence between typed �-calculi, like the one above, and \speci�ed" �-calculi, like theone in Section 5.7 Concluding remarksSpurred by the methodological considerations in [SST 90], we have presented an institution-independentspeci�cation formalism which provides a notation for parameterised speci�cations and speci�cationsof parametric objects of an arbitrary order, as well as any mixture of these concepts. The formalismincorporates the kernel speci�cation-building operations described in [ST 88] based on those in theASL speci�cation language [SW 83], [Wir 86]. The basic idea was to treat speci�cations, which specifyobjects, as objects themselves. This collapsing together of the two levels, that of objects and that oftheir speci�cations, led (perhaps surprisingly) to a well-behaved inference system for proving that anobject satis�es a speci�cation with a clearly identi�ed formal type-checking component (cf. [SdST 90]where the formal type-checking component of Extended ML is given).The formalism presented deals explicitly with two levels of objects involved in the process ofsoftware development: programs (viewed as algebras) and their speci�cations (viewed as classes ofalgebras) | both, of course, arbitrarily parameterised. Aiming at the development of an institution-independent framework, we decided to omit from our considerations yet another level of objects20

involved, namely that of algebra components (such as data values and operations on them). Inparticular institutions, however, it may be interesting to explicitly consider this level as well, and tointermix constructs for dealing with this level with those for the other two levels mentioned above.This would lead to entities such as algebras parametric on data values, speci�cations parameterisedby functions on data, functions from algebras and speci�cations to data values, etc.Just as the kernel ASL-like speci�cation formalism it builds on, the presented system is too low-level to be directly useful in practice. We view it primarily as a kernel to be used as a semanticfoundation for the development of more user-friendly speci�cation languages. An example of sucha more user-oriented framework is the Extended ML speci�cation language [ST 85] which comestogether with a program development methodology as presented in [ST 89]. The formalism describedin this paper provides adequate foundations for Extended ML. Indeed, one of the main stimuli for itsdevelopment was our inability to express the semantics of the current version of Extended ML directlyin terms of the kernel speci�cation-building operations in ASL: Extended ML functor speci�cationsare speci�cations of parametric objects, and these were not present in ASL. The task of writing out acomplete institution-independent semantics of Extended ML in terms of the speci�cation formalismpresented here remains to be done. We expect that some technicalities, like those which arise inconnection with ML type inheritance, will cause the same problems as in [ST 89]. Some others,like the use of behavioural equivalence and the concept of functor stability in the Extended MLmethodology, although directly related to the abstract operation in the formalism presented here,require further study in this more general framework. Finally, properties of ML functors such aspersistency, which cause di�culties in other speci�cation formalisms, will be easy to express here.Of course, the formal properties of the system need much further study. For example, it seemsthat the \cut" rule should be admissible (although not derivable) in the remainder of the system.The standard properties of �-reduction, such as the Church-Rosser property and termination (onwell-formed objects) should be carefully proven, probably by reference to the analogous properties ofthe usual typed �-calculus. For example, the termination property of �-reduction on the well-formedobjects of the language should follow easily from the observation that the Erase function as de�ned inSection 6 preserves �-reduction, which allows us to lift the corresponding property of the usual typed�-calculus to our formalism. The system is incomplete, as pointed out earlier. It would be useful toidentify all the sources of this incompleteness, for example by characterising an interesting subset ofthe language for which the system is complete. One line of research which we have not followed (asyet) is to try to encode the formalism we present here in one of the known type theories (for example,Martin-L�of's system [NPS 90], the calculus of constructions [CH 88] or LF [HHP 87]). It would beinteresting to see both which of the features of the formalism we propose would be di�cult to handle,as well as which of the tedious proofs of some formal properties of our formalism (cf. the proofssketched for Theorems 5.8 and 6.2) would turn out to be available for free under such an encoding.Acknowledgements: We are grateful to Stefan Soko lowski for his collaboration on [SST 90] leadingto the development of an early version of the formalism presented here. Thanks to Jordi Farr�es,Cli� Jones and Stefan Kahrs for helpful comments on a draft of [SST 90], and to Jan Bergstra fora question on �-reduction which led to the current version of the system. Thanks to an anonymousreferee for comments on a draft of this paper which helped to improve the presentation.This research was supported by the University of Edinburgh, the University of Bremen, the Tech-nical University of Denmark, the University of Manchester, and by grants from the Polish Academyof Sciences, the (U.K.) Science and Engineering Research Council, ESPRIT, and the Wolfson Found-ation.8 References[Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n][Ada 80] The Programming Language Ada: Reference Manual. LNCS 106 (1980).21

[Bar 84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics (second edition). North-Holland (1984).[Bau 85] F.L. Bauer et al (the CIP language group). The Wide Spectrum Language CIP-L. LNCS 183(1985).[BGM 89] M. Bidoit, M.-C. Gaudel and A. Mauboussin. How to make algebraic speci�cations moreunderstandable? An experiment with the PLUSS speci�cation language. Science of ComputerProgramming 12, 1{38 (1989).[BT 83] A. Blikle and A. Tarlecki. Naive denotational semantics. Information Processing 83, Proc.IFIP Congress '83 (ed. R. Mason), Paris. North-Holland, 345{355 (1983).[BKS 88] A.M. Borzyszkowski, R. Kubiak and S. Soko lowski. A set-theoretic model for a typed poly-morphic �-calculus. Proc. VDM-Europe Symp. VDM | The Way Ahead, Dublin. LNCS 328,267{298 (1988).[BG 80] R.M. Burstall and J.A. Goguen. The semantics of CLEAR, a speci�cation language. Proc.of Advanced Course on Abstract Software Speci�cation, Copenhagen. LNCS 86, 292{332 (1980).[Coh 81] P.M. Cohn. Universal Algebra. Reidel (1981).[Con 86] R.L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.Prentice-Hall (1986).[CH 88] T. Coquand and G. Huet. The calculus of constructions. Information and Computation 76(1988).[DMN 70] O.-J. Dahl, B. Myrhaug and K. Nygaard. Simula 67 common base language. Report S-22,Norwegian Computing Center, Oslo (1970).[Ehr 82] H.-D. Ehrich. On the theory of speci�cation, implementation, and parametrization of ab-stract data types. Journal of the Assoc. for Computing Machinery 29, 206{227 (1982).[EKTWW 84] H. Ehrig, H.-J. Kreowski, J. Thatcher, E. Wagner and J. Wright. Parameter passingin algebraic speci�cation languages. Theoretical Computer Science 28, 45{81 (1984).[EM 85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation I: Equations and InitialSemantics. Springer (1985).[ETLZ 82] H. Ehrig, J.W. Thatcher, P. Lucas and S.N. Zilles. Denotational and initial algebra se-mantics of the algebraic speci�cation language LOOK. Report 84-22, Technische Universit�atBerlin (1982).[Far 89] J. Farr�es-Casals. Proving correctness of constructor implementations. Proc. 14th Symp.on Mathematical Foundations of Computer Science, Por�abka-Kozubnik. LNCS 379, 225{235(1989).[FJKR 87] L.M.G. Feijs, H.B.M. Jonkers, C.P.J. Koymans and G.R. Renardel de Lavalette. Formalde�nition of the design language COLD-K. METEOR Report t7/PRLE/7, Philips ResearchLaboratories (1987).[FJ 90] J.S. Fitzgerald and C.B. Jones. Modularizing the formal description of a database system.Proc. VDM'90 Symp. VDM and Z | Formal Methods in Software Development, Kiel. LNCS 428,189{210 (1990).[Gog 84] J.A. Goguen. Parameterized programming. IEEE Trans. Software Engineering SE-10, 528{543 (1984).[GB 84] J.A. Goguen and R.M. Burstall. Introducing institutions. Proc. Logics of ProgrammingWorkshop, Carnegie-Mellon. LNCS 164, 221{256 (1984).[GHW 85] J.V. Guttag, J.J. Horning and J. Wing. Larch in �ve easy pieces. Report 5, DEC SystemsResearch Center, Palo Alto, CA (1985). 22

[HHP 87] R. Harper, F. Honsell and G. Plotkin. A framework for de�ning logics. Proc. 2nd IEEESymp. on Logic in Computer Science, Cornell, 194{204 (1987).[LL 88] T. Lehmann and J. Loeckx. The speci�cation language of OBSCURE. Recent Trends in DataType Speci�cation, Selected Papers from the 5th Workshop on Speci�cation of Abstract DataTypes, Gullane, Scotland. LNCS 332, 131{153 (1988).[Lis 81] B.H. Liskov et al. CLU Reference Manual. LNCS 114 (1981).[MacQ 86] D.B. MacQueen. Modules for Standard ML. In: R. Harper, D.B. MacQueen and R. Milner.Standard ML. Report ECS-LFCS-86-2, Univ. of Edinburgh (1986).[MMMS 87] A.R. Meyer, J.C. Mitchell, E. Moggi and R. Statman. Empty types in polymorphiclambda calculus. Proc. 14th ACM Symp. on Principles of Programming Languages, 253{262; re-vised version in Logical Foundations of Functional Programming (ed. G. Huet), Addison-Wesley,273{284 (1990).[MTH 90] R. Milner, M. Tofte and R. Harper. The De�nition of Standard ML. MIT Press (1990).[Mos 89a] P. Mosses. Uni�ed algebras and modules. Proc. 16th ACM Symp. on Principles of Pro-gramming Languages, Austin, 329{343 (1989).[Mos 89b] P. Mosses. Uni�ed algebras and institutions. Proc. 4th IEEE Symp. on Logic in ComputerScience, Asilomar, 304{312 (1989).[NPS 90] B. Nordstr�om, K. Petersson and J.M. Smith. Programming in Martin-L�of's Type Theory:An Introduction. Oxford Univ. Press (1990).[SdST 90] D. Sannella, F. da Silva and A. Tarlecki. Syntax, typechecking and dynamic semanticsfor Extended ML (version 2). Draft report, Univ. of Edinburgh (1990). Version 1 appeared asReport ECS-LFCS-89-101, Univ. of Edinburgh (1989).[SST 90] D. Sannella, S. Soko lowski and A. Tarlecki. Toward formal development of programs from al-gebraic speci�cations: parameterisation revisited. Report 6/90, Informatik, Universit�at Bremen(1990).[ST 85] D. Sannella and A. Tarlecki. Program speci�cation and development in Standard ML. Proc.12th ACM Symp. on Principles of Programming Languages, New Orleans, 67{77 (1985).[ST 87] D. Sannella and A. Tarlecki. On observational equivalence and algebraic speci�cation. J.Comp. and Sys. Sciences 34, 150{178 (1987).[ST 88] D. Sannella and A. Tarlecki. Speci�cations in an arbitrary institution. Information andComputation 76, 165{210 (1988).[ST 89] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations andmethodology. Report ECS-LFCS-89-71, Univ. of Edinburgh (1989); extended abstract in Proc.Colloq. on Current Issues in Programming Languages, Joint Conf. on Theory and Practice ofSoftware Development (TAPSOFT), Barcelona. LNCS 352, 375{389 (1989).[SW 83] D. Sannella and M. Wirsing. A kernel language for algebraic speci�cation and implementa-tion. Proc. Intl. Conf. on Foundations of Computation Theory, Borgholm, Sweden. LNCS 158,413{427 (1983).[Sch 86] O. Schoett. Data abstraction and the correctness of modular programming. Ph.D. thesis,Univ. of Edinburgh (1986).[Vo� 85] A. Vo�. Algebraic speci�cations in an integrated software development and veri�cationsystem. Ph.D. thesis, Universit�at Kaiserslautern (1985).[Wir 86] M. Wirsing. Structured algebraic speci�cations: a kernel language. Theoretical ComputerScience 42, 123{249 (1986).[Wirth 88] N. Wirth. Programming in Modula-2 (third edition). Springer (1988).23

