
8 Specification Languages

Donald Sannella1 and Martin Wirsing2

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, Scotland; dts@dcs.ed.ac.uk, http://www.dcs.ed.ac.uk/˜dts/

2 Institut für Informatik, Ludwig-Maximilians-Universität München, München,
Germany; wirsing@informatik.uni-muenchen.de,
http://www.pst.informatik.uni-muenchen.de/personen/wirsing/

8.1 Introduction

The basic components of any specification language include: constructs for
specifying the properties of individual program components such as types
and functions; structuring mechanisms for building large specifications in a
modular fashion; a description of the semantics of the language; mechanisms
for performing proofs of properties of specifications; a notion of refinement of
specifications; and a way of relating specifications to programs written in a
programming language. These topics are discussed in other chapters of this
book, and in each case there are various alternatives to choose from. To take a
simple example, the properties of functions may be specified using equations
or using first-order (or even higher-order) formulas as axioms.

A specification language is a commitment to a compatible combination
of these choices. It is a commitment because the syntax of a specification
language determines once and for all what can be expressed and what can-
not be expressed. For example, the syntax of formulas determines how the
properties of functions are specified; similarly, a construct for hiding types
and/or functions may or may not be included. The choices must be compati-
ble in various respects. On one hand, certain combinations of choices simply
make no sense; for instance, initial semantics requires the use of axioms no
more complex than conditional equations. More subtly, the inclusion of cer-
tain structuring mechanisms complicates the process of proving properties of
specifications and so these might be omitted or restricted in a language in
which proofs are of primary importance.

There is no single best combination of choices because this depends on
many factors including the intended context of use and the range of applica-
tions to be addressed. Consequently, this chapter will consider the rationale
for choosing between the various alternatives available. The technical details
of these alternatives are given in other chapters for the most part and will
not be repeated here.

The next section is devoted to a brief overview of some existing specifica-
tion languages. Section 8.3, which forms the bulk of the chapter, discusses the

2 Donald Sannella and Martin Wirsing

various design decisions that would confront the designer of a new specifica-
tion language. The final short section speculates on some likely future trends.
As in other chapters of this book, we focus on property-oriented specifica-
tions, although many of the issues discussed relate to specification languages
in general.

8.2 Existing specification languages

In this section we give a brief summary of the features of a range of exist-
ing specification languages, with a small example of a specification in each
language. Further small examples of specifications written in these languages
will appear in the next section. Note that these examples are chosen to il-
lustrate language features rather than for their intrinsic interest. See [Wir95]
for a more comprehensive survey with historical remarks.

Clear and OBJ3. Clear [BG77,BG80], the first algebraic specification lan-
guage, had considerable influence on the design of many other languages.
Features of Clear include: the use of specification-building operations for con-
structing specifications in a modular way, with care taken to respect shared
sub-specifications, and most of the particular operations used in other lan-
guages (see Chapter 6); explicit pushout-based parameterisation (Chapter 6);
free generating constraints (Chapter 5); institution independent theory-level
semantics (Chapters 4 and 5); a structured proof system [SB83] (Chapter 11);
and a notion of implementation of parameterised specifications [SW82] (Chap-
ter 7). OBJ3 [GWM+92] is an executable specification language, also known
as an “ultra-high-level” programming language, that can be seen as an imple-
mentation of Clear (using associative-commutative rewriting, see Chapter 9)
for the institution of order-sorted conditional equational logic. Order-sorted
logic is used in order to cope smoothly with partial functions, errors and sub-
sort polymorphism; see Chapter 3. OBJ3 has several variants of Clear’s enrich
specification-building operation, including so-called “protecting importation”
which ensures that the enrichment is persistent. It supports a very flexible
“mixfix” notation with operators such as if then else fi : expr × stmt ×
stmt → stmt. Two new object-oriented specification languages are based on
OBJ3: Maude [Mes93] extends OBJ3 by a notion of objects and by concurrent
rewriting for describing the dynamic behaviour of objects; CafeOBJ [DF98] is
similar but focuses additionally on behavioural specifications (see Chapter 5).

The following simple example in OBJ3 demonstrates the use of subsorts.
The operation tail can only be applied to values of sort NeList (non-empty
lists), which is specified as a subsort of List and a supersort of the sort Elt
of list elements (from the “interface theory” TRIV).

obj LIST[X :: TRIV] is
sorts List NeList .
op nil : -> List .

8 Specification Languages 3

subsorts Elt < NeList < List .
op __ : List List -> List [assoc id: nil] .
op __ : NeList List -> NeList .
op __ : NeList NeList -> NeList .
protecting NAT .
op |_| : List -> Nat .
eq | nil | = 0 .
var E : Elt . var L : List .
eq | E L | = 1 + | L | .
op tail_ : NeList -> List .
var E : Elt . var L : List .
eq tail E L = L .

endo

ACT ONE and ACT TWO. ACT [CEW93] is an approach to formal software
development that includes a language called ACT ONE [Cla89] for writing
parameterised specifications, called “types”, with conditional equational ax-
ioms and initial constraints, and an extension called ACT TWO [Fey88] for
writing specified modules. ACT ONE has a pure initial algebra semantics
(Chapter 5) where every type is parameterised (non-parameterised types are
considered as a degenerate case) and denotes a free functor. Thus it provides
only simple specification-building operators (free extension, union, renaming
and pushout-based instantiation) but no operation for hiding. A module in
ACT TWO consists of four specifications:

Parameter: This describes parameters that are common to the entire mod-
ule or modular system in which the module appears, e.g., the underlying
character set.

Import interface: This describes the sorts and operations that the module
requires to be supplied by other modules.

Export interface: This describes the sorts and operations that the module
supplies for use by other modules.

Body: This defines the construction of the exported components in terms
of the imported components. This construction may involve auxiliary
operations that are not exported.

These four specifications are written in ACT ONE extended by permitting
first-order axioms (except in the body part). Module-building operations
(composition, union, instantiation and renaming) are module-level analogues
to specification-building operations. Both ACT ONE and ACT TWO have
both a presentation-level and a model-level semantics. For each language
these are described separately and are then shown to be compatible.

The following example is an ACT ONE parameterised type of lists. The
type ELEM serves as the formal parameter for the type LIST, meaning that the
body of LIST is interpreted as an extension of ELEM. List(D) is a so-called
“sort with structured name”, expressing the dependency of the sort List on
the parameter sort D.

4 Donald Sannella and Martin Wirsing

parameter ELEM is
sorts D

endpar

type LIST[ELEM] is
extend

union NAT, BOOL endunion
by

sorts
List(D)

constructors
nil: -> List(D);
cons: D, List(D) -> List(D);

functions
vars x:D, l:List(D);
func length: List(D) -> Nat;
length(nil) = zero;
length(cons(x,l)) = succ(length(l));

func isempty: List(D) -> Bool;
isempty(nil) = true;
isempty(cons(x,l)) = false;

endext
endtype

The operation of instantiating LIST with a specification NAT of natural num-
bers is called “actualization”, and is written as follows:

type NATLIST is
actualize

LIST by NAT using sortnames Nat for D
endact

endtype

The instantiation of the sort D causes the resulting type NATLIST to contain
a sort with the name List(Nat).

ASL. ASL [SW83,Wir86,ST88a] is a kernel language that is intended to pro-
vide a sound semantic basis for defining more user-friendly high-level specifi-
cation languages (e.g., Pluss [BGM89,Bid89] and the meta-language used in
[ABB+86]). It consists of a small number of simple but powerful specification-
building operations with an institution-independent loose model-class se-
mantics (Chapters 4 and 5). Generating constraints are incorporated via
a specification-building operation, called reachable. A specification-building
operation called abstract (and a special case of abstract called behaviour) pro-
vides observational abstraction (Chapter 5). The absence of initiality con-
straints means that there is no reason to restrict to the use of conditional
equational axioms, so more expressive logics – typically first-order logic with
equality – are used. ASL provides explicit λ-calculus-based higher-order pa-
rameterisation. [SST92] describes an extension of ASL called ASL+ that also

8 Specification Languages 5

supports specification of (possibly higher-order) parameterised algebras, and
distinguishes between these and parameterised specifications, with a formal
system for proving satisfaction, cf. [Asp97]. The expressive power of the lan-
guage makes it possible to model refinement of specifications (Chapter 7)
as model class inclusion; more elaborate notions of implementation of ASL
specifications are studied in [ST88b]. A system for performing structured
proofs of properties of specifications and of correctness of implementation
steps (Chapter 11) is described in [Far92], and complete proof systems for
subsets of ASL are given in [Wir93,Cen94,HWB97,Hen97].

The following is an ASL specification of bags of natural numbers with
a counting function based on a predefined specification of natural numbers
(NAT) that is assumed to be monomorphic. The use of reachable ensures that
only term-generated models are admissible. The axioms ensure that the data
structure of finite multisets of natural numbers is (up to isomorphism) the
only model of this specification.

BAGcount =
reachable

enrich NAT by
sorts Bag
opns empty : Bag

cons: Nat, Bag -> Bag
count: Nat, Bag -> Nat

axioms cons(x, cons(y, b)) = cons(y, cons(x, b))
count(x,empty) = zero
count(x, cons(x,b)) = succ(count(x, b))
x 6=y ⇒ count(x, cons(y,b)) = count(x, b)

on {Bag}

Using the behaviour operator, the class of models is enlarged to include, e.g.,
the data structure of finite lists of natural numbers, which is the initial model
of BEHAVIOURAL_SET; the models of BAGcount are its final models.

BEHAVIOURAL_SET = behaviour BAGcount wrt {Nat}

Larch. Larch [GH86,GH93] is a family of specification languages. Each Larch
specification has components written in two languages: one designed for a
specific programming language, the so-called Larch interface language, and
another common to all programming languages, the so-called Larch shared
language LSL. LSL is a loose algebraic specification language with equational
axioms, generating constraints, and simple structuring operators (rename,
combine, and implicit parameterisation) but no operation for hiding, and a
theory semantics based on first-order logic with equality. There is a construct
for observational abstraction called partitioned by which has the status of a
constraint, and specifications, called “traits”, may contain assertions about
intended theorems using the keyword implies. The LP theorem prover sup-
ports proof of properties of LSL traits. Larch interface languages have been

6 Donald Sannella and Martin Wirsing

designed for CLU, Ada, C, Modula-3, Smalltalk, and C++. Each of these
is an extension of a programming language with annotations that describe
program properties expressed via abstract concepts from the problem domain
that are defined in LSL traits.

The following is an LSL trait defining bags based on a predefined trait of
natural numbers (NAT). Sorts are declared implicitly by their appearance in
the signature, and the parameters in the declaration of a trait may contain
names of sorts or function symbols. Parameters are used merely to facili-
tate renaming, so the appearance or non-appearance of parameters has no
semantic consequences. Axioms are given following the keyword asserts. The
generated by assertion amounts to a reachability constraint for Bag, while
the partitioned by assertion says that values of sort Bag that cannot be dis-
tinguished using count are equal. The implies clause states intended conse-
quences of the trait, where converts count says that the definition of count
is sufficiently complete.

BAGcount (E, Bag): trait
includes NAT
introduces

empty:→ Bag
cons: E, Bag→ Bag
count: E, Bag → Nat

asserts
Bag generated by empty, cons
Bag partitioned by count
∀ b: Bag, x,y: E

count(x,empty) == zero;
count(x,cons(y,b)) == if x=y then succ(count(x,b))

else count(x,b)
implies

converts count
∀ x: E, b: Bag

cons(x,b) 6= empty

A partial instantiation of BAGcount with natural numbers for the element
sort E is achieved by defining a new trait that includes NAT and BAGcount
appropriately renamed:

NatBAGcount: trait
includes

NAT, BAGcount (Nat, Bag)

Note that BAGcount (Nat, Bag) is just an abbreviation for the renaming
BAGcount (Nat for E).

Extended ML. Extended ML (EML) [San91,ST91,KS98] is a framework for
the formal development of modular programs in the Standard ML (SML)

8 Specification Languages 7

functional programming language [Pau96] from specifications of their re-
quired behaviour. The EML language is a “wide-spectrum” language that
is based on a large subset of SML, excluding mainly references and in-
put/output. EML thus inherits SML’s higher-order polymorphic type sys-
tem and its facilities for building hierarchically-structured and parameterised
program modules with explicit interfaces. EML extends this subset of SML
by permitting axioms in module interfaces, for specifying required proper-
ties of module components, and in place of code in module bodies, for de-
scribing functions in a non-algorithmic way prior to their implementation
as SML code. Axioms are written in a language of higher-order logic with
equality, with additional features to deal with run-time exceptions and non-
terminating functions. Correctness of module bodies with respect to their
interfaces is required only up to behavioural equivalence. The semantics of
EML [KST94,KST97] is based directly on the static and dynamic seman-
tics of SML [MTH90], extended with a loose model-class semantics to give
meaning to the specification constructs. The relationship between EML and
SML is thus a formal one based on semantics in contrast to the rather infor-
mal relationship between specification language and programming language
in the case of Larch. Spectral [KS91] can be seen as an extension of EML
with higher-order parameterisation at the module level, dependent types, and
logically-constrained subtypes.

The following is an EML specification of a generic sorting module called
Sort. The first axiom in its input interface PO requires the function le to
terminate for any choice of arguments. The first axiom in its output interface
SORT requires the function sort to terminate with a “proper” value (i.e., not
an exception) for any argument. In the second axiom of SORT, the function
sorted is a local function whose scope is that axiom. The third axiom in
SORT assumes that a polymorphic function count for counting the number of
occurrences of a value in a list has been defined elsewhere.

signature PO =
sig

eqtype elem
val le : elem * elem -> bool
axiom forall(x,y) => le(x,y) terminates
axiom forall x => le(x,x)
axiom forall(x,y) => le(x,y) andalso le(y,x) implies x==y
axiom forall (x,y,z) => le(x,y) andalso le(y,z) implies le(x,z)

end

signature SORT =
sig

structure Elem:PO
val sort : Elem.elem list -> Elem.elem list
axiom forall l => (sort l) proper
axiom let

fun sorted l =

8 Donald Sannella and Martin Wirsing

forall (l1,x,l2,y,l3) =>
l1@[x]@l2@[y]@l3==l implies Elem.le(x,y)

in
forall l => sorted(sort l)

end
axiom forall l => forall x => count(x,l)==count(x,sort l)

end

functor Sort(X : PO) : sig include SORT sharing Elem=X end = ?

SPECTRUM. Spectrum [BFG+93] is a language for developing executable
specifications from requirements specifications. It contains explicit support
for partial functions, and axioms are not restricted to equational or condi-
tional equational formulas since executability is not the primary aim.

The whole specification style is oriented towards functional programming
and the specification of concurrent systems via dataflow nets of (infinite)
streams. As a consequence a number of functional language concepts have
been integrated into the specification language. The sort system provides
parametric polymorphism and sort classes in the style of the functional lan-
guage Haskell [HPW92]. Furthermore, the language supports the definition
of infinite objects by recursion equations, the definition of functions by typed
λ-abstractions, and higher-order functions. Functions can be partial, strict,
non-strict, continuous. Non-continuous functions are called “mappings” and
are only used as auxiliary functions for specification purposes. The constructs
for specification in the large and for parameterisation are inspired by ASL.

The semantics of Spectrum is loose. Its definition and proof system
were influenced by languages and systems of the LCF family [GMW79], cf.
[Reg94]. The logic of Spectrum is similar to PPλ, the logic of computable
functions underlying LCF. In particular, all carrier sets are complete partial
orders. The main difference to PPλ is due to the notion of sort class which
semantically is treated like the notion of kind in type theory.

The following is a Spectrum specification of a sort class TO that defines
the class of totally ordered sorts. The attributes strict and total of ≤
ensure that ≤ is a total function and that applying ≤ to a bottom (i.e.,
undefined) element yields the bottom element (of Bool) as result.

Torder = {
class TO;
.≤. : a :: TO ⇒ a × a → Bool;
≤ strict total;
axioms a :: TO ⇒ ∀x, y, z: a in
x ≤ x; -- reflexivity
x ≤ y ∧ y ≤ x ⇒ x = y; -- antisymmetry
x ≤ y ∧ y ≤ z ⇒ x ≤ z; -- transitivity
x ≤ y ∨ y ≤ x; -- linearity
endaxioms;

}

8 Specification Languages 9

The specification MinLIST extends Torder and a polymorphic specification
LIST1 of lists by a partial function min for computing the minimum of a list
(cf. POLY_LIST in Section 8.3.5; LIST1 is an extension of POLY_LIST by the
function ∈ that checks whether an element is a member of a list). The first
axiom ensures that min is undefined for the empty list nil.

MinLIST = {
enriches Torder + LIST1;
min : a :: TO ⇒ List a → a;
min strict;
axioms a :: TO ⇒ ∀x: a, l : List a in
¬(δ(min nil));
¬(l = nil) ⇒ min(l) ∈ l ∧ (x ∈ l ⇒ min(l) ≤ x);
endaxioms;

}

CASL. Casl [CoF98,Mos97] is a language for specifying requirements and
designs. It was designed by combining the most successful features of existing
languages to give a common basis for future joint work on algebraic speci-
fications. Casl is intended to be the central member of a coherent family
of languages, with simpler languages (e.g., for use with existing term rewrit-
ing tools) obtained by restriction, and more advanced languages (e.g., for
specifying reactive systems) obtained by extension.

Casl supports both partial and total functions as well as predicates, with
axioms of first-order logic with equality and definedness assertions (Chap-
ter 3). Datatype declarations allow concise specification of sorts together
with constructors and (optionally) selectors. Subsorts are provided, includ-
ing logically-constrained subsorts as in Spectral, and OBJ-style mixfix op-
erator syntax is supported. Structuring operators (translation, reduction,
union, loose extension, free extension) and pushout-style generic specifica-
tions are available for building large specifications. Architectural specifica-
tions describe how to build the specified software from separately-developed
generic units with specified interfaces. Specification libraries allow the dis-
tributed storage and retrieval of named specifications.

The following Casl specification defines ordered lists over a partially-
ordered type of elements as a subsort of ordinary lists.

spec PO =
type Elem
pred __ ≤ __ : Elem * Elem
vars x,y,z : Elem
axioms x≤x ;

x≤y ∧ y≤x ⇒ x=y ;
x≤y ∧ y≤z ⇒ x≤z

end

spec ORDLIST[PO] =

10 Donald Sannella and Martin Wirsing

free type List[Elem] ::= nil | __::__ (hd:?Elem; tl:?List[Elem])
pred ordered : List[Elem]
vars a,b : Elem; l : List[Elem]
axioms ordered(nil) ;

ordered(a::nil) ;
a≤b ∧ ordered(b::l)⇒ ordered(a::(b::l))

type OrdList[Elem] = { l : List[Elem] . ordered(l) }
end

The constructor __::__ is a total function of type Elem × List[Elem] →
List[Elem]. Suppose that a : Elem and l : OrdList[Elem]. Since OrdList[Elem]
is a subsort of List[Elem], the term a::l is well-formed and is of type
List[Elem]. We can “cast” this term to type OrdList[Elem] by writing
a::l as OrdList[Elem]. This term is well-formed and has the indicated type
but will have a defined value if and only if ordered(a::l).

ORDLIST is instantiated by supplying an actual parameter that fits the
formal parameter PO. One way to do this is to supply a specification together
with a fitting morphism, for example:

ORDLIST[NAT fit Elem |-> Nat, __≤__]

which, assuming that NAT is a specification of natural numbers with sort Nat
and predicate ≤, gives ordered lists over the natural numbers with sort names
List[Nat] and OrdList[Nat]. The same effect may be achieved by using a
named “view”:

view PO-NAT : PO to NAT = Elem |-> Nat, __≤__

ORDLIST[view PO-NAT]

A view may itself have parameters, which have to be instantiated when it is
used.

8.3 Design decisions

8.3.1 Context of the design

Design decisions are influenced by the general context of the design as well as
by the taste of the designer and technical feasibility. The context includes the
range of uses to which the language will be put, the environment in which the
language will be used, and the tools available to support its use. All of these
factors dictate to some extent the choices discussed in the following sections.

Range of applications. The intended range of applications is a significant
factor in the design of a specification language. A special-purpose language
may be able to provide extra support for a given application domain with

8 Specification Languages 11

additional features to cope with special aspects of the domain. Examples of
application domains are: safety-critical systems, where mechanisms to sup-
port fault analysis might be required; real-time systems, where notations to
indicate timing constraints would be provided; and information systems, e.g.,
supported via the entity-relationship model.

Level of abstraction. Different specification languages aim to describe prob-
lems and/or systems at different levels of abstraction. Possible levels include:
that of the problem to be solved (requirements specifications); that of the
module structure of the system (design specifications); that of the final solu-
tion itself (programs). Some languages focus on a single level of abstraction,
while others aim to cope with two or even more of these levels. This influences
the form of axioms, the semantic approach, and the type of parameterisation
that the language supports.

Programming paradigm. The question of which programming paradigm the
specification language aims to support (e.g., imperative, functional, object-
oriented, concurrent) exerts a strong influence on all aspects of the design
of the language. The state of the art in algebraic specification is such that
the most obvious context to which it is appropriate is the development of
functional programs with non-trivial data structures, so this is where most
experience has been accumulated and where the discussion below will be most
directly relevant. There are extensions to handle other paradigms, e.g., Chap-
ter 12 discusses object orientation and Chapter 13 discusses concurrency.

Software development process. The extent to which a specification language
will support the software development process is a factor in the design of
the language. The rôle of the language in the software development pro-
cess depends on the particular development model adopted. More than one
specification language may be required, with different languages to support
different phases of development.

Tools. A pervasive influence on the design of a specification language is the
desired degree of tool support. Tools might include parsers, type checkers, the-
orem provers, browsers, library search tools, rapid prototyping tools, graphi-
cal visualization tools, version control mechanisms, analysis tools, etc. If ex-
tensive tool support is an important factor in the design, then various design
decisions may be influenced by the ease with which the resulting language can
be mechanically processed. Some tools or meta-tools (e.g., theorem provers
for a logical framework like LF [HHP93] or Isabelle [Pau94]) may already
be available; then the language design may be influenced by the constraints
built into such tools.

12 Donald Sannella and Martin Wirsing

8.3.2 General design principles

Other general design decisions are influenced by the intended mode of use of
the specification language and by its underlying semantic concepts.

Readability, writeability, etc. For the intended mode of use one may have
different aims such as easy readability, writeability, executability, verifiabil-
ity, modifiability. These choices often conflict: easy readability and writeabil-
ity may require high-level, easy-to-use constructs, whereas easy verifiability
excludes certain high-level constructs. For example Spectrum, EML, and
Casl are languages with many high-level features which make them suit-
able for use in practical applications, but proof is more difficult than, e.g.,
in LSL or RAP [HG86]. Executability rules out the use of constructs such as
unrestricted existential quantifiers; this makes it difficult to express certain
abstract properties and therefore inhibits easy writeability.

OBJ3 and Casl support readability by the use of mixfix notation, while
OBJ3 and a planned future sublanguage of Casl support executability and
verifiability by restricting to conditional equational formulas. ACT ONE was
originally designed to be an executable kernel language with a close relation
to the underlying mathematical concepts of initial algebra semantics, but
after experience with use of the language, a more sophisticated syntax was
added to increase readability and useability. LSL sacrifices executability in
favour of brevity, clarity, and abstractness. To compensate it provides ways
to check and to verify specifications with the help of the LP theorem prover.
The absence of a hiding operation makes such support easier to provide.

ASL was designed as a kernel language with high expressive power and
orthogonal language constructs. As a consequence it has a well-developed set
of proof rules. Because of the expressiveness of observational abstraction, ver-
ifiability of specifications containing the observational abstraction operator is
still a topic of current research although very considerable progress has been
made in the past few years [BH96].

Up to now modifiability has not been taken in account by most languages.
Pluss offers syntactic constructs called draft and sketch that are designed to
support this feature. Maude supports inheritance and a redefinition mecha-
nism inspired by object-oriented languages. These concepts are semantically
well-founded in Maude: inheritance is based on subsorting, and redefinition
can be modeled with the structuring operators for renaming and hiding.
Through use of a modular natural deduction calculus [Pet94], ASL supports
the reuse of proofs when specifications are modified. In formal development
using EML, the module system insulates the developer from the need to re-
prove correctness from scratch when interfaces change in certain ways in the
course of development [Var92].

General semantic decisions. The semantic concepts underlying a language are
often influenced by its intended use: e.g., executability induces the existence

8 Specification Languages 13

of initial or free models, while verifiability requires the existence of proof rules
that are sound with respect to the semantics.

Typical general semantic decisions are: Should it be possible to write
inconsistent specifications, or specifications that can only be realized using
non-computable functions? Should every specification have an initial or a free
model (e.g., so that term rewriting makes sense)?

• Inconsistent specifications are generally possible with loose semantics,
but not with initial semantics where there is always at least one model,
which might be trivial. Another way to force consistency is to restrict the
form of the axioms to explicit definitions on top of a fixed set of given
consistent specifications, as in model-based approaches to specification.
• Models can be forced to be non-computable when full first-order logic is

used or when “local” generating or initial constraints are present [Wir90].
ACT ONE protects against these “errors”; most other languages do not.
Exceptions are a subset of OBJ3 and other executable specification lan-
guages including the executable subsets of Spectrum and EML.
• Initial/free models exist for the executable subset of a language where the

operational semantics coincides with the mathematical semantics. Typi-
cally, this requires conditional equational axioms or more generally Horn
or hereditary Harrop formulas as in λProlog [NM88], sufficient complete-
ness with respect to the constructors, and only simple equations (such as
associativity, commutativity, and idempotence) between constructors.

The decision depends on the intended use of specifications. If one aims at
abstractness for describing requirements of a program or a software system,
then the requirement of consistency, existence of initial and free models, and
computability of models should be sacrificed. On the other hand, for the
design of algorithms and operational descriptions of dynamic behaviour, most
of these properties should hold. See [ST96] for an analysis of the relationship
between models of specifications and models of programs.

Structure of language definition. A separate question about the semantics
concerns the structure of the semantic description of a complex specification
language. A convenient option is to define the semantics for a subset of the
language or for a more primitive language (the so-called “kernel”, which is
chosen to be simple, orthogonal, and low-level) and then to translate all syn-
tactic constructs to this kernel (compare the semantics of CIP-L [BBB+85],
COLD [FJ92], and RSL [Mil90]). The problem is to choose the right kernel:
if it is too small then the translation may be too complex; if it is too large
then the semantics of the kernel language may be too complicated. ASL is a
kernel language, and EML, Pluss, and Spectrum are all built (in principle)
on top of this kernel.

14 Donald Sannella and Martin Wirsing

8.3.3 Specification in the small

For specification “in the small”, the first problem is to decide on a kind of
signature, a logical system for writing axioms, and a notion of algebra for
defining the meaning of axioms via the definition of satisfaction. Of course,
these choices are not independent since signatures provide names for sorts,
operators, etc., that appear in axioms and are interpreted by algebras.

Institutions. In most cases, the choices made will satisfy additional compat-
ibility conditions and so will give rise to an institution (see Chapter 4). This
has certain advantages for the design of features for specification in the large;
see the next subsection. It is possible to postpone most decisions pertain-
ing to specification in the small by deciding on an institution-independent
approach, as with Clear and ASL; this avoids premature commitment, and
leads to a family of compatible languages. Still, to actually make use of the
language it is necessary to choose a particular institution, and then these de-
cisions must be made. If the particular choices that seem most desirable turn
out not to give rise to an institution, then either the use of an institution-
independent approach or the features chosen for specification in the small
will need to be reconsidered. More likely, as in EML and Casl, the “in the
large” features depend to a minor extent on the details of the “in the small”
features, and then one can employ an appropriately enriched version of insti-
tutions to specify the interface between the two language layers. See [ST86]
for the case of EML and [Mos98] for the case of Casl.

Signatures and type structure. The main point that needs to be decided
for the choice of signatures is that of type structure. Should signatures be
one-sorted (i.e., untyped) or many-sorted (i.e., typed) and, if many-sorted,
should there be simple sorts, polymorphism, subsorts, higher-order types, or
sort classes? The standard choice for specification languages is to have typed
signatures. Defining types, which imposes conceptual structure on the prob-
lem domain, seems to be a natural part of writing specifications. Although
untyped calculi such as the λ-calculus have enormous expressive power, they
are difficult to use effectively because the power is in a raw form which makes
errors easy to commit and difficult to detect. Type systems are used to tame
this raw power by distinguishing well-formed expressions from ill-formed ones;
the latter are regarded as meaningless and are therefore rejected. The expres-
sive power of the type system determines how many useful expressions are
regarded as well-formed, but there is a trade-off between tractability of typing
and expressiveness of types. Simple type systems allow static type checking
or even static type inference, and automatic disambiguation of expressions.
In complex type systems, type checking amounts to a form of theorem prov-
ing which means that error detection cannot be fully automatic. LSL has
simple sorts and ACT ONE has simple sorts with structured names (see the
example in Section 8.2). In OBJ3, ordered sorts provide increased expres-
sive power but as a result some typechecking must be deferred to run-time

8 Specification Languages 15

using the mechanism of “retracts”; the same holds for Spectral’s system of
dependent types, except that typechecking of logically-constrained subsorts
requires theorem proving in general. EML inherits its higher-order polymor-
phic type system from SML, and the same algorithm can be used to infer
types automatically. Spectrum has higher-order types and sort class poly-
morphism but no subsorts, and types can be inferred automatically as in
Haskell. Casl has ordered sorts including logically-constrained subsorts as
in Spectral. A planned future extension of Casl will include polymorphic
types and higher-order functions [HKM98].

The difference between these alternatives can be seen by comparing how
lists or bags over an ordered domain of values would be specified in each
language. The specification of Sort in Section 8.2 indicates how this is done
in EML; lists over an arbitrary type of values are handled via a (built-in)
polymorphic type but the order on the values is dealt with via a module
parameter. In Spectrum, sort classes would be used to handle both kinds of
parameterisation – see the specification MinLIST in Section 8.2. Here, poly-
morphism is a degenerate case of the use of sort classes: List α is a short-
hand notation for the declaration of a sort constructor List::(CPO)CPO
where CPO is the default class of complete partial orders. Sort constructors
can be overloaded, e.g., the additional declaration List::(EQ)EQ asserts that
if the argument is of sort class EQ then the result sort is of sort class EQ as
well. ACT ONE would use a parameterised type very much like LIST in Sec-
tion 8.2, but with a parameter specification that requires an order on the
parameter type. The use of structured sort names in ACT ONE resembles
the use of polymorphism in EML, but the resemblance is merely on a syn-
tactic level. The Casl version of this example given in Section 8.2 is similar
except for the use of predicates in place of boolean-valued functions and the
definition of ordered lists as a logically-constrained subtype of ordinary lists.
The treatment in CafeOBJ would be similar to the Casl version except that
the subtype of ordered lists would be axiomatised using a sort membership
predicate.

LSL would handle this example by using an assumes clause which has to
be discharged when the parameter is instantiated, as follows:

TO(E): trait
introduces _≤_: E, E → Bool
asserts
∀ x, y, z: E

x ≤ x;
(x ≤ y ∧ y ≤ z) ⇒ x ≤ z;
(x ≤ y ∧ y ≤ x) == (x = y);
(x ≤ y ∨ y ≤ x)

BAG_TO (E, Bag): trait
assumes TO (E)
includes BAGcount (E, Bag)

16 Donald Sannella and Martin Wirsing

Let NAT1 be a trait that extends natural numbers by the usual order relation.
Then in

NatBAG_TO: trait
includes

NAT1, BAG_TO (Nat)

the assumption TO (Nat) has to be discharged by proving that the ordering
on natural numbers is a total order.

Finally, in ASL the way that this example is expressed would depend on
the institution in use: in an institution with signatures containing only simple
sorts, parameterisation would be used as in ACT ONE; in an institution with
ordered sorts, the treatment would be like that in OBJ3; and so on.

Expressiveness of logic. The simplest logic used in algebraic specification is
equational logic. This has a simple proof system that is complete and can
be easily mechanised, but it only permits simple properties to be conve-
niently expressed. Therefore additional structuring operators, such as hiding,
and additional constraints are necessary to adequately axiomatise some data
structures. LSL uses equational logic while OBJ3 and ACT ONE use condi-
tional equational logic. On the other hand a complex logic like higher-order
logic is extremely expressive, allowing for example the expression of hiding
via higher-order quantification and of generating constraints as ordinary for-
mulas, but no complete proof system can exist and proof search is much
less tractable than in simpler logics. EML and Spectrum use higher-order
logic with equality. A reasonable compromise is to use first-order logic with
equality, as in Casl, see Chapter 3. See [Wir90] for results on expressiveness
of different first-order specification frameworks. Although there is a trade-off
between expressiveness and tractability which is analogous to that in the case
of type structure, the choice here also depends on the phase of the develop-
ment process that is addressed. Ease of expression is crucial for requirements
specifications, while equations or conditional equations are appropriate for
programs (see, e.g., [GHM88]). Although equational logic is in principle very
expressive (see, e.g., [Wir90]), the simplest and most natural way of writing
a specification often requires the use of a more complex logic. For example,
the function prime : nat → bool for testing primality is easily specified in
first-order logic with equality using existential quantification:

∀p : nat . (∃n : nat . p > n > 1 ∧ divides(n, p))⇔ prime(p) = false

Specifying this function in equational logic or conditional equational logic is
possible (with hidden functions), but the specification is much longer and
much less straightforward.

Computational phenomena. Another dimension of complexity concerns the
way that the logic deals with computational phenomena such as partial func-
tions, non-termination and exceptions. To a large extent this depends on the

8 Specification Languages 17

context of application, see Section 8.3.1. For example, EML was designed
for specifying SML functions, so it needs to cope with exceptions and non-
termination. Similarly, one main application area of Spectrum is specifica-
tion of operations on streams (employing non-terminating functions), used to
model distributed systems [BDD+92]. Some languages, including ACT ONE,
do not attempt to deal with such phenomena and thereby exclude many im-
portant examples while avoiding extra complexity. A related choice is that
taken by LSL, where all functions are total but the semantics is loose; thus
pop(empty) would be a stack, but one about which nothing is known. An-
other option is to attempt to avoid partial functions by viewing them as total
functions on a specified subsort whenever possible; this is the approach taken
in OBJ3, Spectral, and Casl. For specification languages that attempt to
deal with these phenomena directly, there are many choices. This is a very
delicate matter since these choices interact with each other and also with the
choice of the notion of algebra. For example, one may choose to deal with
non-terminating functions but require all functions to be strict, or one may
choose to admit non-strict or even non-monotonic functions; the primitives
provided by the logic for making assertions about functions will vary accord-
ingly. One needs a way of expressing definedness in any case, but in the case
of non-strict functions one also needs a way of quantifying over both defined
and undefined values. The choice of the meaning of equality is a subtle is-
sue, with the choices including strong equality t

s= t′ (the values of t and
t′ are defined and equal or else are both undefined) and existential equality
t
e= t′ (the values of t and t′ are defined and equal). See Chapter 3 for the

details of many of these options. Casl has a definedness predicate and both
strong and existential equalities. If equality is available on function types,
there is a further choice between extensional and intensional equality. EML
and Spectrum both have a definedness predicate and strong extensional
equality. EML also has a predicate for distinguishing exceptional values. An-
other difference between these two languages is quantification: in EML this
ranges over SML-expressible values only, while quantification over functions
in Spectrum can range either over all functions or alternatively over only
the continuous functions.

Attributes. It is sometimes convenient to record certain standardized prop-
erties of an operation in a specification as attributes attached to its name
in the signature rather than by writing an equivalent formula as an axiom.
Examples are associativity and commutativity attributes in OBJ3 and Casl

and strictness and totality attributes in Spectrum. Although both ways of
expressing such a property are semantically equivalent, expressing it in the
form of an attribute can enable “syntactic” use to be made of this “log-
ical” information. For example, proofs about associative and commutative
operations can use AC-unification in place of proof steps appealing to the
corresponding axioms. This simplifies proof search, especially since the un-
restricted use of permutative properties like commutativity leads to infinite

18 Donald Sannella and Martin Wirsing

search paths. Rules of inference for reasoning about strict or total operations
are simpler than in the unrestricted case; this again leads to shorter proofs.
Such attributes can also be used to restrict the space of possibilities when
searching in a library of specifications.

Another kind of attribute that may be recorded with a specification is its
intended and/or verified consequences. Examples of such attributes are the
property of sufficient completeness in LSL (called converts) and RAP as well
as the set of derived or required theorems in LSL (using the implies clause).

Algebras. As mentioned above, the choice of algebras is closely related to the
choice of logic. The usual choice is to take the simplest model that correctly
captures the aspects of computation that are of interest. For example, since
ACT ONE does not attempt to deal with partial functions, etc., ordinary
many-sorted algebras suffice for its purposes. If initial semantics is chosen
as in ACT ONE, there is another potential point of interaction, since then
homomorphisms have to be defined and initial models must exist in order for
specifications to be meaningful. For specifying concurrent or reactive systems,
one requires more complex models: transition systems, event structures, Petri
nets, etc. But then a more general structural view seems to be necessary: see,
e.g., [Rut96].

Semantic approach. The last item is the semantic approach (see Chapter 5).
The choice of loose or initial semantics depends mainly on the phase of the
software development process that specifications are intended to address; see
Section 8.3.1. Requirements specifications are naturally loose, while programs
are naturally initial. Design specifications might be either loose if they de-
scribe only part of the structure of a program, or initial if they give a complete
input/output definition. Another point is that initial semantics requires the
use of axioms no more complex than conditional equations. Orthogonal to the
choice between initial and loose semantics is the choice between a semantics
in terms of model classes or a semantics in terms of theories or presentations.
Model-class semantics is the more flexible choice but theories and presen-
tations relate more directly to proof. ASL is a requirements specification
language (although the extension of ASL described in [SST92] can be used
for design specifications as well) and it therefore has a loose semantics, which
is expressed in terms of model classes. ACT ONE and ACT TWO are design
specification languages; ACT ONE uses initial semantics (thus the restriction
to conditional equational axioms) while ACT TWO uses loose semantics for
interface specifications and initial semantics for module body specifications.
Both are given in terms of both presentations and models. LSL defines con-
cepts for use in Larch interface language annotations in finished programs or
program modules; both languages have loose semantics, expressed in terms
of theories. Ordinary structured specifications in Casl are for specifying re-
quirements while architectural specifications are for specifying designs, and
the semantics of both are loose and are expressed in terms of model classes.

8 Specification Languages 19

OBJ3, EML, and Spectrum all allow the definition of executable programs
as well as the specification of their interfaces. In each case the semantics of
interface specifications is loose, while for programs the computation mech-
anism can be seen as choosing a particular algebra in the class of models
described by the program.

8.3.4 Specification in the large

It is generally agreed that specification languages need to supply mechanisms
for building large specifications in a modular way from small units.

In the small = in the large? The first question to ask is whether these mech-
anisms need to be separated from the mechanisms for specification in the
small. All algebraic specification languages impose such a separation, and
this is natural from the point of view of modular programming where the
mechanisms provided for building and composing modules are different from
the mechanisms provided for coding algorithms and data structures. However,
if the type system used in signatures is sophisticated enough, these levels can
be merged. An example is ECC [Luo90], where, e.g., dependent sums are used
for tuples of all kinds: tuples of values, tuples of module components, pairs
of a signature and a list of axioms, etc. Here there is not even a distinction
between signatures and axioms because propositions are regarded as types
having proofs as values. In spite of the elegance of a compact framework, it
can be argued that the separation between levels provides conceptual clarity
and contributes to ease of understanding.

Institution independence. If an institution-independent approach is taken,
the features for specification in the large must be defined completely indepen-
dently of the features for specification in the small, since these will vary from
one institution to another. This is related to the principle of orthogonality in
programming language design, and seems to be a useful way of decomposing
the design of a specification language. Variants of most standard specification-
building operations, such as those in Clear and ASL, are available for use in
an arbitrary institution [ST88a], so this approach does not impose strong
restrictions on the structuring features of the language. These operations are
relatively well-understood, and come equipped with proof rules for reason-
ing about specifications built using them. Although OBJ3 and EML are not
institution-independent, much of their underlying foundation has been de-
veloped in this framework via Clear and ASL respectively. For example, the
theory that underlies EML’s methodology for formal development is entirely
institution-independent. Casl is not institution-independent but its features
for specification in the large are defined for an arbitrary institution enriched
with elements for handling compound identifiers and presentations of signa-
ture morphisms [Mos98].

20 Donald Sannella and Martin Wirsing

Choice of specification-building operations. Some of the tradeoffs involved in
the choice of particular specification-building operations are similar to those
in the choice of logic. Decreased expressive power generally leads to increased
tractability. For example, proving properties of specifications written in a lan-
guage with only simple specification-building operations such as union and/or
enrich, and rename (e.g., OBJ3, LSL or ACT ONE) is easier than when op-
erations such as observational abstraction are used. In the former case it
is possible to translate specifications into “flat” presentations, reducing the
problem to ordinary theorem proving; in the latter case separate mechanisms
are required for performing proofs in structured specifications. In other words,
the semantics of a language with simple specification-building operations can
be given in terms of presentations, while the semantics of a language like
ASL requires the use of model classes. On the other hand, the structure of
a specification conveys information about the conceptual structure of the
problem domain, and it seems useful to take advantage of this structure in
understanding and analyzing specifications rather than destroying it via flat-
tening. However, a language with simple operations typically requires the
use of a complex notion of implementation (Chapter 7) which complicates
the problem of proving correctness of implementation steps. The use of ob-
servational abstraction makes it possible to identify the class of models of a
specification with its class of realizations and to use model class inclusion for
refinement. In fact, this does not truly simplify the task of proving correctness
of implementations; it just shifts the problem to that of proving properties
of specifications. Another possibility is to shift the complexity to the logic
used for writing axioms [Wir93], which makes ordinary theorem proving more
difficult.

Enrichment. All specification languages contain some form of enrichment,
extension or importation construct for building a new specification SP ′ by
adding sorts, operations, and/or axioms to what is already contained in an
existing specification SP . But this denotes subtly different things in different
languages. In the initial algebra approach embodied in ACT ONE (compare
data enrichment in Clear and including/using in OBJ3) it denotes the free
construction. In the loose approach used in ASL, LSL, Spectrum, EML,
and Casl (compare “ordinary” enrichment in Clear), it denotes an extension
where taking the reduct of a model of SP ′ to the signature of SP gives a model
of SP . Loose and free extension do not protect the meaning of the original
specification SP . The free construction may add new values to the existing
sorts of SP (if it is not “sufficiently complete”), or cause existing values in
such sorts to become equated (if it is not “hierarchy consistent”). In the loose
approach neither of these can arise, but it may happen that some models
of SP cannot be extended to models of SP ′. In an attempt to avoid such
problems, OBJ3 introduces two special ways to import modules: extending is
supposed to guarantee that new values are not added to existing sorts, and
protecting is also supposed to ensure that existing values are not equated,

8 Specification Languages 21

i.e., that the extension is “persistent”. However, the implementation of OBJ3
does not check that these properties actually hold. Similarly, LSL traits may
contain assertions that given operations are defined in a sufficiently complete
way, and these can be checked using LP. In general, proving persistency is
difficult and needs model-theoretic methods unless the new axioms in SP ′

take the form of explicit definitions. The consequent difficulty in providing
tool support for persistency checking might constitute a reason for excluding
such assertions from a specification language.

Sharing. When a specification SP is built by combining specifications SP1
and SP2 , there is a potential problem if both SP1 and SP2 contain a sub-
specification SP ′. It is not desirable to obtain two “copies” of the common
sorts and operations; this is not only untidy, but also makes it difficult to
express certain properties that involve operators from both SP1 and SP2 .
For example, if SP ′ is a specification of natural numbers, SP1 contains an
operation f1 : s1 → nat , SP2 contains an operation f2 : nat → s2 , and SP
contains two copies of nat , then an axiom containing a subexpression of the
form f2 (f1(. . .)) will not typecheck. There are three basic approaches to
avoiding this situation. The first is to take the disjoint union of SP1 and
SP2 , but with some way of explicitly equating sorts and/or operations that
should be shared. This is the approach taken in EML module interface spec-
ifications, following SML, using so-called “sharing constraints”. The second
approach is to take the set-theoretic union, identifying a symbol in SP1 with
any symbol in SP2 having the same name (and same type for operations,
if overloading is permitted). This may lead to unintended sharing, so mech-
anisms may be provided for detecting when the sharing is accidental. For
example, “origin consistency” [Jon89] would reject an attempt to combine
SP1 with SP2 when this would identify two symbols that were originally
declared in different specifications. For requirements specification this is too
restrictive since one may want, e.g., to build a specification for an equivalence
relation from specifications of reflexivity, symmetry, and transitivity where
the same relation symbol occurs in all three subspecifications. Set-theoretic
union is used in ASL, Spectrum, LSL, and Casl. Finally, one can take an
amalgamated sum of SP1 and SP2 with respect to a list of shared subspeci-
fications. This is the approach taken in Clear, OBJ3, and ACT ONE, where
the list of shared subspecifications is determined implicitly (compare module
body specifications in EML); an alternative is to supply this list explicitly.

Hiding. A specification language requires some means of hiding auxiliary
parts of signatures in order to provide adequate expressive power, at least
when a logic weaker than second-order logic is used for writing axioms. Hiding
can be provided as a specification-building operation, as in the case of derive
in Clear and ASL, local in EML and Casl, export/hide in Spectrum, and
reveal/hide in Casl. Alternatively (or additionally), hiding can be achieved
via an interface attached to a specification, as with hiding via a signature in

22 Donald Sannella and Martin Wirsing

EML or “unit reductions” in Casl architectural specifications. ACT ONE has
no hiding mechanism but this facility is provided by the “export part” of an
ACT TWO module. Similarly, LSL contains no hiding mechanism because
an LSL trait is not intended to be implemented itself but only to provide
concepts for use in Larch interface language specifications. Hiding complicates
modular proofs, and completeness of a modular proof system for a language
with hiding requires an interpolation property for the logic in use [BHK90,
Cen94]. The use of an interface for hiding takes explicit account of the fact
that reasoning about a specification requires access to hidden components.

Constraints. Constraints bridge the realms of specification in the small and
specification in the large. Constraints are sometimes viewed as (complicated)
axioms, as in Spectrum and LSL, and sometimes as specification-building
operations, as in ASL. They are sometimes viewed in both ways, i.e., as
specification-building operations that correspond semantically to axioms, as
in Clear and Casl, where the axioms obtained may not be expressible in the
logic used for writing ordinary axioms. In EML, constraints are part of the
type system (via datatype declarations). In Pluss and OBJ3, the type of a
specification determines how a constraint is to be interpreted; for example,
in a Pluss sketch a constrained sort is required to contain at least the values
generated by the operations, while in a spec it is required to contain exactly
these values.

Multiple institutions. It is often convenient to use specialized logical tools to
reason about particular aspects of a system. For example, automata theory
is useful for reasoning about control and communication subsystems, and nu-
merical analysis is useful for reasoning about scientific calculations; if both
things co-exist within a single system then there may be a need for integrating
properties of one with properties of the other. Related to this is the problem
of describing a multi-paradigm system built from heterogeneous components,
such as mixed hardware/software systems. It may also be appropriate to use
different institutions at different stages of development of a system to express
properties of a system viewed at different levels of abstraction. The simulta-
neous use of multiple institutions requires some way of relating the institu-
tions to each other, e.g., via the concept of “institution semi-morphism” that
maps the models of one institution (the more “concrete” one) to those of an-
other (the more “abstract” one) [ST], see also [MM95]. None of the languages
mentioned earlier have mechanisms for the use of multiple institutions, al-
though [ST88b] describes an extension to ASL that permits specifications
in one institution to be translated to another institution via an institution
semi-morphism; cf. [Tar98] and [ST].

8.3.5 Parameterisation

The intention of parameterisation in a specification language is to abstract
away from a part of the specification in order to be able to instantiate it with

8 Specification Languages 23

different data types or specifications. This allows specifications to be defined
in a generic fashion so that they may be applied in a variety of contexts that
share some common characteristics. See Chapter 6.

Parameterisation is normally regarded as an important specification-struc-
turing mechanism and therefore it really belongs in the previous section. It
is treated separately here only in order to keep it from dominating the other
topics in that section.

Implicit versus explicit parameterisation. Syntactically, one can distinguish
between explicit parameterisation where the parameter part is fixed by means
of some particular syntactic notation, and implicit parameterisation where
only an instantiation mechanism is provided without any particular notation
for abstraction.

Implicit parameterisation is often used in languages for requirements spec-
ification in order to re-use previously defined specifications. Implicit param-
eterisation can be seen as just another use of the renaming mechanism (cf.
Section 8.3.4) in languages without explicit parameterisation, such as early
versions of LSL.

In explicit parameterisation there is a syntactic construct for abstraction
consisting of a formal parameter and a body. The formal parameter is usually
a specification that is constrained by a signature and a set of axioms. In (the
new version of) LSL it is a list of sort names and operation names. The syntax
is similar in all specification languages. Compare:

proc LIST(X : ELEM) =
enrich X by data sorts List . . . enden in Clear

LIST = param X = ELEM; body {enriches X; . . . } in Spectrum

obj LIST[X :: ELEM] is sorts List . . . endo in OBJ3
type LIST[D] is sorts List(D) . . . endtype in ACT ONE
LIST = λX:ELEM. enrich X by . . . in ASL
spec LIST[ELEM] = free type List[Elem] ::= . . . end in Casl

where ELEM is a specification containing just the single sort Elem. Explicit
parameterisation mechanisms are used for the design of generic components
(such as in ACT TWO, COLD, and Casl); often it is influenced by the
parameterisation concepts of the underlying programming language (as, e.g.,
in EML).

Pushout-style versus λ-calculus style parameterisation. In pushout-style pa-
rameterisation, which is used in Clear, OBJ3, ACT ONE, and Casl, a pa-
rameterised specification consists of a “requirement” specification R together
with a “body” specification B that extends R. Instantiation requires an ac-
tual parameter specification A that “fits” R, witnessed by a specification
morphism from R to A, and the result is obtained by a pushout construc-
tion.

On the other hand, in view of the fact that a parameterised specification
is a (specification-valued) function, a version of the typed λ-calculus may

24 Donald Sannella and Martin Wirsing

be used, with λ-abstraction for defining parameterised specifications and in-
stantiation corresponding to β-reduction. This is the approach that is used in
ASL, COLD, Spectral, and Spectrum. Then many features of the classical
λ-calculus carry over to parameterised specifications; in particular, higher-
order parameterisation is possible (see [Wir86,SST92,Cen94]) and (by using
uncurrying) specifications with several parameters can be defined. The differ-
ence with respect to the classical λ-calculus concerns mainly the type system
used. The class of admissible parameters may be restricted to specifications
that fit a requirement specification (as in ASL) or may be dependent on
former parameters (as in Spectral).

For a large subclass of the first-order case, both styles of parameterisation
coincide. In particular, if the body of the parameterised specification is an
extension of the requirement specification, the combination of renaming with
β-reduction yields the same textual result as the pushout construction. But
note that in general specification expressions may be more complicated than
simple extension. In these cases the λ-calculus approach is more general than
the pushout approach.

Parameterised specifications versus specification of parameterised program
modules. Parameterisation can be used both at the level of program modules
as in Ada and SML and at the level of specifications, and specifications can
describe both ordinary (non-parameterised) program modules and parame-
terised program modules. Thus it is possible to give a parameterised spec-
ification of a non-parameterised program module, or a (non-parameterised)
specification of a parameterised program module [SST92]. Most specification
languages provide only one of these possibilities (Clear, OBJ3, EML, ASL,
LSL, Spectrum) but some provide both. In those languages that provide
both, the two concepts may be identified (ACT ONE, Pluss) or viewed as
distinct (Spectral, ASL+, Casl). Higher-order parameterisation of either or
both kinds may be available (ASL, ASL+, Spectral, Spectrum) or unavail-
able (Clear, OBJ3, EML, LSL, ACT ONE, Pluss, Casl).

Parameterised specifications provide a flexible mechanism for structuring
specifications. These are most appropriate at the level of requirements specifi-
cations. Specifications of parameterised program modules define the module’s
input and output interfaces. These are most appropriate for use in writing
design specifications [BST99]. Moreover, this concept ensures a number of
compositionality and consistency properties. Languages that identify both
concepts support the view (either implicitly or explicitly) that the structure
of a requirements specification should match the structure of the eventual im-
plementation. Forcing such a match seems to be inappropriate since structure
at the two levels may arise for quite different reasons, see [FJ90].

Polymorphism versus parameterisation. An important design decision is
whether both polymorphism and parameterisation should be supported by a
specification language. Polymorphism (and even more, sort classes) models

8 Specification Languages 25

the concepts of generic functions and generic sorts “in the small”, whereas
parameterisation of specifications models the same concepts “in the large”.

A typical example is polymorphic lists. Consider the specification POLY_LIST
in Spectrum:

POLY_LIST = {
sort List a;
nil : → List a;
cons : a × List a → List a;
cons strict total;
List a generated by nil, cons;

}

POLY_LIST_NB = POLY_LIST + NAT + BOOL

and the parameterised specification LIST in Clear:

proc LIST (X : ELEM) =
enrich X by

data sorts List
opns nil: List

cons: Elem, List -> List
enden

LIST_NAT = LIST(NAT[Elem is Nat])
LIST_BOOL = LIST(NAT[Elem is Bool])

The main difference is in the way that instantiations are made. Using poly-
morphism, several instantiations can be made within the same specification,
whereas using parameterisation the same thing requires the construction of
separate (and sometimes many separate) instantiations of the parameterised
specification. Polymorphic languages like Spectrum and EML offer both
concepts, where parameterisation is mainly included for interface descrip-
tions in design specifications.

The following example shows a combination of polymorphism with pa-
rameterisation in Spectrum where POLY_LIST is used as a parameter:

MAP =
param

X = POLY_LIST;
body {

enriches X;
map : (a → b) → List a → List b;
axioms . . . ;
endaxioms;

}

Subsequently, MAP can be instantiated, e.g., with polymorphic specifications
of stacks and queues.

26 Donald Sannella and Martin Wirsing

Higher-order functions versus parameterisation. Higher-order functions in
specifications can sometimes be expressed using (first-order) parameterised
specifications. This is used in languages such as OBJ3 that rely on first-order
functions. The restriction to first-order functions is regarded by some as an
advantage rather than a limitation [Gog90], but this is a controversial issue.
For example, the higher-order function map above can be expressed in OBJ3
as follows (this is for the special case where a = b; the case where a 6= b is
similar but notationally more cumbersome, see [GM]):

obj UNARY is
sort Elem .
op f : Elem -> Elem .

endo

obj MAP [X :: UNARY] is
protecting LIST[X] .
op map: List -> List .
var Y : Elem . var L : List .
eq map(nil) = nil .
eq map(cons(Y, L)) = cons(f(Y), map(L)) .

endo

The main difference is once more in the way that parameter passing is done.
With higher-order functions, several higher-order function calls can be made
within the same specification whereas the parameterised approach requires
the construction of separate instantiations of the parameterised specification.
With higher-order functions, the use of higher-order logic is natural (which
makes reasoning more difficult) although it is not necessarily forced, while in
the parameterised approach first-order logic suffices.

8.3.6 Syntax

Decisions involved in designing the syntax of a specification language are
similar to those in programming language design.

Expression syntax. Some specification languages (e.g., EML) support infix
operators while others (e.g., OBJ3, Pluss, and Casl) support a very flexible
mixfix notation. The trade-off is between a simple syntax that is easy to parse
but difficult to read, and a flexible syntax requiring a powerful and extensi-
ble parser. In the context of algebraic specifications the use of at least infix
operators seems unavoidable, and greater flexibility seems worth the effort:
most specifications are written in order to be read by humans, in contrast
to most programs. A proviso is that unrestricted support for mixfix syntax
requires the use of a parser for a general context-free language, introduc-
ing performance penalties that would probably be regarded as prohibitive
in a compiler for a programming language. Haskell’s “offside rule”, where
indentation is used in place of parentheses, would probably be a worthwhile
additional feature of specification language syntax.

8 Specification Languages 27

Name structure. A basic design decision is the name structure to be used in
large specifications. Most specification languages have a flat name structure
(e.g., OBJ3, Spectrum, ASL, LSL, Casl) whereas EML supports SML’s
“dot” notation, where reference to a name n in a specification SP requires
the qualified name SP .n. When specifications can be nested as in EML, this
leads to names such as A.B.C.n. A flat name structure, in which every name
is global, is impractical for large specifications: it requires the user to keep
track of all names in order to avoid name clashes. A possible solution is via the
use of origin consistency to detect accidental name clashes, see Section 8.3.4;
this guarantees that names can be disambiguated even when the same name
is used for different things in different specifications. A related concept is
that of overloaded operation names, where types are used instead of origins
for disambiguation.

8.3.7 Software development process

The integration of a specification language in a software process model and
the choice of the intended programming paradigm are important decisions
for the use of the language in software development.

Software process model. In classical software process models such as the wa-
terfall model or its refinements, as well as in software developments meth-
ods based on structured analysis or object-orientation, formal specification
does not play an important rôle (see, e.g., [Som92]). This situation could
change, however, if formal methods can be integrated with pragmatic tech-
niques and if practically usable tool support for formal specification becomes
widely available. Formal specifications are useful as a meta-tool for the for-
mal foundation of pragmatic development models. For example, in [Huß94b,
Huß94a] the pragmatic notations (including diagrams) of SSADM have been
axiomatised in Spectrum which has led to several proposals for improve-
ments of SSADM.

There are several software development methods based on formal ap-
proaches including the transformational approach of the CIP [BBD+81] and
PROSPECTRA [HK93] projects (see Chapter 14), the B-method [ALN+91],
and the methods used in the projects RAISE [NHWG89], KORSO [PW95],
and PROCOS [BLH92]. One of the principal design decisions is whether there
should be just one language supporting the whole software development pro-
cess. In this case the language has to incorporate features for describing
requirements, designs, and programs. This leads to wide-spectrum languages
such as CIP-L, COLD, RSL, and EML with complex semantics and proof
rules. An alternative is to decouple the specification language from the pro-
gramming language, as in LSL (via the use of a separate interface language)
and Casl. On the other hand, if several languages and notations are used, as
in the case of most pragmatic approaches, then one has to fix the semantic
relationships between these notations, derive correctness criteria and provide

28 Donald Sannella and Martin Wirsing

translations between the different languages. For example, one might want
to use Spectrum for the requirements specification of a system and then
ACT ONE for the design specification and a functional language for cod-
ing [WDC+94]. An important issue for the practical acceptance of formal
techniques in the design and requirements phase is the graphical representa-
tion of formal descriptions (see, e.g., [CEW93]) and the integration of formal
texts with usual semi-formal descriptions and diagrammatic notations (see
[Wol94]).

For the support of the development and maintenance of specifications,
some languages include syntactic features for describing the evolution of a
specification and the modification of existing specifications for new purposes.
For example, Pluss offers different syntactic constructs for specifications that
are still under development and for complete specifications (draft/sketch ver-
sus spec). Renaming, hiding, and parameterisation provide means for con-
trolled modification. Moreover some languages support refinement as an ex-
pressible relation between specifications (e.g., COLD) whereas others consider
it as an external meta-relation (e.g., Clear, ASL).

Programming paradigm. “Pure” algebraic specification languages support the
algebraic programming style. Roughly, an algebraic program can be charac-
terized as an executable specification that has first-order positive conditional
equations as axioms. In this sense all languages that admit only such axioms
(e.g., OBJ3, RAP, ACT, ASF [BHK89], and appropriate executable subsets
of other languages) can be considered as algebraic programming languages.

In order to support classical programming paradigms too, one has to
extend a pure specification language with appropriate language constructs
or to design a specification language that directly integrates the algebraic
specification style with programming concepts. This is true even in the case
of functional programs, which are closely related to the algebraic specifica-
tion style. For example, higher-order function types are introduced in EML,
Spectral, and Spectrum. Object-oriented specification languages like Maude
and OS [Bre91] employ subsorting and structuring facilities for (class) inheri-
tance. COLD introduces operators of dynamic logic for writing pre- and post-
conditions of imperative programs, whereas SMoLCS [AR87] and Maude use
labeled transition systems (SMoLCS) and term rewriting (Maude) for spec-
ifying sequential and concurrent state transitions. Moreover, languages that
support imperative, object-oriented, or concurrent programming include lin-
guistic features for sequential or concurrent control flow.

Some specification languages such as EML and Larch relate directly with
a specific programming language rather than merely with a programming
paradigm. In this case the semantics of both languages have to be integrated.
This may pose difficult semantical problems [KS98]. For EML, a verifica-
tion semantics had to be developed that extends the structural operational
semantics of SML by the semantic foundations of ASL-like specifications.

8 Specification Languages 29

Support for refinement. When constructing a software system it is not suf-
ficient to construct just one specification: one has to develop different spec-
ifications ranging from abstract requirement specifications and design speci-
fications to executable specifications or programs. A basic design decision is
whether the notion of refinement should be an expressible relation or an ex-
ternal meta-relation. If refinement is expressible, then the difference between
specification-building operations and the refinement relation is a matter of
one’s point of view.

In pure specification languages, such as ASL, Clear, or ACT ONE, a
specification is intended to describe only one level of abstraction of a soft-
ware system at a time. Notions of refinement and implementation have been
studied for these languages (see, e.g., [SW82,SW83,Far92,Cen94]), but they
are used on the meta-level in the specification development methodology. For
example, the development graph of Spectrum (see [PW95]) relies on the
notion of refinement as model class inclusion, where a specification SP ′ is a
refinement of a specification SP if any model of SP ′ is also a model of SP .

Some languages, including COLD, ACT TWO, OBJ3, EML, ASL+, Spec-
tral, and Casl, offer features for representing two different levels of abstrac-
tion. COLD and ACT TWO introduce notions of “component” (in COLD)
and “module” (in ACT TWO) that relate internal and external descriptions
of a software system. In COLD one writes COMP x:K := L for describing
a so-called “design component” with name x, interface specification K, and
specification L acting as implementation of K; the requirement is that L is
a refinement of K. This is similar in EML and Spectral, except that param-
eterised components are supported (including higher-order parameterisation
in the case of Spectral) and L is only required to refine K “up to behavioural
equivalence”. In ACT TWO a module consists of four parts: export, import,
parameter, and body. As in COLD, the body is required to be a refinement
of the export part. OBJ3 has the concept of “view” for defining fitting mor-
phisms used for parameter passing. This can also be used for representing a
refinement between an OBJ3 theory and an OBJ3 object.

8.4 Future trends

Specification languages that have been under development during the last
few years show a number of tendencies in the development of algebraic speci-
fication languages. There is a tendency to aim at covering the whole software
development process starting from requirements up through executable spec-
ifications. Thus they tend to include elements of both loose specifications
(for requirements) and initial algebra specifications (in an executable sublan-
guage). All of them support partial functions in some form, and there is a ten-
dency to favour simple specification-building operations. All of them contain
concepts for explicit parameterisation and there is a growing tendency to pro-
vide support for specification of parameterised programs. There is a trend to

30 Donald Sannella and Martin Wirsing

include features oriented towards particular programming paradigms, mainly
for functional and object-oriented programming.

Though currently studied in the literature, certain aspects of program-
ming are not addressed by present algebraic specification languages:

1. The integration of the diagrammatic features of current software engi-
neering notations such as UML [UML97].

2. The integration of application-dependent features such as description
techniques for information systems [Tse91,Huß94b,Huß94a] or for real-
time systems [ZHR92].

3. The combination of different logics in a single specification language for
the description of heterogeneous systems [AC93,CM93,Tar98].

4. The specification of dynamic systems and the description of dynamic
properties of systems such as safety and liveness; see Chapter 13.

In each case, more work is needed both on the foundations and on experiments
with applications.

Inventing languages is a seductive activity. The history of programming
languages is littered with languages that were never used by anybody other
than their inventors, and the shorter history of specification languages threat-
ens to show similar tendencies. In particular, the strong focus of attention
in the past has been on the foundations of specification languages and there
has therefore been comparatively little work on putting them into practice.
This is an issue that needs to be addressed in the future for algebraic spec-
ification in general. One effort in this direction is the Common Framework
Initiative (CoFI) which developed Casl as the basis of an attempt to create
a focal point for future joint work on algebraic specifications and a platform
for exploitation of past and present work on methodology, support tools, etc.
[Mos97]. For specification languages in particular, acceptance by software en-
gineers requires much more work on finding an appropriate compromise be-
tween purity and practicality, between expressiveness and simplicity of learn-
ing and use, and on the development of tools that provide truly useful support
to the users of such languages. Today formal specification is practicable for
medium-sized applications (see, e.g., [GM94]) but it not suitable for writing,
e.g., a first sketch of the structure of a system or for describing standardized
architectures as used in large application systems. One possible direction for
future development to address this point is graphical representation of static
and dynamic aspects of the system under development.

Acknowledgements. Thanks to Didier Bert, Răzvan Diaconescu, Chris
George, Bernd Krieg-Brückner, and Horst Reichel for helpful comments.

Bibliography

[ABB+86] E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini,
P. Inverardi, E. Karlsen, F. Mazzanti, J. Storbank Pedersen, G. Reggio,
and E. Zucca. The draft formal definition of Ada. Deliverable 7 of the
CEC-MAP project, 1986.

[AC93] E. Astesiano and M. Cerioli. Relationships between logical frameworks.
In M. Bidoit and C. Choppy, editors, Recent Trends in Data Type
Specification, Proc. Workshop on Specification of Abstract Data Types
ADT’91, volume 655 of Lecture Notes in Computer Science, pages 126–
143. Springer, 1993.

[ALN+91] J.-R. Abrial, M. Lee, D. Neilson, P. Scharbach, and I. Sørenson. The
B-method. In S. Prehn and W.J. Toetenel, editors, VDM, Formal Soft-
ware Development Methods, Proc. 4th Intl. Symposium of VDM Europe;
Vol. 2: Tutorials, volume 552 of Lecture Notes in Computer Science,
pages 398–405. Springer, 1991.

[AR87] E. Astesiano and G. Reggio. SMoLCS-driven concurrent calculi. In
H. Ehrig, R. Kowalski, G. Levi, and U. Montanari, editors, Proc. TAP-
SOFT’87, Vol. 1, volume 249 of Lecture Notes in Computer Science.
Springer, 1987.

[Asp97] D. Aspinall. Type Systems for Modular Programs and Specifications.
PhD thesis, University of Edinburgh, 1997.

[BBB+85] F. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger,
R. Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut,
T. Matzner, B. Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson,
H. Wössner, and M. Wirsing. The Munich Project CIP. Volume I:
The Wide Spectrum Language CIP-L, volume 183 of Lecture Notes in
Computer Science. Springer, 1985.

[BBD+81] F. Bauer, M. Broy, W. Dosch, R. Gnatz, B. Krieg-Brückner, A. Laut,
M. Luckmann, T. Matzner, B. Möller, H. Partsch, P. Pepper, K. Samel-
son, R. Steinbrüggen, H. Wössner, and M. Wirsing. Programming in a
wide spectrum language: a collection of examples. Science of Computer
Programming, 1:73–114, 1981.

[BDD+92] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. Gritzner, and R. We-
ber. The design of distributed systems: an introduction to focus.
Report TUM–I9203, Institut für Informatik, Technische Universität
München, 1992.

[BFG+93] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth,
F. Regensburger, and K. Stølen (The Munich Spectrum Group). The
requirement and design specification language spectrum: An informal
introduction, Version 1.0, Part I. Technical Report TUM–19311, TUM–
19312, Institut für Informatik, Technische Universität München, 1993.

[BG77] R. Burstall and J. Goguen. Putting theories together to make specifi-
cations. In Proc. 5th Intl. Joint Conference on Artificial Intelligence,
Cambridge, Mass. (USA), pages 1045–1058, 1977.

[BG80] R.M. Burstall and J.A. Goguen. The semantics of clear, a specifica-
tion language. In D. Björner, editor, Proc. Copenhagen Winter School

32 Donald Sannella and Martin Wirsing

on Abstract Software Specification, volume 86 of Lecture Notes in Com-
puter Science, pages 292–332. Springer, 1980.

[BGM89] M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic
specifications more understandable? An experiment with the PLUSS
specification language. Science of Computer Programming, 12(1):1–38,
1989.

[BH96] Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof
of behavioural properties. Theoretical Computer Science, 165(1):3–55,
1996.

[BHK89] J.A. Bergstra, J. Heering, and P. Klint. The algebraic specification
formalism ASF. In J.A. Bergstra, J. Heering, and P. Klint, editors, Al-
gebraic Specification, ACM Press Frontier Series. Addison-Wesley, 1989.

[BHK90] J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the
Association for Computing Machinery, 37(2):335–372, 1990.

[Bid89] M. Bidoit. Pluss, un langage pour le développement de spécifications
algébriques modulaires. Thèse d’Etat, Université de Paris-Sud, 1989.

[BLH92] D. Bjørner, H. Langmaack, and C.A.R. Hoare. Provably correct sys-
tems. PROCOS I final deliverable, 1992.

[Bre91] Ruth Breu. Algebraic Specification Techniques in Object Oriented Pro-
gramming Environments, volume 562 of Lecture Notes in Computer
Science. Springer, 1991.

[BST99] M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications
in CASL. In Proc. 7th Intl. Conference on Algebraic Methodology and
Software Technology (AMAST’98), Lecture Notes in Computer Science.
Springer, 1999.

[Cen94] Maŕıa Victoria Cengarle. Formal Specifications with Higher-Order
Parameterization. PhD thesis, Institut für Informatik, Ludwig-
Maximilians-Universität München, 1994.

[CEW93] I. Claßen, H. Ehrig, and D. Wolz. Algebraic Specification Techniques
and Tools for Software Development. AMAST Series in Computing,
Vol. 1. World Scientific, 1993.

[Cla89] I. Claßen. Revised ACT ONE: categorical constructions for an algebraic
specification language. In Proc. Workshop on Categorical Methods in
Computer Science with Aspects from Topology, volume 393 of Lecture
Notes in Computer Science, pages 124–141. Springer, 1989.

[CM93] M. Cerioli and J. Meseguer. May I borrow your logic? In Proc.
18th Intl. Symp. on Mathematical Foundations of Computer Science
MFCS’93, volume 711 of Lecture Notes in Computer Science, pages
342–351. Springer, 1993.

[CoF98] The CoFI Task Group on Language Design. CASL – the common
algebraic specification language – summary (version 1.0). Available
at http://www.brics.dk/Projects/CoFI/Documents/CASL/Summary/,
1998.

[DF98] R. Diaconescu and K. Futatsugi. CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specifica-
tion. World Scientific, 1998.

[Far92] Jordi Farrés-Casals. Verification in ASL and Related Specification Lan-
guages. PhD thesis, University of Edinburgh, 1992. Report CST-92-92.

8 Specification Languages 33

[Fey88] W. Fey. Pragmatics, Concepts, Syntax, Semantics, and Correctness
Notions of ACT TWO: An Algebraic Module Specification and Inter-
connection Language. PhD thesis, Technische Universität Berlin, 1988.
Report 88/26.

[FJ90] J.S. Fitzgerald and C.B. Jones. Modularizing the formal description of
a database system, volume 428 of Lecture Notes in Computer Science.
Springer, 1990.

[FJ92] L.M.G. Feijs and H.B.M. Jonkers. Formal specification and design.
Cambridge University Press, 1992.

[GH86] J. Guttag and J. Horning. Report on the Larch shared language. Sci-
ence of Computer Programming, 6:103–134, 1986.

[GH93] J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal
Specification. Springer, 1993.

[GHM88] A. Geser, H. Hußmann, and A. Mück. A compiler for a class of con-
ditional term rewriting systems. In Proc. Intl. Conf. on Conditional
Term Rewriting Systems (CTRS’87), volume 308 of Lecture Notes in
Computer Science, pages 84–90. Springer, 1988.

[GM] J. Goguen and G. Malcolm. More higher order programming in OBJ.
In J. Goguen and G. Malcolm, editors, Software Engineering with OBJ:
Algebraic Specification in Action. To appear.

[GM94] G. Guiho and F. Meija. Operational safety critical software methods in
railways. In Information Processing ’94, Vol. 3, pages 262–269. North-
Holland, 1994.

[GMW79] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Ed-
inburgh LCF: A Mechanized Logic of Computation, volume 78 of Lecture
Notes in Computer Science. Springer, 1979.

[Gog90] J. Goguen. Higher-order functions considered unnecessary for higher-
order programming. In D. Turner, editor, Research Topics in Functional
Programming, pages 309–352. Addison-Wesley, 1990.

[GWM+92] J.A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouan-
naud. Introducing OBJ3. Technical Report SRI-CSL-92-03, SRI Inter-
national, 1992.

[Hen97] Rolf Hennicker. Structured specifications with behavioural opera-
tors: Semantics, proof methods and applications. Habilitation Thesis,
Ludwig-Maximilians-Universität München, 1997.

[HG86] H. Hußmann and A. Geser. Experiences with the RAP system – a
specification interpreter combining term rewriting and resolution. In
European Symposium on Programming, volume 213 of Lecture Notes in
Computer Science, pages 339–335. Springer, 1986.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, 1993.

[HK93] Berthold Hoffmann and Bernd Krieg-Brückner, editors. Program De-
velopment by Specification and Transformation, volume 680 of Lecture
Notes in Computer Science. Springer, 1993.

[HKM98] A.E. Haxthausen, B. Krieg-Brückner, and T. Mossakowski. Extending
CASL with higher-order functions – design proposal. CoFI note: L-8,
available at http://www.brics.dk/Projects/CoFI/Notes/L-8/index.
html, 1998.

34 Donald Sannella and Martin Wirsing

[HPW92] P. Hudak, S. Peyton Jones, and P. Wadler, editors. Report on the
programming language Haskell, a non-strict, purely functional language
(version 1.2). SIGPLAN Notices 27(5). 1992.

[Huß94a] H. Hußmann. Formal foundations for pragmatic software engineering
methods. In [Wol94], pages 27–34. 1994.

[Huß94b] H. Hußmann. Formal Foundations for SSADM. Habilitation thesis,
Technische Universität München, 1994.

[HWB97] Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems
for structured specifications with observability operators. Theoretical
Computer Science, 173:393–443, 1997.

[Jon89] H.B.M. Jonkers. Description algebra. In M. Wirsing and J.A. Bergstra,
editors, Algebraic Methods: Theory, Tools and Applications, volume 394
of Lecture Notes in Computer Science, pages 283–328. Springer, 1989.

[KS91] B. Krieg-Brückner and D. Sannella. Structuring specifications in-the-
large and in-the-small: higher-order functions, dependent types and in-
heritance in SPECTRAL. In Proc. Colloq. on Combining Paradigms for
Software Development, Joint Conf. on Theory and Practice of Software
Development (TAPSOFT), volume 494 of Lecture Notes in Computer
Science, pages 313–336. Springer, 1991.

[KS98] S. Kahrs and D. Sannella. Reflections on the design of a specification
language. In Proc. Intl. Colloq. on Fundamental Approaches to Soft-
ware Engineering. European Joint Conferences on Theory and Practice
of Software (ETAPS’98), volume 1382 of Lecture Notes in Computer
Science, pages 154–170. Springer, 1998.

[KST94] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML.
Report ECS-LFCS-94-300, University of Edinburgh, 1994.

[KST97] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML:
a gentle introduction. Theoretical Computer Science, 173:445–484,
1997.

[Luo90] Z. Luo. An Extended Calculus of Constructions. PhD thesis, University
of Edinburgh, 1990. Report CST-65-90.

[Mes93] J. Meseguer. A logical theory of concurrent objects and its realization
in the Maude language. In G. Agha, P. Wegner, and A. Yonezawa, edi-
tors, Research Directions in Concurrent Object-Oriented Programming,
pages 314–390. MIT Press, 1993.

[Mil90] R. Milne. The semantic foundations of the RAISE specification lan-
guage. Technical Report REM/11, RAISE project, STC Technology
Ltd, 1990.

[MM95] J. Meseguer and N. Mart́ı-Oliet. From abstract data types to logical
frameworks. In E. Astesiano, G. Reggio, and A. Tarlecki, editors, Recent
Trends in Data Type Specification: 10th Workshop on Specification of
Abstract Data Types joint with the 5th COMPASS Workshop, volume
906 of Lecture Notes in Computer Science, pages 48–80. Springer, 1995.

[Mos97] Peter D. Mosses. CoFI: The common framework initiative for algebraic
specification and development. In M. Bidoit and M. Dauchet, editors,
Proc. TAPSOFT’97, volume 1214 of Lecture Notes in Computer Sci-
ence, pages 115–137. Springer, 1997.

[Mos98] T. Mossakowski. Institution-independent semantics for CASL-in-the-
large. Technical Report S-8, The Common Framework Initiative, 1998.
Available from http://www.brics.dk/Projects/CoFI/Notes/S-8.

8 Specification Languages 35

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[NHWG89] M. Nielsen, K. Havelund, K.R. Wagner, and C. George. The RAISE
language, method and tools. Formal Aspects of Computing, 1:85–114,
1989.

[NM88] G. Nadathur and D. Miller. An overview of λprolog. In Proc. 5th Intl.
Logic Programming Conference, Seattle, pages 810–827. MIT Press,
1988.

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828
of Lecture Notes in Computer Science. Springer, 1994.

[Pau96] L.C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996.

[Pet94] H. Peterreins. A natural deduction calculus for structured specifica-
tions. Report 9410, LMU München, 1994.

[PW95] P. Pepper and M. Wirsing. A method for the development of correct
software. In M. Broy and S. Jähnichen, editors, KORSO: Correct Soft-
ware by Formal Methods, Lecture Notes in Computer Science. Springer,
1995.

[Reg94] F. Regensburger. HOLCF: Eine konservative Erweiterung von HOL
um LCF. PhD thesis, Technische Universität München, 1994.

[Rut96] J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Report
CS-R9652, CWI, SMC Amsterdam, 1996.

[San91] D. Sannella. Formal program development in Extended ML for the
working programmer. In Proc. 3rd BCS/FACS Workshop on Refine-
ment, Hursley Park, Springer Workshops in Computing, pages 99–130,
1991.

[SB83] Donald Sannella and R.M. Burstall. Structured theories in LCF. In
G. Ausiello and M. Protasi, editors, Proc. 8th Colloquium on Trees in
Algebra and Programming (CAAP), volume 159 of Lecture Notes in
Computer Science, pages 377–391. Springer, 1983.

[Som92] I. Sommerville. Software Engineering. Addision Wesley, 4th edition,
1992.

[SST92] Donald Sannella, Stefan Soko lowski, and Andrzej Tarlecki. Toward
formal development of programs from algebraic specifications: Param-
eterisation revisited. Acta Informatica, 29(8):689–736, 1992.

[ST] D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications
and Formal Program Development. Cambridge University Press. To
appear.

[ST86] Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-
independent framework for formal program development. In Proc.
Workshop on Category Theory and Computer Programming, volume
240 of Lecture Notes in Computer Science, pages 364–389. Springer,
1986.

[ST88a] D. Sannella and A. Tarlecki. Specifications in an arbitrary institution.
Information and Computation, 76:165–210, 1988.

[ST88b] Donald Sannella and Andrzej Tarlecki. Toward formal development of
programs from algebraic specifications: Implementations revisited. Acta
Informatica, 25(3):233–281, 1988.

36 Donald Sannella and Martin Wirsing

[ST91] D. Sannella and A. Tarlecki. Extended ML: past, present and future.
In H. Ehrig, K.P. Jantke, F. Orejas, and H. Reichel, editors, Recent
Trends in Data Type Specification, Proc. 7th Workshop on Specifica-
tion of Abstract Data Types, volume 534 of Lecture Notes in Computer
Science, pages 297–322. Springer, 1991.

[ST96] Donald Sannella and Andrzej Tarlecki. Mind the gap! Abstract versus
concrete models of specifications. In Proc. 21st Intl. Symp. on Mathe-
matical Foundations of Computer Science, volume 1113 of Lecture Notes
in Computer Science, pages 114–134. Springer, 1996.

[SW82] Donald Sannella and Martin Wirsing. Implementation of parameter-
ized specifications. In Proc. 9th Intl. Colloq. on Automata, Languages
and Programming (ICALP), volume 140 of Lecture Notes in Computer
Science, pages 473–488. Springer, 1982.

[SW83] Donald Sannella and Martin Wirsing. A kernel language for algebraic
specification and implementation. In M. Karpinski, editor, Proc. 11th
Colloquium on Foundations of Computation Theory, volume 158 of Lec-
ture Notes in Computer Science, pages 413–427. Springer, 1983.

[Tar98] A. Tarlecki. Towards heterogeneous specifications. In D. Gabbay and
M. van Rijke, editors, Proc. 2nd Intl. Workshop on Frontiers of Com-
bining Systems, FroCoS’98. Kluwer, 1998.

[Tse91] T.H. Tse. A Unifying Framework for Structured Systems Analysis and
Design Models. Cambridge University Press, 1991.

[UML97] UML notation guide, version 1.1. Technical Report ad/97-08-05, Object
Management Group, 1997. Available from http://www.omg.org.

[Var92] P. Varnish. Proof obligations in Extended ML. Master’s thesis, Uni-
versity of Edinburgh, 1992.

[WDC+94] U. Wolter, K. Didrich, F. Cornelius, M. Klar, R. Wessaly, and H. Ehrig.
How to cope with the spectrum of spectrum. Report 94-22, Technische
Universität Berlin, 1994.

[Wir86] M. Wirsing. Structured algebraic specifications: a kernel language. The-
oretical Computer Science, 42:123–249, 1986.

[Wir90] Martin Wirsing. Algebraic specification. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, chapter 13, pages
675–788. Elsevier Science Publishers B.V. (North Holland), 1990.

[Wir93] M. Wirsing. Structured specifications: syntax, semantics and proof
calculus. In F. Bauer, W. Brauer, and H. Schwichtenberg, editors,
Logic and Algebra of Specification, pages 411–442. Springer, 1993.

[Wir95] M. Wirsing. Algebraic specification languages: an overview. In E. Aste-
siano, G. Reggio, and A. Tarlecki, editors, Recent Trends in Data Type
Specification: 10th Workshop on Specification of Abstract Data Types
– Selected Papers, volume 906 of Lecture Notes in Computer Science,
pages 81–115. Springer, 1995.

[Wol94] B. Wolfinger, editor. Innovationen bei Rechnern und Kommunikation-
ssystemen. Springer, 1994.

[ZHR92] C.C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40:269–276, 1992.

