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SPECTRAL is an experiment in specification language design that tries to maintain
compactness in spite of a number of orthogonal concepts. The design is based on
Extended ML and PROSPECTRA, generalising and extending both approaches. Of
particular concern are the means for structuring specifications and programs in-the-
large and in-the-small. The language includes constructs for defining general
higher-order functions yielding specifications or program modules. Concepts of
subtyping and (object-oriented) inheritance are included to support the specification
development process and to enhance re-usability. Much of the power of the lan-
guage comes from the use of dependent types.

1 . Introduction

1.1 . Need for Structuring Concepts

Algebraic methods for specifying data types and functions are by now relatively well developed
(see e.g. [COMPASS 91] for a comprehensive list of references). It has long been recognised
(see e.g. [BG 77]) that large specifications are unmanageable unless they are built in a
structured fashion from smaller specifications using specification-building operations of various
kinds and mechanisms for parameterisation and modularisation of specifications. All algebraic
specification languages developed in the past ten years have provided such structuring
mechanisms; differences between languages concern mainly the particular mechanisms chosen.
The structure chosen by a specifier incorporates intangible aspects of the specifier's knowledge
of the problem being specified and of the relationships between parts of the problem that is
essential to the understanding and use of the specification. For this reason, it is vital for a
specification language to provide flexible, powerful and natural mechanisms for structuring
specifications.
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European Communities in the ESPRIT Basic Research Working Group COMPASS, and a
grant from the UK Science and Engineering Research Council
2 current address: LFCS, University of Edinburgh, Edinburgh EH9 3JZ, Scotland
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2 Structuring Specifications in-the-Large and in-the-Small:

The perceived need for structure in specifications is related to (but subtly different from) the
need for modular structure in programs. In the Extended ML wide-spectrum specification /
programming language [ST 85, 86], [San 90], the modularisation mechanisms of the Standard

ML programming language [MacQ 86a] (cf. [MTH 90]) are used to structure both finished
programs, their specifications, and unfinished programs under development. There has also
been some use of inheritance [CO 88] such as that used in object-oriented programming
languages to structure specifications. The tendency in both programming language and
specification language design seems to be towards providing structuring mechanisms with
increasingly more power. This tendency is counterbalanced by the desire for languages (like
Standard ML) in which static well-formedness checks can be carried out automatically.

1 .2 . Design Goals of SPECTRAL

The design of a specification language is presented that combines a number of desirable
language concepts for program development in-the-small and in-the-large. A distinction is made
between "small" objects (values) and "large" objects (structures, corresponding to many-sorted
algebras). Uniformity is achieved by having one notion of typing and subtyping for small and
large objects (types of values and classes of structures) and a general notion of function
between all four kinds of items: values, types, structures and classes; most notably, these
functions can be of higher order. Making a distinction between algebras and specifications as
sets of algebras (structures and classes, resp.), and providing higher-order functions over
(combinations of) these, gives a very general framework to express structuring of specifications
on the one hand and structuring of parameterised implementation schemata on the other [SST
90]; subtyping allows the expression of inheritance as a further way of structuring. This
satisfies the needs for different ways of structuring generalised specifications, in particular at
the requirement stage, and generic implementations, ultimately a particular software system.
The structuring of individual phases of the development process is also supported this way, and
there is hope that the necessary proof obligations associated with the development process can
also be broken down into more manageable pieces. Potentially the most important consequence
of the resulting structure is enhanced re-usability and adaptability of individual specifications,
implementations, proofs, etc.

One motivation for the design of a language with a rather rich combination of concepts (such as
subtyping, constraints and dependent types, higher-order functions etc.) is the help these
concepts give during the processes of devising a requirement specification and of formal
development of programs from such specifications; they aid the detailed representation of
program properties and their relationships, and they structure and facilitate proofs of them. It is
worth emphasising that the needs for structuring mechanisms are different at the requirement
specification and at the design specification (or implementation) level: in short, structuring
specifications is different from structuring programs. Furthermore, the structure of a require-
ment specification is often not reflected in the structure of the ultimate implementation; see [FJ
90] where this point is convincingly made with the help of a realistic concrete example.

A starting point for the design was to combine the mutually complementary experiences of
Extended ML (for aspects of development in-the-large, see [ST 85, 86], [San 90]) and
PROSPECTRA (for aspects of development in-the-small, and transformational development
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with associated support tools, see e.g. [Krie 89, 90, 91]) from a language design, semantics,
development methodology, proof methodology, and support system point of view. Both
approaches are extended and generalised; the Extended ML theory of development of modular
programs [ST 89] should be adaptable to this language with Standard ML (SML) (see e.g. [Har
86], [Wik 87], [Reade 89], [MTH 90]) as a natural target language for development, and the
present PROSPECTRA methodology and system should be adaptable to this design.

Ideally, simplicity should not be compromised in order to include a host of potentially interes-
ting concepts. It is not clear whether this design goal has been (or can be) met. The syntax is
quite compact and orthogonal, but all semantic consequences have not been investigated yet. It
is foreseen that, although there is (and must be) a uniform semantic framework (the whole
"spectrum"), the user may wish to deal with one (or a combination) of the "spectral lines" only,
i.e. a particular sublanguage (e.g. without subtypes, higher-order or partial functions), with
simplified semantics for easier learning, but also for the use of specialised tools. This calls for a
structuring of the semantic description (e.g. using institutions [GB 84], [ST 86]; in-the-large
versus in-the-small as in [MTH 90]) and even derived semantics for sublanguages that are
simpler.

1 .3 . Organisation of the Paper

The purpose of this paper is not to present a finished solution but to spawn discussion. The
major elements of the design are presented by means of illustrative examples in §2 to §5,
focussing, in this paper, on the less usual aspects of structuring in-the-large; §6 gives a short
summary of the syntax, predefined operators and some other notational issues.

2 . Two Levels of Typing, Uniform Concept of
Function

2.1 . Four Kinds of Items, Two Levels of Typing

There are four kinds of items ("first-class objects") in the language, with a uniform syntax for
definitions (id: kind  or  id: kind = exp, resp.), cf. §6.1:

- values
- types (or sorts) sets of values
- structures (or algebras)
- classes (or specifications) sets of structures

Typing is analogous at the level of types and classes, re-using inference mechanisms and typing
algorithms at both levels; the conceptual uniformity makes the powerful concepts easier to
grasp. There is a strict separation between the levels of values/types and structures/classes as in
SML and Extended ML: structures are not values and classes are not types, although values and
types can be viewed for some purposes as degenerate structures. This separation between levels
is necessary to enable static type checking. Although other features rule out static type checking
for the full language (see e.g. §5.1), it is nevertheless desirable to retain the possibility of static
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"rough type" checking in the sense of [SST 91] to enable specifications to be checked easily for
structural well-formedness.

2 .2 . Specifications and Program Modules: Classes and Structures

Consider some simple examples of classes:

ELEM: class =
 T: type 

PO: class =
 T: type

≤: T ×  T ––> bool
for all x, y, z: T =>

x ≤ x, x ≤ y  ∧  y ≤ x  →  x = y, x ≤ y  ∧  y ≤ z  →  x ≤ z  

MONOID: class =
 M: type

n: M
⊗: M ×  M ––> M

for all x, y, z: M =>
n ⊗ x = x,  x ⊗ n = x,   (x ⊗ y) ⊗ z  =  x ⊗ (y ⊗ z)  

The class ELEM just gives a signature with one type definition; it is loose in the sense of
admitting all structures with at least one appropriately-named type component as models. The
signature of the class PO contains two components: a type definition for T and a binary relation
on T. In addition, axioms are given to characterise the relation as a partial order. All structures
having a signature with a type named T conform to ELEM. In particular, any structure of class
PO conforms to the class ELEM (see also §3.1); this will, for example, be used in parameter
passing below. Similar to PO, the class MONOID specifies properties of operations to be used
in other specifications.

A class denotes a set of algebras, namely all those algebras over the given signature (not just the
term-generated ones) satisfying the given axioms (actually, it denotes a proper class; we will
ignore such foundational niceties here). Thus a class is a loose requirement specification descri-
bing a set of structures; see also §3.2 below.

The class NATS below defines the natural numbers (in a loose fashion). Zero and Pos are
subtypes of Nat. Assuming that int is a pre-defined visible type with the usual operations, then
NATSasInts defines a structure (i.e. an algebra) that is a model of the given class NATS (the
notation for constrained domains in Zero and Pos is described in §5.1). Note that the body of a
structure contains definitions whose semantics defines objects uniquely (for example giving the
least fixpoint for a recursively defined function).

Strictly speaking, structures do not always denote "complete" algebras, in the sense that struc-
tures may contain functions over types which do not belong to the structure but are taken from
the context (e.g. in §4.1: if  X: PO  and  L: LISTS2 X, then  Sort X L  contains a function sort over
a type List that belongs to L but not to Sort X L). Furthermore, structures may themselves have
structures as components (but the resulting hierarchy must of course be acyclic). Correspon-
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ding comments also apply to classes. The familar word "algebra" will continue to be used in the
rest of the paper, in spite of this inaccuracy.

NATS: class =
 Nat: type

Zero, Pos: type  ≤  Nat
zero: Zero
succ: Nat ––>  Pos
pred: Pos ––>  Nat
for all x: Nat =>

pred (succ  x)  =  x  

NATSasInts: NATS =
 Nat =  int

Zero =  (n: int || n = 0)
Pos =  (n: int || n > 0)
zero =  0
for all n: Nat =>

succ (n) =  n + 1
pred (n) =  n – 1  

2 .3 . Uniform Concept of Function

The syntax allows functions in all combinations of the four kinds of items above, notably also
higher-order functions. Some of these are well-known such as functions from values to values
and from structures to structures (SML functors, parameterised programs [Gog 84] or, in a
slightly different setting, generics in Ada); some are desirable extensions w.r.t. SML (higher-
order functions from structures to structures or from structures to classes); some are a bit
unusual at first (e.g. from structures to values or types); and some are intentionally not user-
definable, such as functions from classes to classes, although pre-defined operations of this
kind are provided in the language (––>, +). The examples in the sequel show that higher-order
functions from structures to classes are particularly useful to act as "parameterised
specifications".

2 .4 . Parameterised Classes

The simplest example of a function yielding a class is a classical parameterised specification
such as for lists and sets below (X.T denotes selection of the T component of the structure X).

Semantically, both LISTS and LSETS denote functions which, given an algebra X in the set
denoted by ELEM, produce the set of algebras denoted by the respective body under that
interpretation of the formal parameter. These functions are persistent (the parameter is
protected) by definition as in Extended ML [ST 89] (cf. algebra modules in OBSCURE [LL
88]): there is no way for the body to alter models of the parameter, even if the body includes
axioms that are inconsistent with those in the parameter specification (in this case, the set of
algebras produced as a result is simply empty).

We observe that for any structure X: ELEM, the two classes LISTS X and LSETS X share a
common signature (up to renaming) and the common properties of a monoid; such commonali-
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ties will be further exploited through structuring by inheritance, see §3.4. Higher-order func-
tions will be discussed in §4. Note that some specifications in this paper are loose and admit
more than just the models that their names suggest, for example LSETS admits not only true
sets, but also multi-sets, ordered sets etc.; see §3.4.

LISTS: (X: ELEM) ––> class =
 List: type

eList: type  ≤ List
neList: type  ≤ List
empty: eList
single: X.T ––> neList
++: neList × List ––> neList
++: List × neList––> neList
++: List × List ––> List
for all x, y, z: List =>

empty ++ x = x,  x ++ empty = x,   (x ++ y) ++ z  =  x ++ (y ++ z)
head: neList ––> X.T
tail: neList ––> List
for all e: X.T; b: List =>

head ((single  e) ++ b) = e, tail ((single  e) ++ b) = b  

LSETS: (X: ELEM) ––> class =
 Set: type

eSet: type  ≤ Set
neSet: type  ≤ Set
empty: eSet
single: X.T ––> neSet
∪: neSet × Set ––> neSet
∪: Set × neSet ––> neSet
∪: Set × Set ––> Set
for all x, y, z: Set =>

empty ∪ x = x,  x ∪ empty = x,   (x ∪ y) ∪ z  =  x ∪ (y ∪ z)
∈: X.T ×  Set ––> bool
for all d, e: X.T; a, b: Set =>

e ∈ empty = false, d ∈ single  e  <–>  d = e, e ∈ (a ∪ b)  =  (e ∈ a) ∨ (e ∈ b)


3 . Inheritance

3 .1 . Subclasses

The subclass relationship corresponds to subset on the semantical level: a class A is a subclass
of a class B iff all models of A are admissible models of B (possibly with appropriate restriction
of the signature, see §6.3). In the examples above, PO is a subclass of ELEM, written PO ≤
ELEM, since the signature of ELEM is included in that of PO and there are only additional opera-
tions and axioms in PO w.r.t. ELEM. In general, the subclass predicate ≤ (also the class
membership predicate in) generates a structural condition (signature inclusion) that can be
checked statically as in SML, and a verification condition (model set inclusion) that can often be
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inferred statically from the way in which the classes / structures are constructed. Before we
discuss the methodological aspects, let us look at some more examples.

PO1: class =
ELEM  +
 ≤: T ×  T ––> bool
for all x, y, z: T =>

x ≤ x, x ≤ y  ∧  y ≤ x  →  x = y, x ≤ y  ∧  y ≤ z  →  x ≤ z  

The example PO1 is a little contrived, but it illustrates that the subclass relationship can be
expressed syntactically by using the class union operator + (also by using the subclass predicate
≤ or the class membership predicate in). The subclass relationship can now be statically inferred
and recorded for later use (as for subsort/subtype inferencing); note that multiple inheritance is
possible. The most common use of the operation + is to perform a mere enrichment of a class,
i.e. addition of operations to the signature or of axioms. Note that the items defined in the left
hand operand of + are visible in the right hand operand (so the definition of ≤ may refer to T).

A more interesting example is the definition of integers in terms of natural numbers. There are
many ways to do this; one way is shown in INTS, where the signature of NATS is extended by a
new type Int and additional types for the operations pred and succ (in the presence of an order-
sorted approach for function signatures, cf. §5). All models of INTS are admissible models for
NATS, thus INTS ≤ NATS. Note that the subtype relationship is in the opposite direction: Nat ≤
Int since all values of Nat are admissible values of Int. There is a derived subtype/subclass
relationship for functions, see §4.5.

INTS: class =
NATS  +
 Int: type  ≥  Nat

pred: Int ––> Int
succ: Int ––> Int

for all x: Int =>
pred  (succ x)  =  x, succ (pred  x)  =  x   

Parameterised classes can be similarly put into a subclass relationship; more precisely, the rela-
tionship can be inferred for the functions applied to appropriate actual parameters: thus, for ex-
ample, LISTS2 X  ≤  LISTS X for any X: ELEM (nat is assumed to be a predefined subtype of int).

LISTS2: (X: ELEM) ––> class = 
LISTS  X  +
 freq: X.T ––> List ––> nat
for all x, y, z: List => …  

ORDSETS: (X: PO) ––> class =
LSETS  X  +
 min: neSet ––> X.T

rest: neSet ––> Set
for all a: X.T; s: neSet =>

(min  s) ∈ s, a ∈ s  →  X.≤ (min  s, a)
a ∈ rest  s  →  a ∈ s, a ∈ s  ∧  ¬ X.≤ (a, min  s)  →  a ∈ rest  s  
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The subclass relationship is closely related to the condition that an actual parameter to a function
is required to satisfy (as for subtypes): if X: A and A ≤ B then X is an admissible parameter for a
function (Y: B) ––> … Parameter passing will generate a verification condition in general, but
admissibility of an actual parameter may also be inferred statically from the existing subclass
relationships: the stronger the stated relations in the specification the better. In the example
ORDSETS, (partially) ordered sets are defined as an enrichment of LSETS. No verification is
needed to show that X may be passed as an actual parameter to LSETS, since PO ≤ ELEM.

3 .2 . Subclass Inheritance, Refinement, Implementation

The real power and usefulness of the subtyping idea comes in, if it is also applied at the level of
classes. The idea dates back to Simula  [DMN 84] (with its successors in the area of Object-
Oriented languages, e.g. Eiffel [Meyer 88]) and may have an interesting revival for formal
specifications: the notion of a subclass can be equated with "the same or fewer models satisfy-
ing the superclass" in the context of a semantics of loose specifications. This corresponds to an
intuitive notion of inheritance of properties, and the methodological notion of refinement: addi-
tional equations may make the initial model go "down" in the lattice of models (if there is one)
since more terms can be identified, and additional operations (plus appropriate axioms to define
them) may make the terminal model go "up" since more terms can be distinguished; inconsistent
additions make the set of models empty. Together with an appropriate facility (see §3.3) for
hiding and renaming, subclass inheritance directly provides a simple notion of implementation
[ST 88] (but one may in practice require a more sophisticated notion of implementation up to
observational equivalence ([Rei 81], [SW 83], [MG 85], [ST 87], [NO 88]).

In any case, the notion of subclass refinement should support the development process of both
requirement and design specifications, in which additional design decisions restrict the set of
admissible models, eventually leading towards a specification that includes all the intended
constraints. Note that a requirement specification can be "frozen" (used as a well-defined and
distinguished class for all users) and can serve for subsequent development of different design
specifications as a hierarchy of subclasses. Such a hierarchy is illustrated by the examples of
requirement specifications in §3.4.

It is quite important to notice that, apart from the methodological advantages, the structural
aspects of subclasses also structure proofs (the objects of the proofs and the search for proofs,
see [SB 83]) and, at least partially, allow a discharge of proof obligations by static analysis.

Union of classes means intersection of model sets as in ASL [SW 83] (name clashes must be
resolved by renaming beforehand, otherwise functions are overloaded, (sub)type names are
shared etc.).

3 .3 . Signature Morphisms, Hiding and Renaming

Structures or classes are comprised of aggregates (tuples) of declarations (in addition they also
contain axioms in the case of classes, or definitional equations in the case of structures).
Selection is by dot notation (as for qualified identifiers in SML); this notation is extended to
allow also "aggregates" of selector identifiers, see below.
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Signature morphisms can be expressed by an extended dot notation for selection and a notation
for renaming in structures/classes; the notation is used analogously for tuples of values (of a
product type, cf. records with tags in SML).

The notation is the same for all items (values of product type, product types, structures,
classes). The term

X . ( a' = a, .. , z' = z )

denotes a new aggregate item X' made of the components whose identifiers are listed (a etc.);
consistent renaming (a' for a etc.) takes place. For a class, X' is the original class X restricted to
the listed components, thus the result is a superclass of the original one. For a class X just deno-
ting a signature, the result is the resp. subsignature; when axioms are present, the semantical
notion of (restriction or) hiding has to be applied. For a structure, X' is the original structure X
restricted to the listed components, thus the result is a structure of a superclass of the original
class of X. For types and values, the definition is analogous. Note that X need not be the name
of an item, but could be the definition of an item itself. This way, hiding for classes can be
expressed directly (one may wish to have additional syntactic sugar for this).

3 .4 . Structuring Requirement Specifications

The activity of developing a first requirement specification of a software system is a very
difficult task in itself ("requirement engineering"). Here, as at the level of subsequent
development of design specifications, it is of great importance to be able to re-use existing
specifications (and associated proofs etc.) that are "similar" in some sense. This means that
existing specifications should have been put into the specification database in some generalised
form, allowing some abstraction. The most common forms of abstraction seem to be functional
abstraction (to be discussed below) and some kind of inheritance relation between specifica-
tions. Thus adding a specification to the database ("learning") should involve an important acti-
vity of generalisation corresponding to standardisation and abstraction, also, very importantly,
a setting up of relationships in the database (corresponding to inheritance and instantiation) to
ease later retrieval. The importance of building requirement specifications from pieces ("traits"
in Larch [GH 86]) and of using inheritance relations for re-use (e.g. [Wir 88], [WBH 88],
[WHS 89]) have been recognised.

Figure 1: Partial order of inheritance (including multiple inheritance).

 BINS MONOID

   ∨I      ∨I       ∨I

BINTREES       MONS

     ∨I       ∨I

  LISTS      LSETS

∨I       ∨I

  ORDSETS       LMULTISETS

    ∨I

SETS

Fig. 1 contains some examples of classes (see below) related by inheritance. In this diagram,
F ≤ G really means that F  X  ≤  G  X for any appropriate X (i.e. X: PO). MONOID is not
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parameterised, so, in the diagram, MONS ≤ MONOID means MONS  X ≤ MONOID for any
appropriate X. The subclass relationship as used in this diagram is up to renaming in some
cases; for example, LISTS X ≤ MONS  X ≤ MONOID is more precisely, LISTS  X ≤ MONS.σ and

MONS  X ≤ MONOID.σ' where σ and σ' denote appropriate signature morphisms. This is a
convention that is used for notational convenience in this diagram only; when A ≤ B in
SPECTRAL, then A might have more components than B, but the components in B must appear
in A with the same names (cf. §3.1).

BINS: (X: ELEM) ––> class =
 Bin: type

eBin: type  ≤ Bin
neBin: type  ≤ Bin
empty: eBin
single: T ––> neBin
++: neBin × Bin ––> neBin
++: Bin × neBin––> neBin
++: Bin × Bin ––> Bin   

BINTREES: (X: ELEM) ––> class =
BINS  X  +
 left, right: neBin ––> Bin
for all a: neBin; b: Bin  =>

left (a ++ b) = a, right (b ++ a) = a   

MONS: (X: ELEM) ––> class =
BINS  X  +  MONOID . (Bin = M, empty = n, ++ = ⊗)

LISTS: (X: ELEM) ––> class =
(MONS  X) . (List = Bin, eList = eBin, neList = neBin, empty, single, ++)  +
 head: neList ––> X.T

tail: neList ––> List
for all e: X.T; b: List => head ((single  e) ++ b) = e, tail ((single  e) ++ b) = b   

LSETS: (X: ELEM) ––> class =
(MONS  X) . (Set = Bin, eSet = eBin, neSet = neBin, empty, single, ∪ = ++)  +
 ∈: X.T ×  Set ––> bool
for all e: X.T; a, b: Set =>

e ∈ empty = false, d ∈ single  e  <–>  d = e, e ∈ (a ∪ b)  =  (e ∈ a) ∨ (e ∈ b)    

ORDSETS: (X: PO) ––> class =
LSETS  X  +
 min: neSet ––> X.T

rest: neSet ––> Set
for all a: X.T; s: neSet =>

(min  s) ∈ s, a ∈ s  →  X.≤ (min  s, a)
a ∈ rest  s  →  a ∈ s, a ∈ s  ∧  ¬ X.≤ (a, min  s)  →  a ∈ rest  s  

LMULTISETS: (X: ELEM) ––> class =
(LSETS  X)  +
 for all a, b: Set => a ∪ b = b ∪ a  
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SETS: (X: ELEM) ––> class =
LMULTISETS  X  +
 for all a: Set => a ∪ a = a  

4 . Higher-Order Functions

4 .1 . Parameterised Specifications of Programs versus
Specifications of Parameterised Programs

In structuring in-the-large by (higher-order) functions, there is an important distinction to make
between "parameterised (program specification)" and "(parameterised program) specification"
(see [SST 90] and [ST 91a]). The approach in SPECTRAL supports a distinction very much in
the spirit of that paper, although technically slightly different: the parameterised specification of
a program denotes a function yielding a class, and the specification of a parameterised program
denotes a class of functions yielding structures. The interesting outcome of this language design
is that in both cases the parameters are structures (of a given class), or types or values, but not
classes. It does not seem necessary to allow user-definable functions taking classes as parame-
ters, the only reasonable ones being the pre-defined class composition operations (function
space and union, see §6.2). Therefore there has been a conscious decision not to have functions
from specifications to specifications as in [SST 90] and [ST 91a].

Below are some examples to illustrate these points.

parameterised specification of a program: function yielding a class

Consider the specification SORT of a sorting function. A structure X providing a type with a
partial order and a structure L giving lists of these (with additional operations such as freq) are
passed explicitly as parameters. Note that these structures are explicitly typed to be of their
resp. classes (see also §4.2).

SORT: (X: PO) ––> (L: LISTS2  X) ––> class = 
 sort: L.List ––> L.List
for all a, b: X.T; l, x, y, z: L.List =>

sort  l = x ++ (L.single  a) ++ y ++ (L.single  b) ++ z  →  X.≤ (a, b)
L.freq  a  x  =  L.freq  a  (sort  x)    

specification of a parameterised program: class of functions yielding structures

FSORT below denotes a class of functions yielding structures:

FSORT: class = (X: PO) ––> (L: LISTS2  X) ––> SORT  X  L

parameterised program: function yielding a structure

A parameterised program then corresponds to a function yielding a structure of a given class.
Here, Sort X L: SORT  X  L  for any X: PO and L: LISTS2  X; that is, Sort: FSORT. The structure
Sort  X  L contains only the function sort; the function insert is hidden since it does not appear in
SORT  X  L:
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Sort: (X: PO) ––> (L: LISTS2  X) ––> SORT  X  L  = 
 insert: X.T ––> L.List ––> L.neList

for all  x: X.T;  l: L.neList  =>
sort  L.empty =  L.empty
sort  l =  insert  (L.head  l)  (sort  (L.tail  l))

  insert  x  L.empty  =  L.single  x
     X.≤ (x, L.head  l) → insert  x  l  =  L.++  (L.single  x,  l)
¬  X.≤ (x, L.head  l) → insert  x  l  =  L.++  (L.single  (L.head  l),  insert  x  (L.tail  l))   

4 .2 . Dependent Classes

The examples above make heavy use of dependent classes (cf. the analogy to dependent types
in §5.6). In SORT, for example, the class of the second parameter L is an instantiation of
LISTS2 with X, the first parameter. Similarly, the result class of FSORT depends on the
parameters. These dependencies state important assertions. One can argue whether dependent
classes or sharing constraints (as in SML) are simpler concepts; however, sharing constraints
are superfluous in the presence of dependent classes. The examples above of SORT and Sort

(or SETSasLISTS in §4.4) seem to be more elegant using dependent types; also, the passing of a
particular list (implementation) as a parameter is more explicit. Examples like SORT and LISTS2

above correspond to dependent product types (Π-types); classes such as PO and MONOID cor-

respond to dependent sum types (Σ-types); see e.g. [Con 86], [LB 88], [MacQ 86b], [MH 88].

4 .3 . Higher-Order Functions

Below are some more examples to demonstrate (as in SORT etc. above) that higher-order
functions on classes and structures are very useful, even necessary to express certain specifica-
tions. Consider the problem of enriching a class by additional operations, in a hierarchical way
so that the models of the original class are untouched (conservative/persistent extension). Two
solutions are possible: the first, LISTOPS, defines the additional operations separately relating
to an existing structure L (of class LISTS  X) given as parameter. The second solution defines an
extended class LISTS2 (cf. §3.1 above); it requires that instantiations have to be made of the
extended class to get the additional operations, not "on second thought" for an already existing
instantiation as in the case of LISTOPS.

LISTOPS: (X: ELEM) ––> (L: LISTS  X) ––> class =
 freq: X.T ––> L.List ––> nat
for all x, y, z: L.List => …  

LISTOPS2 is a less satisfactory variant in which LL, a "generic implementation" for LISTS, not a
particular instantiated structure, is passed as a parameter. In this case, a local instantiation is
made; this does not yield the desired effect since L.List now refers to the new instantiation L and
is a different type from that for a similar instantiation of LISTS that may already exist in the
context of an instantiation of LISTOPS2, or, for that matter, the L passed as a parameter to
LISTOPS (as in SML, application of LL is generative, with each application producing a new
structure containing "fresh" types).

FLISTS: class  = (X: ELEM) ––> LISTS  X
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LISTOPS2: (X: ELEM) ––> (LL: FLISTS) ––> class =
 L: LISTS  X  =  LL  X

freq: X.T ––> L.List ––> nat
for all x, y, z: L.List => …  

Consider now alternatives to the specification of a sorting operation in SORT. The specification
SORT2 provides the additional operations by an extra parameter LO, while the specification
SORT3 passes a "generic implementation" of class FLISTOPS; the local instantiation is no harm
here since L is passed explicitly as a parameter.

SORT2: (X: PO) ––> (L: LISTS  X) ––> (LO: LISTOPS  X  L) ––> class =
 sort: L.List ––> L.List
for all a, b: X.T; l, x, y, z: L.List  =>

sort  l = x ++ (L.single  a) ++ y ++ (L.single  b) ++ z  →  X.≤ (a, b)
LO.freq  a  x  =  LO.freq  a  (sort  x)   

FLISTOPS: class = (X: ELEM) ––> (L: LISTS  X) ––> LISTOPS  X  L

SORT3: (X: PO) ––> (L: LISTS  X) ––> (LLO: FLISTOPS) ––> class =
 sort: L.List ––> L.List

LO: LISTOPS  X  L  =  LLO  X  L
for all a, b: X.T; l, x, y, z: L.List  =>

sort  l = x ++ (L.single  a) ++ y ++ (L.single  b) ++ z  →  X.≤ (a, b)
LO.freq  a  x  =  LO.freq  a  (sort  x)   

4 .4 . Parameterised Programs

In structures, values for components are given, in particular function "bodies". Consider for
example an implementation of sets by lists (SETSasLISTS2 is an equivalent version of
SETSasLISTS using the hiding and renaming notation described in §3.3):

SETSasLISTS: (X: ELEM) ––> (L: LISTS  X) ––> SETS  X  = 
 Set = L.List

eSet = L.eList
neSet = L.neList
empty = L.empty
∪ = L.++
single = L.single
for all e: X.T; s: neSet  =>

e ∈ empty  =  false, e ∈ s  =  (e = L.head  s) ∨ (e ∈ (L.tail  s))  

SETSasLISTS2: (X: ELEM) ––> (L: LISTS  X) ––> SETS  X  = 
L . ( Set = List, eSet = eList, neSet = neList, ∪ = ++, empty, single ) +
 for all e: X.T; s: neSet  =>

e ∈ empty  =  false, e ∈ s  =  (e = L.head  s) ∨ (e ∈ (L.tail  s))  

It is quite important to realise that the structuring for specifications (classes) and programs
(structures) can be quite different. Programs often need additional access to structures and
classes that are not needed, would even be severe overspecification, in their specifications (it is
a major mistake in the design of Ada that there are no special with-clauses for private parts and
that generic parameters must include the information needed exclusively for a particular imple-
mentation; this inhibits easy exchange of implementations). In the examples above, an imple-
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mentation for lists is passed explicitly as a parameter and can thus be chosen and changed
according to need. The operation + denotes the extension of structures (note that the compo-
nents of the left operand are visible in the right operand).

The "program" SETSasLISTS (also SETSasLISTS2) seems to be wrong w.r.t. its specification,
since there are axioms in SETS (a ∪  b = b ∪  a, a ∪  a = a) that are not satisfied by the
representation of sets as lists. However, the representation is correct "up to behavioural
equivalence", meaning that all observable consequences of SETS  X (equations between terms of
type bool or X.T, in this case) are satisfied by SETSasLISTS  X  L. Thus we regard SETSasLISTS

as a correct implementation of its specification. See e.g. [Rei 81], [SW 83], [MG 85], [Sch
87], [ST 87], [NO 88] and [ST 89] for more motivation and technical details.

The possibilities for currying and successive parameterisation are even better in the following
version (at the expense of an extra local instantiation), since we can partially instantiate, for
example, as SETSasLISTS3  StandardLISTS  first (where StandardLISTS is some generic list
implementation), and then give an actual parameter for elements later:

SETSasLISTS3: (LL: FLISTS) ––> (X: ELEM) ––> SETS  X  = 
(LL  X) . ( Set = List, eSet = eList, neSet = neList, ∪ = ++, empty, single ) +
 for all e: X.T; s: neSet  =>

e ∈ empty  =  false, e ∈ s  =  (e = L.head  s) ∨ (e ∈ (L.tail  s))  

A standard model for implementing sets as lists is one in which the lists are ordered. How do
we implement sets in this way, since no order is given? This is a classical example, and a very
practical problem, e.g. if an additional operation choose: neSet ––> X.T  is required (that
chooses an arbitrary element from a given set, but consistently always the same element, no
matter how the set was constructed). A solution is of course possible, if an order does exist on
the element type, for a particular instantiation. This is a good example of structuring that is
different for the implementation and the requirement specification (it would be an unfortunate
overspecification to change the requirement specification from sets to ordered sets, similar to
representing sets directly as lists as is often done in functional languages), and a nice example
for the use of inheritance and higher order functions.

ORDSETSasLISTS: (X: PO) ––> (L: LISTS2  X) ––> (Sort: SORT  X  L) ––> ORDSETS  X  =
SETSasLISTS  X  L  +
 for all s: neSet  =>

min  s  = L.head  (Sort.sort  s)
rest  s  = … 

ORDSETSasLISTS2:
   (LLO: FLISTOPS) ––> (FSort: FSORT) ––> (X: PO) ––> (L: LISTS  X) ––> ORDSETS  X  =

SETSasLISTS  X  L  +
 for all s: neSet  =>

min  s  = L.head  ( (FSort  X  (L + LLO  X  L)).sort  s)
rest  s  = … 

If, for a given structure X, an order exists, i.e. X in PO, then the implementation of sets
SETSasLISTS  X  LX can be replaced by the implementation ORDSETSasLISTS  X  LX  (Sort  X
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LX)  since ORDSETS  X  ≤  SETS  X. Note that LX: LISTS2  X must hold; otherwise the higher-
order variant ORDSETSasLISTS2 can be used.

4 .5 . Function Subclasses

For subsorts, an order on function sorts can be defined and extended to higher-order. The same
can be done here for subclasses: the basic idea is, that A ––> B´  ≤  A´ ––> B, if A´ ≤ A and B´ ≤
B, in other words, a function defined on a subdomain A´ can be replaced (implemented) by a
function with a wider domain A yielding a result in a subdomain B´ (actually, the general form
of contravariance has to be restricted, see [Qian 90]). For implementation schemata, this means
that a schema can be replaced by another schema that is defined on a wider class of models, and
a schema can be replaced by another schema that returns a smaller class of models as result (and
the combination of the two).

5 . Types, Subtypes and Polymorphism

5.1 . Subtypes: "Subsorts" versus Constrained Domains

Subtypes have been introduced as a solution to the problem of defining partial functions (also
errors or exceptions and exception handling), more precisely, functions that are only defined on
a subdomain [GJM 85], [GM 87]. Methodologically, this is a way to encourage the user to
specify constraints of domains of functions as tightly as possible; one pragmatic side-effect is
that it encourages proper definition of tightly specified ranges as well.

Static type checking cannot be fully achieved in the presence of subtypes, particularly in a
language with hierarchical specifications (cf. §2.4) and types constrained to be term generated
(cf. §5.3). The situation is made even more difficult for types where subtypes are characterised
by predicates as in the example of OrdListOf (this assumes the existence of a previously-defined
predicate issorted; see also ListOf in §5.4).

OrdListOf: (X: PO) ––> type  =  ( sl: ListOf  X.T  ||  issorted  (X.≤)  sl )

Similar examples arise in connection with "bounded" types (bounded lists, bounded integer
arithmetic).

In SPECTRAL, we allow subtyping both in the "subsorting" and the "domain constrained by
predicate" sense to allow as much type information as possible to be included in specifications.
Only some of this information can be automatically checked; the remainder must be left as proof
obligations that would be indicated in the text of the specification by explicit (sub)type
qualification ("retracts"). An advantage of allowing the user to state type information that cannot
be automatically checked is that this extra information will often enable other proof obligations
(e.g. domain constraints on functions) to be discharged by "syntactic" means.

An important consideration is the interaction with overload resolution. The results from [GM
87] should be taken for overlapping domains (semantics must be the same in the overlap) and
from [Qian 90] for higher-order subtypes. The interaction with implicit polymorphism and the
type union operation are not fully worked out yet.
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5 .2 . Definedness, Partial and (Non-)Strict Functions

At the moment, the PROSPECTRA approach to partiality, non-strictness etc. (cf. [Krie 91], Part
II) has been taken in SPECTRAL; further investigation is needed. The extension of a type T to a
type T⊥, that is the type T with an additional bottom (undefined) element ⊥, should fit well with
the subtype concept. Problems generally arise when combining higher-order functions with the
identification of truth values in the logic and the type of boolean values, see [FF 90]; another
possibility for this is described in [ST 91b].

In the PROSPECTRA approach there is a special, non-operational domain of two-valued logic
denoted by the type logical; it is only used for specification purposes and is distinguished from
bool and its extension to the three-valued type bool⊥ that contains the bottom element ⊥.
Predicates are functions that deliver the type logical as a result (as opposed to functions returning
a result of type bool) and can only be used for specification purposes and not in a program (e.g.
in an if then else). Thus predicates need not be operational (cf. e.g. equality in axioms, the
connectives of the logic, or the definedness predicate in §6.2). Except for the predefined
operations on logical, functions must not have logical in a parameter type. All functions on values
(except predicates) are continuous.

The result of a function is defined (and in the specified result domain), if all parameters are
defined and in their resp. domains. Thus such functions are total over the parameter domains;
potential non-termination must be indicated by an additional bottom element in the result type.

Non-strict parameters are indicated by an additional bottom element in the parameter type; other-
wise strict and lazy evaluation will give the same result. Non-strict functions can be used for
infinite objects, in particular to define streams for the specification of concurrent systems, cf.
the stream constructor operation cons below. Note that "properly" strict functions (non-
definedness of a parameter implies non-definedness of the result) are implicitly introduced for
constructors of disjoint union types.

cons : elem × stream⊥ ––> stream

if_then_else: (T: type) ––> bool⊥ ×  T⊥ ×  T⊥ ––> T⊥

5 .3 . Disjoint Union

Apart from pre-defined types and types defined in a class/structure, types can be constructed by
using the composition operations (cf. §6.2), e.g. cartesian product or disjoint union. In the case
of disjoint union, there is a special syntax for the abbreviation of constructor operations for
values of the type. The simplest example is that of a type (Empty) with just one constant
(nullary constructor operation), empty:

Empty : type =  empty: Empty 

Another simple use of this notation is in CopyT, which produces a new type that is an isomor-
phic "copy" of an existing type T. The constructor operation  copy: T ––> CopyT  creates values
of the type CopyT;  copy is implicitly surjective ("no junk") and injective ("no confusion").

CopyT: type =  copy : T ––> CopyT 
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If a parameter name is given, it corresponds to an implicitly defined selector function (so in
CopyT2, original: CopyT2 ––> T  is the left inverse of  copy: T ––> CopyT2):

CopyT2: type =  copy : (original: T) ––> CopyT2 

Types with constructor operations may be combined using the disjoint union operator |. In t1 |

t2, t1 and t2 must have disjoint sets of constructor operations. Then a new type is formed having
both t1 and t2 as subtypes. All values of this type are either from t1 or from t2 ("no junk") and
there is no overlap ("no confusion"). As an example, consider an alternative definition of
natural numbers (cf. §2.2).

NATS: class =
 Nat: type  =

 zero: Zero  
|  succ: (pred: Nat) ––> Pos     

An equivalent form is the following (this is simply an abbreviation of the above). In both cases,
Zero and Pos become subtypes of Nat.

NATS: class =
 Nat: type  =

 zero: Zero
succ: (pred: Nat) ––> Pos     

Disjoint union may be used with recursion to define types inductively, as in NATS above and
INTS below (cf. §3.1). The interpretation is as in SML, i.e. values may be viewed as terms built
from constructor operations, where "no junk" amounts to an induction principle.

INTS: class =
NATS  +
 Neg: type  =

 neg: (pos: Pos) ––> Neg  
Int: type  =

Nat  |  Neg  

5 .4 . Functions on Types

"Parameterised type constructors" denote functions from types to types, for example ListOf, as
an alternative to the parameterised specifications above:

ListOf: (T: type) ––> type = 
Empty

  |  cons: (head: T) × (tail: ListOf  T) ––> NeListOf  T 

As discussed in §5.3, selection operations head: NeListOf T ––> T and tail: NeListOf T ––> ListOf

T are defined implicitly. Note that a type constructor can also be made dependent on a structure,
see OrdListOf in §5.1.
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5 .5 . Polymorphism

Functions having types as parameters and yielding values denote the usual polymorphic
functions (this is so-called "parametric" polymorphism [Rey 83]). As an example consider
polymorphic equality (cf. §6.2), for use in axioms, and the if-then-else operation in §5.2:

= : (T: type) ––>  T ×  T ––>  logical

It is not a bad idea, in some cases, to be able to include an actual type parameter explictly,
especially to support tight subsorting. In general, however, such type parameters should be
inferred by the type analysis algorithm. Thus an actual type parameter is optional for all type
parameters of functions, provided it can be inferred.

An interesting result of orthogonality and generality is the use of structures (instead of mere
types) as parameters. This allows for the expression of additional functions and properties (in
this case, the argument structures could conceivably be made optional under some circum-
stances). As an example consider sort:

sort: (X: PO) ––>  ListOf  X.T ––>  OrdListOf  X

5 .6 . Dependent Types

Dependent types are a very powerful concept to express required relationships, cf. also
dependent classes in §4.2. The fact that many such dependencies are expressed structurally and
can be statically checked avoids proof obligations that would otherwise be required. Note that,
in full generality, types can be dependent on values. However, there is no conditional other
than on values, and values can only be used to construct types in constraint predicates that are
not checked statically anyway; thus dependency on values never influences type-checking.
Also, as dependency on values only influences constraints in subtypes (see §5.1) or additional
specifications that trigger proof obligations, no run-time type checking should be required (but
assertions may depend on premises that are used in conditionals).

A standard example for the expressional power of dependent types is the following:

Vector: (T: type) ––> (n: Nat) ––> type  = ( v: ListOf  T  ||  length  v  =  n )

Rectangle: (T: type) ––> (m: Nat) × (n: Nat) ––> type  = (Vector  T  m) × (Vector  T  n)

Square: (T: type) ––> (n: Nat) ––> type  = Rectangle  n  n
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6 . Notation

6.1 . Abstract Syntax and Concrete Syntax Phrases

The Abstract Syntax is coded as a Term Algebra in the language itself. Note that subtypes
(Name ≤ Exp) and type constructors (ListOf, NeListOf) are used.

Name: type =
Id

|  mkQualName: (prefix: Name) × (id: Id) ––> QualName - - [ prefix . id  ]
mkAggrName: (prefix: Name) × (aggregate: TupleExp) ––> AggrName  - - [ prefix .

aggregate ]

Exp: type =
Name

|  mkAppl: (fun: Exp) × (arg: Exp) ––> ApplExp - - [ fun arg ]
mkTuple: (exps: NeListOf  Exp) ––> TupleExp - - [ ( exp1, ...,

expn ) ]
mkCtxt: (defs: NeListOf  Def) ––> CtxtExp - - [  def1; ...; defn 

]
mkForAll: (defs: NeListOf  Domain) × (exps: ListOf  Exp) ––> ForAllExp - - [for all defs =>

exps ]
mkExist: (defs: NeListOf  Domain) × (exps: ListOf  Exp) ––> ExistExp  - - [exist defs =>

exps ]

TExp: type =
Exp

|  mkDomain: (ids: NeListOf  Id) × (kind: TExp) ––> Domain - - [ ids: kind ]
mkRestrDom: (dom: Domain) × (constraint: ListOf  Exp) ––> RestrDom - - [ dom || constraint ]
mkProduct: (items: ListOf  TExp) ––> Product - - [ item1 × ... × itemn ]
mkType: TypeExp - - [ type ]
mkClass: ClassExp - - [ class ]

Def: type =
Domain - - declaration

|  mkRecDecl: (dom: Domain) × (item: TExp) ––> RecDecl  - - [ dom = item
]
| Exp - - axioms etc.

The concrete syntax phrases given in the brackets [ ] define the major unparsing
("paraphrasing") rules of the abstract syntax as a text; they also define the major body of the
concrete input syntax. Bracketing of expressions according to nesting of applications, infix (or
possibly mixfix) function symbols (including special combinations of characters), operator
precedence etc. have been abstracted away from. A unit of development is a Def, possibly
restricted to large items such as classes or structures. A "program" is a sequence of such units,
with linear visibility (non-linear visibility, e.g. for recursive definitions of types, is under
consideration). Of course one would like to have a partial order of dependency w.r.t. visibility
of other units ("import"); this syntax is not included above since static resolution of legal name
visibility is assumed to have happened already. One may also wish to have additional syntax to
declare definitions to be local to some construct, or to open scopes explicitly (e.g. to have direct
access to components of classes/structures). The exact visibility rules need to be spelled out.
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Note that an explicit functional abstraction construct is not given since it is "hidden" in the
potentially recursive definitions, see §6.3.

The given Abstract Syntax is as compact as possible, suitable for defining the semantics of the
language, transformation rules etc. Experience with support tools and transformation develop-
ment in PROSPECTRA has shown that compactness (and orthogonality) is vital; of course,
there is often a trade-off between expression of properties in a structural way (by syntax) or by
static semantic predicates.

6 .2 . Predefined Operators

on Values

Only the most important operators on values are given; in addition there would be the usual
operators on values of type logical and other types like if then else on bool. The predefined
operators below often carry important semantics with them and could not be defined in the
language itself; it is often somewhat arbitrary whether to include an operation in the abstract
syntax above as a constructor or as a predefined operator here (e.g. cartesian product is a
constructor since it is n-ary). (Sub)type qualification will probably need an additional static
semantic restriction such as S≤T ∨ T≤S or some suitable generalisation.

= : (T: type) ––> T × T ––> logical - -  (polymorphic) (strong) equality
defined: (T: type) ––> T ––> logical        - -  (polymorphic) definedness predicate
in: (T: type) ––> T × type ––> logical - -  (polymorphic) type membership predicate
:: : (T: type) ––> T × (S: type) ––> S - -  (polymorphic) type qualification

on Types

––>, | : type × type ––> type - -  function space, disjoint union
≤ : type × type ––> logical - -  subtype
⊥ : type ––> type - -  extended by Bottom element

on Structures

in: (C: class) ––> C × class ––> logical - -  (polymorphic) class membership predicate
:: : (T: class) ––> T × (S: class) ––> S - -  (polymorphic) class qualification
+ : (C, D: class) ––> C × D ––> C + D - -  (polymorphic) extension of structures

on Classes

––>, + : class × class ––> class - -  function space, union of classes
≤ : class × class ––> logical - -  subclass

6 .3 . Deviations from Standard ML and Extended ML

Deviations from SML in the strict syntactic sense are not semantic deviations, rather abstractions
and extensions for specification purposes. It is assumed that the generation of explicit discrimi-
nation for union types with elimination of subtypes, and the solution of the dependent types
versus sharing constraint problem are possible; this seems relatively unproblematic but has not
yet been studied in detail. The possibility of separating the definition of a "functor signature"
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(such as FSORT in §4.1) from the definition of a functor with that signature, as well as higher-
order "functors" could be considered as extensions of SML proper eventually.

The uniform syntax proposed here (id: kind = exp) is a consequence of the generalisation.
However, for a properly checked specification, it is easy to generate an SML unparsing or
translation to SML abstract syntax by using static semantic information about kinds.

Function declarations with right-hand sides correspond to fun's in SML. In other words, defini-
tions of functions with right-hand sides always have an implicit abstraction; the kind of the
right-hand side is that of the result kind (i.e. the last in a curried sequence) of the function.
Definitions yielding values or types may be recursive (but reflexive domains with "heavy"
recursion [BT 83] are excluded), those yielding structures or classes must not be recursive.

In this language design, a structure corresponds to a finished program module; it denotes a
single algebra in contrast to Extended ML where a structure may contain axioms and therefore
denotes a set of algebras. The present approach is conceptually simpler but forces (for better or
worse) a rather discrete transition from a class to a finished structure during the development
process (e.g. by transformation of a monomorphic design specification to a corresponding
functional program). Note also, that in a pure specification-oriented development methodology,
structure-"values" and functions yielding structures as results need never appear explicitly
except in this "last" stage of (specification-) development; there is never a need to define a
structure, all development can be done using refinement of classes. Thus incorporation of a
particular target programming language such as SML is of course necessary to obtain an execu-
table program in the end but has no effect on the process of program development. It also
follows that incorporation of a different target language is comparatively easy.

7 . Conclusion

An attempt has been made to design a specification language that is concise and small and yet
includes powerful concepts, in particular for structuring in-the-large. This is achieved by
integrating a small number of general and orthogonal concepts in a minimal but flexible syntac-
tic framework. Constructs that might otherwise be built into the syntax are defined as pre-
defined operations in this design. Generality of function spaces and inheritance provide
expressive power; dependent types/classes achieve compactness.

We expect that the static checking potential inherent in the typing and, more importantly per-
haps, class inheritance construct will eliminate many proof obligations and help in structuring
the proofs that remain.

Parallellism and concurrency require further research (although an approach to system specifi-
cation and design using the stream based approach is already possible, see e.g. [Broy 88, 89],
[Krie 91]).

We have recently become aware of related work [MMMK 90]. There are several similarities to
the approach presented here: these include the use of 4 kinds of items (inherited from ML), and
a similar notion of inheritance (although its exact semantics is not clear to us). There are some
major differences: in order to support an object-oriented style of programming they use an inter-
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esting concept of coercion from structures to values that leads to a relaxation of the separation
between the value/type level and the structure/class level of the language without sacrificing
static type checking (this needs further investigation in our context), but there seems to be no
attempt to generalise SML functors and their specifications to higher order as in the present
approach; furthermore the semantics of inheritance when axioms are deleted is unclear. The
sharing constraints of ML seem to be still supported (although a concept of dependent type
exists); the use of "internal interfaces" seems to be for this purpose.

The paper presents the design of SPECTRAL, and of some of the motivations underlying the
design choices. The semantic underpinnings of the language remain to be worked out (but see
[Rei 90] for a partial first attempt using the notion of sketches from category theory); questions
such as the extent to which static typechecking can be carried out remain unresolved. Providing
a satisfactory semantics and answering these questions will be a very non-trivial task.
However, the sematics of a programming language (Quest) with abstract data types, polymor-
phism, modules and inheritance has been given [CL 90] and the semantics of higher-order
specification modules has been investigated [SST 90], [ST 91a]. Combining these treatments
will be a challenging exercise that may lead to reconsideration of some of the detailed design
choices.

We hope that the design of SPECTRAL will be a serious basis for a development methodology
of correct programs in the future, supported by a powerful development environment (for
example an adaptation of the PROSPECTRA system).
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