Entailment for Structured Specifications (1988)

| \(SP \vdash \varphi_1 \) | \(\ldots \) | \(SP \vdash \varphi_n \) | \(\{ \varphi_1, \ldots, \varphi_n \} \vdash_{\text{Sig}(SP)} \varphi \) |
|-----------------|-----------------|-----------------|
| \(SP \vdash \varphi \) | \(\{ \varphi \} \vdash \varphi \) | \(\varphi \in \Phi \) |
| \(SP_1 \vdash \varphi \) | \(SP_2 \vdash \varphi \) | \(SP_1 \cup SP_2 \vdash \varphi \) |
| \(SP \vdash \varphi \) | \(SP \vdash \sigma(\varphi) \) | \(SP \text{ hide via } \sigma \vdash \varphi \) |

Clarifications: INS = \(\langle \text{Sign}, \text{Sen} : \text{Sign} \rightarrow \text{Set}, \text{Mod} : \text{Sign}^{op} \rightarrow \text{Cat}, \langle \|=_{\Sigma} \subseteq [\text{Mod}(\Sigma) \times \text{Sen}(\Sigma)]_{\Sigma \in \text{Sign}} \rangle \) is an institution that defines the logical system used for specifications. \(SP, SP_1 \) and \(SP_2 \) are structured \(\Sigma \)-specifications over INS, where \(\Sigma \) is a signature in the category \(\text{Sign} \), \(\varphi, \varphi_1, \ldots, \varphi_n \) are \(\Sigma \)-sentences, i.e. elements in \(\text{Sen}(\Sigma) \), \(\Phi \) is a set of \(\Sigma \)-sentences, and \(\sigma(\varphi) \) denotes \(\text{Sen}(\sigma(\varphi)) \), the translation of the sentence \(\varphi \) along \(\sigma : \Sigma \rightarrow \Sigma' \). Structured specifications in INS are built from basic specifications (\(\Sigma, \Phi \)), the union of \(\Sigma \)-specifications \(SP_1 \cup SP_2 \), the translation “\(SP \text{ with } \sigma' \)” of \(SP \) along a signature morphism \(\sigma : \Sigma \rightarrow \Sigma' \), and hiding “\(SP \text{ hide via } \sigma \)” for hiding the symbols in \(SP \) not occurring in the image of \(\sigma : \Sigma' \rightarrow \Sigma \). \(\text{Sig}(SP) \) is the signature of \(SP \). Translations of \(\Sigma \)-sentences and \(\Sigma' \)-models along \(\sigma : \Sigma \rightarrow \Sigma' \) are required to preserve satisfaction: for any \(\varphi \in \text{Sen}(\Sigma) \) and \(M' \in [\text{Mod}(\Sigma')] \), \(M' \models_{\Sigma'} \text{Sen}(\sigma)(\varphi) \iff \text{Mod}(\sigma(\varphi))(M') \models_{\Sigma} \varphi \). Finally, \(\langle \|=_{\Sigma} \subseteq [\text{Pow}(\text{Sen}(\Sigma)) \times \text{Sen}(\Sigma)]_{\Sigma \in \text{Sign}} \rangle \) is a sound entailment relation for the satisfaction relation \(\langle \|=_{\Sigma} \rangle_{\Sigma \in \text{Sign}} \).

The judgement \(SP \vdash \varphi \) is meant to capture the property that \(\varphi \) is satisfied in all models of \(SP \).

History: The first systems for proving entailment in structured specifications were given by Sannella and Burstall [1], Sannella and Tarlecki [2], and Wirsing [3]. The above presentation can be found in [6], Sect. 9.2.

Remarks: The system is sound; completeness is shown in [3] for the first-order logic instance and in [5][6] for an institution INS which is finitely exact, admits propositional operators, satisfies Craig interpolation, and has a complete entailment relation \(\langle \|=_{\Sigma} \rangle_{\Sigma \in \text{Sign}} \). [7] shows that this is the most powerful sound proof system that is compositional in the structure of specifications. [6] provides additional rules for observability operators.
