
A survey of formal software development methods1Donald SannellaDepartment of Arti�cial Intelligence and Department of Computer ScienceUniversity of EdinburghJuly 19881 Introduction1.1 ScopeThis paper is a survey of the current state of the art of research on methods for formalsoftware development. The scope of this paper is necessarily restricted so as to avoiddiscussion of a great many approaches at a very super�cial level. First, although some ofthe ideas discussed below could be (and have been) applied to hardware development aswell as to software development, this topic will not be treated here. Second, the specialproblems involved in the development of concurrent systems will not be discussed herealthough again many of the approaches mentioned below could be applied in this context.Third, no attempt is made to treat programming methodologies such as Jackson's methodand program development systems such as the MIT Programmer's Apprentice which arenot formally based. Finally, this survey does not claim to be fully exhaustive althoughan attempt has been made to cover most of the main approaches. Many of the technicaldetails of the di�erent approaches discussed have been glossed over or simpli�ed for thepurposes of this presentation; full details may be found in the cited references.1.2 Software development: from requirements to programThis section presents a general picture of the process by which a software system may bedeveloped by formal methods from a speci�cation of the requirements the system mustful�ll. This overall picture will be useful in discussing the wide variety of formal programdevelopment approaches available, as the di�erent approaches attack di�erent aspects ofthe problem.Let SP 0 be a speci�cation of the requirements which the software system is expected toful�ll, expressed in some formal speci�cation language SL. (The process, sometimes knownas requirements engineering, by which such a precise formal speci�cation is obtained start-ing from the informal and often vague requirements of the customer will not be discussedhere although it is acknowledged that this problem is by no means a trivial one.) Thisspeci�cation constrains the input/output behaviour of the system in some fashion. It may1This paper was written under contract to GEC Research as a part of the Alvey-sponsored ISF (In-tegrated Systems Factory) Study. 1



also place constraints on the time and space resources available, although most of theapproaches to be discussed are unable to deal with constraints of this kind. The ultimateobjective is a program P written in some given programming language PL which satis�esthe requirements in SP 0.The usual way to proceed is to construct P by whatever means are available, makinginformal reference to SP 0 in the process, and then verify in some way that P does indeedsatisfy SP0. The only practical veri�cation method available at present is to test P ,checking that in certain selected cases the input/output relation it computes satis�es theconstraints imposed by SP 0. This has the obvious disadvantage that (except for trivialprograms) correctness of P is never guaranteed by this process, even if the correct outputis produced in all test cases. On the other hand, methods for automatically generatingtest cases which are likely to expose problems are available, see for example [BCFG 86].An alternative to testing is a formal proof that the program P is correct with respectto the speci�cation SP 0. However, after two decades of work on program veri�cation itnow seems to be more or less widely accepted that this will probably never be feasiblefor programs of realistic size. At the very least, initial hopes for a system capable ofautomatically generating proofs of program correctness are regarded as unrealizable.Most recent work in this area has focused on methods for developing programs fromspeci�cations in such a way that the resulting program is guaranteed to be correct byconstruction. The main idea is to develop P from SP 0 via a series of small re�nementsteps, inspired by the programming discipline of stepwise re�nement. Each re�nement stepcaptures a single design decision, for instance a choice between several algorithms whichimplement the same function or between several ways of e�ciently representing a givendata type. This yields the following diagram:SP 0���> SP1���> SP 2���> � � ����>PIf each individual re�nement step (SP 0���> SP1, SP1���> SP 2 and so on) can be provedcorrect, then P itself is guaranteed to be correct. Each of these proofs is orders of mag-nitude easier than a proof that P itself is correct since each re�nement step is small. Inprinciple it would be possible to combine all the individual correctness proofs to yield aproof of the correctness of P with respect to SP0, but in practice this would never benecessary.When this approach is used to develop large and complex programs, the individualspeci�cations SPn become large and unwieldy. This is particularly true as n increases. Asa consequence the proofs of correctness of re�nement steps become di�cult, even thoughthe creative leap involved in a single step remains the same. The solution to this problemadopted by some formal program development approaches is to allow speci�cations to bedecomposed into smaller units during the development process. These smaller speci�ca-tions may then be re�ned independently of one another. A simple development involving2



only two decompositions and six re�nement steps would then give the following diagram:SP0 ���> 8>>>>>><>>>>>>: SP1 ���> SP 2 ���> P�SP 01 ���> 8><>: SP 02 ���> P 0
SP 002 ���> P 00Here � and 
 are intended to denote arbitrary speci�cation-building operations, and P ,P 0 and P 00 are program modules. The program P � (P 0 
 P 00) is guaranteed to be correctwith respect to the speci�cation SP 0 provided each of the individual re�nement steps canbe proved correct. This assumes that � and 
 can be used for combining program modulesas well as speci�cations, or at least that operations corresponding to � and 
 exist on thelevel of program modules.It is important to note that the neat and tidy diagrams above are not intended tosuggest that the formal development of realistic programs proceeds without backtracking,mistakes and iteration. Formal program development approaches do not claim to removethe possibility of unwise design decisions. But once a program is obtained by means ofsome sequence of re�nement steps then a diagram like the one above which omits all theblind alleys may be drawn. Then, provided all the required correctness proofs have beencarried out, correctness of the resulting program is guaranteed. Most approaches do notrequire the correctness proofs to be carried out when the individual re�nement steps are�rst proposed; the proof obligations can be recorded for later, to be discharged after itbecomes clear if the re�nement step will lead to (a module of) the �nal program.There are a number of questions which the general view of formal program developmentpresented above leaves completely open, and which any particular approach which �ts intothis mould must answer. These include:� What is the speci�cation language SL?� What speci�cation-building operations such as � and 
 above are available in SL,if any?� What is the programming language PL?� What is the relationship between PL and SL?� What does \re�nement" mean and under what circumstances is a re�nement stepcorrect?� How is the transition between SL and PL made?� What is the relationship between re�nement and decomposition?� Does re�nement of programs P ���>P 0 make sense? What is the relation betweenthis and re�nement of speci�cations SP ���> SP 0?3



� Does the re�nement process itself have the status of a formal object subject toanalysis and manipulation (see [SS 83])?It is very important to the mathematical soundness of the particular program develop-ment approach under consideration that some of these questions (at least the �rst seven)be given very precise answers. For example, whatever speci�cation language SL is used,it is important that it be given a complete formal semantics. Without such a semantics,speci�cations have no precise meaning and so no formal proofs can be undertaken. Thesame holds for the programming language PL. The notion of re�nement must be given aprecise mathematical de�nition and it must be shown that re�nements preserve behaviourin an appropriate sense.There are other questions which are important for determining the useability of anapproach:2� What methods are available for proving the correctness of re�nement steps?� Where do re�nement steps come from?� What tools are available for assisting with which aspects of the program developmentprocess?� What level of sophistication is required by the user of such tools?� Which aspects of the program development process as sketched above can be fullyautomated?� Does the approach require speci�cations to be \complete" in any sense? Does itprovide a way of checking completeness of a speci�cation or identifying areas ofincompleteness?� Does the approach provide ways of deriving programs which are optimal (or at leastadequate) with respect to some performance measure?� Does the approach provide a formal way of comparing pros and cons of di�erentimplementations which meet a speci�cation?� What are the complexity properties of the approach; for example, what happens tothe size of proofs of correctness as speci�cations grow in size?Again, it is essential for soundness that any methods which are established for provingcorrectness of re�nement steps etc. are shown to be sound with respect to the formalde�nition of re�nement.Even once all these questions have been given precise answers, there are additionalconditions which the answers must satisfy. For example, whatever de�nition of re�nement2Thanks to Aaron Sloman for pointing out the importance of the last four of these.4



is adopted, it is essential that re�nement steps be composable as discussed at the begin-ning of section 3. It turns out that this in turn imposes constraints on the semantics ofspeci�cation-building operations.Although these are important questions, it is not the purpose of this paper to answerall of them for all the approaches which will be mentioned below. Some of the answersmay be found in the cited papers. Sometimes an approach has no clear answer to one ormore of the most central questions; in this case I try to point this out.1.3 Structure of this paperThe rest of this paper surveys di�erent approaches to formal program development in thelight of the discussion above. Section 2 surveys languages for writing speci�cations andprograms. Section 3 examines the notions of re�nement adopted in di�erent approaches.Finally, section 4 discusses the issue of where individual re�nement steps come from.2 Speci�cation and programming languagesThis section survey languages which are used in di�erent formal program development ap-proaches to write speci�cations and programs. As suggested by the gradual evolution fromhigh-level speci�cation to program described above, in many approaches the distinctionbetween speci�cations and programs is blurred or even non-existent.Some approaches described below adopt a single so-called wide spectrum languagewhich can be used to write high-level speci�cations, e�cient programs, and everythingwhich arises in the transition from the former to the latter during the program develop-ment process. In these intermediate steps it is natural for speci�cation constructs to bemixed freely with programming constructs because of the way that high-level speci�cationsare gradually re�ned to programs. This also avoids various problems which arise whenseparate speci�cation and programming languages are used: there is no essential di�erencebetween re�nement of programs and re�nement of speci�cations; the same modularizationconstructs can be used to structure speci�cations as well as programs; there is no sud-den leap from one notation to another but rather a gradual transition from high-levelspeci�cation to e�cient program.For the purposes of this paper, \high-level speci�cations" are descriptions which givedetails of what is required. This is contrasted with \programs" which suggest how thedesired result is to be computed (which amounts to an algorithm of some kind). The word\speci�cation" shall be used to refer to any description of the input/output behaviour of asystem, whether algorithmic or not; thus a program is a speci�cation which is executable.This is consistent with the terminology used in wide spectrum languages where a programis a speci�cation which happens to use only the executable subset of the language.In some approaches it is argued that the initial high-level speci�cation of requirementsmust be executable. This is thought to be necessary in order to ensure that this formalspeci�cation accurately reects the customer's intentions; with an executable speci�ca-tion this can be ascertained by testing. We agree that it is necessary to start from a5



speci�cation of requirements which is correct with respect to our intentions, and thatbug-free formal speci�cations are di�cult to construct. But requiring the initial speci�c-ation to be executable means that a major part (the most di�cult part, in our view) ofthe program development process is not formalized. For one thing, in constructing anexecutable speci�cation it is necessary to make many decisions which could be left openin a non-executable speci�cation. This means that a whole range of perfectly acceptablealternative implementations is unnecessarily eliminated from consideration from the verybeginning. Writing speci�cations in an executable speci�cation language is just a form ofprogramming, and developing e�cient programs from such speci�cations is just programoptimization. Aiming for an initial speci�cation which is as abstract and non-algorithmicas possible often leads to useful simpli�cations and generalizations which would not bediscovered otherwise. Such a speci�cation can be \tested" and shown to accurately reectour intentions using a theorem prover; instead of evaluating an expression e and checkingthat the resulting value is v as expected, we try to prove that e = v is impled by ourspeci�cation.A number of papers discussing these issues and others can be found in [GMc 86];unfortunately most of the papers in this collection were originally published in the period1977-1982 and so recent developments are not discussed.2.1 VDMVDM (the Vienna Development Method) is a method for rigorous (not formal) pro-gram development. The objective is to produce programs by a process similar to the onesketched in section 1.2 where the individual re�nement steps are shown to be correct us-ing arguments which are formalizable rather than formal, thus approximating the level ofrigour used in mathematics. This is supposed to yield most of the advantages of formalprogram development by ensuring that sloppiness is avoided without the foundational andnotational overhead of full formality. VDM is presented in [Jon 80] and [BJ 82]; a shortintroduction to the approach is in [Jon 86]. VDM is the most widely accepted approachto systematic program development available to date.VDM uses a model-oriented approach to describing data types. Models are built usingfunctions, relations and sets. A simple example from [Jon 80] is the following speci�cationof dates:Date :: YEAR : Nat MONTH : fJan,Feb,: : : ,Decg DAY : f1 : 31gThis models dates as triples, but does not require that dates be represented as triples inthe �nal program. Not all of the values of type Date are valid; the legal ones are charac-terized by the following data type invariant :6



inv-date(hy;m; di) =def(m 2 fJan,Mar,May,Jul,Aug,Oct,Decg ) 1 � d � 31) ^(m 2 fApr,Jun,Sep,Novg ) 1 � d � 30) ^(m = Feb ^: is-leap-year(y) ) 1 � d � 28) ^(m = Feb ^ is-leap-year(y) ) 1 � d � 29)A problem with model-oriented speci�cations is that it is easy to overspecify a system,eliminating certain implementations from consideration from the beginning. In VDM aprecise notion of overspeci�cation has been studied. A model is called biased if it is notpossible to de�ne an equality test on the data values in the model in terms of the operatorsde�ned. Intuitively, a biased model contains unnecessary redundancy. An unbiased modelis viewed as su�ciently abstract to be the initial high-level speci�cation of a system. Moreconcrete models are introduced during the process of re�nement (section 3.1).Pre- and post-conditions are used to specify procedures, which may have side e�ects.For example, a procedure called TIMEWARP which resets the date (part of the globalstate) to a point 100 years in the past provided it is not October may be speci�ed asfollows:TIMEWARPstates: DATEpre-TIMEWARP(hy;m; di) =def m 6= Octpost-TIMEWARP(hy;m; di; r) =def r = hy � 100;m; diIn the post-condition, r is the state which is produced by the procedure TIMEWARP. It isnecessary to show that TIMEWARP preserves the invariant associated with Date to ensurethat TIMEWARP cannot create an invalid date when given a valid date. Decompositionduring the re�nement process is a matter of breaking down procedures into individualstatements which can themselves be speci�ed using pre- and post-conditions. When thisprocess has been carried out to completion the result is a program.The ESPRIT project RAISE [BDMP 85] is attempting to provide VDM with a formalfoundation and support tools. A similar aim is being pursued by the MetaSoft project atthe Polish Academy of Sciences [Bli 87].2.2 ZZ is a speci�cation language based on the principle that programs and data can be de-scribed using set theory just as all of mathematics can be built on a set-theoretic basis.Thus, Z is no more than a formal notation for ordinary naive set theory. The �rst version ofZ [ASM 79] used a rather clumsy and verbose notation but the current version [Spi 85,87]adopts a more concise and elegant notation based on the idea of a scheme which general-izes the sort of thing behind mathematical notations like fx j x � 7g, �x:x+ 1, R 4x3dx,8x:p(x), 9x:p(x), all of which involve bound variables of some kind.Data types are modelled in Z using set-theoretic constructions, just as mathematical\data types" like natural numbers, real numbers, ordered pairs and sequences are de�ned7



in set-theoretic terms in mathematics. For example, in specifying a display-oriented texteditor [Suf 82] a document is described as an ordered pair consisting of the text before thecursor and the text after the cursor:DOC seq[CH ] � seq[CH ](CH is the set of characters which may appear in documents.) Two DOC -transformingfunctions may then be speci�ed as follows:back : DOC ! DOCins : CH ! DOC ! DOCdom back = fl; r j l 6= hig(8(l; r) : DOC; ch : CH)back (l � hchi; r) = (l; hchi � r);ins ch(l; r) = (l � hchi; r);(In this speci�cation, hi is the empty sequence; hchi is the sequence containing the singlecharacter ch; and � is the append function on sequences.) The function back (moveone character backwards) is partial; it is applicable only to documents having some textbefore the cursor. This restriction on its domain is given by the �rst axiom in the abovespeci�cation. The set of documents whose cursor is positioned at the beginning of a wordcan be described as a subset of DOC as follows:sp : CHwordb : P(DOC )sp 6= nlwordb = fl; r j last(l) 2 fsp;nlg _ �rst(r) 62 fsp;nlggThis introduces two distinguished characters, sp (space) and nl (new line) which arerequired to be di�erent, and then de�nes the set wordb as that subset of DOC satisfyingthe second axiom.Pre- and post-conditions may be used to specify procedures with side e�ects ]in a waysimilar to that used in VDM (section 2.2).Z has been used with success in UK industry to specify real systems. [Hay 87] is acollection of case studies. However, there is still a great deal of work needed to turn Z intoa complete formal program development method. For example, although some work hasbeen done on theorem proving by the Z group at Oxford, this work is not yet integratedwith the Z language. It seems that the design of the language will make this more di�cult8



than its ease of use as a speci�cation language would suggest [Far 87].2.3 IOTAThe IOTA project at the University of Kyoto attempted to provide a formal basis andmechanizable veri�cation method for modular program development [NY 83]. The IOTAlanguage allows programs to be built by composing (possibly parameterized) modulescontaining Algol-like function de�nitions which are speci�ed using a variant of predicatelogic with equality. Although the programming language is imperative, programs with sidee�ects are not permitted. Program development is supported by an integrated programdevelopment environment which includes an interactive theorem proving subsystem.The speci�cation of a program module is split into the interface part which givesthe names of the types and functions introduced by the module and the speci�cation partwhich gives the axioms which the functions are required to satisfy. There are three kinds ofmodules: type modules which introduce a new abstract data type, procedure modules whichintroduce new functions which operate on existing data types, and sype modules which areused to specify the parameters of parameterized type and procedure modules. Type andprocedure modules have in addition a realization part which gives an implementation whichhas been proved to satisfy the axioms in the speci�cation part. Sype modules are used toconstrain the permissible actual parameters of a parameterized module: a parameterizedtype or procedure module can only be applied to an actual parameter (type) module ifthat type module can be proved to satisfy the axioms in the sype module.Program development in IOTA is not stepwise: the implementation of a type or pro-cedure module is developed from its speci�cation in a single step rather than via a gradualre�nement process. The intention of IOTA is to allow the programmer to concentrateon a single module at a time rather than to support the process of developing an im-plementation for that module. Thus the emphasis is on veri�cation rather than formaldevelopment.2.4 Rewrite rule based languagesDuring the past decade a number of very high-level programming languages which can beseen as executable speci�cation languages have been developed. These are based on theidea that equations can be viewed as rewrite rules. That is, an equation 8X:t = t0 can beviewed as a rewrite rule t ) t0 (or t0 ) t) which says that any substitution instance of tin an expression can be replaced by the corresponding substitution instance of t0. Undercertain conditions it is possible to \run" a set of such rules to compute the value of anexpression.These languages are related to logic programming languages like Prolog [CM 81] whichhas also been touted as an executable speci�cation language. One view of the relationshipbetween rewrite rule based programming and logic programming is given in [GM 86].9



2.4.1 HOPEHOPE [BMS 80] is a purely applicative programming language having a rich but securetype system which allows new data types to be de�ned by the user. For example, binarytrees with integer labels on nodes and leaves may be de�ned as follows (we assume thatthe type int has already been de�ned):data tree == empty ++ leaf(int) ++ node(tree,int,tree)This de�nes a type called tree and three constructors, a constant empty : tree and twofunctions leaf : int ! tree and node : tree � int � tree ! tree. It is not necessary toprovide a representation for trees in terms of more primitive types; a value of type treeis just an expression built from constructors such as leaf (3) or node(empty; 4; leaf (7)). Afunction which produces the sum of all the labels in a tree is de�ned by cases as follows:dec sum: tree ! int- - - sum(empty)( 0- - - sum(leaf(n)) ( n- - - sum(node(t1,n,t2)) ( n + sum(t1) + sum(t2)Equations are required to be of the form f(pattern) ( expression where pattern is anexpression containing variables and constructors only. This syntactic restriction is whatmakes HOPE programs executable. Higher-order functions which take functions as argu-ments and/or return functions as results are permitted. Static binding is used rather thanLISP-like dynamic binding.HOPE has other features such as a simple program modularization facility and Milner-style polymorphic types [Mil 78] which will not be discussed here.2.4.2 Standard MLOne of the innovative features of the LCF theorem proving system [GMW 79] was theuse of a general-purpose programming language called ML as its metalanguage. ML soontook on a life of its own with a number of implementations, each of a di�erent dialect,developed during the period 1980-1985. Standard ML [HMM 86] is an attempt to reconcilethe features of all these dialects which was strongly inuenced by the design of HOPE.The main concepts of Standard ML are similar to those of HOPE. The examples abovemay be rewritten in Standard ML with only minor syntactic changes:datatype tree = empty j leaf of int j node of tree � int � treefun sum(empty) = 0j sum(leaf(n)) = nj sum(node(t1,n,t2)) = n + sum(t1) + sum(t2)Standard ML has many other features which will not be discussed here, for example apowerful exception mechanism, polymorphic types and some imperative constructs.10



The main important advance of Standard ML with respect to HOPE is the powerfulfacilities it provides for program modularization. These provide for the separate de�ni-tion of interfaces (signatures and their implementations (structures). Every structure hasa signature which gives the names of the types and functions de�ned in the structure.Structures may be built on top of existing structures, so each one is actually a hierarchyof structures, and this is also reected in its signature. It is possible, and sometimes ne-cessary in order to allow interaction between di�erent parts of a program, to declare thatcertain substructures in the hierarchy are identical or shared. Functors are like paramet-erized structures; applying a functor to a structure yields a structure. A functor has aninput signature describing structures to which it may be applied, and an output signaturedescribing the result of an application.[Har 86] and [Wik 87] are readable introductions to Standard ML; the latter unfortu-nately does not mention Standard ML's modularization facilities.2.4.3 OBJ2OBJ2 [FGJM 85] is the most recent in a succession of programming languages whichincludes OBJ0, OBJT and OBJ1. The original motivation for this work was to allowalgebraic speci�cations to be tested, although it is now advertised as a ultra high levelprogramming language. An OBJ2 program (called an object) declares some new types andfunctions which are then de�ned by means of a set of equations. When viewed as rewriterules, the equations are required to have the Church-Rosser and termination propertieswhich guarantee that repeated rewriting using the rules will always terminate with aunique result. This allows equations which are not permitted in HOPE or Standard MLand does not require that constructors be distinguished from other functions. Functionsmay be declared as commutative, associative, idempotent and/or having an identity; thisinformation is then used appropriately by the rewriting mechanism.Objects may be parameterized, where the range of permissible actual parameter objectsis described by a (non-executable) requirement theory. At application time it is necessaryto check that the given actual parameter satis�es the axioms in the requirement theory,up to a renaming which is supplied by the user. The semantics of object application is thesame as the semantics of parameterized speci�cation application in CLEAR (section 2.5.1).OBJ2 has other features which will not be discussed here, including a very exiblesyntax and a notion of subtype. OBJ2 does not permit higher-order functions in contrastto HOPE and Standard ML. Some of the features of OBJ2 (for example, checking thata system of equations is Church-Rosser and terminating, and checking that an actualparameter object satis�es a requirement theory) require the use of a theorem prover.[FGJM 85] indicates that the integration of OBJ2 with the REVE theorem proving system[Les 83] is a topic for future work; it is not known what progress has been made in thisdirection since then. 11



2.5 Algebraic speci�cation languagesA great deal of work has been devoted to methods of speci�cation based on the idea thatfor speci�cation purposes a functional program can be modelled as a many-sorted algebra,i.e. as a number of sets of data values (one set of values for each data type) togetherwith a number of (total) functions on those sets corresponding to the functions in theprogram. This abstracts away from the algorithms used to compute the functions andhow those algorithms are expressed in a given programming language, focusing insteadon the representation of data and the input/output behaviour of functions. It is possibleto extend this paradigm to handle imperative programs as well by modelling imperativeprograms as functional programs [GB 80b] or else by using a di�erent notion of algebra,as will be discussed below. The original motivation for this work was to provide a formalbasis for the use of data abstraction in program development.The pioneering work in this area was [Zil 74], [Gut 75] and [GTW 78], of which thelatter (the so-called initial algebra approach) is the most formal. A speci�cation consists ofa signature | a set of sorts (data type names) and a set of function names with their types| together with a set of equational axioms expressing constraints which the functions mustsatisfy. For example, here is a speci�cation of an abstract data type of natural numbers:signature sorts natopns 0 : ! natsucc : nat ! nat+ : nat � nat ! nat� : nat � nat ! nataxioms 8n : nat: 0 + n = n8m;n : nat: succ(m) + n = succ(m+ n)8n : nat: 0� n = 08m;n : nat: succ(m)� n = n+ (m� n)Notice how the constant 0 is viewed as a nullary function. This speci�cation describesa certain class of algebras having the given signature and satisfying the given equations(the isomorphism class of so-called initial models, which includes the usual set-theoreticmodel of natural numbers). Another possibility is to view this speci�cation as describingthe isomorphism class of so-called �nal models [Kam 83] (see also [Gan 83]). Since this isa very simple speci�cation it has only one sort but in general a speci�cation may includemany sorts. See [EM 85] for a detailed introduction to this style of speci�cation.2.5.1 CLEARSpeci�cations such as those above are �ne for specifying very simple data types such asnatural numbers, booleans, stacks and queues. But specifying a large programs usingthis method would involve a list of hundreds or even thousands of axioms. Even if sucha large speci�cation could be constructed, it would be impossible to understand or use.The likelihood that a speci�cation in this style accurately reects the speci�er's intentiondecreases dramatically with the size of the speci�cation.12



The speci�cation language CLEAR [BG 77, 80, 81], [San 84] provides a small numberof speci�cation-building operations which allow large and complicated speci�cations to bebuilt in a structured way from small, understandable and reuseable pieces. The operationsprovide ways of combining two speci�cations, of enriching a speci�cation by some new sorts,functions and axioms, of renaming and/or forgetting some of the sorts and functions of aspeci�cation, and of constructing and applying parameterized speci�cations. In contrast tothe simple approach sketched above it is possible to write loose speci�cations in CLEAR,i.e. speci�cations describing a range of non-isomorphic algebras. This allows decisions to beleft deliberately open to be made later in the program development process. For example,it is possible to specify a function which takes the square root of a number without sayingwhether it produces the negative or positive square root.The semantics of CLEAR allows it to be used with di�erent kinds of axioms (notjust equations) to specify di�erent kinds of algebras. This allows appropriate treatmentof exceptions, non-terminating functions and imperative programs, among other things.This point will be discussed at length in section 2.5.5 below.2.5.2 CIP-LThe project CIP (Computer-aided, Intuition-guidedProgramming) at the Technische Uni-versit�at M�unchen had as its aim the development of a methodology for formal programdevelopment by transformation (see section 4) and the implementation of a system tosupport the development process.CIP-L [Bau 85] is the language on which the CIP project was based. CIP-L is a wide-spectrum language which includes constructs for writing high-level speci�cations (usingpredicate logic with equality, non-deterministic choice and set expressions), functionalprograms, imperative programs and unstructured programs with gotos. These constructsmay be freely mixed in order to allow a gradual transition between the initial high-levelspeci�cation of the problem to be solved and the �nal e�cient program. Some advantagesof a wide-spectrum language like CIP-L for formal program development were mentionedat the beginning of section 2. CIP-L includes di�erent facilities for constructing (possiblyparameterized) high-level speci�cation modules and program modules in a hierarchicalfashion; the relationship between these di�erent kinds of modules is similar to the relationbetween the speci�cation part and realization part of a module in IOTA (section 2.3) orbetween signatures and structures in Standard ML (section 2.4.2).The semantics of the speci�cation part of CIP-L is expressed in terms of classes ofpartial algebras (algebras in which partial functions may be modelled). In contrast tomost earlier approaches in the algebraic tradition, the axioms used in speci�cations neednot be equations. It is possible to write loose speci�cations in CIP-L as in CLEAR.2.5.3 ACT ONEThe ideas incorporated in CLEAR and CIP-L diverge to some extent from the initialalgebra approach to algebraic speci�cations in [GTW 78] outlined above. This earlier13



strand of theoretical work was continued by Thatcher, Wagner and Wright of IBM York-town Heights in collaboration with Ehrig and his colleagues at the Technische Universit�atBerlin. ACT ONE (described in [EM 85], chapters 9 and 10) is a speci�cation languagedeveloped in Berlin which adheres more or less strictly to the initial algebra approach.ACT ONE includes speci�cation-building operations similar to the ones in CLEAR ex-cept that the mechanism which supports parameterization of speci�cations is intentionallydi�erent. An important drawback of ACT ONE is that it does not permit loose speci�ca-tions.2.5.4 LarchThe Larch family of speci�cation languages [GHW 82], [GH 83] was developed at MIT andXerox PARC to support the productive use of formal speci�cations in programming. Oneof its goals is to support a variety of di�erent programming languages, including imperativelanguages, while at the same time localizing programming language dependencies as muchas possible. Each Larch language is composed of two components: the interface languagewhich is speci�c to the particular programming language under consideration and theshared language which is common to all programming languages. The interface languageis used to specify program modules using predicate logic with equality and constructs todeal with side e�ects, exception handling and other aspects of the given programminglanguage. The shared language is an algebraic speci�cation language used to describeprogramming-language independent abstractions using equational axioms which may bereferred to by interface language speci�cations. The role of a speci�cation in the sharedlanguage is to de�ne the concepts in terms of which programmodules may be speci�ed. Theshared language includes speci�cation-building operations inspired by those in CLEAR,although these are viewed as purely syntactic operations on lists of axioms rather than assemantically non-trivial operations as in CLEAR.2.5.5 InstitutionsAny approach to algebraic speci�cation must be based on some logical system. Typicallymany-sorted equational logic is used for this purpose. Nowadays, however, examples oflogical systems in use include �rst-order logic (with and without equality), Horn-clauselogic, higher-order logic, in�nitary logic, temporal logic and many others. All these logicalsystems may be considered with or without predicates, admitting partial functions or not.This leads to di�erent concepts of signature of algebra. There is no reason to view any ofthese logical systems as superior to the others; the choice must depend on the particulararea of application and may also depend on personal taste.The informal notion of a logical system has been formalised by Goguen and Burstall[GB 84], who introduced for this purpose the notion of institution. An institution consistsof a collection of signatures together with for any signature � a set of well-formed �-sentences, a collection of �-algebras and a satisfaction relation between �-algebras and�-sentences. The signatures come with some notion of signature morphism � : �! �0 inorder to provide for changing signatures, which induces the �-translation of �-sentences14



to �0-sentences and of �0-algebras to �-algebras. When we change signatures, the inducedtranslations of sentences and algebras are required to preserve the satisfaction relation.This condition expresses the intentional independence of the meaning of speci�cationsfrom the actual notation. All the above logical systems (and many others) �t into thismould.For purposes of generality, it is best to avoid choosing any particular logical systemon which to base a speci�cation approach. This leads to results and tools which can bereused in many di�erent logical systems. The semantics of CLEAR (see section 2.5.1)is parameterized by an arbitrary institution in this fashion. This means that CLEARaccommodates a variety of logical systems and styles of speci�cation without change. Theother speci�cation languages discussed up to this point do not share this feature. Thus,for example, CIP-L is solidly based on �rst-order logic and partial algebras and cannot beused to specify higher-order functions or non-deterministic functions without fundamentalchanges.2.5.6 ASLASL [SWi 83], [Wir 86] is a kernel speci�cation language intended primarily as a foundationfor building other more high-level and user-friendly speci�cation languages rather than fordirect use in writing speci�cations. It comprises a small number of simple but powerfulspeci�cation-building operations. It has a simple semantics in comparison with high-levelspeci�cation languages like those described above. The semantics of the constructs ofa high-level speci�cation language built on top of ASL would be expressed by mappingthese constructs into ASL expressions. Speci�cation languages built on top of ASL in thisfashion include Extended ML (section 2.5.7), PLUSS [Gau 83] and SMoLCS [AMRW 85]which has in turn been used to give a formal semantics of Ada [DDC 85].One novel feature of ASL is a speci�cation-building operation which can be used to be-haviourally abstract from a speci�cation, closing its collection of models under behaviouralequivalence [GGM 76], [Rei 81], [ST 87]. This allows model-oriented speci�cations as inVDM (section 2.1) in which a desired behaviour is described by giving a simple concretemodel which exhibits it. It is argued that such an operation is a necessary ingredient inan algebraic speci�cation language since the speci�cation of e.g. an abstract data typeis supposed to describe a behaviour without regard to the particular representation usedand therefore all algebras which realize the desired behaviour should be permitted. Fur-thermore, using algebraic speci�cation languages which lack a behavioural abstractionoperation, it is in general di�cult (as in CLEAR) or impossible (as in ACT ONE) todescribe collections of algebras which are closed under behavioural equivalence since sucha collection may contain a wide range of non-isomorphic algebras.The semantics of ASL is parameterized by an arbitrary institution [ST 88a] so likeCLEAR it can be used with a wide variety of logical systems.15



2.5.7 Extended MLExtended ML [ST 85] is a wide-spectrum language obtained by extending Standard ML(section 2.4.2) to allow axioms to appear in signatures and in place of code in structure andfunctor de�nitions. Axioms in a signature place constraints on the permitted behaviourof the components of structures which match that signature. Axioms in a structure orfunctor are used to write \abstract programs" [Wirth 71], i.e. to de�ne functions and datain a high-level way which is not necessarily executable. Some Extended ML speci�cationsare executable, since Standard ML function de�nitions are just axioms of a certain specialform. The goal of program development is to re�ne non-executable speci�cations untilthey contain axioms of this form only.The semantics of Extended ML is de�ned by translation into ASL [ST 86] as describedin section 2.5.6. Behavioural abstraction plays an important role in the semantics ofsignatures. Extended ML can be used with a wide variety of logical systems because ofthe way that its semantics is based on ASL. This also amounts to the independence ofExtended ML from the programming language used to write code, since programs arejust a form of axioms. Thus Extended ML can be used without major change to developprograms in languages other than Standard ML, for example Prolog (see also [SWa 87]).3 Re�nement of speci�cationsIt turns out to be surprisingly di�cult to give a precise de�nition which adequately capturesthe intuitively simple notion of re�nement. The main problem is with the representationof data. During the process of re�ning an abstract speci�cation to a concrete program, itis necessary to devise more and more concrete data representations. Ultimately all datamust be represented using the primitive data types provided by the target programminglanguage. Some of the issues which arise are illustrated by the following very simpleexample.Consider a speci�cation SP describing the function min which takes as input a set ofnumbers and produces as output the smallest number in the set. It is natural to considerrepresenting sets as lists, but there are at least four di�erent ways this may be done:1. All of [1,2], [2,1], [2,1,2], [1,1,1,2] etc. represent the set f1; 2g: order is insigni�cantand elements may be repeated.2. All of [1,2], [1,2,2], [1,1,2,2,2] etc. represent the set f1; 2g: elements may be repeatedbut order is signi�cant.3. Both [1,2] and [2,1] represent the set f1; 2g: order is not signi�cant but elements arenot repeated.4. The list [1,2] represents the set f1; 2g: order is signi�cant and elements may not berepeated. 16



Each of these representations is valid in the sense that the correctness of the resultingprogram will not depend on which one is chosen. Which representation is most usefuldepends on the functions which will be used to create and access sets and their relativefrequency of use. Adding an element to a set using representation 1 is cheap since thenew element may simply be added to the beginning of the list. Adding a new elementusing representation 3 involves checking if the element is already there, which may requiresearching the entire list. Adding an element using representation 2 or 4 involves �ndingthe proper place in the list to deposit the new element. On the other hand, checkingmembership using representation 2 or 4 is cheap since the list is ordered; �nding theminimum element is especially cheap. Finally, representations 3 and 4 are e�cient interms of space since set elements are not needlessly repeated.This example demonstrates some of the degrees of freedom which are possible whenre�ning the representing of data. Representations 1-3 show that it is possible to haveseveral concrete representations of a single abstract value, and representations 2-4 showthat sometimes there are concrete values (for example [2,1,2]) which are not used to rep-resent abstract values. It is also possible to have several abstract values represented by thesame concrete value which can happen if the original speci�cation is biased, to use VDMterminology. Unless all of these degrees of freedom are captured by the formal notionof re�nement adopted by a particular program development approach, there will correctprograms which will not be obtainable using that approach.Whatever formal notion of re�nement is adopted, it is essential for the correctness ofthe developmentmethod that re�nement steps be composable in two ways. First of all, twore�nement steps SP ���> SP 0 and SP 0���> SP 00 should compose to give a correct re�nementSP ���> SP 00, for arbitrary speci�cations or programs SP , SP 0 and SP 00. This is the prop-erty of re�nement steps (known as vertical composability [GB 80a]) which guarantees thecorrectness of programs developed from speci�cations in a stepwise fashion. Secondly, if theprogram development approach under consideration allows speci�cations to be decomposedinto smaller units during the development process, then the notion of re�nement adoptedmust be compatible with the speci�cation-building operations: given two re�nement stepsSP 1���> SP 01 and SP 2���> SP 02, it should be the case that SP 1� SP2���> SP 01� SP 02 is acorrect re�nement for any speci�cation-building operation �. This is the property (knownas horizontal composability [GB 80a]) which guarantees that separate development strandsmay proceed independently and then later be combined to yield a correct result. Finally,a formal program development method must provide some way of proving that re�nementsteps are correct with respect to the notion of re�nement adopted.Not all of the speci�cation approaches presented in section 2 come with a correspondingnotion of re�nement. This concept has receivedmost attention in connection with algebraicapproaches.3.1 VDMVDM has already been introduced in section 2.1.Suppose that we want to establish that one VDM speci�cation SP 0 is a correct re�ne-17



ment of another VDM speci�cation SP . The proof of correctness consists of the followingsteps:� De�ne a \retrieve function" retr which maps the data values speci�ed in SP 0 to thedata values speci�ed in SP . This relates concrete data values to the abstract valuesthey represent. Because of the direction of retr there may be many concrete valueswhich represent a single abstract value but not vice versa.� Prove that retr is total (on data values in SP 0 which satisfy the data type invariant)and surjective. This guarantees that every concrete data value represents someabstract value and that every abstract value has a representation. The data typeinvariant in SP 0 should restrict the domain of retr to the concrete values which willbe used as representations.� Identify an operation f 0 in SP 0 corresponding to each operation f in SP . Theoperations on the concrete level are supposed to model those on the abstract level,as will be ensured by the �nal two steps.� Prove that pre�f(retr(v))) pre�f 0(v) for all concrete values v. This ensures thatthe pre-conditions of the concrete operations are not more restrictive than those ofthe corresponding abstract operations.� Prove that pre�f(retr(v))^post�f 0(v; v)) post�f(retr(v); retr(v)) for all concretevalues v; v. This guarantees that the results produced by the concrete operationsmirror those produced by the abstract operations.This notion of re�nement is able to capture all four of the ways listed above of rep-resenting sets as lists. However, if SP is biased then this approach will exclude somere�nements leading to programs which are correct from the point of view of the behaviourthey display. This point is discussed in [Sch 86]. An attraction of the VDM approach isthat the steps for verifying correctness are stated quite explicitly and are relatively easyto accomplish. This is often not the case in other approaches.3.2 ZZ was introduced in section 2.2. The Z approach to speci�cation re�nement as describedin [Spi 87] is virtually identical to the VDM approach presented above except for di�er-ences in notation and terminology, leading to the same advantages and disadvantages.[Spi 87] claims that it is possible to handle situations in which several abstract values arerepresented by a single concrete value (as is sometimes required when SP is biased) usinga slightly more complicated approach, but no details are provided.3.3 Algebraic approachesSome of the background to algebraic methods of program speci�cation has already beengiven in section 2.5. 18



Work in this context on speci�cation re�nement has been inspired by the seminal workof Hoare [Hoa 72] on data re�nement. According to [Hoa 72], an algebra A0 is a re�nementof an algebra A if there is some subalgebra A00 of A0 with a surjective homomorphismh:A00 ! A. There is an intimate connection with the VDM approach described in sec-tion 3.1: the subalgebra A00 contains those data values which satisfy the data type invariant(the representation invariant in Hoare's terminology) and h is the retrieve function (ab-straction function). Requiring h to be a homomorphism guarantees that the operations inA00 (and thus in A0) behave the same as the operations in A.This idea can be extended from algebras to speci�cations by regarding a speci�cationSP 0 as a correct re�nement of another speci�cation SP if every model of SP 0 re�nes a modelof SP in Hoare's sense. It is possible to modify Hoare's de�nition in various ways so as totake account of the possibility that SP 0 might contain operations having di�erent namesfrom those in SP and to allow an intermediate speci�cation to be constructed based on SP 0.There has been a great deal of work on this topic with more than twenty di�erent algebraicde�nitions of re�nement advocated in the literature, including de�nitions suitable for usewith CLEAR (section 2.5.1) and CIP-L (section 2.5.2). Probably the most inuential ofthese is the one given in [EKMP 82] which is suitable for use with ACTONE (section 2.5.3).Although Hoare's re�nement relation composes vertically (see section 3) most of the moreelaborate re�nement relations which have been proposed do not compose vertically exceptunder conditions which are not easy to ensure. For many of these re�nement relations thequestion of horizontal composability has not been investigated while for others it has beenshown to be problematic.A simpler approach is obtained by requiring speci�cations to describe all algebraswhich are to be regarded as acceptable realizations. Then SP 0 is a re�nement of SP ifall the models of SP 0 are also models of SP . This de�nition is only appropriate for usewith a speci�cation language which incorporates behavioural abstraction (such as ASL,discussed in section 2.5.6, and Extended ML, discussed in section 2.5.7) since otherwise itis not exible enough to capture the kinds of re�nements which are required in practice.It is easy to show that this re�nement relation composes both vertically and horizontally.A unifying and generalizing approach to the issue of speci�cation re�nement is [ST 88b].All the other de�nitions of re�nement (including the one used in VDM) are special casesof this one. Re�nements compose vertically and horizontally and it is shown how previousproblems in this area were the consequence of using notions of re�nement which werenot su�ciently exible. This notion of re�nement works in the context of an arbitraryinstitution and it is even possible to change institutions in the course of a re�nement step,so for example re�ning an equational speci�cation to yield a Hoare-logic speci�cation ofan imperative program.4 Program transformation and program synthesisSection 1.2 presented a general picture of formal program development in which programswere evolved from speci�cations in a gradual fashion via a series of re�nement steps. Thesource of these re�nement steps was left open. The program development approaches19



mentioned in section 3 assumed that re�nement steps are supplied manually by the userand must be proved correct.Some re�nement steps are more or less routine. For example, there are certain stand-ard concrete ways of representing common abstract data types like stacks and queues,and there are standard ways of converting recursive algorithms to iterative ones. If there�nement process is taken to include the process by which ine�cient programs are trans-formed into e�cient programs, then the techniques used by optimizing compilers (constantpropagation, loop jamming, etc.) can be viewed as re�nement steps as well. Such re�ne-ment steps can typically be described schematically; for example, replacement of a simpleform of recursion by iteration is described as follows:Replace: f(x) = if e1(x) then e2(x) else f(e3(x))by: f(x) = beginvar a;a := x;while not e1(a) do a := e3(a);return e2(a)endAny re�nement obtained by instantiating this transformation rule will be correct. Ratherthan proving correctness separately for each instantiation, the rule itself can be provedcorrect (with respect to a given notion of re�nement) and then applied as desired withoutfurther proof. Sometimes such a rule will be correct only provided certain conditionsare met by the program fragments matching the schematic variables or by the context inwhich the rule is applied; in this case the proof obligation is reduced to checking that theseconditions are satis�ed.Research on program transformation aims at developing appropriate formalisms andnotations, building computer-based systems for handling the bookkeeping involved inapplying transformation rules, compiling libraries of useful transformation rules, anddeveloping strategies for conducting the transformation process automatically or semi-automatically. See [PS 83] for a survey of this work. Two program transformation ap-proaches are discussed in sections 4.1 and 4.2.The entire program development process as presented in section 1.2 can be capturedwithin the program transformation paradigm, given the following transformation rule:Replace: SPby: SP 0provided: SP ���> SP 0 is a correct re�nementThis transformation rule cannot be regarded as satisfactory because its schematic contentis completely trivial; the work involved in using this rule is just the same as that involvedin the direct use of the notion of re�nement as described in section 1.2. In practice,most transformation rules lie somewhere between the extremes represented by the twotransformation rules given above. Some invention on the part of the user is requiredbefore the schematic transformation can be applied and a proof that certain conditions20



hold is needed to ensure that the transformation is sound.Schematic rules have mostly been applied at the level of programs rather than spe-ci�cations, for transforming algorithms to increase e�ciency rather than for developingan algorithm from scratch. Spectacular speedups far in excess of those achievable by anoptimizing compiler are possible; an example in [PB 82] shows how a simple programrunning in exponential time can be transformed to one running in logarithmic time.Transformation rules provide a way of generating correct re�nement steps automatic-ally. But it is still necessary for the person developing the program to select an appropriaterule to apply and in many cases considerable ingenuity is required to supply appropriateexpressions and function de�nitions to substitute for the schematic variables in the rule.Program synthesis attempts to automate this process, thereby generating programs fromspeci�cations automatically. Two approaches to program synthesis are presented in sec-tions 4.3 and 4.4.4.1 Burstall, Darlington and FeatherThe �rst work on program transformation was done by Burstall and Darlington in Ed-inburgh in the mid-1970's. In [BD 77] they describe a set of seven simple rules whichcan be used to transform programs written in a HOPE-like [BMS 80] language. Theserules include fold (replace an expression e(a) by a function call f(a) where f is de�ned byf(x) = e(x)); unfold (dual to fold, expand a function call into the body of the function'sde�nition); de�nition of new functions; and rewriting of expressions using the algebraicproperties of primitive operations. Individual applications of these rules do not lead toimprovements in e�ciency, but certain sequences of rule applications can produce spee-dups. An example from [BD 77] is the following transformation of a simple program forgenerating Fibonacci numbers which runs in exponential time to a slightly more complic-ated linear-time program:1. f(0) = 1 original program2. f(1) = 1 original program3. f(x+ 2) = f(x+ 1) + f(x) original program4. g(x) = hf(x+ 1); f(x)i de�nition5. g(0) = hf(1); f(0)i instantiation of 4= h1; 1i unfold with 1 and 26. g(x+ 1) = hf(x+ 2); f(x+ 1)i instantiation of 4= hf(x+ 1) + f(x); f(x+ 1)i unfold with 3= hu+ v; ui where hu; vi = hf(x+ 1); f(x)i unfold with 3= hu+ v; ui where hu; vi = g(x) fold with 47. f(x+ 2) = u+ v where hu; vi = hf(x+ 1); f(x)i abstract 3= u+ v where hu; vi = g(x) fold with 4Successful transformation sequences typically involve one or more creative so-called eurekasteps in which a new function is invented or a critical rewriting is done. The eureka stepin the above example is step 4 where the new function g is de�ned which proves crucial in21



transforming f in step 7.Darlington and Burstall built a system which automatically transformed small pro-grams by applying these transformation rules. Feather [Fea 82] built a system whichallowed the user to supply a pattern indicating the overall form of the desired result. Thisallowed his system to handle much larger examples because of the resulting reduction inthe search space.Strictly speaking, the rules in [BD 77] do not preserve equivalence of programs undera call by value semantics; unfolding may lead to a program which terminates more oftenthan the original program whereas folding has the opposite (and much less desirable)e�ect. Scherlis [Sch 81] proposes an alternative set of primitive transformation rules whichdo preserve equivalence.4.2 CIP and PROSPECTRAThe CIP project and the CIP-L wide spectrum language have already been introduced insection 2.5.2.The intention of the CIP project was to support program development by transforma-tion all the way from the original high-level speci�cation to a �nal e�cient program. Thistypically includes the following stages of development [Par 86], [M�ol 87]:� Descriptive formal problem speci�cation;� Modi�ed (still descriptive) speci�cation;� Non-deterministic implicitly recursive solution;� Non-deterministic explicitly recursive solution;� Deterministic tail-recursive solution;� Further modi�ed applicative program;� E�cient imperative program.A library of transformation rules has been developed to support all the stages of thisprocess under the supervision of the system CIP-S [Bau 87]. For example, in transformingspeci�cations the embedding rule is often useful (I simplify a little and use a di�erentnotation in all rules in this section):Replace: function f(x: t) = e1 : t0by: function f(x: t) =function g(y: t00) = e2 : t000k(g(h(x))): t0provided: h: t! t00 ^ k: t000 ! t0 ^ 8y: t:k(g(h(y))) = f(y)Using this rule involves inventing h, k and e2 in such a way that the condition is satis�ed.22



Burstall/Darlington-style folding and unfolding rules (modi�ed to ensure that foldingdoes not introduce non-termination) are used to derive theorems about the speci�cationwhich can be read as recursion equations.The recursive form is improved by applying rules which convert recursion equationsto tail-recursive form, combine common sub-expressions, eliminate function composition,memo-ize functions, etc. For example, here is a rule which can be used to perform a generalform of strength reduction in which recomputation of an expression on each recursive callis replaced by computing its value incrementally from one call to the next:Replace: function f(x: t) =if e1 then e2 else f(e3)f(z)by: function g(x: t; y: t0) =if e1[y=e] then e2[y=e] else g(e3[y=e]; e[e3=x][y=e])g(z; e)provided: determinate(e) ^ de�ned(e) ^ newvar(y)(a[b=c] denotes the result of substituting b for every occurrence of c in a.) In applying thisrule, e should be chosen so that the result is simpler to compute than the original form.Finally, conversion from tail-recursive to imperative form is accomplished by transform-ation rules like the one at the beginning of section 4. For more general types of recursion(for example, mutual recursion) transformation rules are provided which yield programscontaining gotos [BW 82].These techniques are applicable mainly to developing the individual functions of a pro-gram. Another form of transformation is change of data structure via a form of re�nement[BMPW 86] similar to the algebraic approaches discussed in section 3.3.The ESPRIT project PROSPECTRA [Kri 87] is attempting to apply methods similarto those developed in the CIP project to the development of Ada programs by trans-formation from speci�cations written in the language Anna [LHKO 87]. Apart from theattempt to scale up the ideas to work in the context of Ada (which involves consideringconcurrency aspects, etc.), there is some work on an algebraic formalization of the trans-formation process itself so as to allow the transformation strategy itself to be developedby transformation [Kri 88].4.3 Manna and WaldingerThe DEDALUS system [MW 79] was developed to synthesize LISP programs automaticallyfrom speci�cations written in a simple LISP-like notation. A goal-directed deductiveapproach is used whereby the reduction of a goal (to synthesize a program satisfying agiven speci�cation) to one or more subgoals by means of a transformation rule results in thegeneration of a program fragment which computes the desired result once it is completedwith program fragments corresponding to the subgoal(s). So, for example, reducing a goalto two subgoals by means of a case analysis corresponds to the introduction of a conditionalexpression. 23



An idea corresponding to Burstall and Darlington's fold rule is used to introduce recurs-ive function calls. This is done if a goal is produced which matches the original top-levelgoal, provided termination can be guaranteed. Auxiliary recursive functions are formed ifa goal is encountered which matches some lower-level goal.The system incorporates an automatic theorem prover and includes a number of strategiesdesigned to direct it away from rule applications unlikely to lead to success. If a dead endis encountered then the system backtracks and tries another rule. This system has beenused to generate a few simple list-processing functions such as the intersection of two listsand functions like the greatest common divisor of two numbers.A later approach [MW 80] is based on a sequent-based system for theorem provingin �rst-order logic. In this system, a sequent consists of a number of assumptions andgoals in �rst-order logic and a LISP-like expression attached to each goal. The meaningof a sequent is that if all the assumptions are true then some instance of some goal istrue and is satis�ed by the corresponding instance of the attached expression. Logicalrules, resolution rules, transformation rules and rules like those in DEDALUS are usedto operate on sequents. [MW 81] shows how this approach could be used to derive auni�cation algorithm but the example was not done automatically.4.4 NuprlNuprl [Con 86] is an interactive system for proving theorems in a constructive logic basedon [Mar 82]. As a theorem-proving system it has many similarities with the LCF system[GMW 79], allowing the user to conduct proofs by constructing and applying goal-directedproof strategies (tactics) as programs in ML.A consequence of the use of a constructive logic means that proofs embody construc-tions. A construction can be automatically extracted from a proof to yield a program. Sofor example, given a proof in Nuprl for the theorem8x; y: int:9q; r: int:(y = (q � x+ r) ^ 0 � r < x)one can extract a program for �nding the quotient and remainder of two integers. Ingeneral, a conjecture (unproved theorem) of the form 8x:9y:R(x; y) may be viewed asa speci�cation of a program which, given a value for x, computes a value for y suchthat R(x; y) is true. Proving the theorem gives rise to a program which satis�es thisspeci�cation. A proof which appeals to a lemma which has not yet been proved can beseen as a veri�ed re�nement step.There are strong similarities with the work of Manna and Waldinger on program syn-thesis discussed above. The most important di�erences are that the logic underlying Nuprlis more expressive, including higher-order functions and dependent types, and that thereis no real attempt to automate the synthesis process since programs are obtained dir-ectly from proofs which are performed interactively. But because of the exible way thatproof strategies may be added to the Nuprl system, the possibility of developing an auto-matic theorem prover based on Nuprl (which is then able to perform program synthesisautomatically) is not excluded. Proof strategies for Nuprl based on the ones used in the24



Boyer/Moore theorem prover [BM 79] are being studied in an Alvey project at Edinburgh[Bun 88].AcknowledgementsI am grateful to Gavin Oddy, Aaron Sloman, Colin Tully and Lincoln Wallen forhelpful criticism of a draft of this paper. This paper was �nished during a visit to theC.S.I.C. Centre d'Estudis Avan�cats de Blanes funded by the Comit�e Conjunto Hispano-Norteamericano para le Cooperaci�on Cultural y Educativa. I would like to thank theComit�e for its �nancial support and the Centre and its sta� (particularly Josep Puyol) fortheir help with computing facilities.5 References[ Note: LNCS n = Springer Lecture Notes in Computer Science, Volume n ][ASM 79] Abrial, J.R., Schuman, S.A. and Meyer, B. Speci�cation Language Z. Mas-sachusetts Computer Associates Inc., Boston (1979).[AMRW 85] Astesiano, E., Mascari, G.F., Reggio, G. and Wirsing, M. On the paramet-erized speci�cation of concurrent systems. Proc. Joint Conf. on Theory and Practiceof Software Development, Berlin, Springer LNCS 185, pp. 342-358.[Bau 85] Bauer, F.L. et al (the CIP Language Group). The Wide-Spectrum LanguageCIP-L. Springer LNCS 183 (1985).[Bau 87] Bauer, F.L. et al (the CIP System Group). The Program Transformation Sys-tem CIP-S. Springer LNCS 292 (1987).[BW 82] Bauer, F.L. and W�ossner, H. Algorithmic Language and Program Development.Springer (1982).[BDMP 85] Bj�rner, D., Denvir, T., Meiling, E. and Pedersen, J.S. The RAISE pro-ject: fundamental issues and requirements. Report RAISE/DDC/EM/1/V6, DanskDatamatic Center (1985).[BJ 82] Bj�rner, D. and Jones, C.B. Formal Speci�cation and Software Development.Prentice-Hall (1982).[Bli 87] Blikle, A. MetaSoft Primer. Springer LNCS 288 (1987).[BCFG 86] Boug�e, L., Choquet, N., Fribourg, L. and Gaudel, M.-C. Test set genera-tion from algebraic speci�cations using logic programming. Journal of Systems andSoftware 6, 343-360 (1986).[BM 79] Boyer, R.S. and Moore, J.S. A Computational Logic. Academic Press (1979).25



[BMPW 86] Broy, M., M�oller, B., Pepper, P. and Wirsing, M. Algebraic implement-ations preserve program correctness. Science of Computer Programming 7, 35-53(1986).[Bun 88] Bundy, A. et al. Proving properties of logic programs: a progress report. Proc.1988 Alvey Conference, to appear (1988).[BD 77] Burstall, R.M. and Darlington, J. A transformation system for developing re-cursive programs. Journal of the ACM 24, 44-67 (1977).[BG 77] Burstall, R.M. and Goguen, J.A. Putting theories together to make speci�ca-tions. Proc. 5th Intl. Joint Conf. on Arti�cial Intelligence, 1045-1058 (1977).[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of CLEAR, a speci�cation lan-guage. Proc. 1979 Copenhagen Winter School on Abstract Software Speci�cation,Springer LNCS 86, 29-332 (1980).[BG 81] Burstall, R.M. and Goguen, J.A. An informal introduction to speci�cations usingCLEAR. The Correctness Problem in Computer Science (R.S. Boyer and J.S. Moore,eds.), pp. 185-213, Academic Press (1981).[BMS 80] Burstall, R.M., MacQueen, D.B. and Sannella, D.T. HOPE: an experimentalapplicative language. Proc. 1980 LISP Conference, Stanford, 136-143 (1980).[CM 81] Clocksin, W.F. and Mellish, C.S. Programming in Prolog. Springer (1981).[DDC 85] Christensen, D. et al The draft formal de�nition of ANSI/MIL-STD 1815AAda: dynamic semantics example Ada subset. Report Ada FD/DDC/02/v1.3,Dansk Datamatic Center (1985).[Con 86] Constable, R.L. et al (the PRL Group) Implementing Mathematics with theNuprl Proof Development System. Prentice-Hall (1986).[EKMP 82] Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implement-ation of abstract data types. Theoretical Computer Science 20, 209-263 (1982).[EM 85] Ehrig, H. and Mahr, B. Fundamentals of Algebraic Speci�cations 1, EATCSMonographs on Computer Science, Springer (1985).[Far 87] Farr�es, J. On the representation of Z in LF. Draft report, Univ. of Edinburgh(1987).[Fea 82] Feather, M. A system for assisting program transformation. ACM Trans. onProg. Languages and Systems 4, 1-20 (1982).[FGJM 85] Futatsugi, K., Goguen, J.A., Jouannaud, J.-P. and Meseguer, J. Principlesof OBJ2. Proc. 12th ACM Symp. on Principles of Programming Languages, NewOrleans, pp. 52-66 (1985). 26



[Gau 83] Proposition pour un langage d'utilisation de sp�eci�cations structur�ees: PLUSS.C.G.E. Research Report (1983).[Gan 83] Ganzinger, H. Parameterized speci�cations: parameter passing and implement-ation with respect to observability. ACM Trans. on Prog. Languages and Systems 5,318-354 (1983).[GMc 86] Gehani, N. and McGettrick, A.D. (eds.) Software Speci�cation Techniques,Addison-Wesley (1986).[GGM 76] Giarratana, V., Gimona, F. and Montanari, U. Observability concepts inabstract data type speci�cation. Proc. 5th Intl. Symp. on Mathematical Foundationsof Computer Science, Gdansk. Springer LNCS 45, pp. 576-587 (1976).[GB 80a] Goguen, J.A. and Burstall, R.M. CAT, a system for the structured elaborationof correct programs from structured speci�cations. Technical report, SRI Interna-tional (1980).[GB 80b] Goguen, J.A. and Burstall, R.M. An ORDINARY design. Draft report, SRIInternational (1980).[GB 84] Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of Pro-gramming Workshop, Carnegie-Mellon. Springer LNCS 164, pp. 221-256 (1984).[GM 86] Goguen, J.A. and Meseguer, J. Eqlog: equality, types and generic modules forlogic programming. Functional and Logic Programming (D. DeGroot and G. Lind-strom, eds.), Prentice-Hall (1986).[GTW 78] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra approachto the speci�cation, correctness and implementation of abstract data types, CurrentTrends in Programming Methodology, Vol. IV (R.T. Yeh, ed.), pp. 80-149, Prentice-Hall (1978).[GMW 79] Gordon, M.J., Milner, A.J.R. and Wadsworth, C.P. Edinburgh LCF. SpringerLNCS 78 (1979).[Gut 75] Guttag, J.V. The speci�cation and application to programming of abstract datatypes. Ph.D. thesis, Univ. of Toronto (1975).[GH 83] Guttag, J.V. and Horning, J.J. Preliminary report on the Larch Shared Lan-guage. Report CSL-83-6, Xerox PARC (1983).[GHW 82] Guttag, J.V., Horning, J.J. and Wing, J.M. Some notes on putting formalspeci�cations to productive use. Science of Computer Programming 2, 53-68 (1982).[Har 86] Harper, R. Introduction to Standard ML. Report ECS-LFCS-86-14, Universityof Edinburgh (1986). 27



[HMM 86] Harper, R., MacQueen, D. and Milner, R. Standard ML. Report ECS-LFCS-86-2, University of Edinburgh (1986).[Hay 87] Hayes, I.J. (ed.) Speci�cation Case Studies. Prentice-Hall (1987).[Hoa 72] Hoare, C.A.R. Proofs of correctness of data representations. Acta Informatica 1,271-281 (1972).[Jon 80] Jones, C.B. Software Development: a Rigorous Approach. Prentice-Hall (1980).[Jon 86] Jones, C.B. Systematic program development. In [GMc 86], pp. 89-109.[Kam 83] Kamin, S. Final data types and their speci�cation. ACM Trans. on Prog.Languages and Systems 5, 97-123 (1983).[Kri 88] Krieg-Br�uckner, B. Algebraic formalisation of program development by trans-formation. Proc. European Symp. on Programming, Nancy, France. Springer LNCS(1988).[Kri 87] Krieg-Br�uckner, B. et al (the PROSPECTRA project) Program developmentby speci�cation and transformation. Proc. ESPRIT Conf. '86, pp. 301-312. North-Holland (1987).[Les 83] Lescanne, P. Computer experiments with the REVE term rewriting systemsgenerator. Proc. 10th ACM Symp. on Principles of Programming Languages, (1983).[LHKO 87] Luckham, D.C., von Henke, F.W., Krieg-Br�uckner, B. and Owe, O. Anna,a Language for Annotating Ada Programs: Reference Manual. Springer LNCS 260(1987).[MW 79] Manna, Z. and Waldinger, R. Synthesis: dreams ! programs. IEEE Trans.on Software Engineering SE-5, 294-328 (1979).[MW 80] Manna, Z. and Waldinger, R. A deductive approach to program synthesis.ACM Trans. on Prog. Languages and Systems 2, 90-121 (1980).[MW 81] Manna, Z. and Waldinger, R. Deductive synthesis of the uni�cation algorithm.Science of Computer Programming 1, 5-48 (1981).[Mar 82] Martin-L�of, P. Constructive mathematics and computer programming. Proc.6th Intl. Congress for Logic, Methodology, and Philosophy of Science, pp. 153-175.North-Holland (1982).[Mil 78] Milner, R.M. A theory of type polymorphism in programming. J. of Computerand System Sciences 17, 348-375 (1978).[M�ol 87] M�oller, B. A survey of the CIP methodology. Research report, TechnischeUniversit�at M�unchen (1987). 28



[NY 83] Nakajima, R. and Yuasa, T. (eds.) The IOTA Programming System. SpringerLNCS 160 (1983).[Par 86] Partsch, H. Transformational program development in a particular problem do-main. Science of Computer Programming 7, 99-241 (1986).[PS 83] Partsch, H. and Steinbr�uggen, R. Program transformation systems. ComputingSurveys 15, 199-236 (1983).[PB 82] Pettorossi, A. and Burstall, R.M. Deriving very e�cient algorithms for evalu-ating linear recurrence relations using the program transformation technique. ActaInformatica 18, 181-206 (1982).[Rei 81] Reichel, H. Behavioural equivalence { a unifying concept for initial and �nal spe-ci�cation methods. Proc. 3rd Hungarian Computer Science Conference, Budapest,pp. 27-39 (1981).[San 84] Sannella, D.T. A set-theoretic semantics for CLEAR. Acta Informatica 21, 443-472 (1984).[ST 85] Sannella, D.T. and Tarlecki, A. Program speci�cation and development in Stand-ard ML. Proc. 12th ACM Symp. on Principles of Programming Languages, NewOrleans, pp. 67-77 (1985).[ST 86] Sannella, D.T. and Tarlecki, A. Extended ML: an institution-independent frame-work for formal program development. Proc. Workshop on Category Theory andComputer Programming, Guildford, Springer LNCS 240, pp. 364-389.[ST 87] Sannella, D.T. and Tarlecki, A. On observational equivalence and algebraic spe-ci�cation. J. of Computer and System Sciences 34, pp. 150-178 (1987).[ST 88a] Sannella, D.T. and Tarlecki, A. Speci�cations in an arbitrary institution. In-formation and Computation 76, pp. 165-210 (1988).[ST 88b] Sannella, D.T. and Tarlecki, A. Toward formal development of programs fromalgebraic speci�cations: implementations revisited. Acta Informatica 25, pp. 233-281(1988).[SWa 87] Sannella, D.T. and Wallen, L.A. A calculus for the construction of modularProlog programs. Proc. 1987 IEEE Symp. on Logic Programming, San Francisco,pp. 368-378 (1987).[SWi 83] Sannella, D.T. and Wirsing, M. A kernel language for algebraic speci�cationand implementation. Proc. Intl. Conf. on Foundations of Computation Theory, Borg-holm, Sweden. Springer LNCS 158, pp. 413-427 (1983).[Sch 86] Schoett, O. Data abstraction and the correctness of modular programming.Ph.D. thesis, University of Edinburgh (1986).29



[SS 83] Scherlis, W.L. and Scott, D.S. First steps towards inferential programming. In-formation Processing '83, pp. 199-212. North-Holland (1983).[Spi 85] Spivey, J.M. Understanding Z: a speci�cation language and its formal semantics.D.Phil. thesis, Oxford University (1985); Cambridge University Press (1987).[Spi 87] Spivey, J.M. An introduction to Z and formal speci�cations. Research report,Oxford University (1987).[Suf 82] Sufrin, B. Formal speci�cation of a display-oriented text editor. Science of Com-puter Programming 1, 157-202 (1982).[Wik 87] Wikstr�om, �A. Functional Programming Using Standard ML. Prentice-Hall (1987).[Wirth 71] Wirth, N. Program development by stepwise re�nement. Comm. of theACM 14, 221-227 (1971).[Wir 86] Wirsing, M. Structured algebraic speci�cations: a kernel language. TheoreticalComputer Science 42, 124-249 (1986).[Zil 74] Zilles, S.N. Algebraic speci�cation of data types. Computation Structures Groupmemo 119, Laboratory or Computer Science, MIT (1974).

30


