
What does the future hold for theoretical computer
science?

Donald Sannella∗

Laboratory for Foundations of Computer Science
Edinburgh University

Abstract Prospects for research in theoretical computer science are discussed. The
maintenance of a genuine link between theory and practice is seen as key to the future
health of both.

1 Introduction

Worries about the future of research in theoretical computer science are common-
place nowadays. Funding agencies seem less inclined than hitherto to fund theoretical
work; attendance at theoretical conferences is down; jobs for theorists are scarce; and
practitioners seem to take little notice of the results of theoretical research. See e.g.
[AJK+96] for a US-oriented analysis of the situation. TAPSOFT was founded at or
near the height of enthusiasm for formal methods in software development [EM95].
It is now generally accepted that many of the claims made in those days were overly
optimistic, although great strides have been made and formal methods work is having
a significant and increasing impact on practice.

In marked contrast to this air of gloom and doom is the continuing and accelerating
boom in computing practice. Computer science and information technology are of
ever-increasing importance to society. Advances in computing are seen as key to
future developments in all areas, including virtually all sectors of industry, see e.g.
[DTI96]. Very many problems require solution; some of these problems are “merely”
technological ones while others are conceptual ones that may well yield to the insights
offered by theoretical work.

If theoretical computer science is truly relevant to computing, then there is reason
to believe that difficulties with funding etc. are a temporary phenomenon and that the
value of this work is evident in the longer term. Of course, this does not mean that
there is no need to justify why the work needs to be done, but at least the struggle is
winnable and is worth winning. If on the other hand it is not truly relevant then it
needs to be justified on different grounds.

I would like to make three main points. First, I believe that the link between
theory and practice is important for the health of both. When there is no genuine
link it is dishonest and ultimately counter-productive to pretend that there is one.
Second, I suggest that relevance is not the same as direct applicability: the way in
∗dts@dcs.ed.ac.uk; supported by an EPSRC Advanced Fellowship.



which a deep understanding of some computing phenomenon translates to practice
is more subtle than that. Third, I draw an analogy between natural science and
computer science and conclude that benefits for both theory and practice could be
derived from experiments in the application of theory to the design and analysis of
non-trivial systems.

Here at TAPSOFT we are concerned with a particular aspect of computing, namely
software science. TAPSOFT will be succeeded in 1998 and subsequent years by
ETAPS, the European Joint Conferences on Theory and Practice of Software. One
goal of ETAPS is to strengthen the link between theory and practice in software
science while giving space to both.

2 Theory and practice

I have argued above that the relevance of theory to computing practice is a key issue.
This is not to say that relevance is the only or even the main yardstick to measure
the value of a piece of theoretical work. Neither do I mean that theory that is not
so relevant has no value. My point is merely that theory that is clearly about the
practice of computing derives its value partly by reference to the importance of that
practice, and this gives such work a certain moral claim for support.

Theory that is not about the practice of computing needs to be motivated without
reference to that practice. This point may seem obvious, but researchers writing grant
proposals sometimes lose sight of it! False claims of relevance are dangerous and give
all of theoretical computer science a bad name. That said, please note that the word
“relevant” means different things to different people, and I argue in the next section
for a rather generous interpretation.

I will not waste space arguing to this audience that research on theory that is
relevant to computing practice is often of benefit to that practice. The benefit is not
always as immediate as practitioners seem to expect it to be, but there are plenty of
examples that demonstrate a genuine payoff.

In conducting theoretical research, it is necessary to keep an eye on what the
theory claims to be a theory of. This will typically be some sub-domain of computing
practice which will tend to move with the times in a way that is relatively independent
of work on its theoretical underpinnings. If theory advances entirely without regard
for the practice that it is attempting to underpin, there is always a danger that it
may become a theory of nothing. This may happen for at least two reasons:

1. Theory develops its own agenda. The most interesting theoretical problems
may turn out to arise only in a special case of a development that itself has only
minor importance in practice rather than being central to the practical problem
that prompted the original investigation.

2. Theory tends to lag behind advances in practice. The problems that are attacked
are the problems that were of importance at some point in the past. These
problems may or may not be of current importance.

When a theory degenerates to the point where it is a theory of nothing, it is
ultimately doomed in spite of the fact that it may take a long time to wither away.
Examples from history (e.g. angelology, the study of different categories of angels,



including the calculation of how many angels can dance on the head of a pin, taking
wingspan and other factors into account) invite ridicule: how could anybody have
wasted time doing that! But no doubt at the time scholars who had devoted their
careers to such subjects viewed them with the same seriousness as people who work
on X nowadays. (I would not dare to say what X is!)

The academic reward structure tends to reinforce the inertia that is inherent in the
system while giving little credit to developments that are genuinely useful. Difficult
results are admired, particularly when the problem has withstood attack for some
considerable time, while applicable theory does not receive much attention. “Seminal”
work which opens up a new avenue of investigation is greatly respected while the
opposite (is there even a word for it?) which closes off an avenue, “harvests” the
results, and consolidates what remains, is rare. Work that shows how a theoretical
result can be applied to give some practical benefit is not highly regarded.

Such things do not change by decree. Theoretical computer science is surely
not the first subject in which this problem has arisen so perhaps a dramatic change
is unnecessary. Nonetheless, the problem deserves notice and for the health of the
subject it is necessary to ensure that work that is “only” useful continues to be done.

3 Relevance and applicability

Sometimes the link between theory and practice is quite direct: for example, some
parts of formal language theory are directly relevant to the construction of parsers
for programming languages. But this is not always the case, and to expect otherwise
seems naive. Colleagues have complained that this over-simplified model is the one
that is adopted by certain funding agencies, where (perhaps this is a caricature) work
on the theory of multimedia is promoted but work on models of type theory is not.

In Edinburgh we have recently been thinking in terms of a four-level model known
locally as the “Fourman hierarchy”. The four levels are:

1. Products and services, e.g. an air traffic control system.

2. Generic issues, e.g. security.

3. Research themes, e.g. concurrent systems.

4. Research achievements, e.g. a proof that P = NP .

Computing practice is on level 1, and our day-to-day research work is on level 4. There
is a many-to-many relation between each level and the next. For example: research on
concurrent systems has a bearing on a number of generic issues, for example security
and performance; and security requires input from research on concurrent systems and
programming languages and from other areas as well. This relation is not fixed: in
particular, new links can arise in unpredictable ways as a result of new developments
at each level. The specific items that appear on each level also change with time,
with old items disappearing (perhaps because a problem has been solved once and
for all) and new items appearing (perhaps because changes in technology have led to
new possibilities that in turn raise new problems).

This model only tells part of the story. For example, it does not really reflect
the difference between research that aims to understand fundamental concepts and
research that aims to solve problems or provide methods, or more generally the way



that research in certain areas underpins research in other areas. But it might help
in understanding and justifying the way that theory can have an indirect bearing
on practice, and suggest ways in which the link (if there is one) can be made more
explicit.

The fact that a piece of research is not relevant to current practice does not mean
that it will not be relevant to future practice. Still, to make a convincing case for
relevance to future practice it is worth speculating about future issues that might be
addressed by the research, and about the future products and services that solutions
to these issues might someday enable. Such things are hard and sometimes impossible
to predict reliably, but this does not mean that it is pointless to try.

4 The importance of experiment

We are all familiar with the scientific method as used in physics and other natural
sciences. One develops a theory that explains some aspect of reality, and then conducts
experiments in order to provide evidence that the theory is right or demonstrate that
it is wrong. If an experiment shows that a theory is wrong then often it is possible
to modify the theory to make it fit the experimental evidence rather than simply
discarding it. In this case the outcome of the experiment which revealed the problem
might supply hints for ways of modifying the theory.

The experimental method can be applied to theories in computer science too. (A
difference is that the “reality” that is being studied is often man-made, so when an
experiment shows that something is wrong it is sometimes possible to change reality to
fit the theory!) In particular, when the theory is about design or analysis of systems,
as is much of the theory that is seen at TAPSOFT, conducting an experiment involves
attempting to build or analyze some non-trivial system using the ideas in the theory.
Such an experiment might supply evidence that the theory “fits” practice and/or that
it makes correct and interesting predictions about the behaviour of systems. Or it
might bring to light some deficiency in the theory, for instance that the simplifying
assumptions made are so strong that the theory cannot be applied to any system of
interest or that the methods provided are so cumbersome that they cannot be used.
What exactly goes wrong provides strong hints about ways in which the theory can
be revised to make the next experiment more successful.

In traditional sciences, a theory that has not been subjected to experiment is re-
garded with considerable skepticism. Although the people who do the experiments
are often different from the people who invent the theories, neither activity makes
much sense without the other. Vast sums of money are invested in experimental ap-
paratus (CERN is just one example) and scientists win Nobel prizes both for inventing
theories and for performing experiments.

In contrast, most theory in computer science is never subjected to experiment.
Why should unvalidated theories be taken more seriously in computer science —
as they clearly are — than in physics? The only reason I can see is that we have
somewhat more intuition about the man-made systems that our theories are about
than we do about the behaviour of sub-atomic particles or black holes. Nevertheless,
it seems clear that a theory that has been validated is worth much more than a theory
that has nothing but intuition in its favour. Moreover, the feedback that is obtained
from experimental application of a theory can be a tremendously valuable stimulus



to further theoretical development. By trying out a theory, it becomes clear whether
or not the concepts being studied are the important ones as well as whether or not
what the theory says about these is valid.

These ideas are explained more eloquently and at greater length by Robin Milner
in [Mil86]. They constitute an important part of the basis upon which the Laboratory
for Foundations of Computer Science (LFCS), which Milner inaugurated and which I
currently direct, was founded.

5 TAPSOFT and ETAPS

Discussions aiming at a consolidation of the European conference situation in the area
of software science took place in public and private around the time of TAPSOFT’95.
On the basis of a broad consensus, it was decided to establish a single annual federated
spring conference in the slot currently occupied by TAPSOFT and CAAP/ESOP/CC,
comprising a number of existing and new conferences and covering a spectrum from
theory to practice. The first instance of the European Joint Conferences on The-
ory and Practice of Software (ETAPS) will take place next year in Lisbon and will
comprise five conferences: FoSSaCS, FASE, ESOP, CC and TACAS.

ETAPS is a natural development from TAPSOFT. One difference is a change of
focus on the theory end of the spectrum, with FoSSaCS replacing CAAP. Another
difference is that events covering a broader spread of practice are included. Finally,
its format is open-ended, allowing it to grow and evolve as time goes by. I hope that
ETAPS will provide a forum within which new links between work on theory and
practice of software science can be forged and existing links can be strengthened.

Acknowledgements I am grateful to: Robin Milner for the ideas in Section 4;
Samson Abramsky, Alan Bundy, Mike Fourman and others for their contributions to
discussions from which some of the ideas in Sections 2 and 3 are derived; and, all
those involved in the genesis of ETAPS.

References

[AJK+96] A. Aho, D. Johnson, R. Karp, S.R. Kosaraju, C. McGeoch, C.
Papadimitriou and P. Pevzner. Emerging opportunities for theor-
etical computer science. ftp://ftp.cs.washington.edu/tr/1996/03/
UW-CSE-96-03-03.PS.Z (1996).

[DTI96] Department of Trade and Industry. Software for IT and telecoms.
Technology Foresight summary, Office of Science and Technology.
http://www.open.gov.uk/ost/foresigh/wn2.htm (1996).

[EM95] H. Ehrig and B. Mahr. A decade of TAPSOFT: aspects of progress and pro-
spects in theory and practice of software development. Proc. TAPSOFT’95,
Aarhus. Springer LNCS 915, 3–24 (1995).

[Mil86] R. Milner. Is computing an experimental science? LFCS report ECS-
LFCS-86-1 (1986). Reprinted in Journal of Information Technology 2:58–
66 (1987).


