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Abstract. Recent work in resource analysis has translated the idea of
amortised resource analysis to imperative languages using a program
logic that allows mixing of assertions about heap shapes, in the tradition
of separation logic, and assertions about consumable resources. Sepa-
rately, polyhedral methods have been used to calculate bounds on num-
bers of iterations in loop-based programs. We are attempting to combine
these ideas to deal with Java programs involving both data structures
and loops, focusing on the bytecode level rather than on source code.

1 Introduction

The ability to move code and other active content smoothly between execution
sites is a key element of modern computing platforms. However, it presents
huge security challenges, aggravating existing security problems and presenting
altogether new ones. One challenging security issue in this context is control of
resources (space, time, etc.), particularly on small devices, where computational
power and memory are very limited.

A promising approach to security is proof-carrying code [31], whereby mo-
bile code is equipped with an independently verifiable certificate consisting of a
condensed proof of its security properties. A major advantage of this approach
is that it sidesteps the difficult issue of trust: there is no need to trust either
the code producer, or a centralized certification authority. Work on the PCC
approach to resource security includes [35] and [7].

This approach requires infrastructure on the side of the code producer as
well as the code consumer. The code producer needs to produce not just down-
loadable code, as before, but also a proof of its security properties. The code
consumer needs a way of checking such proofs. Arbitrarily complex methods
may be used by the code producer to construct proofs, while their verification
by the code consumer is a straightforward check of validity. The burden for the
code producer is considerably eased by the use of a certifying compiler which em-
ploys static analysis of the source code alongside standard compilation to supply
the information required to produce these proofs automatically. The information
provided by the analysis — in the case of resource analysis, concerning upper
bounds on usage of space, time, etc. — is potentially of great interest to the
code producer as an aid to the development of high-quality code, prior to and
independent of its use for producing security certificates.



Recent developments in static analysis methods now makes it feasible to
consider an alternative but related approach to security. Instead of requiring the
code producer to supply a proof, whether via static analysis of source code or
by other means, one can perform an analogous analysis directly on the down-
loadable bytecode to determine its properties. This could be done by the code
consumer on receipt of downloadable code, dispensing with the need for a proof.
Alternatively, the code producer could perform the analysis and use the result
to produce a proof certificate. An interesting third alternative is that an in-
termediary, for example a software distributor, could perform such an analysis
on uncertified bytecode, transforming it to proof-carrying code. The fact that
the original source code is not required is essential to making this feasible in
commercial practice.

Here we consider two quite different approaches to the analysis of resource
consumption of Java bytecode. The first, in §2, translates the idea of amortised
resource analysis to imperative languages to enable automated resource analysis
of programs that iterate through data structures. The second, in §3, uses poly-
hedral methods to calculate resource bounds of iterative procedures controlled
by numerical quantities. In §4 we briefly describe some ideas for future work
and plans for integrating the two kinds of analysis to deal with Java programs
involving both data structures and loops.

2 Amortised Resource Analysis

Amortised resource analysis is a technique for specifying and verifying resource
bounds of programs by exploiting the tight link between the structure of the
data that programs manipulate and the resources they consume. For instance,
a program that iterates through a list doing something for every element can
either be thought of as requiring n resources, where n is the length of list, or
as requiring 1 resource for every element of the list, where we never know the
global length property of the list. Taking the latter view can simplify both the
specification and the verification of programs’ resource usage.

This work conceptually builds on the work of Tarjan and Sleator on amor-
tised complexity analysis [36], where “credits” and “debits” may be virtually
stored within data structures and used to pay for expensive operations. By stor-
ing up credit for future operations in a data structure, we amortise the cost
of operations on the data structure over time. Hofmann and Jost [21] applied
this technique to first-order functional programs to yield an automated resource
analysis. Atkey [3] has recently adapted this work to integrate with Separation
Logic [22, 34] to extend the automated technique to pointer-manipulating imper-
ative programs. In this section we give an overview of Atkey’s work and describe
some examples.

2.1 Integrating the Banker’s Method and Separation Logic

Separation Logic is built upon a notion of resources and their separation. The
assertion A ∗ B holds for a resource if it can be split into two resources that



make A true and B true respectively. Resource separation enables local reasoning
about mutation of resources; if the program mutates the resource associated with
A, then we know that B is still true on its separate resource.

For the purposes of complexity analysis, we want to consider resource con-
sumption as well as resource mutation, e.g. the consumption of time as a program
executes. To see how Separation Logic-style reasoning about resources helps in
this case, consider the standard inductively defined list predicate from Separa-
tion Logic, augmented with an additional proposition R denoting the presence
of a consumable resource for every element of the list:

listR(x) ≡ x = null ∧ emp

∨∃y, z. [x data7→ y] ∗ [x next7→ z] ∗R ∗ listR(z)

See Atkey [3] for a complete description of the assertion logic. We can represent
a heap H and a consumable resource r that satisfy this predicate graphically:
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So we have r, H |= listR(x), assuming x points to the head of the list. Here
r = R · R · R · R—we assume that consumable resources form a commutative
monoid—and r represents the resource that is available for the program to use
in the future. We can split H and r to separate out the head of the list with its
associated resource:
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This heap and resource satisfy r1 · r2,H1]H2 |= [x data7→ a]∗ [x next7→ y]∗R∗ listR(y),
where H1]H2 = H, r1·r2 = r and we assume that y points to the b element. Now
that we have separated out the head of the list and its associated consumable
resource, we are free to mutate the heap H1 and consume the resource r1 without
affecting the tail of the list, so the program can move to a state:
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where the head of the list has been mutated to A and the associated resource
has been consumed; we do not need to do anything special to reason that the
tail of the list and its associated consumable resource are unaffected.



The combined assertion about heap and consumable resource describes the
current shape and contents of the heap and also the available resource that
the program may consume in the future. By ensuring that, for every state in
the program’s execution, the resource consumed plus the resource available for
consumption in the future is less than or equal to a predefined bound, we can
ensure that the entire execution is resource bounded.

Intermixing resource assertions with Separation Logic assertions about the
shapes of data structures, as we have done with the resource-carrying listR pred-
icate above, allow us to specify amounts of resource that depend on the shape of
data structures in memory. By the definition of listR, we know that the amount of
resource available to the program is proportional to the length of the list, with-
out having to do any arithmetic reasoning about lengths of lists. The association
of resources with parts of a data structure is exactly the banker’s approach to
amortised complexity analysis proposed by Tarjan [36].

In the exposition above we have used a list predicate listR(x) that describes a
list on the heap with a fixed number of resources per element. Using this predicate
only allows the specification of resource usage that is linear in the lengths of lists.
Recent work by Hoffmann and Hofmann [20] on amortised resource analysis for
polynomial bounds lifts this restriction. Preliminary experiments with combining
the two techniques have been promising.

2.2 Implementation

The combination of Separation Logic and amortised resource analysis has been
implemented in two stages. We have formalised and mechanically checked a
proof of soundness for the combined program logic for a simplified subset of
Java bytecode in Coq with a shallowly embedded assertion logic. On top of
this we have implemented a Coq-verified verification condition generator for a
deeply embedded assertion logic and extracted this to OCaml. In OCaml we
have implemented a proof search procedure that solves verification conditions
using a similar technique to other automated verification tools for Separation
Logic [11]. See Atkey [3] for more details. In our proof search implementation,
we can leave resource annotations, e.g. the resource associated with each element
of a list, as variables to be filled in by a linear program solver. Our tool requires
annotation of programs with loop invariants, but can infer the resource portion.
This process is demonstrated in the next section.

2.3 A More Complex Example

The example shown in the previous section, where a program iterates through
a list consuming resources as it proceeds, only demonstrates an extremely sim-
ple, albeit common, pattern. We now describe a more complex list manipulat-
ing program that shows the benefits of the amortised approach. This example
demonstrates the combination of reasonably complex pointer manipulation with
resource reasoning. Most of the technical details arise from dealing with the



heap-shape behaviour of the program; the resource bounds simply drop out of
shape constraints thanks to the inference of resource annotations.

Consider the Java method declaration shown in Figure 13 that describes the
inner loop of an in-place merge sort algorithm for linked lists. The method takes
two arguments: list, a reference to the head node of a linked list; and k, an
integer. The integer argument dictates the sizes of the sublists that the method
will be merging in this pass. In short, the method steps through the list 2*k
elements at a time, merging the two length k sublists each time. The outer loop
does the 2*k stepping, and the inner loop does the merging. To accomplish a full
merge sort, this method would be called log2(n) times with doubling k, where n
is the length of the list.

Assume that we wish to account for the number of swapping operations per-
formed by this method, i.e. the number of times that the third branch of the if
statement in the inner loop is executed. We accomplish this in our implementa-
tion by inserting a special consume instruction at this point.

The pre- and post-conditions of the method are as follows:

Pre(mergeInner) : list 6= null ∧ (lseg(x, list, null) ∗Ry)
Post(mergeInner) : lseg(0, retval, null)

The precondition states that the first argument points to a list segment ending
with null, with x amount of resource associated with every element of the list,
and y amount of additional resource that may be used. The values of x and y will
be inferred by a linear program solver. The condition list 6= null is a safety
condition required for the method to not throw a null pointer exception.

The outer loop in the method needs a disjunctive invariant corresponding to
whether this is the first iteration or a later iteration.

(lseg(o1, list, tail) ∗ [tail next7→ ?] ∗ [tail data7→ ?] ∗ lseg(o2, p, null) ∗Ro3)
∨ ((list = null ∧ tail = null) ∗ lseg(o4, p, null) ∗Ro5)

The first disjunct is used on normal iterations of loop: the variable list points to
the list that has been processed so far, ending at tail; p points to the remainder
of the list that is to be processed. We have annotated these lists with the resource
variables o1 and o2 that will contain the resources associated with each element
of these lists. The second disjunct covers the case of the first iteration, when
list and tail are null and p points to the complete list to be processed.

Moving on, we consider the first inner loop that advances the pointer q by k
elements forward, thus splitting the list ahead of p into a k-element segment and
the rest of the list. The next loop will merge the first k-length segment with the
k-length prefix of the second segment. It is convenient for our implementation
to split out this inner loop into another method4, with the following signature:
3 Adapted from the C code at
http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html.

4 This is because our implementation works on unstructured bytecode, and so cannot
easily apply Separation Logic’s frame rule to modularise the reasoning about the
loop. Using a separate method allows application of the frame rule.



public static Node mergeInner (Node list, int k) {

Node p = list;

Node tail = null;

list = null;

while (p != null) {

Node q = p;

for (int i = 0; i < k; i++) {

q = q.next;

if (q == null) break;

}

Node pstop = q;

int qsize = k;

while (p != pstop || (qsize > 0 && q != null)) {

Node e;

if (p == pstop) {

e = q;

q = q.next;

qsize--;

} else if (qsize == 0 || q == null) {

e = p;

p = p.next;

} else if (p.data <= q.data) {

e = p;

p = p.next;

} else {

e = q;

q = q.next;

qsize--;

}

if (tail != null)

tail.next = e;

else

list = e;

tail = e;

}

p = q;

}

tail.next = null;

return list;

}

Fig. 1. Inner loop of an in-place linked-list merge sort



public static Node advance (Node l, int k)

The argument l points to a linked list, and the method will advance k elements
through the list (or until the end) and return a pointer to the split point. The
pre- and post-condition of this method are:

Pre(advance) : lseg(a0, l, null)
Post(advance) : lseg(a0, l, retval) ∗ lseg(a0, retval, null)

Again, we have left the resource annotation on the elements of the list as a
variable a0, to be filled in by the linear solver. The appearance of the same
variable in the pre- and post-condition implies that we expect this resource to
be preserved by the method.

Proceeding though our main method, the invariant of the inner loop is as
follows, again in two pieces according to whether it is the first or second iteration
of the outer loop:

(lseg(i1, list, tail) ∗ [tail next7→ ?] ∗ [tail data7→ ?]
∗ lseg(i2, p, pstop) ∗ lseg(i3, q, null) ∗Ri4)

∨ ((list = null ∧ tail = null) ∗ lseg(i5, p, pstop) ∗ lseg(i6, q, null) ∗Ri7)

The first part of each disjunct is as before, stating that list to tail contains
the part of list that has been processed. Since we have now split the remainder
of the list into two pieces we have two separate list segments referenced by p and
q pointing to the parts of the list that are to be merged.

Running this example through our implementation produces the solution
x = 1, y = 0 for the precondition resource annotations. This indicates that each
element of the list needs to contain one resource for every element. For the outer
loop’s invariant, we obtain o2 = o4 = 1 and all the others are 0. This indicates
that the list we have processed has had all its resources consumed, while the
list remaining to be processed still has associated resources. This is as expected
for a loop iterating through a list. The specification of advance is completed by
inferring a0 = 1, indicating that advance preserves the resources associated with
the list. Finally the inner loop’s invariant has i2 = i3 = i5 = i6 = 1 and all others
0, indicating that the two list segments that are remaining to be processed have
associated resources, while the processed segments do not.

Comparisons to other techniques. While we have had to work to supply
the loop invariants for our implementation, we note that these invariants may be
inferred by other tools, for example [11], and the resource variables automatically
inserted on the list segment parts. The key to the amortised approach is the
tight connection between shape invariants, which is a complex but well-studied
problem, and resource usage.

Most other techniques for resource usage analysis that handle data structures
do so by considering the sizes of structures. The SPEED system of Gulwani et
al [19] can infer resource bounds for programs manipulating heap-based data



structures, but only via abstract interfaces. The specifications for these abstract
interfaces record the effect of the operations on the size of the data structure.
Thus, the technique is unable to cope with the kind of program that we have
presented above that uses direct pointer manipulation. Nevertheless, Gulwani et
al report impressive results on real-world Microsoft product code.

The COSTA system [2] can deal with some uses of direct pointer manipula-
tion, but accounts for the sizes of heap-based data structures by counting the
length of the longest path from a given reference. Thus, it cannot deal with pro-
grams that demonstrate sharing on the heap; the Java method described above
has three pointers all pointing the same list in the inner loop.

One might also consider the use of Separation Logic to deal with sharing on
the heap, augmented with information on the sizes of heap-base data structures
to account for resource usage. So one would have a predicate lsegn(x, y) that
describes a list segment of length n from x to y, plus a “ghost variable” that
accounts for the consumed resources. We argue that the amortised approach
described here is simpler due to the differences in reasoning between the global
property of the length of a whole list, and the local property of each list element
having an associated amount of resource to be used. For example, consider the
specification of the advance method using sized structures:

Pre(advance) : lsegn(l, null)
Post(advance) : ∃n1, n2. n1 + n2 = n ∧ (lsegn1(l, retval) ∗ lsegn2(retval, null))

We have had to introduce two existential variables indicating the sizes of the
lists returned by the method. These additional values have to then be related
back to the length of the original list by the calling method, and thence to
the resource consumption, requiring non-straightforward arithmetic reasoning.
The amortised approach exploits the shape-reasoning already present in Sepa-
ration Logic to account for resources. For further elaboration of this point, and
a demonstration of the use of amortised specification to improve information
hiding in specifications, see the functional queues example in [3].

3 Iteration and geometry

The previous section has described a technique which can be used to analyse
the resource usage of procedures which manipulate heap-based data structures.
Here we will describe a mathematical technique which can be used to study
iterative procedures controlled by numerical quantities. One of our main interests
is in producing certifying analyses, and our description of the mathematics will
highlight aspects which are relevant to this problem.

We will look at some examples of Java methods which use iteration. For
simplicity, we will look at the problem of deciding how often the println method
is called, but we could equally be looking at object allocation or the transmission
of SMS messages.

Here is an example with nested loops:



public static void m1() {
for (int i=1; i<=9; i++)

for (int j=1; j<=i && j<=7; j++)
System.out.println ("Hello");

}

For a more complicated example, consider this Java method where both loops
are controlled by method arguments:

public static void m2 (int p, int q) {
for (int i=0; i<=p; j++)

for (int j=0; j<=9 && i+j<=q; j++)
System.out.println ("Hello");

}

How can one tell how many times println is called in these methods? Consider
m1 again. Every time we visit the println statement we have the following
constraints on the program variables i and j:

1 ≤ i ≤ 9
1 ≤ j ≤ i

1 ≤ j ≤ 7.

Considered as inequalities over the real numbers, these define a trapezoidal region
P in the (i, j)-plane, and it is easy to see that the number of times the println
statement is executed is equal to |P ∩ Z2|, the number of lattice points5 within
the polygon P .

Fig. 2. Polygon P for method m1 Fig. 3. Lattice points in P

There is a rich mathematical theory of the enumeration of lattice points
in polytopes (the generalisation of polygons to higher dimensions) and we will
describe some aspects of this theory and its relations to program analysis.
5 i.e. points with integral coordinates.



3.1 Halfspaces, polyhedra, and polytopes

Fix an integer d ≥ 0 and a1, . . . , ad ∈ R. We will be interested in solutions
(x1, . . . , xn) ∈ Rd of inequalities of the form

a1x1 + · · ·+ adxd ≤ b. (1)

In our applications, such inequalities will arise in the form of linear constraints
on program variables. Putting a = (a1, . . . , ad) and x = (x1, . . . , xd) we can
rewrite (1) as a · x ≤ b, and if a 6= 0 then the set of x satisfying the inequality
defines a halfspace in Rd. For example, in R2 a halfspace consists of all points
lying on one side of some line.

A convex polyhedron in Rd is the intersection of a finite number of halfspaces,
and a bounded polyhedron (a polyhedron of finite extent, i.e. one which is con-
tained in some sphere) is called a polytope. It can be shown that a polytope
can equivalently be defined as the convex hull6 of a finite set of points in Rd

(the vertices of P ). Moreover, if the constants in the inequalities defining P are
all rational (as will be the case in all of our applications), the vertices of P all
have rational co-ordinates. A convex polyhedron is thus the set of simultaneous
solutions to a system of n inequalities:

a11x1 + · · ·+ a1dxd ≤ b1

a21x1 + · · ·+ a2dxd ≤ b2

...
an1x1 + · · ·+ andxd ≤ bn.

The general theory of polyhedra has many applications in mathematics and in
computer science. See [6] for a survey of applications in computer science.

Note that if we restrict to natural numbers, then linear inequalities of the type
considered above are exactly the type of inequalities that occur in Presburger
arithmetic. It follows that the lattice point enumeration problem subsumes the
problem of counting solutions to systems of Presburger inequalities. This point
of view is examined in greater depth by Pugh in [33].

3.2 Ehrhart Polynomials

Many applications of polytope methods have been based on the work of Eugène
Ehrhart [17, 18], who studied the problem of how the number of lattice points
inside a polytope grows as the size of the polytope increases. More precisely, let

P = conv{y1, . . . ,ym}

be a polytope and for n ∈ N, let

nP = conv{ny1, . . . , nym}
6 We denote the convex hull of a set X by conv X



be the n-fold dilate of P . Ehrhart showed that |nP ∩Zd| is a quasipolynomial in
n, which may be thought of as a number of polynomials cyclically interleaved.

Definition. A quasipolynomial of degree d is a function f : Z → Z of the form

f(n) =


f0(n) if n ≡ 0 (mod k)
f1(n) if n ≡ 1 (mod k)

...
fk−1(n) if n ≡ k − 1 (mod k).

where each fj is a polynomial of the usual kind and max{deg f0, . . . ,deg fk−1} =
d. The (minimal) number k of polynomial components is called the quasiperiod
of f .

Theorem. Let P = conv{y1, . . . ,yn} be a rational convex polytope in Zd and
let

EP (n) = |nP ∩ Zd|.

Then EP (n) is a quasipolynomial of degree dim P and quasiperiod equal to the
greatest common denominator of the coordinates of the vertices of P .

The original proof of this theorem can be found in [17]; see also [9, Chapter 3].
There is a considerable amount of research applying Ehrhart polynomials to

program analysis and optimisation, especially in the field of high-performance
computing involving array calculations. One of the first papers in this area is due
to Clauss [14], with application to problems such as counting the flops executed
by a loop, the number of memory locations touched by a loop, the array elements
that must be transmitted from one processor to another during parallel array
computations, the maximum parallelism induced by a loop from a given time-
schedule, and several others. Further work appears in [25, 15, 38] for example.

The methods of Clauss seem to have remained largely within the high-
performance/parallel computing community (see [24, 32] for example) until 2006,
when Braberman et al [13] (and see also [12]) showed how to adapt these tech-
niques to predict the memory usage of (iterative) Java programs; at present this
appears to be the only application of polytope methods within the programming
language community.

3.3 Drawbacks of Ehrhart polynomials

The standard method used to compute Ehrhart polynomials is interpolation,
where the coefficients of a polynomial f of degree d are derived from the values
of the polynomial at d+1 distinct points: this data gives a (d+1)×(d+1) system
of linear equations in the coefficients of f which can then be solved by Gaussian
elimination or some other technique. In the case of a quasipolynomial of period
k and degree d, this requires us to solve k systems of (d+1)× (d+1) equations.
Recalling that the period k of the Ehrhart polynomial associated with a rational



polytope P is the greatest common denominator of the coefficients of the vertices
of P , it becomes clear that a considerable amount of computation can be required
to calculate EP (n). In addition to this, the initial d+1 values of the k polynomial
components of the quasipolynomial have to be computed by explicitly counting
the number of lattice points in the dilates 0P, P, 2P, . . . , (d + 1)P . The number
k can be very large, even for relatively simple polytopes. For example, for the
triangular polytope

P = conv{( 1
4 , 2

5 ), ( 5
7 , 2

11 ), ( 8
9 , 1

12 )}

the quasiperiod of EP (n) is 13,680. Calculating the Ehrhart polynomial of P thus
requires the solution of 13,680 3 × 3 systems of linear equations, which would
be reasonably time-consuming. In fact, even if the dimension d is fixed, the time
taken to compute (via interpolation) the Ehrhart polynomial of a polytope with
n vertices can grow exponentially with n (see [38, §2.3]), whereas the methods
presented in the next section are polynomial in fixed dimension.

The sheer amount of data required to specify an Ehrhart function is also
something of a barrier in the context of certified resource analysis, where such
functions would have to be recorded in certificates accompanying mobile pro-
grams. This may not in fact be an insurmountable problem. One could possibly
find simpler functions which are upper bounds for the exact Ehrhart function
(see [30]); this would save space at the expense of a (hopefully small) loss of pre-
cision. Another issue is that Ehrhart functions are not arbitrary quasipolynomi-
als: for example it is clear that they are increasing functions, whereas a general
quasipolynomial can have polynomial components which are completely unre-
lated, leading to a function whose value oscillates drastically. It is conceivable
that the quasipolynomials arising as Ehrhart functions have special properties
which would enable them to be specified by a relatively small amount of data.
Unfortunately, it seems that very little is known about exactly which quasipoly-
nomials can occur as Ehrhart polynomials (see [28, 10] for some partial results)
so at present it is difficult to be precise about the minimum of data required
to explicitly specify an Ehrhart function. However, the results discussed in the
next section may enable us to bypass this problem.

3.4 Generating functions

The difficulty of computing Ehrhart polynomials suggests that they would be
unsuitable for polytope-based analyses in a certifying framework, but fortunately
some more recent results provide a much more efficient means of enumerating
lattice points. The basic tool in this theory is the generating function of a poly-
tope, which is a multivariate polynomial with a term for every lattice point in
the polytope. More concretely, suppose we have a polytope P in Rd. We will
consider polynomials in the variables x1, . . . , xd. Given v = (v1, ..., vd) ∈ Zd we
define

xv = xv1
1 xv2

2 · · ·xvd

d



and the generating function of P is then defined by

GP (x) =
∑

{xv : v ∈ P ∩ Zd}

It is easy to see that the number of lattice points in P is given by GP (1, . . . , 1).
The obvious difficulty here is that the polynomial GP (x) will in general be enor-
mous and costly to compute. Recall our earlier example, which gave rise to a
trapezoidal region in R2:

for (i=1; i<=9; i++)
for (j=1; j<=i && j<=7; j++) B

For this relatively small example, the full generating function is

GP (x, y) = xy + x2y + x3y + x4y + x5y + x6y + x7y + x8y + x9y

+x2y2 + x3y2 + x4y2 + x5y2 + x6y2 + x7y2 + x8y2 + x9y2

+x3y3 + x4y3 + x5y3 + x6y3 + x7y3 + x8y3 + x9y3

+x4y4 + x5y4 + x6y4 + x7y4 + x8y4 + x9y4

+x5y5 + x6y5 + x7y5 + x8y5 + x9y5

+x6y6 + x7y6 + x8y6 + x9y6

+x7y7 + x8y7 + x9y7

which is already quite unwieldy.
However, Alexander Barvinok [8] has recently shown how to express the gen-

erating function as a sum of short rational functions which are easily determined
from local information at the vertices of P . In the case above, we have

GP (x, y) =
xy

(1− x)(1− xy)
+

x9y

(1− x−1)(1− y)

+
x9y7

(1− y−1)(1− x−1)
+

x7y7

(1− x)(1− x−1y−1)

This function is easily computed if one knows the vertices and edges of the
polytope. Space constraints prevent us from describing the computation in detail
here, but a full explanation can be found in [8] or [9].

There is a problem here, though. To find |P∩Z2| we have to evaluate GP (1, 1),
and the denominators of all of the terms above vanish at (1, 1). However, this
can be overcome. The singularity at (1, 1) is a removable singularity [1, §3.1], and
various techniques can be used to find lim(x,y)→(1,1) GP (x, y). For example, we
can find a common denominator to obtain

GP (x, y) =
xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

(1− x)(1− y)(1− xy)

=
xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

1− x− y + x2y + xy2 − x2y2



and then repeatedly apply L’Hôpital’s rule7 to obtain∣∣P ∩ Z2
∣∣ = GP (1, 1)

= lim
(x,y)→(1,1)

xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

1− x− y + x2y + xy2 − x2y2

= lim
(x,y)→(1,1)

∂
∂y (xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9)

∂
∂y (1− x− y + x2y + xy2 − x2y2)

= · · ·

=
−2 + 22 + 560− 792− 448 + 576

−2
= 42

which is indeed equal to the number of lattice points in Figure 3.
This calculation may appear to be quite complex in relation to our relatively

small example, but it is easy to automate8. Note also that the complexity of the
calculation depends only on the shape of the polytope, and not its size. If we
took a region of a similar shape but many times larger, all that would change
would be the exponents of x and y in the numerator of the generating function;
the calculation required to determine the number of lattice points would be
essentially identical to that above.

We have only considered Barvinok’s construction for integral polytopes here,
but the theory can be extended to rational polytopes as well. it is also possible
to recover most of the theory of Ehrhart polynomials, which is useful for the
study of parametric bounds. This approach is developed in detail by De Loera
et al in [26], which describes the implementation of Barvinok’s techniques in
the LattE package. De Loera’s work is applied to program analysis problems
in [38], where much of Clauss’ work is recast in terms of Barvinok’s methods.
Generating-function methods have recently been applied to the problem of Worst
Case Execution Time in [27]. See also [9] for an exposition of the mathematics
of the Barvinok theory.

3.5 Implementation

We have implemented (in OCaml) a Java compiler which uses lattice point enu-
meration techniques to calculate resource bounds for simple imperative pro-
grams. This is a preliminary implementation, but the results it produces are
quite promising; it can successfully (and automatically) produce precise bounds
for realistic matrix manipulation programs, for example (see Appendix A for
some examples).
7 If f and g are continuous at a and limx→a f(x) = limx→a g(x) = 0 then

limx→a f(x)/g(x) = limx→a f ′(x)/g′(x)
8 The calculation works particularly well for our example because our polygon is spe-

cially shaped; in the general case a more complex (but still tractable) computation
is required.



Inferring linear constraints. The first phase of the compiler converts the
source program to an expression-based form in which all names have been re-
solved. This form is very similar to the source program, and preserves the explicit
control-flow structures of Java.

Our first task is to infer systems of linear constraints on program variables.
The expression-based form is converted into a control-flow graph and then be-
tween every pair of expressions we infer a polyhedron which bounds the values
of the integral variables in the program. This is done using a well-known tech-
nique due to Cousot and Halbwachs which involves abstract interpretation over
a domain of polyhedra. See [16] for details.

A number of polyhedral operations are required to perform this process. It
is necessary to have some representation of polyhedra and the means to convert
between vertex and facet representations, and methods for combining polyhe-
dra in various ways (intersection, join (polyhedral hull), widening, . . . ) are also
needed. These can be difficult to program, but fortunately there are a number
of high-quality libraries available. We have chosen to use the Parma Polyhedra
Library (PPL) [5], which is a large C++ library providing all of the operations
we require, including polyhedral widening operators (see [4]) necessary to en-
sure termination of the abstract interpretation process. The PPL also provides
an OCaml interface which was convenient for linking with our OCaml-based
compiler.

Using the PPL it was a relatively straightforward task to implement the
Cousot-Halbwachs technique and obtain linear bounds on program variables.

Enumerating lattice points. Having determined polytopes controlling loop
iteration, it is necessary to enumerate lattice points in order to find bounds on
the number of loop executions. We have done this using the barvinok library9 of
Sven Verdoolaege, which implements the generating-function methods described
in §3.4, and this enables us to automatically find our desired resource bounds.

There are certain difficulties in this approach however; in particular, it can
be difficult to decide which variables control iterations, and what the dimension
of the relevant polytope should be. Our prototype compiler works with a repre-
sentation which has a fairly explicit representation of the loop structure of the
input program, and we have developed heuristics which enable us to determine
the relevant polytopes. This works well in practice, with realistic code examples,
but it is possible to devise examples which cause the analysis to give incorrect
results. However, we believe that this problem can be solved by methods which
will be described below.

3.6 Analysing compiled bytecode

We are currently attempting to apply lattice-point methods to the resource anal-
ysis of JVM bytecode methods. A basic problem here is that it can be difficult

9 http://freshmeat.net/projects/barvinok/



to determine the precise loop structure of a program by examining the bytecode.
Consider the following examples.

int i=0; int j=9; int k=0;

while (i<5) {

j=9;

while (j>0) {

println ("Hello");

j--;

}

i++;

}

Fig. 4.

int i=0; int j=100;

while (i<j) {

println ("Hello");

if (...) i++;

else j--;

}

Fig. 5.

In Figure 4, the entire inner loop is executed once for each iteration of the
outer loop, and the println method is called a total of 45 times; however, if the
statement j=9 is altered to k=9 then the “inner” loop is executed once only, so
println is executed only 9 times. This example shows that a very small change
(only a single instruction in the compiled bytecode will change) can have a major
effect on the resource usage of a program. The two versions of the program even
have identical control-flow graphs, so it is not easy to see how to perform an
accurate analysis of resource usage.

In Figure 5 the loop is controlled by two variables, but the iteration is one-
dimensional. How can we recognise such patterns?

Instrumenting the code with counters. Gulwani et al [19] have proposed a
technique for instrumenting with counter variables which can then be used for
resource analysis. The example in Figure 5 would become

int i=0; int j=100; int c=0;

while (i<j) {

println ("Hello");

if (...) {i++; c++;}

else {j--; c++}

}

The Cousot-Halbwachs technique can successfully analyse this example to
deduce that 0 ≤ c ≤ 99, allowing us to conclude that the loop is executed at
most 100 times.

An algorithm is described in [19] which automatically discovers a collection
of counters which can be used to instrument the back-edges in a control-flow
graph and then used to analyse the resource usage. The algorithm also gives



dependencies between counters which enable one to attack nested structures
such as the one in Figure 4 above. However, the results of the analysis can
be somewhat imprecise due to the fact that bounds associated with “nested”
counters are simply multiplied together to obtain an overall bound.

We believe that the Gulwani algorithm can be refined to provide more pre-
cise relations between counters which can then be analysed using lattice-point
methods to give more precise bounds on loop iterations.

We are currently implementing an analysis for compiled JVM bytecode which
will combine the instrumentation technique of Gulwani with lattice-point meth-
ods and amortised analysis, and we hope that this will allow us to automatically
analyse the resource consumption of many programs.

4 Further Work

The lattice-point techniques described above only apply to single methods. We
would like to integrate our work with existing techniques to enable analysis of
complete Java applications (including recursion).

Some of the geometrical algorithms are computationally expensive; in par-
ticular, the complexity of certain polyhedral operations grows exponentially as
the dimension increases. We would like to develop certifying versions of these
algorithms so that the output can be verified without excessive effort.

Polyhedral libraries are written in C++ and are very large and complex (PPL
is over 100,000 lines long), and also depend on a number of external libraries
(for example the gmp library for unlimited-precision arithmetic). This provides
a lot of opportunities for bugs to creep in, and certifying algorithms would have
the added benefit that they would allow us to be sure of the correctness of the
output without having to trust the correctness of the libraries. See [29, 23] for
more on this point of view.

One of our motivations is to measure memory consumption of Java programs.
A common assumption in research on this topic is that all objects from a given
class are of the same size. However, this will not always be the case: for example,
the Java BigInteger class represents integers with unlimited precision, and the
size of an object will depend on the integer involved. Furthermore, the size
of an object returned by a method may depend on the method arguments —
consider the BigInteger multiply method. We are not aware of any previous
research which is able to deal with this type of behaviour. However, there is
some recent work by Verdoolaege and Bruynooghe [37] on weighted generating
functions for polytopes, in which instead of considering the usual generating
function

∑
{xv : v ∈ P ∩ Zd}, one considers a function of the form

∑
{f(v)xv :

v ∈ P ∩Zd} in which each lattice point is weighted according to some function f .
This corresponds to the situation in which a nest of loops indexed by i1, . . . , id
allocates an amount of memory given by the function f(i1, . . . , id). It seems
plausible that this work would be useful for attacking the problem of “dependent
allocation” of the type discussed above.



Examination of a large number of examples suggests that most methods
which involve loops deal either with iteration over data structures or with itera-
tion controlled by integer variables, but that it is unusual to encounter situations
which involve both simultaneously, the most common such situation being the
conversion of a list to an array or vice versa. This makes us hopeful that a
straightforward combination of our two techniques will enable the automatic
analysis of a substantial proportion of Java methods. There are however certain
situations where it is difficult to determine the amount of iteration required in
advance — for example, worklist algorithms where processing one element of
a queue may add an unpredictable number of new elements to the end of the
queue, or iterative floating-point numerical algorithms where the number of it-
erations required is very sensitive to input data — and these remain beyond the
scope of our methods at present.
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A Appendix: examples of polyhedral analysis

A.1 Gaussian elimination

The code below is an implementation of Gaussian elimination for the solution
of simultaneous linear equations. This is based on code which was downloaded
from the WWW 10, but it has been modified by adding println methods to give
the analysis something to count, and by replacing references to A.length by an
integer N since our analysis currently only takes account of program variables,
and cannot deal with fields.

public static double[] lsolve(double[][] A, double[] b, int N) {

for (int p = 0; p < N; p++) { System.out.println ("Loop 1");

int max = p;

for (int i = p; i < N; i++) { System.out.println ("Loop 2");

if (Math.abs(A[i][p]) > Math.abs(A[max][p]))

max = i;

}

double[] temp = A[p]; A[p] = A[max]; A[max] = temp;

double t = b[p]; b[p] = b[max]; b[max] = t;

if (Math.abs(A[p][p]) <= EPSILON) // EPSILON = 10e-6

throw new RuntimeException("Matrix is singular or nearly singular");

for (int i = p+1; i < N; i++) { System.out.println ("Loop 3");

double alpha = A[i][p] / A[p][p];

b[i] -= alpha * b[p];

for (int j = p; j < N; j++) { System.out.println ("Loop 4");

A[i][j] -= alpha * A[p][j];

}

}

}

double[] x = new double[N];

for (int i = N - 1; i >= 0; i--) { System.out.println ("Loop 5");

double sum = 0.0;

for (int j = i + 1; j < N; j++) { System.out.println ("Loop 6");

sum += A[i][j] * x[j];

}

x[i] = (b[i] - sum) / A[i][i];

}

return x;

}

The output from the analysis appears below, with bounds on the number of
calls to each println statement in the same order as in the program text. The
analysis successfully finds tight bounds for the various nested loops.

10 http://www.cs.princeton.edu/introcs/95linear/GaussianElimination.java.html



==== method lsolve ====

Calls to java.io.PrintStream.println (java.lang.String):

N {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N^2 {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2 {2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/3 + 0 + N^3/3 {2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2 {2 <= N, 0 <= 1}

A.2 Multiple parameters

We also include a simple example involving multiple parameters which demon-
strates the strength of the mathematical techniques underlying our analysis.

public static void f (int p, int q) {

for (int i=0; i <= p; i++)

for (int j=0; j <= 9 && i+j <= q; j++)

System.out.println ("Hello");

}

The number of iterations depends on the relative values of the arguments p
and q, with different Ehrhart polynomials applying for different combinations of
arguments. The barvinok library is able to calculate these automatically, and
comparatively little programming effort was required on our part to enable the
analysis to find results of this type.

Calls to java.io.PrintStream.println (java.lang.String):

5 domains in R^2

-35 + 10q {q <= p, 10 <= q, 0 <= 1}

1 + (3/2)q + q^2/2 {q <= p, 0 <= q, q <= 9}

(1 + q) + (1/2 + q)p + -p^2/2 {q <= 9, 0 <= p, p+1 <= q}

10 + 10p {0 <= p, p+10 <= q, 0 <= 1}

(-35 + (19/2)q + -q^2/2) + (1/2 + q)p + -p^2/2 {p+1 <= q, q <= p+9, 10 <= q}


