
Some thoughts on algebraic speci�cation1;2Donald Sannella and Andrzej Tarlecki3Department of Computer ScienceUniversity of Edinburgh1 IntroductionThis paper presents in an informal way the main ideas underlying our work on algeb-raic speci�cation. The central idea, due to Goguen and Burstall, is that much workon algebraic speci�cation can be done independently of the particular logical system(or institution) on which the speci�cation formalism is based. We also examine thenature of speci�cations and speci�cation languages, the problem of proving that astatement follows from a speci�cation, the important notion of behavioural equi-valence, and the evolution of programs from speci�cations by stepwise re�nement.Although many of the issues discussed are motivated by technically complicatedproblems, in this paper the technicalities have been suppressed in an attempt tomake the ideas more accessible. The same ideas are presented with full technicaldetails in [ST 85c].We assume that the reader is convinced as we are that formal speci�cations arenot only theoretically interesting but are also practically important. Throughoutthe paper we also assume some familiarity with the basic concepts of algebraicspeci�cation, although we do not rely on any speci�c technical knowledge.Many of the ideas expressed here were evolved under the inuence of RodBurstall and Martin Wirsing, but this remains a personal statement.2 Generality and institutionsAny approach to algebraic speci�cation must be based on some logical framework.The pioneering papers [ADJ 76], [Gut 75], [Zil 74] used many-sorted equationallogic for this purpose. Nowadays, however, examples of logical systems in useinclude �rst-order logic (with and without equality), Horn-clause logic, higher-order logic, in�nitary logic, temporal logic and many others. Note that all theselogical systems may be considered with or without predicates, admitting partialoperations or not. This leads to di�erent concepts of signature and of model,perhaps even more striking in examples like polymorphic signatures, order-sortedsignatures, continuous algebras or error algebras.1This research has been supported by a grant from the (U.K.) Science and Engineering ResearchCouncil.2Reprinted from: Proc. 3rd Workshop on Theory and Applications of Abstract Data Types,Bremen, November 1984, Springer Informatik-Fachberichte Vol. 116, pp. 31-38 (invited note).3Present address: Institute of Computer Science, Polish Academy of Sciences, Warsaw.1



There is no reason to view any of these logical systems as superior to the others;the choice must depend on the particular area of application and may also dependon personal taste.The informal notion of logical system has been formalised by Goguen andBurstall [GB 84], who introduced for this purpose the notion of institution (thisgeneralizes the ideas of \abstract model theory" [Bar 74]). An institution de�nes anotion of a signature together with for any signature � a set of �-sentences, a col-lection of �-models and a satisfaction relation between �-models and �-sentences.The only semantic requirement is that when we change signatures, the inducedtranslations of sentences and models preserve the satisfaction relation. This condi-tion expresses the intentional independence of the meaning of speci�cations fromthe actual notation. All the above logical systems (and many others) �t into thismould. For example, many-sorted equational logic constitutes an institution: takesignatures to be many-sorted algebraic signatures and for any algebraic signature� let the set of �-sentences be the set of all equations between �-terms of thesame sort, let �-models be just �-algebras and let satisfaction of a �-equation bya �-algebra be de�ned as usual. It is necessary to adopt some notion of signaturemorphism �: �! �0 such as de�ned e.g. in [BG 80] in order to provide for chan-ging signatures, which induces the �-translation of �-equations to �0-equations andof �0-algebras to �-algebras (�-reduct).Note that we can de�ne institutions which diverge from logical tradition andhave, for example, sentences expressing constraints on models which are not usuallyconsidered in logic, e.g. data constraints as in Clear [BG 80], which impose therequirement of initiality (cf. [Rei 80], [EWT 83]).For purposes of generality, it is best to avoid choosing any particular logical sys-tem on which to base a speci�cation approach, as suggested by Goguen and Burstall.We can instead parameterise our work (whatever it may be) by an arbitrary insti-tution. We strongly believe that this is an appropriate level of generality on whichto introduce and analyse concepts like speci�cation, implementation, speci�cation-building operations etc. It is possible to de�ne speci�cation languages which canbe used to build speci�cations in any institution (examples are Clear [BG 80] andASL [ST 85c]).Of course, not everything can be done in an institution-independent way. Forexample, a theorem prover needs to know about the detailed structure of axioms.Fixing an institution or even �xing some part of an institution (say, the notionof signature and of model) opens possibilities for doing things which cannot bedone at the completely general level. For example, part of a theorem prover (thepart dealing with terms, substitutions, type checking etc.) could be built underthe single additional assumption that signatures are standard many-sorted algeb-raic signatures. Striving to always work at the most general level possible resultsin reusable theories and tools. Typically (but not always) these can be adaptedfor use under a particular institution simply by providing some low-level details.For example, instantiating the underlying institution in the formal de�nition of2



Clear (and changing the low-level syntax accordingly) yields a family of Clear-likespeci�cation languages: equational Clear, error Clear, continuous Clear and so on.3 Speci�cations and speci�cation languagesWhat is a speci�cation? Di�erent views are possible, but one thing which is certainis that a speci�cation is a description of a signature and a class of models over thatsignature (called the models of the speci�cation).We will not put any restrictions on the class of models described by a speci�c-ation. Thus, speci�cations may be loose (having non-isomorphic models), so as toavoid premature design decisions. We do not even assume that the class of modelsof a speci�cation is closed under isomorphism (see [ST 85c] for a brief discussionof this point). In contrast to many approaches (e.g. CIP-L [Bau 81]) we do notrequire models to be reachable (in the standard framework, an algebra is reachableif every element is the value of some ground term; for the generalisation to an ar-bitrary institution see [Tar 85]). On the other hand, these restrictions are not ruledout, and speci�cation approaches may well contain some mechanism to allow suchrestrictions to be included in speci�cations when required (cf. [EWT 83], [ST 85c]).There are other levels than the level of models at which speci�cations may bedealt with. For example, we can consider:Textual level: a sequence of characters on paper,Presentation level: a signature and a set of axioms over this signature (requiredto be �nite or at least recursive or recursively enumerable),Theory level: a signature and a set of axioms over this signature closed underlogical consequence,Model level: a signature and a class of models over this signature.Each approach to speci�cation needs the textual level for actually writing downspeci�cations. The meaning of a speci�cation text is determined by giving a map-ping from the textual level to one of the other levels. For example, Clear maps tothe theory level, ASL maps to the model level and ACT ONE [EFH 83] to boththe presentation and the model level. There are natural mappings from presenta-tions to theories and from theories to classes of models (a presentation maps to thesmallest theory containing it, and a theory maps to the class of models satisfyingits axioms); the second-level semantics of ACT ONE is actually redundant sinceit is just the composition of the �rst-level semantics with these natural mappings,as proved in [EFH 83]. However, not every class of models is the class of modelsof a theory, and not every theory has a (�nite, recursive or recursively enumer-able) presentation. In fact, Clear has no presentation-level semantics and ASL hasneither a presentation- nor theory-level semantics.3



But every speci�cation language has a model-level semantics | and this is inthe end all that really matters since the purpose of a speci�cation is not to describea presentation or a theory but rather to describe a class of models.4Slogan: A speci�cation comprises (at least) a signature and a class of models overthis signature.Everybody knows that big, monolithic speci�cations are di�cult to understandand use. Thus it is important to build speci�cations in a structured way fromsmall bits. We build speci�cations in this way using speci�cation-building operations(examples: +, derive). The semantics of each of these operations is a function onclasses of models, e.g. + in ASL corresponds to a function which when given a classof �1-models and a class of �2-models yields a class of (�1 [�2)-models [SW 83].A speci�cation language may be viewed as a set of such operations, togetherwith some syntax. Some operations correspond to functions at the presentation ortheory level, but in general this need not be so | in any case they are describedby functions at the model level.In choosing the class of operations there is a trade-o� between the expressivepower of the language and the ease of understanding and dealing with the oper-ations. One way to circumvent this problem is to �rst develop a kernel languagewhich consists of a minimal set of very powerful operations. Such a kernel languageis di�cult to use directly. We can build higher-level languages on top of the kernel,so that each higher-level construct corresponds to a kernel-language expression.This is analogous to the way that high-level programming languages are de�ned interms of machine-level operations. This approach has been taken in ASL; high-levellanguages built on top of ASL include PLUSS [Gau 84] and Extended ML [ST 85a].Besides providing a certain collection of prede�ned speci�cation-building opera-tions, a speci�cation language usually provides a way for the user to de�ne his ownspeci�cation-building operations, i.e. a mechanism for constructing parameterisedspeci�cations. There are di�erent approaches to parameterised speci�cations; theones which seem most natural in our general framework are those which treat aparameterised speci�cation as a function from speci�cations to speci�cations as ine.g. Clear, LOOK [ETLZ 82] or ASL. Such a parameterised speci�cation normallyhas a certain domain of speci�cations to which it can be applied.4 Proving thingsIn the framework of an arbitrary institution, any class of models determines atheory, that is the set of all sentences which are true in every model belonging4Actually, the ultimate purpose of a speci�cation is typically to describe a class of programs,but the notion of a model is chosen so as to precisely capture those aspects of programs which arerelevant to the speci�cation while abstracting away from those which are not. For example, in thestandard framework algebras are chosen as models in order to abstract away from the syntacticand algorithmic details of programs while capturing their functional behaviour.4



to this class (note however that the class of models satisfying this theory may bebigger than the class of models we started with). So every speci�cation determinesthe set of its logical consequences, the set of sentences which hold in all its models.These are exactly the properties of the speci�ed object expressible in the giveninstitution on which a user is allowed to rely.In the above, we said nothing about how to e�ectively determine if a property(sentence) follows from a speci�cation. Our basic notion is the satisfaction relationand model-theoretic (rather than proof-theoretic) consequence. All the same, itwould be convenient to have some e�ective (=computational) way of proving thata sentence is a consequence of a speci�cation, i.e. a proof system. This wouldprovide an important tool for the practical use of formal speci�cations. As suggestedby Guttag and Horning [GH 80], by proving that selected properties follow froma speci�cation we can understand it and gain con�dence that it expresses whatwe want. Moreover, in order to do any kind of formal program development orveri�cation a theorem-proving capability is necessary.Notation: SP j= ' means that the sentence ' holds in all models of SP (' is asemantic consequence of SP ). SP ` ' means that ' is provable from SP in a givenproof system.Any useful proof system must be sound, that is SP ` ' must imply SP j= '(we must only be able to prove things which are true). Another pleasant propertyis completeness, i.e. SP j= ' implies SP ` ' (we can prove all true things).Unfortunately, for every practical speci�cation approach no sound and completee�ective proof system can exist; more precisely, this holds for every speci�cationapproach which is powerful enough to specify the natural numbers and in whichequations can be expressed | see [MS 85] for a discussion of this problem. Sowe have to be content with a proof system which is sound but not complete. Thesame situation occurs in program veri�cation; there is no (Cook-) complete Hoare-like proof system for any programming language with a su�ciently rich controlstructure [Cla 79]. This is too bad, but that's life.Of course, we cannot expect to be able to construct an institution-independentproof system. We have to assume that we are given some (sound) proof systemfor the underlying institution, that is a proof system which allows us to deducesentences from sets of sentences in the institution. This amounts to a proof systemfor any speci�cation language where speci�cation-building operations are de�nedat the level of presentations. However, this does not imply that such a semanticsis required for doing theorem proving. It is possible to extend the proof systemfor the underlying institution to a proof system for the speci�cation language inan institution-independent way. What we have to do is to devise an inference rulefor every speci�cation-building operation which allows facts about a compoundspeci�cation to be deduced from facts about its components [SB 83], [ST 85b],[ST 85c]. A simple example of such a rule is:SP ` ' =) SP + SP 0 ` '5



This is another case where, due to the quest for generality via institutions, something(part of a theorem prover for a speci�cation language) may be built once and forall.5 Behavioural equivalenceA concept which has (not) been extensively (enough) studied in the context of al-gebraic speci�cations is that of the behaviour of a program or model. Intuitively,the behaviour of a program is determined just by the answers which are obtainedfrom computations the program may perform. Switching for awhile to the usualalgebraic framework, we may say informally that two �-algebras are behaviourallyequivalent with respect to a set OBS of observable sorts if it is not possible to dis-tinguish between them by evaluating �-terms which produce a result of observablesort. For example, suppose � contains the sorts nat, bool and bunch and the op-erations empty : ! bunch , add : nat ; bunch ! bunch and 2: nat ; bunch ! bool (aswell as the usual operations on nat and bool), and suppose A and B are �-algebraswith jAjbunch = the set of �nite sets of natural numbersjBjbunch = the set of �nite lists of natural numberswith the operations and the remaining carriers de�ned in the obvious way (butB does not contain operations like cons, car and cdr). Then A and B are beha-viourally equivalent with respect to fboolg since every term of sort bool has thesame value in both algebras (the interesting terms are those of the form m 2add(a1; : : : ; add(an; empty) : : :)). Note that A and B are not isomorphic.Behavioural equivalence seems to be a concept which is fundamental to pro-gramming methodology. For example:Data abstractionA practical advantage of using abstract data types in the construction of pro-grams is that the implementation of abstractions by program modules need not be�xed. A di�erent module using di�erent algorithms and/or di�erent data struc-tures may be substituted without changing the rest of the program provided thatthe new module is behaviourally equivalent to the module it replaces (with respectto the non-encapsulated types). ADJ [ADJ 76] have suggested that \abstract" in\abstract data type" means \up to isomorphism"; we suggest that it really means\up to behavioural equivalence".
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Program speci�cationOne way of specifying a program is to describe the desired input/output be-haviour in some concrete way, e.g. by constructing a very simple program whichexhibits the desired behaviour. Any program which is behaviourally equivalentto the sample program with respect to the primitive types of the programminglanguage satis�es the speci�cation. This is called an abstract model speci�cation[LB 77] or speci�cation by example [Sad 84]. In general, speci�cations under theusual algebraic approaches are not abstract enough; it is either di�cult, as in Clear[BG 80] or impossible, as in the initial algebra approach of [ADJ 76] and the �nalalgebra approach of [Wand 79] to specify sets of natural numbers in such a way thatboth A and B above are models of the speci�cation. ASL provides a behaviouralabstraction operation which when applied to a speci�cation SP relaxes interpret-ation to all those algebras which are behaviourally equivalent to a model of SP .We want to stress that although the phrase \speci�cation by example" suggestssloppiness, this is not the case; in this approach it is a precisely-de�ned, convenientand intuitive way to write speci�cations, and it is also an established technique insoftware engineering.In the above we assume that the only observations (or experiments) we are al-lowed to perform are to test whether the results of computations are equal. In thecontext of an arbitrary institution we can generalise this and abstract away from theequational bias by allowing observations which are arbitrary sentences (logical for-mulae). This yields an institution-independent notion of observational equivalence.Two models are observationally equivalent if they both give the same answers to anyobservation from a prespeci�ed set. Based on this general notion of observationalequivalence we can de�ne an institution-independent speci�cation-building opera-tion for observational abstraction (the behavioural abstraction operation mentionedabove is actually only a special case of observational abstraction in the standardalgebraic framework). The properties of this operation are more complicated thanfor other speci�cation-building operations, but it is possible to overcome these dif-�culties and for example to provide proof rules for reasoning about speci�cationsbuilt using observational abstraction [ST 85b].6 Implementation of speci�cationsThe programming discipline of stepwise re�nement suggests that a program beevolved by working gradually via a series of successively lower-level re�nements ofthe speci�cation toward a speci�cation which is so low-level that it can be regardedas a program. For example, the speci�cationreverse(nil) = nilreverse(cons(a,l)) = append(reverse(l),cons(a,nil))7



is an executable program in Standard ML [Mil 84]. The stepwise re�nement ap-proach guarantees the correctness of the resulting program, provided that eachre�nement step can be proved correct. A formalisation of this approach requiresa precise de�nition of the concept of re�nement, i.e. of the implementation of onespeci�cation by another.In programming practice, proceeding from a speci�cation to a program (by step-wise re�nement or by any other method) means making a series of design decisions.These will include decisions concerning the concrete representation of abstractlyde�ned data types, decisions about how to compute abstractly speci�ed functions(choice of algorithm) and decisions which select between the various possibilitieswhich the speci�cation leaves open. The following very simple formal notion ofimplementation captures this idea: a speci�cation SP is implemented by anotherspeci�cation SP 0, written SP ���> SP 0, if SP 0 incorporates more design decisionsthan SP , i.e. any model of SP 0 is a model of SP (SP and SP 0 are required to havethe same signature). We can adopt this simple notion in the context of a speci�ca-tion language incorporating an operation like behavioural abstraction (see [SW 83]for more discussion on this point).This notion of implementation can be extended to give a notion of the im-plementation of parameterised speci�cations: P is implemented by P 0, writtenP ���>P 0, if for all speci�cations SP in the domain of P , SP is also in the domainof P 0 and P (SP )���>P 0(SP ).An important issue for any notion of implementation is whether implementa-tions can be composed vertically and horizontally [GB 80]. Implementations canbe vertically composed if the implementation relation is transitive (SP ���>SP 0and SP 0���> SP 00 implies SP ���> SP 00) and they can be horizontally composedif the speci�cation-building operations preserve implementations (i.e. P ���>P 0and SP ���> SP 0 implies P (SP )���>P 0(SP 0)). The above notion of implementa-tion has both these properties, provided that all speci�cation-building operationsare monotonic (with respect to inclusion of model classes) which is the case forthe speci�cation-building operations de�ned in e.g. Clear, LOOK and ASL. Thesetwo properties allow large structured speci�cations to be re�ned in a gradual andmodular fashion. All of the individual small speci�cations which make up a largespeci�cation can be separately re�ned in several stages to give a collection of lower-level speci�cations (this should be easy because of their small size). When thelow-level speci�cations are put back together, the result is guaranteed to be animplementation of the original speci�cation. Note that other more complicatednotions of implementation ([EKMP 82], just to take one example) do not composevertically or horizontally in general.7 Final remarksIn this note we put forward some of our thoughts and prejudices concerning al-gebraic speci�cation. The theme which underlies most of our arguments is one of8



generality. We argued in favour of working at a high level of generality wheneverpossible, and against making unnecessary restrictions. The advantage of generalityis (at least) the development of reuseable theories and tools; the problem with intro-ducing even the most reasonable-seeming restriction is that we exclude somethingwhich we may need someday. An instance of this is the restriction to reachablemodels (the generation principle of [BW 82]) | see [SW 83] for an example whichrequires considering unreachable models. The result of (for example) �xing an in-stitution at an early stage is that after years of work it is necessary to start againfrom scratch to introduce some enhancement like the ability to handle higher-orderfunctions or imperative programs.Practitioners may think we are dreamers because our interest in mathematicalelegance and generality seems so far removed from the real world of programmerswriting operating systems and payroll programs. But we believe that if practicalformal program speci�cation and development is ever to become a reality (and weare optimistic about this) it must be based on sound mathematical foundations.Foundations acceptable in the long term cannot contain restrictions adopted forshort-term convenience, e.g. it is a mistake to forever limit yourself to equationalspeci�cations because you happen to have a Knuth-Bendix equational theoremprover running on your system. The eventual practical feasibility of all this dependson the existence of good tools for supporting formal program development; althoughwe do not believe that program production will ever be automated, the right toolscould reduce the burden of formal program development to an acceptable level.8 References[ADJ 76] Goguen, J.A., Thatcher, J.W. and Wagner, E.G. An initial algebra ap-proach to the speci�cation, correctness, and implementation of abstract datatypes. IBM research report RC 6487; also in: Current Trends in Program-ming Methodology, Vol. 4: Data Structuring (R.T. Yeh, ed.), Prentice-Hall,pp. 80-149 (1978).[Bar 74] Barwise, J. Axioms for abstract model theory. Annals of Math. Logic 7,pp. 221-265.[Bau 81] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrumlanguage for program speci�cation and development. Report TUM-I8104,Technische Univ. M�unchen; see also: The wide spectrum language CIP-L.Springer LNCS 183 (1985).[BW 82] Bauer, F.L. and W�ossner, H. Algorithmic language and program devel-opment. Springer.[BG 80] Burstall, R.M. and Goguen, J.A. The semantics of Clear, a speci�cationlanguage. Proc. of Advanced Course on Abstract Software Speci�cations,9
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