University of Edinburgh
Division of Informatics

A Tool for Investigating TypeErrorsin SML
Programs

Undergraduate Dissertation
Computer Science

lain Denniston

June 1, 2001

Abstract: Thisproject aimsto create a tool to ad thelocation and correction of type
errorsinill-typed SML programs. Specificaly, it will provide the facility to determine
the type of an expression or part thereof, and aso to assume adifferent type for such
an expression. The implementation should be integrated into a popular existing SML
compiler and should provide a graphical user interface.

Preface

Assumptions and Notes

It is assumed for the purposes of this paper that the reader has a working knowledge
of SML; i.e. haswritten (afew) SML programs, and is aware of the basic syntax of
the language. Readers unfamiliar with SML should locate one of the many textson
the language (for example [Paulson1996]) and familiarise themselves with its
workings.

It should be noted that on occasion some words in this document are used to convey
different meaningsin similar contexts. Thisis unavoidable andis due to the overuse

of particular words in computer science generaly. Wherever possible an dternative
word has been used but certain words could not be replaced with synonyms. The
words that are likely to cause the most difficulty are “type” and “expresson”;
however, the reader should be able to determine the correct meaning from the context.

In addition, although the premise of this project extended to any computing platform
and operating system, the implementation discussed was created on an Intel x86
architecture running Mandrake Linux 7.1These factors, however should not have any
bearing on the outcome.

Acknowledgements

| would like to thank, my supervisor, Don Sannella and, my director of studies,
Murray Cole, for their guidance and support through out this project.

| also would like to thank both my families, Dennistons and Wrights for their support
and understanding throughout the year.

Contents

1. Introduction 5
L1TheProblEem ... 5

1.2 PreviouS APPIOACNESccciiiiiiie ettt s e e s e e e e s e e e e ssaaee e 5

L3 MY APPIOBCN......ceiii ettt e e e s e e e e srraee e 6

1.4 Previous Work with the Same Approach..........cccccevvieee e, 6

2. Type Checking 7
2.1 What Is Type Checking And Why Have It?cccceeeiiiee e 7

2.2 How Type Checking Is Accomplishedccooevieeiiiiiiie e 8

2.3 Complications Type Checking Encounters, And Their Solutions................. 9
2.3.1 Polymorphism and User Defined Datatypesccccceevveeeeviiveneennne 9

2.3.2 Type Checking with Polymorphism and User Defined Data Types.10

2.4 Problems Due to Type Errors, and Their Solutionsccccveeviiieeeeenee, 12

3. User Interface 14
3.l User INterface OPtioNS.......cccoiuiiiee et 14

3.2 Why Choose A GUI FOr The TOOI?ceeeiiiiiieeecieee e 14

3.3 Design Goasfor the GUIoeveiiiiiee e 14

3.4 General GUI Design Problems..........c..eeeiiiiiiii e 15

3.5 Designing the GUI for thiSTOO...........coveiiiiiiii e 16

4. Implementation 17
= 11 (0] o ST PRTR 17
4.1.1 The Compiler: MOSCOW MLoooiiiiiiiee e 17

4.1.2 The Graphics Tool Kit: MGEK........ccooiiiiieiiiiiiee e, 19

4.2 MY IMPIEMENLALIONcceiiiiie e sraee e 20
4.2.1The COr@ TOOcciuiieiiiieeiee e 20

A I 4 T= Y €16 USSP 23

5. Example 25
5.1 ExampleUsed iN Detallcccveveeiiiiiii e 25

5.2 Some ML Compilers Responsesto the Erroneous Code...........cc.ccccvveeennee 26

5.3 Walk Through of Code when Used With This Projects Program................. 27

5.4 Conclusions fromthe EXamplec.ooeiiiiiiiiciiiee e 36

6. Conclusion 37
6.1 IsThe Project FINIShed?.............oove i 37

6.1.1 Does It Meet the Initial Requirements..........cccccvveeevvcieeeecviveee e 37

6.1.2 [tsSuccesses and FailUresScccooeieiien e 38

B.2 FULUIE WOTK ... e 39

6.2.1 Additional FUNCLIONAlItY..........ceeiiiiiiiieiiiiie e 39

6.2.2 Improve User INterface.........ccvveeccieiei e 40

6.2.3 Efficiency ConsIderationscccveeeiiiiieecsiieeeescieee e esineee e 40

6.2.4 Write aNew Type Checker from Scratch..........ccccoovcvvveeiiciiieeeeee, 41

6.3 OVerall CONCIUSION........coiiiiiiiie e 43

Appendices 45
Appendix A: Grammar for MOSCOW MLc..coveiiiiiiieiiiiiiee e 46
Appendix B: Moscow ML Abstract Syntax Treeccccveeeeviiveeeeiiineee e, 50

Bibliography 54

1. Introduction

1.1 The Problem

Programming is not an exact science and there are an amost infinite number of ways
to write aprogram to do any onetask. Since thisis the case, there arean amost a
limitless number of errorsthat can accidentally be written into a given program.
Locating and eradicating those errorsis atedious, time-consuming and expensive
task, therefore it would be of great benefit to software engineersif any errors could be
found and corrected more easlly.

In view of this, there have been many attempts to ensure that programs containing
certain kinds of bugs cannot be compiled; Standard Meta Language (SML or amply
ML) contains one of the better examples of this. The approach presentin ML isto use
astrongly typed language, that is, all elements of ML have a type and can only be
used to interface with other elements of a compatible type.

While this approach is largely successful, and it is much more likely that an ML
program is correct (i.e. devoid of programming errors) than asimilar program written
in alanguage such as C, the approach introducesits own unique difficulties. The most
severe of these, from the perspective of the ML programmer, isthe type error.

For an ML programmer, type errors represent the most frustrating of all errorsto
locate, understand and correct. If there were away to easly repar dl type errorsthen
programming in ML would be both simpler and more popular.

This project then, is to attempt to addressthe issue of type errors and how to quickly
locate, understand and correct any type conflict.

1.2 Previous Approaches

Given that type errors are amajor difficulty faced inwriting an ML program, and the
larger a program becomes the harder it often becomes to discover the real source of
the error, itishard y surprising that there has been a agnificant anount of previous
work in thisarea.

There are several approaches to the problem, themost obvious of which are: giving
the programmer more information about the error in quegtion, or giving the
programmer a better idea of where the error actudly occurs, asit can belocatedin an
entirely separate place in the code from where the error was actudly reported. A
summary of various different methods for debugging type errorsis availablein the
paper “Generalising Techniques for Type Debugging” by Bruce M “Adam [M“Adam]

The approach used by this project follows on from work by Alison Keane
[Keanel999] (see [Section 1.4]) and attempts to provide the programmer with a way

to investigate type errorsfor hersdf in an interactive fashion, instead of smply
providing more information for her.

1.3 My Approach

Asnoted, and is obvious from the title of the project, the approach to understanding
type errors used by this projectis one of investigation. That is, the programmer should
be dlowed to and encouraged toinvestigate type errors for hersdf, attempting to
understand what went wrong and why. It is hoped that this approach will bring a new
level of understanding to programmers, especialy for beginners, and by locating and
solving type errorsmore readily, it should be easier to avoid making the error in the
future.

Theam of thisprojectisto provide atool that can be run when an ilttyped ML
program is applied to an existing ML compiler. The tool will allow the programmer to
check the type of expressions within the program, to verify that they are as expected,
and then to alter the type of any expression in the program that does not have the type
expected, without having to rewrite the code. It should be noted that such an altered
program can never be compiled rather the programmer is assisted in locating the error
in question, and discover exactly what causedit, alowing her to change the source
code as required, thereby fixing the error. The altered source code would then be
copied by the user to the compiler.

This approach to the problem isavariation of the trial and error approach that most
programmers will use to fix such programs anyway. The project simply aimsto
provide a toal that makes such error location easier and more methodical. In addition,
it allowsthe compiler to take over some of the work the user may have to do
normally, such as finding the type of any given expression within the program —
which is much less error-prone.

1.4 Previous Work with the Same Approach

Alison Keane's project of asimilar title [Keane1999] used the same approach,
however it had several problems, which resulted in it being restricted in use to nothing
more than aresearch tool.

Its mgjor failings were: firstly, it did not cover the whole of the ML language, but
only asmall sub set of the language. Secondly, the project was not integrated into an
existing ML compiler. Itsthird and final failing wasthat it had a poor user interface. It
did however establish the viahility of the general approach.

Hence, theam of thisprojectis to correct dl the problems noted in the previous work
in this problem area by:

» developing atool that isintegrated with the popular Moscow ML system,
which provides a full implementation of SML
» provide amore carefully-designed user interface.

2. Type Checking

2.1 What s Type Checking And Why Have It?

Types are inherent to all languages, be they computer languages or natural languages,
and al elements of any language have some type. For instance, in natural (spoken)
languages, the elements are words, and they have types such as nouns and verbs.
Types are used to define how elements of a given language can interact; this
interaction is defined in a grammar for the language.

The grammar of a given language describes how a phrase can be built up from the
elements of that language. Grammars are based on rules, and to create a correct, or
valid, phrase for alanguage, there must be a precise application of those rulesthat
exactly describe the phrase. If such an application of the rules does not exist then the
given phrase is not part of the language described by the grammar.

To avoid having to list al possible combinations of elements that beong to a
language, the rules of agrammar are made by stating which types of elements can go
where in avalid expression. Each element isthen classified as atype, and assuch, itis
possible to define precisely where each element can and cannot goin a phrase
belonging to that language.

In natural, or spoken, languages, it is acceptable to bend or even break therulesin a
given grammar, so long as the meaning of the phrase is clear to all parties concerned.
In computer programming, things are very different. Computers are deterministic and
as such need a specificinput to generate a specific output. Hence, grammars for most,
if not all, programming languages are very strict and must be rigoroudly followed if
the programmer wishesto create a correct program. Some computer programming
language grammars are stricter than othersare, but all imply alevel of stricthess much
greater than is applied to natural languages.

Computer languages generally include severa different types, such as: int, red, boal,
etc. Furthermore, expressions have types. 1+2: int, true or false: bool. In many
languages, it is easy to convert from one type to another. For instance, in C, some
types are conddered interchangeable; e.g. (short) integers and characters are
essentially the same on many architectures. As such the compiler (more precisely the
type checking part of it) will allow them to be interchanged throughout a program.
This however, can be the cause of many errorsin programs written in such languages.

Thereis another group of languages that does not allow any interchanging between
expression types, that is, these languages only alow the expressons of the exact types
required to be used in a given circumstance, and if more than one expresson type
would suffice, then the type of the expresson used must be compatible with the rest

of the program. ML isaone of the most popular of this group of languages, which are
known as strongly typed languages.

Strongly typed languages are often preferable, since they do not alow many, if any,
“unsafe” programmes to be compiled [Sethi1989]. Infact, itisfar morelikey that a

strongly typed program is correct (i.e. will work as desgned for the purpose given)
than an equivalent non-strongly typed program.

It should be obvious; therefore, that type checking is not only adesirable, but also a
necessary aspect, of these strongly typed languages.

2.2 How Type Checking I's Accomplished

There are severd builtin types and operators on those types, in every programming
language. The least a programmer might expect would be the integer type, and the
basic mathematical operations (addition, subtraction, multiplication and divison). In
such an over simplistic language, each of the operations would be expected to be
defined as abinary operator that is, each takes two arguments, combines them in some
known way and returns aresult. The two arguments would be expected to be of the

type integer.

If the language was extended to include strings, then it is necessary to be able to
check that the mathematical operators were not applied to the strings, since thisis
unlikely to make sense. To do thiswould be quite simple. All that would be required
would be that when an expression was used with an operator, the type checker would
check the type of that expression. If the expression’ s result was of type integer, then
the whole expression, with operator, would be avalid expression and thetype checker
could proceed to the next expresson. If, however, the expressions result were of type
string, then the type checker would note that this was a type error and inform the
programmer.

Complications arrive due to the nesting of expressions. Take, for example, smple
addition. Addition, can be nested as follows:

(1+2)+(3+7)
This causes problems for the type checker as the arguments to the second ‘+' are
themselves expressions. The type checker must then ensure that the result of these two
expressions will be of type integer in order to satisfy the criteria that the ‘+’ operator
takestwo arguments both of which are integers. In this case, it issmply a caseof
noting that the result of the addition of two integersisknown to be itself an integer,
hence if the two sub-expressions are correct then the overall expression will be
correct. Therefore, the type checker must evduate all sub-expressions before
evaluating the main expression.

Although the above case issomewnhat trivial, it displays the possibility that type
checking has to be quite complex. For instance, thereisan dmost infinite leve of
nesting that could occur in any expression. If then the above, trivid, languageis
extended to include many more types, branching and looping constructs, and user
defined functions, it is clear that the problem quickly becomes complicated.

Even though the task may become more difficult asthe size and complexity of agiven
program increases, basic type checking follows the same smple rules. These rules are
to; firstly, do adepth first traversa of the tree that the program describesthat is, type
check all sub expressions before type checking expressions. Then, when type
checking aleaf of the tree, that istype checking an atomic expression (onewith no

sub-expressions) look up (in asmple table created for the program) all variablesand
operations used in the expresson, ensuring that they are of compatible types. If they
are compatible types, then the resultant type of the expression will be known from
looking up the table mentioned; this typeis then used as the overdl typefor this
expression in any expression of which thisoneis a sub-expression. The look up
operations would be made to atable that is edited as the program is type checked.
Such atable would hold the types of all the inbuilt operations and variables, and
would then be appended to with the types of any user defined variables and operations
(and their scope in the program).

2.3 Complications Type Checking Encounters, And
Their Solutions

As shown, basic type checking can be extremely Smple, and even at its most complex
it isacase of following severd smple rules that will lead to the required result.
Complications arise however, due to two other features present in some programming
languages, including ML ; polymorphism and user defined datatypes.

2.3.1 Polymor phism and User Defined Datatypes

Without polymorphism, and user defined datatypes, writing programs would be much
more tedious than it currently is. These concepts are present in most programming
languages to some extent, and provide a shortcut to the programmer, dlowing for the
faster and more efficient development of programs.

Polymorphism when referring to typesisthe ability of an operation to be applied to
more than one type of argument; it can also be applied to variables whereit refers to
the ability of that variable to take more than onetype of value. An example of a
common polymorphic operation is the addition operator. In most progranming
languages, the infix operator “+” is used to represent addition, much asit isin normal
mathematics. However, in computers the addition of integers and floating-point
numbers is accomplished via very different algorithms and often by completely
different hardware. Despite this the same operator, “+”, is used to represent both types
of addition, hence the following are both legal:

1+2

15+23
The fact that the same operator is used in both cases, yet the algorithms invoked at
each point are different, is polymorphism. Thistype of polymorphism is often termed
overloading polymorphism. Overloading polymorphism (normdly termed simply
overloading) describes what happensin the situation that occurs when different
algorithms are used for the same operator, depending on the type of the arguments
given. A second, perhaps more interesting, kind of polymorphism is where one
algorithm is used regardless of the types of the arguments used.

Such polymorphism can be seen in use in a function to calculate the length of alist in
ML. Here alistissimple a collection of like typed elements, denoted by square

brackets surrounding the collection each element of which is separated by a comma.
For example:

[1,2,3]

[ia.i ,’ b’ ’1(:1]

[]
Aredl lists, thefirstisalist of integers, the secondisalist of characters, and the third
isthe empty list.

As should be obvious, the type of elementsin alist does not affect the length of alist.
Indeed, the first two lists above have different types of elements yet have the same
length. A function to calculate the length alist in ML could be written as follows:

fun Length [] =0

| Length (hd::tl) =1+ Lengthtl;
If polymorphism were not available then such afunction would not be possible,
instead, there would have to be one function for each of the different type of list
possible. For example, one function for list of integers, one function for lists of
characters, etc. Thistype of polymorphism is often termed parametric polymorphism.
[Sethi1989]

User defined datatypes similarly make programming a much easier task. User defined
datatypes are classes of data structures constructed by the user (programmer) in such a
way asto aid both understanding and easy of use of the program. User defined
datatypes can be used to make very complex structures, for instance trees and linked
lists. They can also be recursive and can often be nested; thatis, itispossibleto use a
previously user defined datatypein another user defined datatype.

Given that user defined datatypesin themselves, can be extremely comple, it is not
surprising that they aso complicate type checking, although not to the same extent as
polymorphism.

2.3.2 Type Checking with Polymor phism and User Defined
Data Types

Polymorphism is the harder of the two noted complexitiesto deal with. User defined
datatypes can be deceptively easy to type check depending on the constraints imposed
by the language. Asfar as user-defined datatypes are concerned, there are three types
of language; those that do not allow user defined datatypes, those that alow user
defined datatypes but have a strict equality condition, and those that allow user
defined datatypes and have aweak equality condition. Clearly, thefirg type of
language is of no concern in this section, whereas the second and third are.

Languagesthat allow user-defined data types with a strict equdity will only recognise
two types asidentical if they are both declared as the same type. This meansthat two
different variables of different typesbut withidenticd structure and valueswill not be
seen as the same. For example, if auser defined data type was created that Smply
provided a different name for the integers, a direct comparison between the integers
and this new type would not be possible since the type checker would perceive them
as entirely different. For thistype of language, type checkingis acaseof doing as for

10

the basic case, but is dightly more complicated because the lookup table must be
extended to hold information of any new type defined.

On the other hand, languages that alow user defined data types with weak equdity
are much more difficult to type check. In thiskind of language, two variables can be
considered equal if they have the same structure and vaue, regardless of ther actud
type. Using the example of anew type, which amply renames theintegersfrom
above, thiskind of language would alow adirect comparison between variables of
these two types snce they will dways have the same structure, and will be equd if
they have the same value.

Thisthird kind of languages, ismuch more difficult to type check since the type
checker must be able to verify that the types of expressons used as arguments to
operations are structurally equal to the typesrequired. Given that the language of type
definitionsis very powerful, with different constructors carrying values of different
types, together with recursion, this then becomes a complex and difficult task. The
simplest way to deal with thiskind of type checking problemis for thetype checker to
compare types as they are defined. If a new type were defined that isthe same asa
previous type, then the type checker would ssimply note that these two types were
equal in itslookup table, thereby making it easy to compare them. However, if two
types are actudly the same, but with dternative definitions, then difficulties can arise,
for example:

datatype lorF =1 of int | F of real

datatype Forl = F of redl | | of int,
both of which areidentical in structure. However, since the ordering differs, the type
checker must be able to spot that these are the same regardless of the order in which
they were defined. The easest way to accomplish thisis toinclude some kind of
absolute ordering for datatypes, that is, when the type checker checks a new data type,
it will order the clauses of the new data typein an absolute order (for example,
alphabetical order by constructor name). All datatypeswill be ordered in an identical
order so that equal datatypes can be spotted easlly.

Polymorphism poses a much greater problem to type checking than user-defined data
types. The problem isthat the type checker must be able to work out what type any
given expression in a given program has at a given point, however, with
polymorphism and the standard types an expression may have many different types.
Take for instance the list length function mentioned earlier:

fun Length [] =0

| Length (hd::tl) =1+ Length tl;
With only the basic types available, the overal type of this function cannot be
identified, since it can be applied to many different typesof list. Given this problem,
to be able to adequatdy type check such afunction, the set of types must be expanded
to include the set of polymorphic types. Each of these polymorphic typesis
compatible (in isolation) with any other type that either does not contain the same
polymorphic type or the types are equd. The polymorphic types are represented by
the first letters of the Greek alphabet.

11

It isnow possible to seethat the type of thelist length function as written aboveis:

a list — int
That is, the function can take any kind of list as an argument and will return an integer
result. The type variable o can be instantiated with any type to give, for example,
int list - int, (bool * int tree) list — int or B list list — int. The problem now is how
the type checker ensures that express ons with polymorphic types are correctly typed.

Initially when type checking afunction such as thelist length function, the type
checker will assume that each of the variables, arguments and expressions of that
function have different polymorphic types. The type checker will then attempt to
create a type binding which is as general as possble, while still being compatible with
the usage of functions, variables etc having known types.

To begin with thisinvolves looking up the table that contains alist of dl the variadles,
constants and functions declared so far, and matching any variables, constants and
functionsin the function definition with onesin the table. Once any of these have

been matched and the types of any literalsin the code have been worked out, thenth e
types for parts of the function may be known. The type checker will then go through a
process known as unification.

Unification attemptsto do two things: firstly it attempts to ensure that any
polymorphic types applied to each other are compatible, then it attemptsto create the
single most genera type it can from the unification of these two polymorphic types,
that new typeisthen used to work out the type of the application.

Length is being defined as a function so its type is taken to be o — P initially. Inthe

second line, its result is added to 1 so [is unified with int to give Length the type of
o — int. In the first line, Length is applied to “[]” having type v list so v list is unified
with o to give Length the type y list — int. Thistype iscompatible with all the other

type information in the function definition so it is the final type of Length, apart from
the cleaning up of type variable names to give a list — int.

In the case where the types being unified are the same, then unificati on istrivial. In
the case where one of the typesbeing unified containsthe other type being unified
then unification does not take place and atype error isreported. Thisisto avoid the
possihility of infinite types, which would be the result if unification were dlowed to
take place. Thisis known as circularity. An example of types that would cause this
would be o and o list. Attempting to unify these types would cause circularity because
initially, the o would be instantiated to a list, however, the original a list type would
have to be instantiated to be a list list. Now, the types would be a list and o list list,
however, the unification could not stop here since the types are not yet equal, and
hence unification would continue indefinitely.

2.4 Problems Dueto Type Errors, and Their
Solutions

The greatest difficulty encountered in type checking, from the programmers
perspective, isthe type error. Although type errors can find many errorsthat

12

otherwise have been overlooked, they are often difficult to understand for the
following reasons. Type errors occur when the type checker discoverstypesin the
program that are not compatible. For instance the following example would cause a
type error in most programming languages:

“’+1
The main difficulty raised by such errorsisthat it is not aways obvious where the
problem originates. Because of the flexibility introduced by polymorphic types, the
position where the type checker reportsthe error is often not theactual source of the
problem. Rather the actual source of the problem occursin acompletely different
place from the reported podtion of the error. For example, consider the ML code:

let
val x =“s’;
vady=2;
in
X+Yy;
end;

Here the type checker would find the error on thefifth line where x isadded to .
However, the real source of the problem is actually on line two, wherethe x is
declared as a string. Although the above example issomewhat trivial, it adequately
displays the problem and it is clear that it could in fact become more difficult to solve.
For example, if x had been declared in another module, and in another file, in that
case, the error may be even moredifficult to locate.

Type errors are themgor problem for any ML programmer, particularly beginners
and polymorphism exasperates the problem. Polymorphism can cause type errors to
become more confusing and less specific than otherwise would be possible. For a
detall example of this, see [Section 5.1] in chapter 5.

Currently, the only solution to the type error problem implemented by the compilersis
to give the programmer an error message detailing the position of the error and what
its cause at that point. However, as noted earlier the paosition of the error is often not
where the source of the problem lies, and the error messages provided can often be
very confusing.

13

3. User Interface

3.1 User Interface Options

Clearly any interactive computer program written must have some kind of user
interface. Currently there are twoman optionsfor generd software user interfaces,
command line (i.e. text based) and graphica user interface (GUI), each havingits
merits and demerits.

3.2 Why Choose A GUI For The Tool?

At present, for most new programs a GUI seemsto have become d most mandatory.
Thisis understandable given that a GUI is normally much easier to learn and use than
acommand line based tool. In most circumstances, a command line tool requires a
greater degree of understanding and depth of knowledge on the part of the user than a
GUI based tool of smilar nature. Thisis because with a GUI everything necessary is
(visibly) at usersfingertips.

In any program where the selection of text isrequired (asistruein thistool), thena
command line tool runsinto immediate difficulties. Such atool would require the user
to either count characters, words, lines, phrases or any combination thereof to
specificaly identify the portion of text required to be selected. Not only isthis
tiresome for the user, it isproneto error, increasingly so asthe text entered growsin
length. If an error was made in the counting, it may not be immediately obvious to the
user that it has occurred. This may then lead to an inaccurate result. Assuch, a
command line based version of thistool would be more likely to be counter
productive. Thisleaves a GUI asthe only real option.

Thisisnot a problem in a GUI. The problem of selecting a portion of text is
simplified to clicking and dragging themouse. In the case that the selection was not
what was wished, it should be immediately obvious as the area highlighted by the
selection (as happensin mogt, if not all, GUIs) would not be what the user wanted. In
addition, aGUI is much easier to learn and use, andis dmost certanly more
accessible to novices.

3.3 Design Goalsfor the GUI

Unfortunately, GUIs currently created for tools range from the very good to the very
poor. The vast difference in the qualities of GUIs s probably due to two major

factors; oneisthat not enough timeis spent on desgning the GUI, the other being that
the GUI is normally designed by the creator of the software and not by the user. The
first factor can be caused by the pressure to create a good working tool, which then
leaves little time for the interface to be designed. The second factor isone that isvery
common, where the creator of the software decides what the user will andwill not
want to do whichis often very different to what the user actually requires. Therefore,

14

it is clear that defining the goals for the GUI isnot only important, but hasto be done
well if agood GUI isto be created.

Obviously, the main goal for the design of a GUI, or any user interface for that metter,
should be that it is easy to use. The problem isto define what that meansin the
context of thistool. There are afew obvious factors, which must contribute to this
“easy to use” description of the interface. Firstly, the selection of a specific portion of
text must be easy to do precisdy. This requires that the user interface be responsive to
the users actions — interfaces that suffer from long delays between user actions and
program responses will often cause the user to make errors. In addition, theinterface
must be clear; thatis, the text must be eesly readable and selected text must be
significantly different to non-selected text.

Secondly, any actions possible must be clear to the user. Thismeans that any buttons
or menu items must be clearly named andin an order that isboth consistent with the
rest of the users chosen interface (i.e. window manager) and groups operationsin a
logical and sensible order.

Thirdly, the GUI must provide dl the possblefunctiondity thatis available. Thereis
little point in having a GUI that does not provide the functionality that acommand
line interface for the same tool would provide. However, not dl functiondity needs to
be immediately obvious to the user, aslong asit is available via some means.

Thefinal goa of aGUI isthat it should be aestheticdly pleasing, though thisisnot as
important as any of the other noted gods. Being a subjective god itismore difficult
to accomplish, however it should be possible to design an interface, which is
generaly pleasing.

3.4 General GUI Design Problems

The whole area of human computer interaction (HCI) isarapidl y growing area of
study, and there have been many texts published on such interactions, for example
[Dix1998]. The main goal of such study isto understand both the technology and the
users sufficiently to ensure thatitis possble to build intuitiveand good user
interfaces for the technology that meet as many of the users' needs as possible. Alas,
most of the GUI's currently available to users are based more on tradition and the
programmer’ s views about what is good, than are based on scientific premises.

The main problems generated in the designing of GUI's are the same regardless of
what purpose the GUI serves. These problems stem from understanding what the user
requires and the best way to present that information. The red difficulty is trying to
predict the audience that will eventudly use the tool and how they would belikdy to
work withit.

It isimpossible to create a GUI that will beided for everyone, so a compromiseis
necessary. However, despite having to compromise, several criteria should always be
observed when constructing a user interface. For instance, it is known that people
have alimited short term, working memory capacity; this should never be exceeded.
(The actual capacity is 7+2 chunks, unfortunately, thereis no real agreement on what

15

achunkis, however, agood rule to follow would be to never have the user have to
remember more than 7 things at once.) Other criteriathat must be observed involve
the use of conventions. No conventions should be overruled without good reason; for
example, the colour red should not be used to signify “go” since convention says that
red signifies “stop” (or “danger”). [Dix1998]

3.5 Designing the GUI for this T ool

Any user interface to the tool should, firstly provide access to asmuch functiondity
asisavailable, and secondly provide easy to use access to such functionality.
Therefore, in this case, the GUI hasto provide a method of selecting a portion of text
from the text that has been enteredinto the compiler. The GUI then has to allow the
user to query the type of the text highlighted, and the GUI would have to display the
type of the text selected, or some helpful text in case thereis no type associated with
the text highlighted. It should also provide a method for selecting a new type to
impose on a highlighted expression and to re-typecheck the program with those
changesin place.

Hence, the GUI requires at least two buttons, one for querying thetypes of
highlighted expressions, and one for applying new typesto those expressons. Also
required are atext box in which the program code can be displayed to be highlighted,
another text box to alow entry of anew type, and an area, perhaps yet another text
box, where the type of the currently queried expressionis displayed, dong with the
expression.

Additional functionality useful would be a quit button, and perhaps a separate button
to alow the code to be re-typechecked, this would allow severa expressionsto have
their types changed without necessarily having to re-typecheck for each change
individually.

The biggest problem isto decide on alayout that best suits the purpose of the tool.
Thereis, unfortunately, no precise way of measuring what object should go wherein
the window, and so it issmply acase of educated trial and error for the most part.
There are afew conventionsthat should be followed, and a few requirementsthat
should be met, though. Conventions like the fact that the Quit/Cancel button (if oneis
present) normally resides at the bottomright of any window, and that buttons should
have clear concise text (three words at most, fewer words are better — but not at the
expense of clarity). In addition, the text boxes should be large enough to show a
reasonable amount of text, where a reasonable amount of textisjudged by the
purpose of the text box. So for instance, the text box for entering new types could be
quite small, perhaps only 40 characters wide, and 1 character tal, but it should alow
for alimitlessamount of text to be entered into it. The other text box will need to be
large enough to accommodate more text asitis required to hold the entire program
code. In addition, since it is unreasonable to expect arbitrarily large pieces of text to
fit in the text box, it should be scrollable. The final condition that must be met is that
the text area displaying the type of a given expression needs to be large enough to
display arbitrarily large amounts of text, ance thereisnolimit onthe sze of adata
type, however, most typeswill probably be quite smdl, so the area need not be too
big.

16

4. Implementation

4.1 Platform

In order to accomplish this project an existing compiler and graphicd tool kit needed
to be selected. Though the choice was not large, there was some choice avalable in
both respects, and the final choices were the Moscow ML compiler and the mGtk
graphicstool kit.

4.1.1 The Compiler: Moscow ML

For a project such asthis, it was necessary to locate a compiler that could be used as

the basis for the tool to be constructed. There are several criteriathat such a compiler
should have, the most important of which is; the compiler must be open source, or at

least the source code for the compiler must befully available, and modifiable under

an agreeable user licence.

Another criterion with which the compiler had to comply was that it had to be
reasonably easy to understand and to modify. Thisrequired that the compiler was
modular enough for it to be easy to follow the logic of the program through to
completion. Thisinitially signalsthe ML Kit compiler as a possible candidate, and
indeed, it was designed to be a kit for building ML compilers (hence the name).
However, it was discovered that the compiler was actudly overly modular, and so
difficult to extend [Keanel999], hence the Kit Compiler was not suitable.

If the project was to be of useto the ML community then it also had to cover most of
the ML language — if not all of it. This coupled with the preferable criterion that the
compiler should be a currently popular compiler led to the choice of Moscow ML.
The Moscow ML compiler fitsall of the required criteria, the preferable criteriaand
has the benefit thatitis still under active development so there are those whose
knowledge of the compiler is extengve.

Regardless of which compiler isused, the only real part of the compiler thatis of
interest for this project are the type checking routines. In Moscow ML, there are two
dightly different approaches to type checking; oneisfor theinteractive compiler, the
other isfor the batch compiler. Both use the same functions, however there are smdl
differencesin the way the functions are applied. Inview of this, it was decided to
concentrate on one of these two methods of compilation for thistool, although it
would be possible to extend the functionality to cover both, there was insufficient
time to do that. The decision was made that theinteractive compiler should be the one
to usethistool, asit is probably the most often used, and isamost certainly the way
new users become accustomed to the use of ML. Hence, it seemed more useful to let
thistool be part of the interactive compiler only.

Moscow ML follows the standard compiler model, at least asfar asthe type-checking
phase of compilation. Any program submitted to the compil er isfirst passed through

17

the lexer, which divides the program into tokens, each of which represents an element
of the language. The stream of tokens produced is then passed to the parser, one token
at atime. The parser then takes these tokens and constructs an Abstract Syntax Tree
(AST). ThisAST isthen passed on to the type checker, which will traverse the treein
its entirety, inferring and checking types as required.

In fact, aswith most compilers, the parser callsthe lexer, and the lexer will lex one
token which will be passed back to the parser, which will deal with it as necessary
before caling the lexer again. However, for the purposes of this project, that
distinction isinsignificant. For more information on general compiling techniques see
[Appel1999].

One of the most useful functions provided by the lexer and parserin Moscow ML is
the location information. Thisinformation is attached to key nodesin the AST during
the parsing phase, with information provided from the lexer. Theinformation,
describes where, in the input stream, the current token started (i.e. at which character
it started) and where the following token starts. Hence, this uniquely definesthe
position in the input stream where any given expresson occurs. Thisinformation
proved to be invaluable in the creation of the tool required.

The Moscow ML AST format isworth mentioning at this point. Asis generdly the
case for compilers, the AST of Moscow ML bears a cose resemblance to the
grammar of the language it describes. However, there are severd differences. See
[Appendix A] and [Appendix B] for the Moscow ML grammar and AST definition
respectively.

Two main points about the grammar and the AST of Moscow ML are of note. Firstly,
the grammar that Moscow ML describesis not the ML definition of the language, but
rather asuperset of it. That is, Moscow ML extends the ML language. The extensons,
and detalls of ther benefits, are detailedin [mosman] and [mosref]. Secondly, as
noted, the AST isdightly different to the grammar. The differenceis dueto the
following factors,; oneisthat severa of the Moscow ML grammar rules have been
combined (where appropriate) into asngle AST data type. Another is that there are
elementsin the AST that are not required in the grammar, but arein the AST to make
things ampler, an example of whichis the hash tables that are part of the AST, but
not the grammar; these help to keep a track of the current environment in which the
tree exists.

Although the AST points noted are not problems as such, understanding that these
issues exist aids both in the understanding of the type checking routines, andin where
the additiond typeinformation is andisnot necessary.

Oncethe AST isfully created (i.e. the entire program has been lexed and parsed),
Moscow ML will type check it. Thisis accomplished by functions availablein the
“Elab” module of the compiler. Most of the work for this project concentrated on
these functions, therefore, it isworth briefly studying them - recalling that basic type
checking is quite asmple task, entalling only that thetype checker checksthat the
types required are the same as those given for an expression.

18

In Moscow ML, type checkingis accomplished by passng a type argument asthe last
argument to most of the lower level “elab” functions. Before the functions are called,
thisfinal argument is set to thetype that the type checker expectsthe expression to be.
In the case where this typeis not unifiable with the actual computed type of the
expression, then atype error has occurred, and an error is printed to the consol
window. Thisiswhere thetool of this project comesinto play, the concept being to
insert the tool between the type error occurring and the compiler returning to the

ready for input state. At this point, the user will beallowed to experiment with the
typesin the program and will be able to discover the source of the problem.

Although Moscow ML matches al the criteria given, itisnot devoid of problems.
Amongst themore pervasve was the often poor naming of modules, functions and
variables and the lack of comments throughout the code. The poor naming of modules
was one of the most difficult problemsto overcome, and the use of the Unix “grep”
command was invaluable. The lack of comments was the other big difficulty.
Throughout almost the entire code, the only comments are in the form of notes made
by the original writersto themselves regarding what to revisein future versons of the
compiler. Despite these niggling problems, the compiler in general seemed to be fairly
well thought out and reasonably well written, with obvious paths of logic through out
the code once the programmers style had been discovered and understood.

Despite the noted shortcomings of the compiler, it was deci de that the best way of
extending the compiler would be to stick to asmilar style of progranming. The
reason for this decision was that it was thought that program code that is consistent
throughout isfar easier to understand than code that constantly switches styles. In
addition, it made the task simpler, since it allowed for the copying of much of the
existing code, with only minor modifications required.

4.1.2 The Graphics Tool Kit: mGtk

Since ML does not contain any visual components as standard, in order to create a
graphical user interface, agraphicstool kit (GTK) had to be found. Currently for ML
there arealimited number of possible options, and of those available, fewer were of
possible use.

In the search for a GTK to be used, three options presented themselves. These were
SML/tk, mGtk and mosmigl. Aswith the compiler choice, it was necessary for the
GTK to fulfil severd criteria. Most importantly, the GTK should offer asmuch
graphical functionality as possible. Thisinstantly rules out mosmigl, since it did not
offer enough graphical functionality (it covers only a small subset of the open GL
library at present). Secondly and equally important, was that the GTK should be able
to be compiled by Moscow ML, snce the Moscow ML compileris b uilt and compiled
with a previous version of the Moscow ML compiler. Thisthen also ruled out
SML/tk, since even though it clams to be able to be compiled with any compiler
complying to the SML standard, it failed to compile with Moscow ML. Asit is
designed primarily for SML/NJthisto be expected. This then |eft the only viable
option as mGtk.

19

mGtk is an interface between Moscow ML and the GIMP tool kit (Gtk), and has been
designed and deve oped specificaly for Moscow ML, thoughitis ill inthe very
early beta stages of development (version beta 0.3 had just been released at the time
of writing). Gtk isthe tool kit that was created to ease the creation of the GNU Image
Manipulation Package (GIMP) series of programmes, and as such ismostly complete
asa GTK. mGtk providesfunctions that are direct relations to thefunctionsin the
Gtk, but arein ML instead of C++. mGtk then coverts these function callsto the C++
function calls, and calls the glib library routines, to perform the actud functiondity.
Therefore, any functionality available in the Gtk, should also be availablein mGtk.

Unfortunately, mGtk lacks any documentation, the only documentation available for
any of the functionality being the Gtk documentation, which itsdf isfar from
complete. The authors of mGtk recognise the need for documentation of the package,
but have not yet produced any. Thisis understandable given that the softwareis ill
in an early betaversion. Asfor the Gtk documentation, it isincomplete and difficult

to follow. Much of the Gtk functionality is not in the modules expected, and the help
pages often result in smply confusing the user. In addition, although the help pages
do list all the functions available, there is no indication of how to use many of them,
or even if they are accessble by the user at dl. These problems extend directly to
mGtk since the Gtk documentationisdl thatisavailablefor it, therefore to use mGtk
effectively was problematic but at the time of writing was the only choice available.

4.2 My Implementation

The implementation of this project split into two distinct parts; the core tool, and the
graphical user interface. The coreis everythingin the tool that wasnot part of the
graphical user interface, that is, the functionality of the system to which the user
interface gives access.

4.2.1 TheCoreTool

The core toal itsdf splitsinto two distinct parts. These are; the expression type query
tool, and expression type changing tool. Each of these parts of the tool could be
considered a different tool inits own right and thisishow the project was approached.

The type query tool wasthe first part to be considered, and was aso, it turned out, the
easiest part toimplement though it was not devoid of problems. The god for thistool
was that the user should be able to select any phrase in a program and ask what type it
is. The tool should then respond with the appropriate typefor that phrase, or some sort
of useful message when the phrase does not have a type. The smplest way to
accomplish thistask wasto attach extrainformation to the abstract syntax treein the
form of a Type Option Reference variable at each node of the tree. Thisvariadleis
initially set to“Ref NONE” butis theninstantiated by the type checker to be the type
of the expression as represented by the node. This new information isof the form

“Ref SOME X” where X isthe type in question. The tool can then look up the AST to
find the expresson for which the user waslooking, and return the vaue of X to the
user, or, in the case where there was no type, a useful message.

20

In order to avoid having to change the original compiler as much as possible, to avoid
introducing errors and further complications, it was decided that the easiest way to
add the type information to the AST would be to take a copy of the tree, modify the
copy, then use the copy as required throughout the toolslifetime. Since compilation
does not continue (after the tool has been used), it isnot necessary to provide away to
convert back to the original AST from the modified version. The new modified AST
would then be applied to specidly modified versons of the compiler functions to
accomplish the type checking.

The expresson type changing tool was considered next. This posed dlightly more
difficult and complicated questions. Firstly, there was the question as to how to effect
the changein the program. There are severa possible answers to this question; for
example, it could be possible to modify the type checker to use types the user
requested viathe tool whenever they were available. Another possbility would be to
create anew type checking routine accomplish that same functiondity. However, for
the sake of smplicity and time to implement, athird option was decided on. As shall
be seen however, thisthird option was far from ideal, and is less useful than either of
the other options might have been, had time permitted their use.

It was decided that the tool would be built by relying on features of the ML language.
In ML it is possible to give an expresson adesred type by attaching the“:” symbol
to the expresson, followed by the type required. Initidly thismay seem like the
perfect solution; if auser wanted to change the type of an expression then the tool,
would modify the AST aform of which would be asif it had “: X" attached to the
node of which the user wishes to change the type. Then the AST could be re-type
checked and the type checker would use thetype X for the expression as requested.
However, unfortunately for the purposes of thistool, if the type required is not
unifiable with the type of the expresson then a type error is generated. Thisis not
what isrequired; if the user requests that thetype of an expression ischanged to X
then it should be changed to X regardless of whether it unifies with the expresson or
not. Therefore, another solution was necessary.

In ML, it isalso possible to raise exceptions at any point within an expresson.
Exceptions have the characteristic that they are polymorphic, and will take on any
type as required, thatis, they can pretend to be of any type asisrequired. Therefore, it
should be clear that if we were to raise an exception which had attached to it the code
“:X” then the result of the whole expresson would be of type X, whichisaswe
require. The only problem remaining is then how to declare and raise an exception
within an arbitrary piece of code. Thisat first seems smple and the initial solution
relies on yet another ML feature, thelet...in...end expression.

The“let X inY end” expresson would dlow for an exception to be declaredin the X
section and then would allow for that exception to beraised inthe Y section, the
exception would not be available outsde the let...end expresson, and so would be
unlikely to corrupt any of the other code in the program. The result is displayed in
figure4.1.

Infigure 4.1, the blue arrows represent the code as the user sees it, the previous
program code, followed by the expresson they highlight, followed by any subsequent

21

Location X Location Y

Previous Program Code... exp ...Subsequent Program Code
«
»

| et

exception __typeChecki ngTool Excepti on;
in »

(exp;

rai se __typeChecki ngTool Exception):type

end;

Program Code before Type Change: —»p
Program Code after Type Change: —p
Expression Highlighted by User: exp

New Type Requested by User: t ype

Figure4.1

code. The black arrows represent what occurs after the type changeis effected, but
this new code will be invisible to the user and, asfar as sheis aware, the code has
remained unchanged. Thelocation information, Sgnified by the purple arrows,
remains the same, so the new code completdy invisbly replaces the old code. This
code change effectively removes the expression selected from type checking,
allowing the user to ask the type checker if she were, in some way, to make the type
of this expression the type she has specified, would this dlow the program to type
check correctly. If thiswere the case, then the user could then attempt to changethis
expression, in the source code, to be of that typein whatever way shewished.

What occurs when the user requests the change of thetype of an expression isthat the
tool will initially search for location X and Y (asin the figure). These two numbers
should uniqudy define the expression required. Oncediscovered, the tool will insert a
new nodein the AST in place of the node representing the expresson. Thisnew node
will be the node representing the let expression as seeninthefigure. Inthislet
expression, the first part of thein...end section is the expresson that isbeing replaced
hence nothing islost. Also, note that the name of the expression has been chosenin
order to avoid conflicts with user-defined exceptions, it isin fact highly unlikely that
auser would use the same namefor an exception asis chosen here. However, even if
the user were to use such as exception, no problems should be encountered.

The problems caused by this approach to changing the type were many and several

remain in the final implementation. Firstly, thelet...in...end expression cannot be
placed in any arbitrary piece of code. It may only go in certain places as defined by

22

the Moscow ML grammar [Appendix A]. Thisisnot necessarily a problem however,
since the expresson can goin most places that would be required — it is notably not
alowed on the left-hand side (i.e. before the “=" sign) of function and variable
declarations. This need not be a problem since asimple resolution exists, namdy
applying the change to the arguments supplied to a function when it isbeing used — or
to apply the changes to the code after the “=" sign. Neither of these solutionsis ideal,
but should nevertheless accomplish the user’ stask.

Secondly, hiding thelet...in...end expression completely posed another problem. As
soon asthisis done, changing the type of any sub expression of the mai n expression
replaced has no effect on the main expression or anything outside that expression
although it remains possible to do. In fact, the sub expression need not even be
unifiable with the type of the main expression. These two problems are present in the
final version of the tool as created for this project.

4.2.2 The GUI

Asfor the core todl, the generd god for the GUI was tomeet dl the criteria
previously mentioned [Chapter 3] as best as possible. However, before this goal could
be reached, it would be necessary to learn the mGtk language. Although this seemsa
trivial task initially, it quickly became clear that this part would take up most of the
time set aside for the construction of the GUI.

Theinitial goal for this part of the tool was to create a bascinterface that would dlow
the user to highlight an expression in an ill typed ML program, in a GUI window, and
have the GUI report thetype of that expression back to the user. This required four
things, awindow, atext frame in the window in which the user could see their
program, and in which the text could be highlighted, a button to command the tool to
display the type of the currently highlighted phrase, and alabel or text box to report
the type as discovered by the toal.

The secondary goal for the GUI wasto take the tool as created for the previous godl,
and extend it to add functiondity to alow the user to change the type of the phrase
highlighted. This required the addition of two new features to the GUI; anew text box
to alow the entry of the new type required, and abutton to command the tool to
perform the type change. Tertiary godswere to add a quit button, and to make the
user interface as user friendly as possble.

As previoudly noted, before any of the gods could be realised the implementation
language had to be learned from scratch. Thisinitially seemed like a reasonable and
attainable goal in the time limits set for the project, but latterly this proved to be a
somewhat unrealistic view.

The eventud GUI isactually smply a hacked version of one of the examples as
provided by mGtk. Although it would be possible to create a new and better GUI for
the tool, it would require much time and effort, most of which would be usedin
attempting to learn the mGtk ML extensions. Unfortunately, this project ran out of
time before such an attempt could be made. Hence, the user interface created for the
project isfar fromideal. It barely coversthe main two aims of the GUI; providing a

23

two-button interface, with two text boxes and alabel, each of which does as described
earlier [Section 3.5].

An interesting note about the GUI isthat the Moscow ML interactive compiler is
currently only acommand|line (i.e. text) based compiler, whereas the GUI is
obvioudly a graphical tool. This meansthat the user has to adjust between usng the
Moscow ML compiler viaatextud interface, to usang the tool viaagraphical
interface. Thisinitially may seem to be a problem, nevertheless, it appears to work
well, and make sense in the context of the tools being used. Itislikdy that the user
will write their code in atext editor of some description anyway, copying and pasting
into the interactive compiler as required, therefore changing between theinterface
types should not pose a problem.

Theideaof the GUI isthat it islaunched as a new window when an attempt is made
to evaluate an incorrectly typed Moscow ML program in theinteractive compiler. The
new window appears on top of the user’s current screen with the program, as applied
to the compiler, visblein the largest of the text boxes. When the tool isno longer
required, the user smply closesit (using the window manager close buttons, since no
quit button exists) and the interactive compiler could then be used asnormal agan. In
the case when the program applied to the compiler is correctly typed, the compiler
performs as normal, and the fact that the tool existsis not apparent to the user.

24

5. Example

5.1 Example Used in Detail

To display the tool working, and illustrate the need for such atool, below isan
example (figure 5.1aand 5.1b), in which an error is located using both some
compilers and the tool created.

| et
fun addend (x,

[1) X
| addend (x, (hd::tl))

(hd:: (addend(x, tl)))

in
fn (x, elm Ist) => case x of
1 => addend(elm 1Ist)
| 2 => (elm:lst)
| 3 => (elm:(addend(elm Ist))

end;

Figure 5.1a — Example Code used (Error highlighted in red)

This example (due to Alison Keane [Keanel999]) shows a function designed to
provide the following functionality, when passed a number, an element (of type o)
and a list (of type a list), in the case that the number is “1” the element is added to the
end of thelist, in the case where the number is“2” the element is added to the
beginning of the list, and in the case when the number is“3”, the element is added to
both the beginning and the end of thelist. Note that for any other number a“Match”
exception will be raised, indicating that an argument could not be matched with the
clauses of the function.

Although this example seems correct at first glance, it contains an error commonly
made even by experienced ML programmers. The error ison thefirg lineof the
addend function and isthat the text after the “=" dgn should read “[x]”, “X::[]” or
“x::nil” instead of simply x (the error ishighlighted inthefigure). Thatis, currently
the function’ s type will be:

o list - alist —» o list
rather than the intended:

o — olist - o list.
Thiserror, while easy to make, can be difficult to spot and correct. A correct version
of the code can be seeninfigure 5.1b.

| et
fun addend (x, []) = [X]
| addend (x, (hd::tl)) = (hd::(addend(x, tl)))
in
fn (x, elm Ist) => case x of
1 => addend(elm 1Ist)
| 2 => (elm:lst)
| 3 => (elm:(addend(elm Ist))
end;

Figure 5.1b — Example Code with error corrected (Corrected error highlighted in
red)

25

5.2 Some ML Compilers Responsesto the Erroneous
Code

The responses given by compilers to the erroneous code vary in both clarity of
understanding and usefulness. The Moscow ML v2.0 compiler responds as can be
seen in figure 5.2a and the SML/NJv110.0.7 compiler responds as can be seenin
figure 5.2b (over page).

The response, as can be seen, could be difficult to understand to those not overly
familiar with the workings of type checking. Of the two responses presented, the
SML/NJoneis potentially the most confusing of the two, giving both a poor
indication of where the error lies (if the statement “elm:: Ist” occurred severd times
in the code, then tracking down the problem becomes difficult) and also of the nature
of the actual error. The error given seemsto suggest that thereisan element of type
‘Z ligt list. Since the programmer did not knowingly enter aterm of thistype, thiscan
be the source of much confusion.

The response of Moscow ML to the errorismuch clearer on both counts, providing an
accurate position of where the error was encountered, and a better description of the
problem. Nevertheless, the description is still confusng Snceit may not be clear why
“elm” was attempting to be unified with a list.

Both compilers, however, report that the error is dueto circularity, in other words the
attempt to unify o with o list, which would result in an infinite type of the form a list
list list...etc. Although thisistrue from the type checker’s perspective, circularity
does not cause the actua problem, indeed many novice ML programmersmay not
fully understand that to which circularity refers, leading to possblefurther confuson
inthe error reported. Many novice ML programmers when presented with this
situation would read the codeline by line attempting to andyse where the problem

lay, to alarge extentignoring the compiler’ sresponseas it only servesto confuse
them. It should be clear, therefore, that an dternative approach to the standard error
messages provided by most ML compilersisrequired.

Hoscow ML wersion 2,00 {June 20003
Enter *guitii:” to quit,
- let
fun addend <x, [1k = x
I addend Cx, Chdi:tlhd = {hd:iiaddendix, 122}
in
frn fx, elm, lst) =* casze x of
1 =X addendi{elm, lsti
| 2 =k {elmizlat)
| 3 = felmiiiaddendialm, lstii)
end:
I Toplevel input:
I | 2 = {elm:tlst)
I FaTa Ty
I Type clashi expreszszion of type
I “a list
| cannot hawve type
I “a
| because of circularity

Figure 5.2a— Moscow ML

26

Standard ML of Mew Jersey, Yersion 110,0,7, September 28, 2000 [CM: autoload enabled]
- let
fun addend (x, [12 = x
I addend €x, (hdz:ztldd = thd:iiaddendsx, £l
in
frn x, elm, lst) = caze x of
1 =¥ addendielm, lst}
| 2 =F {elmtilst)
| 3 = {elm::{addendielm, lstid}

= ====== = gtdIn:23,15-232,25 Errort operator ahd operand don’t agree [circularityl
operator domain: F lizt % "7 list list
operands F o list % 7 list
in expresziont
elm :: lst

Figure 5.2b — SML/NJ

5.3 Walk Through of Code when Used With This
Projects Program

Theam of this project was to providea more efficient way of locating type errorsin
ML programs. This example shows an attempt to provide some proof as to the success
or otherwise of the project.

To begin this example, the Moscow ML compiler is run as would normally be
expected. The erroneous codeis then cut and pasted into the compiler, and the return
key is pressed, at which point the compiler respondsasin figure 5.3.

Mogcow ML wersion 2,00 (June 200073
Enter *guitii:” to quit,

- let
fun addend ¢x, [1} = x
[addend {x, (hdiztl)) = {hd::{addendix, 1)}
in
frn fx, elm, lst) =* caze x of
1 = addendielm, lst
| & =k {elm:zlsth
| 3 =k {elmtifaddendielm, lstiid
end:

I Toplevel input:
| & =k {elm:zlsth

P

|
|
|
I Type clash: expression of type
I “a lizt
I cannot have type
| Ta
| because of circularity
I Toplevel input:

| 3 = Celmiiiaddendielm, lstird

At

“a list
| cannot hawve type

-

3

|

|

|

I Type clash: expression of type
|

|

|

| because of circularity

Figure 5.3 — The tools response to the erroneous code

27

We can make severd observations regarding the response of the compiler to this
error. Firstly, note that the compiler returns two type errors, separated by ablank line.
Thefirst of thesetwo errorsis displayed as would be expected by the origind
compiler. The second error indicates that thereis afurther type error in the code, and
that these are the only type errors present in the code.

Asthe type checker i s not stopped when atype error is encountered (normadly an
exception is raised and the type checking process halts) any further type errors in the
code will be found and displayed, hence the second error is displayed here. While this
can aid the location of any error in the code, the user could quickly become
overwhelmed by the number of errorsif there are many type errorsin the code. In
addition, any type errors other than thefirst may bemideading to the user ance they
may be agde effect of thefirst error. It was decided to report them, however,
allowing the user to respond accordingly, ignoring them if required.

Another point to noteis theline of “=" dgns at the bottom of the output which is
used to distinguish between error printouts. As a new batch of type errorsmay be
reported after every change made to the code, theline divides errors that relate to the
latest action from errorsrelating to previous actions.

At this point, the GUI is displayed (this happens d most smultaneoudy with the errors
being displayed, and occurs only when a type error is detected). Theinitial window
presented to the user can be seen in figure 5.4. Note that due to the way the screen
shots were captured, the X-window interface is not visible, although it does exist for
the GUI.

Cluery Type

Select an expression to investigate

let
fun addend (=, [I) =%
| addend (=, (hd:A)) = (he{addend(=,)

fir (<, elm, |5t} == case x of
1 == addend(elm, Ist)
| & == (elm:lst)
| 3 == (elm:(addend{elm, 15t
end

Change Type

Figure 5.4 —The GUI initsinitial state

28

In the figure, the code as entered into the compiler is displayed in themain text
window. The button for querying the type of a highlighted expression is at the top of
the window and the label directly below it, currently displaying “ Select an expression
to investigate” will display the type of any expression highlighted after the button is
pressed. The areafor entering new types to apply to the codeis at the very bottom of
the window, adjacent to the button that when pressed wil | convert the type of the
given expression to the type requested.

Given theinitial error that was reported (figure 5.3), the most obvious starting point
would seem to be to check the types of those elements notedin the type error. Having
decided this, we then can highlight the desred expression in the code and query its
type. In this example, we start with the “elm” expresson asindicated by the compiler
asthe source of the error. The result of highlighting the “elm” expression, then
pressing the Query Type button isshownin figure 5.5.

Cluery Type

=(174 177 has type "a=

let
fun addend @<, [=x
| addend i« (thd:A)) = (hd:{addend(, 1)

fir (%, elm, Ist) == case x of
1 == addendielm, Ist)
| 2 == (EI:Ist)

| 3 == (elm:{addend(alm, 15t

end

Change Type

Figure 5.5 — Result of querying the type of the highlighted expression.

Note that now the label text has changed to reflect both the position of the highlighted
text and the type of the expresson highlighted. The fact that it isthe position of the
text that is displayed rather than the text itself is one of the failings of the GUI. This
issue could be addressed by theaddition of another text box, similar to the one that
holds the program code, but for the expresson highlighted and the type of that
expression.

The user at this point should note that the type of “dm” is as expected at this point,

and so the question then movesto the “::” operator. The user then highlights and
gueries this expression, with the result as shown infigure 5.6.

29

Cluery Type

=[177,173) has type "a *a list -='a list=

let
fun addend @<, [=x
| addend («, (hd:A)) = (hd:{addendis,)
in
fir (%, elm, Ist) == case x of
1 == addendialm, Ist)
| 2 == (elm§lst)
| 3 == (elm:(addend(alm, 1587
end

Change Type

Figure 5.6 — Result of querying the type of the highlighted expression.

We now note that the result of thistype query is as expected. The user now addresses
the problem of attempting to discover why the compiler reported an error at thispoint.
It should be realised that if the type of “elm” hereis correct then perhapsitis
incorrect elsewhere and if this were the case then the error reported by the compiler
may make sense, since it isimpossible to give the “elm” expresson two different
types amultaneoudy. With this thought in mind, the next expresson to test would be
the “elm” immediately preceding the one, which the error notes as the problem (see
figure 5.7, over page).

30

Cluery Type

=(149,152) has type "a list=

let
fun addend @<, [=x
| addend i« (thd:A)) = (hd:{addend(, 1)

fir (%, elm, Ist) == case x of
1 == addendE, 1=t
| 2 == (elm:lst)
| 3 == (elm:(addend(alm, 1587
end

Change Type

Figure 5.7 — Result of querying the type of the highlighted expression.

It can now be seen that the type of “elm” hereisnot thetype that is required, however
it is one of the types mentioned in the error reported by the compiler. We have already
encountered the other type reported by the type error during the previous test on the
“elm” which comes subsequently in the code. Now the error beginsto make more
sense. We have discovered both that the type checker has encountered problems in the
attempt to give the same variable two incompatible types, and where this occurred.
The problem isto understand why it occurred, and where the cause of the error lies.

In an attempt to locate the cause of the error, the user would now give the “elm”

expression highlighted the type that she expected it to be in the first place, i.e. a, see
figures 5.8a and 5.8b (over page).

31

Cluery Type

=(149,152) has type "a=

let
fun addend @<, [=x
| addend («, (hd:A)) = (hd:{addendis,)
in
fir (%, elm, Ist) == case x of
1 == addendE, 1=t
| 2 == (elm:lst)
| 3 == (elm:(addend(alm, 1587
end
a Change Type

Figure 5.8a— GUI result of changing the type of the highlighted expression.

Toplevel input:
I addend ©x, {hd:rztll} = thd:tiaddend{x, t1x}
Tupe clazhi exprezzion of type
“a lizt
cannot hawve explicit type "a”

I Toplewvel input:
| 3 = {elmii{addendialm, lstd})

A

a
| cannot hawve type
“a lizt

|

|

|

I Type clash? expression of tuype
.o

|

|

| becauze of circularity

Figure 5.8b — Compiler response to the change of the type.

Figure 5.8a shows the GUI after firstly typing in “*a” (o) into the bottom text box,
then pressing the “Change Type’ button. The resultant errors printed out by the type
checker are displayed in figure 5.8b. These errors are displayed directly below the
previous type errorsin the shell window being used by the compiler, and as
previoudly stated, are separated by the lines of “=" signs. Note that the circumflexes
underlining the error are not sufficiently precise, in that they do not point to the sub -
expression in which the error exists; thisisaresult of the method by which the
compiler locatesthe error in question. Itis assumed that the user will ignore these.

32

The user would now note that the type error has been changed by this change of type.
The new type error now points to the error being located in the function in the | et part
of the expresson. This then should change the focus of the investigation to the addend
function, see figure 5.9.

Cluery Type

<(3,15) has type "a list *'a list -="a list=

let
fun bl <, [=x
| addend («, (hd:A)) = (hd:{addendis,)
in
fir (%, elm, Ist) == case x of
1 == addendialm, Ist)
| 2 == (elm:lst)
| 3 == (elm:(addend(alm, 1587
end

Change Type

Figure 5.9 - Result of querying the type of the highlighted expression.

The user can now see (figure 5.9) that the type of thefunction hereisnot what was
expected as it should be o * o list — « list. At this point she is expected to look at the
code and recognise that thetype of x isincorrect, which should be obvious from the
function type but can be checked smply enough by highlighting the x argument and
pressing the Query Type button. The user can then be expected to note that the
expression after the “=" is not correct, which can be verified by highlighting the “x”

in question and queryingits type, figure 5.10 (over page).

33

Cluery Type

<(36,37) has type a list=

let
fun addend {x, [) =3
| addend (. (ha:tl) = (hefaddendpx,)

fir (%, elm, Ist) == case x of
1 == addendialm, Ist)
| 2 == (elm:lst)
| 3 == (elm:(addend(alm, 1587
end

Change Type

Figure 5.10 - Result of querying the type of the highlighted expression.

At this point, the user has a choice; she could make the change to the source code
required, i.e. turn the codefromfigure 5.1ainto that of 5.1b and attempt to compile it
again, in the expectation that the typesfor the rest of the program correctly match.
Alternatively, she could assgn a new type to theincorrectly typed variable, re-type
check the code and noteany further type errorsin the code.

Taking the second option, the user may well give the expression in question the type 3
list. As mentioned earlier, this change effectively removes the expression “x” from the
type checking — allowing the user to apply any type they wish. When thisis done, the
responses from the program are asinfigures 5.11aand 5.11b (over page). Note that in
figure 5.11b, the type errors present are not from this change, but arefrom the
previous type change, but have been |eft in thefigure to display the fact that nothing
elseisoutput. The code now complete y type checks asissignified by the lack of
errors between the two lines of “=" signs, the second of which isthe only line to have
been displayed upon pressng the Change Type button on this occas on. Hence, the
user has successfully located the error in question, and may now correct itin the
source code, reapplying the compiler to the newly revised code.

Thereis no need for the user to have followed precisdy these stepsfor the solving of
this problem. She for example, may have tested the types of other expressionsin the
code before coming to a conclusion about where the error lay. However, it is hoped
that the tool should help to guide the user to the true source of the error. Note also that
in following this example the second type error wasignored completely and the initial
error was followed until the true cause was located. Alternaivdy, the user may
investigate any of the type errors, and knowing the cause of one of the errors, may

investigate others. The second type error, nthis case, had th e same cause asthefirst,
and so may have provided extra pointers for the user asto what could be investigated.

Cluery Type

<(36,37) has type b list=

let
fun addend {x, [) =3
| addend («, (hd:A)) = (hd:{addendis,)
in
fir (%, elm, Ist) == case x of
1 == addendialm, Ist)
| 2 == (elm:lst)
| 3 == (elm:(addend(alm, 1587
end
b list Change Type

Figure 5.11a - GUI result of changing the type of the highlighted expression.

Toplevel input:
I addend ¢x, thdiitld? = thd:staddend (s, 132
Type clash? expreszsion of type
“a list
cannot hawve explicit type "a’

I Toplevel input:
| 3 =F {elm::iaddendielm, lstii}

A

a
| cannot have type
“a list

|

|

|

I Type clashi expreszszion of type
I -

|

|

I because of circularity

Figure 5.11b — Compiler response to the change of the type.

35

5.4 Conclusions from the Example

The example used hereis rather amplein bothits error anditsfunctiondity;
nevertheless, it demonstrates adequately the usefulness that such atool can have. As
with al tools, it relies on the user employing it correctly, and having some degree of
knowledge about possble problems that could have caused the error.

As should be clear from the example, the tool makes thelocation of such an error
much simpler than previoudly possible. While the programmer could have been
fortunate enough to spot the error straight away and corrected it without any need for
such atool, in acomplex example, this may not have been possible, and such atool
could be an invduable asset to the programmer.

Even if it were the case that the tool did not have the ability to alter the types of
expressionsin the code, it would still be of use asoften the key to locating atype
error isverifying what type expressions actudly have. During the creation of thetool
itself such atool would have been helpful, since there were occasionally type errors
that seemed to make little sense, the resolution of which required atedious trial and
error approach. This approach required changesin the source code, then

recompilation after each change, to seeif the last change affected the error in any

way. Hence, the error location process waslong and complicated, and more ofte n than
not, the error was caused by a smple mistake, which could easly have been noticed
had the true location of the problem been known.

36

6. Conclusion

6.1 1s TheProject Finished?

In order to assess whether or not the project isfinished, itisne cessary to ask several
guestions.

6.1.1 Does It M eet the I nitial Requirements

In the course of the project, there were two ams:
* tointegrate atool for investigating type errorsinto an exising ML compiler;
* to provide an effective user interface to the tool

Thefirst of these ams trandated into two gods:
» thecreation of atool to report thetypeinformation of agiven expressioninan
SML program.
» thecreation of atool that would dlow the typeinformation of agiven
expression to be changed to atype defined by the user.

The second of the ams became the third goal, namely:
* to provide an effective user interface to the tool.

Thefirst goal was reasonably easily achieved. Simply adding some extrainformation
to the AST, which was then instantiated during the type-checking phase, was enough
to alow the type of any expression to be discovered.

The second god wasmuch more difficult to achieve, and remains partidly

unsatisfied. The initial requirements of this part of the tool were that the user was able
to change the type of a given expression to any type that she chose. Thishasbeen
largely achieved athough currently it is only possible to change the type of

expression where the code would normdly dlow alet...in...end expresson to be
placed, hence function argumentsin the functions definition are not able to have their
type changed.

The third god was dso difficult to reach and remainsthe least complete of the three.
Aswas noted earlier [Section 3.3] most GUIs are created hurriedly and wit h little
thought as to the end user. Unfortunatdy, the GUI for this tool also fell foul of this
trap, due to the difficulty experienced in the use of mGtk.

When mGtk was chosen asthe tool for the creation of the GUI, it wasmainly because
there seemed no other viablealternative at the time. This was unfortunate as it
transpired mGtk was a difficult tool kit to learn and use, primarily dueto its lack of
documentation. Hence, the GUI for this project isreally only a placeholder for a
proper GUI. It was however, al that was possible given the time constraintsimposed
and therefore, the interface falls short of the requirementslad out in chapter 3.

37

6.1.2 Its Successes and Failures

The project asit is currently has many successes and failures when reviewed next to
theinitial requirements as has just been noted. Some of the success, however, isnot in
the tool itself but in the realising that firstly, the approach taken to theimplementation
of the tool will never be adle to work fully, and secondly there is amuch better way to
approach the problem [Section 6.2]. Although these are successesin some ways, they
arefalluresin others; they are failuresin that the current tool does not work as
required.

Some of the major failings of this project cause it to be of very limited usein its
current form, and without a great deal of work, it would serve little purpose to present
the tool to the current ML user base. Itisimportant to note that thesefailures are not
in the project itself as aprogram, but are failures of the approaches used to solving the
problem as presented. More specifically, and with reference to the original
requirements, the failings of this project are:

» thelack of ability to change the type of any arbitrary expression in an ill-typed
ML programs, currently only expressionsis particular places are dlowed to
have their type changed. (That is, only expressons whereitis dlowable to
exchange the expresson with alet...in...end expresson). Thisis asgnificant
problem, as one of the major requirements of the project was that it should be
possible to specify the type of an arbitrary expression in aniill-typed ML
program.

» thelack of agood user interface —thisis very unfortunate as one of themgor
goals of the project wasto improve on the user interface provided by Alison
Keane' s project. However, for reasons previoudy stated [Section 4.2.2] this
was not possible.

The successes of the project are:

» thediscovery that this particular approach to the problem of changing the type
of an expression is flawed.

» theconception of anew approach that should dlow such atoal to be built with
aminimum of problems.

» andthecreation of atool that will tel the user the type of any expresson with
inan ML program — note this part works (and is useful in itself) even though
the rest of the tool is not completely satisfactory.

38

6.2 FutureWork

Thetool as designed had, as noted, several shortcomings. There are severd placesin
which improvements could be made, many of these where not carried out due to time
constraints. Others have only become apparent after the project was compl eted.

6.2.1 Additional Functionality

Thereisagreat deal that could be added to the project asitis, some of which would
improve the tool’ s usefulness and the rest of which involves streamlining the process
the user must employ to discover the type errors.

Any additions to the functionality must first focus on the missing key functiondity,
which isincluded in the requirements. This includes functionality such as; the ability
to alter the type of any arbitrary (complete) phrase within an ill-typed ML program,
and the ability of certain changes to affect more than asnglelocationin a program.
For instance, if arequest is made to change the type of avariable, then all occurrences
of that variable after the point concerned (but in the variables current scope) should
also have their type changed. Although the last point isnot explicitly stated in the
requirementsit is may be intuitive to the way the user may expect such atool to
operate.

An element that would be useful to have, butisnot presentin this toal, isfocusing, or
zooming; thisis functionality present in Alison Keane' stool and proves to be very
useful. Zooming would allow the programmer to take any expresson from the
program and investigate type errorsin that expresson locdly, that is without any of
the changes affecting the global environment. Once an erroneous expression is
located, the user could then zoom into that expression, and test sub-expressions of that
expression, without having anything in the main code affected by any of the changes
made in these sub-expressions. In addition, the zooming would be able to takeany
type the user had requested for the expresson being zoomedin on, and would use this
type as the type with which the attempt is made to unify the sub -expression. This
latter functionality would be very difficult if not impossible to accomplish without
revising the current approach to the way the types areateredin the AST.

More additiond functionaity that would be preferable, dthough isnot essentid to the
workings of the tool, would be to have some sort of undo facility either for the whole
tool, locally or both. That is, an undo for the whole tool would undo the last action
sequentially in the reverse order to that in which they occurred. A local undo would
alow highlighted expressions to have their types reverted to a previoustype — if this
type was the original type of the expresson, then any additional cod e added by the
tool to this expression would be removed — thereby reverting the expresson toits
original state.

Other functionality that may be of use would be for there to be a procedurefor the
programmer to receive an orderedlist of the changes she made to the code — to avoid
her having to remember al the details themselves. A redo facility might also be
useful, although perhaps less so than any of the other mentioned functiondity. It may

39

also be useful if the user were provided with an automatic way of building up types to
be applied to an expression. For instance, she could be provided with radio boxes,
listing all of the possible in-built types and user defined typesin the code currently,
and usng one of them would smply be a case of selectingthe appropriate check box
and applying the selection. An aternative could be adrag and drop style interface
where the types are provided as icons, that can be dragged on to atext areawherethe
can be built up, using the standard type operators, into whatever type the user desires.

6.2.2 Improve User Interface

Asnoted earlier, the user interface of thistool could be very much improved.
Although it provides accessto all the functionality available, it does not provideit in a
pleasing manner. It is also lacking in some minor functionality, for instance it does

not have aquit button. It dso currently does not provide the user with adequate
feedback since the label that tells the user the type of the given expresson, only refers
to the expresson by its position in the code. In addition, if the type of an expressonis
quite large, then the label will be overrun with text, and the user will not be able to
make out what the actual typeis.

Other functionality missing from the user interface isthat it does not provide a safe
environment for the user. That is, none of the data provided by the user is checked
beforeit isused. What ismore, if the user enters atypethat is not recognised then the
user interface crashes. Itisarguable that the user should take care not to enter text that
isnot correct, but redlistically the interface should not crash in such asituation —
especidly since it islikely to be quite a common occurrence.

6.2.3 Efficiency Considerations

Dueto the manner in which this project was written, much of the codein the origind
compiler is duplicated in a dightly modified form for the tool. As such, thereismuch
that is redundant in the compiler and which could be removed through afew smdl
changesto part of the code. Many of the functions could be used for both the normal
compiler and the tool, with only minor modifications.

For instance, currently, there exist two copiesof thetype checker in the compiler. One
isthe version that is normally in the compiler, and the other is modified dightly to

add extratype information to the AST. The reason these were made separate was to
avoid introducing bugs into the normal compiler execution and to allow more freedom
in the changes that were performed to the type checking code. Had more time been
available for the project, the type checkers would probably have been combined into a
single piece of code. Another example of duplicated functionality isin the printing
functions. These too had to be copied and modifiedin asmilar way to the type
checker; again, had more time been available these would have been combined with
the original versions.

The final efficiency consideration is the positioning of the additiona typeinformation
inthe AST. Initially the ideawasto put theinf ormation in every possible location that

40

might have a type associated with it, however, in retrospect this wasa bit too much. It
would ssimply be enough to provide extratype information in the same placesthat the
location information isavailable. Thisis dueto the fact that the location information
has been put in the AST in al the places necessary to uniquely define an expressonin
aML program, hence if any expression can be located thisway it is enough to put the
type information here too. It may even be possible, and beneficial to simply extend
the location data type to contain the type information itself — this could make
implementation much easier, and would possbly avoid many of the changes to the
compiler that were made in the course of this project.

6.2.4 Writea New Type Checker from Scratch

Understandably, the Moscow ML compiler was not designed with atool such asthe
one created herein mind; itisunlikely that any compiler would be. This causes great
difficulty in implementing such atool, since much of it requires functionality of the
compiler that is not immediately available, and is often hard to access.

It would be much more appropriate to build a new type checker designed specificdly
for thistype of tool although perhaps time consuming. Such atype checker could be
integrated into Moscow ML simply by replacing all callsto the existing type checker
with callsto the new type checker, aslong asit was ensured that the new type checker
returns the same values as the old type checker. Note that side effects need to be
carefully considered too, since inducing the correct Sde effects happen iskey to
making the whole compiler function identicdly after the new type checker is
installed. However, so long as the new type checker causes the same side effects to
occur, and returnsthe required values correctly, then it isfreeto do any thing at all.
Probably the best way to go about creating such a new type checker would be as
follows.

Thefirst thing to do would be to take a copy ofthe AST; this new copy would be a
dight modification of the original AST and would be very similar to, if not the same
as, the AST used by this project. The key difference between the origina AST and the
new one would be that the new one would include Ty pe Option Reference at each
node where type information may be available.

Thisnew AST would then be passed to the new type checking functions. These new
functions would type check as normd, but they would also instantiate the Type

Option Reference at each node to be the correct type of that node of the tree, which
would be of the form Ref SOME X, where X isthe type of that node, much in the way
that the toal for this project did. The type checker would then assume that the types of
any sub nodes were the types as held in their specific Type Option variable. Then, in
the case where the program is correctly typed, the compiler continues as normal (with
the newly type checked AST being converted back to the old type of AST —this
simply means removing the Type option from each node)™. In the other case, however,
the compiler would behave morelike the compiler created by this project.

! Note that strictly speaking the compiler could ignore the extra information in the AST, however to
allow the tool to be integrated with current compilerswith the minimum of effort it would be better for
the type checking functions to remove the extra information, in the case when it type checks correctly.

41

Initially, the compiler would note that a type error had occurred, and its location
(using the location information). Then a GUI window would be displayed, teling the
user that atype error had been discovered, and displaying the text of the error in
guestion. The user could then use the tool, much as the tool designed for this project
can be used.

Oncethe user decidesthat She actudly wishes to use the tool, she can highlight any
expression desired in the program, receiving its type information. She can then
request achangein type of the given expresson. At this point, the tool wouldfirgly
check the validity of the type requested for the expresson usng asmdl type checking
function specifically designed for these cases. The toal, will then (assuming the type
is properly typed) store both the location of the expresson and the typein asmdl
table of all the type changes that a user wished to make to the program. If the
expression having its type changed were an atomic expression then the table would
also note the expresson, this dlows a changein one part of the program to affect all
variables of the same name.

The user having made asmany changes as were necessary, could request that the
program be re-type checked, taking into account the new types. Thetype checker then
proceeds to re-type check the AST, however this time the type checker looks up the
table of type changes at each nodeit encounters. The type checker will assume that
the node has the type as given by the user, and stored in thelookup tableif these
conditions are fulfilled:

» thelocation information of the current node matches any of theentries in the
tree, or;

» thecurrent nodeis an atomic node that appearsin the table, and the current
nodes location information is greater than that of the node in the table (i.e. the
node in the table occurs before the current nodein the program) and the sco pe
of the two nodesisthe same.

When the type checker hasfinished type checking, the lookup table would be added
to the top of the undo table, in the reverse order from the order that the changes were
requested — that is, the last type change requested would be at the top of the table.
Note that thelookup table would have elements removed from it only when they are
also removed from the undo table, and in fact, these could be the same tableif wished.
The user would then be informed of whether or not the type checking was successful.
In either event, the user will have the option to continue to use the tool, or to exit the
tool, and return to the previous statein the compiler.

This approach to the tool has many benefits over the approach taken for this project.
One such benefit isthat the type of any phrase, that has a type, can be changed (that
is, not simply expressions, but patternstoo), and this change will affect therest of the
program (most notably in the case when the expression is atomic). In addition, the
undo or redo facilities of such atool would be much easier to implement.

The two most interesting and useful benefits of this projected tool over the tool as
created for this project are; that changing the type of a sub-expression of an

42

expression that has already has had its type dtered would be both possble, and be
effective. That is, if the sub-expression were an atomic expression then any
occurrences of that atomic expresson later in the program would have thisnew type.
Further more, alist of the changes that the user applied to the program whilst using
the tool could be saved to afile, allowing the user to see what was done during any
session using the tool, hence dl steps taken need not be remembered, as they would
be recorded.

The action of changing the type of dl occurrences of any atomic expression and
having this change reflected throughout identical expressionsin the program is not
only useful but iswhat a user might naturally expect to happenin certain cases. This
would allow errorsto be located more quickly and easily.

Other advantages of this approach are that zooming would be easer toimplementin
thisway (although as Alison Keane [Keanel999] discovered, thisisnot atrivial task).
In addition, with only minor revisionsto the AST and the type checker, such a tool
has the potential to be incorporated easily into most, if not al, SML compilers.

Other minor benefits of such atool are; firstly, it is much more efficient than the tool
presented in this report, due to the lack of repetition of code thistool would have.
Secondly, it would be easer to maintain and keep up to date with the compiler asit
changes. Furthermore, given that the tool smply takes the AST the compiler creates,
and then returns a type checked AST, as the compiler requires, any changes to the
compiler should be easy toincorporateinto the todl. Infact, aslong as the AST
remains the same, any changes to the compiler can be made without affecting the tool
at all.

6.3 Overall Conclusion

Theinitial aim for this project wasthe creation of atool to assistin thelocation and
correction of type errorsinill -typed ML programs. The problem was approached in a
similar way to that which was taken by Alison Keane, and an attempt was made to
improve on several aspects of her work. These were; firstly integrating the tool into an
existing ML compiler, secondly extending the coverage of the language by the tool,
and thirdly creating a new and better user interface. The first two of these goals were
achieved simultaneously, so then the ams became twofold; tointegrate the project
she provided into an existing ML compiler and to improve the user interface.

Although this project failed to fully meet theaim initidly laid out, neverthelessthere
have been severa positive results from the research. Firstly, it has shown that the
approach used, of changing the type of a given expression, is not the best approach to
the problem, and would be difficult to carry through to completion. Secondly, it has
shown anew way of creating a toal, fulfilling theinitid goa of this project. Lastly, it
has given a detailed account of how such atool could be created, what it should do,
and how best to doit. As such, future work in the same area should be much more
successful due to the discoveries of this project, and the preceding work.

Inthat case, this project could then be consdered a success, snce although it did not
accomplish all that it set out to do, it does provide a good basis for the future work

43

that will no doubt follow on fromit. A lot of work isstill requiredin this area
however, and, as Alison Keane's project showed, atool such asthe one attempted
here would be of great usein the location of type errorsin programs. The cregtion of
such atool would definitely ease theintroduction of programmers to ML — allowing
her to discover what is going on inside the programs she writes, and why the errors
the compiler reports are errors and what the real problem isor whereit lies.

Appendices

45

Appendix A: Grammar for M oscow ML

A more detailed description of the grammar can befoundin [mosref].

exp = i nfexp
exp : ty
exp: andal so exp;
exp; orel se exp;
exp handl e match
rai se exp
if exp; then exp, el se exps
whil e exp; do exp;
case exp of match
fn match

i nf exp (1= appexp
i nfexp, id infexp;

appexp c1= atexp
appexp atexp

at exp D= scon
<op> |l ongvid
{ <expr ow>}
| ab
()
(exp1, ... expn)
[exp1, ... , expnl
expy, ... , expnl
(exp1; ... ; expn)
let dec in expy; ... ; expn end

[structure nodexp as sigexp]
[functor nodexp as sigexp |

(exp)
expr ow = lab = exp <, exprow>
mat ch = nrule < | match >
nrul e = pat => exp
dec ;.= val tyvarseq val bind

fun tyvarseq fval bi nd
type typbind
dat at ype dat bi nd <wi t ht ype typbi nd>
dat at ype tycon = datatype tyconpath
abst ype dat bi nd <wi t htype typbind>

abstype with dec end
exception exbi nd
| ocal dec; in dec, end
open longstridl...longstridn
structure strbind
functor funbind
signature sigbind

(enpty decl aration)

decl <;> dec,

46

val bi nd

f val bi nd

t ypbi nd
dat bi nd
conbi nd

exbi nd

t yconpat h

ty

tyrow

at pat

pat r ow

pat

nodexp

infix <d> idq..id,
infixr <d>ids..id,
nonfix ids..id,

pat = exp < and val bind >
rec val bi nd

<op> var atpat;; ... atpat;, <ty> = exp;

| <op> var atpat, ... atpaty, <ty> = exp:
| ...

| <op> var atpaty ... atpat, <ty> = expn

<and fval bi nd>

tyvarseq tycon =ty <and typbind>

tyvarseq tycon = conbi nd <and dat bi nd>
<op> vid <of ty> <| conbind>

<op> vid <of ty> <and exbi nd>
<op> vid = op |ongvid <and exbi nd>

| ongt ycon
| ongtycon where strid = nodexp

tyvar

{ <tyrow> }
tyseq tyconpath
ty, * ... * ty,
tyl ? tyz

[sigexp]
(ty)

lab : ty <, tyrow>

scon
<op> | ongvid
{ <patrow> }

0

(paty, ... , paty)
[paty, ... , patq]
paty, ... , paty]
(pat)

lab = pat <, patrow>
lab <:ty> <as pat> <, patrow>

at pat

<op> | ongvi d at pat
pat, vid pat,

pat : ty

<op> var <:ty> as pat

appnodexp
nodexp : sigexp

47

appnodexp

at nodexp

st rbi nd

f unbi nd

si gbi nd

con

arg

si gexp

typreal

spec

nodexp : > sigexp

functor (nodid : sigexp) => nodexp
functor nodid : sigexp => nodexp

rec (strid : sigexp) nodexp

at nodexp
appnodexp at nodexp

struct dec end

<op> | ongnodi d

| et dec in nodexp end
(dec)

(nmodexp)

strid <con> = nodexp <and strbind>
strid as sigexp = exp <and strbind>

funid argy; ... arg, <con> = nodexp <and funbi nd>
funid (spec) <con> = nodexp <and funbi nd>
funid as sigexp = exp <and funbi nd>

sigid = sigexp <and si gbhi nd>

si gexp
. > sigexp

(nmodid : sigexp)
nodid : sigexp

sig spec end

sigid

si gexp where typrea

functor (nodid : sigexp) ? sigexp
functor nodid : sigexp ? sigexp

rec (strid : sigexp) sigexp

type tyvarseq longtycon =ty <and typreal >

val tyvarseq val desc
type typdesc
type typbind
eqt ype typdesc
dat at ype dat desc <withtype typbind>
dat at ype tycon = datatype tyconpath
exception exdesc
structure strdesc
functor fundesc
signature sigbind
include sigidl ... stridn
| ocal |spec in spec end
(enpty)
spec <; > spec
spec sharing type

I ongtycon; = ... = longtycon,
spec sharing

longstridl = ... = longstridn
infix <d>id; ... id,
infixr <d>id; ... id,

48

nonfix id; ... idj

| spec ::= open longstrid; ... longstrid,
type typbind
local |spec in |spec end

(enpty)
| spec <;> | spec

val desc ;2= wvid: ty <and val desc>
t ypdesc ::= tyvarseq tycon <and typdesc>
dat desc ::= tyvarseq tycon = condesc <and dat desc>
condesc ;2= vid <of ty> <| condesc>
exdesc ::= vid <of ty> <and exdesc>
strdesc ::= strid : sigexp <and strdesc>
fundesc ::= funid : sigexp <and fundesc>

49

Appendix B: Moscow ML Abstract Syntax Tree

Note these are themain definitions only, for severd of the types used here definitions
are omitted for the sake of clarity. The entire AST representation can befoundin the
Asynt and related modules in the Moscow ML compiler.

type LocString = Location * string;

type Vid = LocString;
type TyCon = LocString;

type Modld = LocString;
type Funld = LocString;
type Sigld = LocString;

type Longhbdl d = Idl nfo;

type LongMdldinfo = Idinfo * ((Environment option) ref);
type LongVid = IdInfo;

type LongTyCon = I|dl nfo;

type TyVar = Idlnfo;
type TyVarSeq = TyVar |ist;

dat atype TyConPath' =
LONG yconpat h of LongTyCon
| WHEREt yconpath of LongTyCon * Mdld * MdExp

and Ty' =

TYVARty of TyVar

RECty of Ty Row

CONty of Ty list * TyConPath
FNty of Ty * Ty

PACKty of SigExp

PARty of Ty

and I nfixPat =
UNRESI nf i xpat of Pat |ist

| RESi nfixpat of Pat
and Pat' =
SCONpat of SCon * Type option ref
VARpat of LongVid
W LDCARDpat
Nl Lpat of LongVid
CONSpat of LongVlid * Pat
EXN Lpat of LongVid
EXCONSpat of LongVid * Pat
EXNAMEpat of Lanbda. Lanbda
REFpat of Pat
RECpat of RecPat ref
VECpat of Pat |ist
| NFI Xpat of InfixPat ref
PARpat of Pat
TYPEDpat of Pat * Ty
LAYEREDpat of Pat * Pat

50

and RecPat =
RECrp of Pat Row * RowType option
| TUPLErp of Pat Iist
and VIdPat hlnfo =
RESvi dpat h of LongVid
| OVLvidpath of LongVid * Ovl Type * Type
and | nfixExp =
UNRESI nf i xexp of Exp |ist
| RESi nfixexp of Exp
and Exp' =
SCONexp of SCon * Type option ref
VI DPATHexp of WVIdPathlnfo ref
RECexp of RecExp ref
VECexp of Exp list
LETexp of Dec * Exp
PARexp of Exp
APPexp of Exp * Exp
I NFI Xexp of InfixExp ref
TYPEDexp of Exp * Ty
ANDALSCexp of Exp * Exp
ORELSEexp of Exp * Exp
HANDLEexp of Exp * Match
RAl SEexp of Exp
| Fexp of Exp * Exp * Exp
VWH LEexp of Exp * Exp
FNexp of Match
SEQexp of Exp * Exp
STRUCTUREexp of MddExp * SigExp * (ExMdd option) ref
FUNCTORexp of MbdExp * SigExp * (ExMbd option) ref

and RecExp =
RECre of Exp Row
| TUPLEre of Exp I|ist

and MRule = MRule of (Pat list ref) * Exp

and FunDec =
UNRESf undec of TyVarSeq * (FValBind list)
| RESfundec of Dec

and Dec' =

VALdec of TyVarSeq * (ValBind list * ValBind |ist)
PRI M VALdec of TyVarSeq * (PrinmvalBind |ist)
FUNdec of FunDec ref

TYPEdec of TypBind |ist

PRI M _TYPEdec of TyNaneEqu * TypDesc |i st
DATATYPEdec of DatBind list * TypBind |list option
DATATYPEr epdec of TyCon * TyConPat h

ABSTYPEdec of DatBind list * TypBind Iist option * Dec
EXCEPTI ONdec of ExBind |i st

LOCALdec of Dec * Dec

OPENdec of LongModldlnfo |i st

STRUCTUREdec of MddBind |i st

FUNCTORdec of FunBind |i st

S| GNATUREdec of SigBind Iist

EMPTYdec

SEQdec of Dec * Dec

FI XI TYdec of InfixStatus * string |ist

51

and Val Bind = ValBind of (Pat ref) * Exp

and FCO ause FCl ause of (Pat list ref) * Exp

and ConBind = ConBind of Idinfo * Ty option

and ExBind =
EXDECexbi nd of Idlinfo * Ty option
| EXEQUALexbind of Idinfo * Idinfo
and ModBi nd MODBI NDnodbi nd of Modld * MddExp
ASnodbi nd of Modld * SigExp * Exp

and FunBi nd
FUNBI NDf unbi nd of Funld * MddExp
ASfunbi nd of Funld * SigExp * Exp
and SigBind = SIGBINDsighind of Sigld * Si gExp
and FunctorSort =
Generative of bool (* true if conforms to SML 97 *)
| Applicative
and ModExp' =
DECodexp of Dec
| LONGrodexp of Longhbdld
| LETnodexp of Dec * ModExp
| PARmodexp of MbdExp
|

CONnodexp of MbdExp * Si gExp
ABSnmodexp of ModExp * SigExp
| FUNCTORnodexp of FunctorSort * Modld * (IdKindDesc ref) * SigExp
* ModExp
| APPnodexp of MddExp * MbdExp
| REChodexp of Modld * (RecStr option) ref * SigExp * MddExp
and ModDesc = MODDESCnoddesc of Modld * Si gExp
and FunDesc = FUNDESCfundesc of Funld * SigExp
and Si gExp' =
SPECsi gexp of Spec
| SIdDsigexp of Sigld
| WHEREsi gexp of SigExp * TyVarSeq * LongTyCon * Ty
| FUNSI Gsi gexp of FunctorSort * Mddld * SigExp * SigExp
| RECsigexp of Mddld * SigExp * SigExp
and Spec' =
VALspec of TyVarSeq * Val Desc i st
| PRI M VALspec of TyVarSeq * (PrinValBind |ist)
| TYPEDESCspec of TyNanmeEqu * TypDesc |i st
| TYPEspec of TypBind Iist
| DATATYPEspec of DatBind list * TypBind Iist option
| DATATYPEr epspec of TyCon * TyConPat h
| EXCEPTI ONspec of ExDesc i st
| LOCALspec of Spec * Spec
| OPENspec of LongModldlnfo |ist
| EMPTYspec
| SEQspec of Spec * Spec
| I NCLUDEspec of SigExp
| STRUCTUREspec of MbdDesc |i st
| FUNCTORspec of FunDesc Ii st
| SHARI NGTYPEspec of Spec * LongTyCon |i st
| SHARI NGspec of Spec * (Location * Longhbdld Iist)
| FIXI TYspec of InfixStatus * string |ist
| SI GNATUREspec of SigBind |ist

52

and Sig =
NarmedSi g of {locsigid : Sigld, sigexp: SigExp}
| AnonSig of Spec I|ist
| TopSpecs of Spec |ist

and Struct =
NarmedStruct of {locstrid : Mdld, locsigid : Sigld option,
decs : Dec list}
| Abstraction of {locstrid : Mdld, locsigid : Sigld,
decs : Dec list}
| AnonStruct of Dec |ist
| TopDecs of Dec Iist

wi thtype TyConPath = Location * TyConPath'
and Ty = Location * Ty'
and Pat = Location * Pat'
and Exp = Location * Exp'
and ModExp = Location * (MddExp' * (ExMbd option) ref)
and Si gExp = Location * Si gExp'
and Spec = Location * Spec'
and Val Desc = Idlinfo * (Location * Ty')
(* Idinfo * Ty *)
and ExDesc = lIdinfo * (Location * Ty') option
(* Idinfo * Ty option *)
and LocString = Location * string
and Match = MRule |i st
and Dec = Location * Dec'
and PrinVal Bind = Idlnfo * (Location * Ty') * int * string
(* Idlnfo * Ty * int * string *)
and FVal Bind = Location * FC ause |i st
and TypBind = TyVarSeq * TyCon * (Location * Ty')
(* TyVar list * Idinfo * Ty *)

and TypDesc = TyVarSeq * TyCon
and DatBind = TyVarSeq * TyCon * ConBind |i st
end;

53

Bibliography

Book and journal references:

[Appel1998] Appd, A. W. 1998. Modern Compiler Implementation. Cambridge
University Press

[Dix1998] Dix, A., Finlay, J., Abowd, G. and Bede, R. 1998. Human-Computer
Interaction Prentice Hall

[Keanel999] Keane, A. 1999. A tool for investigating type errorsin ML program The
University of Edinburgh

[McAdam] McAdam B. J. Generalising Techniques for Type Debugging Laboratory
for the Foundations of Computer Science, The University of Edinburgh

[Paulson1996] Paulson, L. C. 1996.ML for the Working Programming (Second
Edition). Cambridge University Press 1996

[Sethi1989] Sethi, R. 1989. Programming Languages. Concepts and Constructs.
Addison-Wedley

| nter net references:

[mosmigl] mosmigl: http://www.home.gil.com.au/~mthomas/

[MGtk] mGtk: http://mgtk.sourceforge.net/

[sml-tk] smi-tk: http://www.informatik.uni-bremen.de/~cxl/sml_tk/
[mosml] Moscow ML.: http://www.dina.kvl.dk/~sestoft/mosml.html
[SML/NJ] SML/NJ: http://cm.bell-1abs.com/cm/cs/what/sminj/
[mosman] Moscow ML Owners

Manual: ftp://ftp.dina.kvl.dk/pub/mosml/doc/manual . pdf
[mosref] Moscow ML Language

Refference: ftp://ftp.dina.kvl.dk/pub/mosml/doc/mosmiref. pdf

