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Abstract: In corpus-based robotics, the primitive functions built into a robot are 
determined by the functional content of human utterances spoken to the robot. In 
the example of route instructions treated in this paper, the 15 primitives found 
include functions such as turn(), cross(), landmark_is_located(), etc. These are 
natural primitives of human behaviour but complex robot functions, some of which 
are not normally thought of by roboticists. Primitives must cope robustly with a 
variety of environmental conditions and require autonomous navigation capabilities 
based for instance on visual landmark recognition and localisation, navigable space 
mapping and path planning. Thus, the requirement of human-robot interaction 
creates specific and demanding functional targets for robot designers. A major 
obstacle to human-robot communication lies probably in current robots’ perception 
capabilities. Furthermore, for human-robot communication to match the 
performance of human-human communication, the robot must also be provided 
with capabilities of re-interpreting and correcting instructions at execution time. 
Such a large autonomy raises wider issues of safety and control. 

 
 
1. Introduction 
 
Domestic or service robots are multi-functional and cannot be pre-programmed in factory 
for all possible tasks that the final user may think of. The question is thus, how will such 
robots be programmed or re-programmed during their life-time? In industrial robotics, 
robots are programmed infrequently by a small number of skilled operators. This model is 
not cost-effective in service robotics and may constitute a major bottleneck in the 
commercial development of the domain.  Ideally, users themselves should be able to 
program their robots, without the need for learning specialized programming languages, 
control theory, artificial vision, AI, etc. Instead, a service robot must understand instructions 
issued in natural language and generate the corresponding internal machine code program 
(“Instruction-Based Learning”).  

Comparatively little research has been devoted to Instruction-Based Learning (IBL) 
[1],[2],[3],[4]. All these previous  approaches used a constrained language that the user had 
to learn. Thus, the aim of the Plymouth-Edinburgh IBL project on which this paper is based 
was to develop a system that accepts utterances that are natural to the user. The focus of 
this paper however is not on the natural language processing or the learning aspects of the 
project, but on the implication for robotics of the use of unconstrained language.  



 

Essentially, if the robot has to understand the spoken words “take the first turn left” 
it also needs to have the sensori-motor capabilities to execute the command. Thus, there is a 
direct link between natural language understanding capabilities and the functional 
specification of the robot. The robot design process must therefore start with a functional 
analysis of a representative corpus of utterances (commands or instructions) spoken by 
potential users. In this paper, such a corpus-based methodology and its consequences are 
discussed.  

The paper is organized as follows. In section 2, the selected application domain and 
the corpus collection process is described. In section 3 the corpus analysis method is 
detailed. In section 4, the system development and evaluation methods are described. In 
section 5, experimental results are discussed. In section 6, the paper concludes with a 
summary of the main lessons learnt. 

 
 

2. Corpus collection and application domain. 
 

In this IBL project, a robot is instructed on how to travel from one place to another in a 
miniature town. On the basis of the user’s instructions, it first creates a computer program 
script that it then uses to navigate between the two places. The route instruction domain was 
selected because of the familiarity of the authors with vision-based robot navigation 
problems and because of the generic character of route instructions. These are expected to 
contain all the main structures found in computer programs: selection, sequence and 
repetition. Thus, it is expected that the results obtained would generalize to other domains. 

A miniature urban environment was built on a 170cm x 120cm area suitable for 
navigation by a miniature 8cm x 8cm robot. Subjects were placed in front of the town and 
were asked to instruct the robot (figure 1). The sessions were filmed and the utterances were 
recorded digitally with a good quality headset microphone.  

 

 
 
Figure 1.  A subject instructing the robot during corpus collection. Inset: remote-brained 
miniature robot. 

 
Subjects were explained that the recordings would be used later by a human operator driving 
the robot by remote control by using only the images acquired from the on-board camera. 
This was aimed at generating robot-centric spatial references that would be appropriate for 
use by a computer program controlling the robot using only information from the on-board 
camera. By specifying that the user of the instructions would be a human, we obviated the 



 

need for users to second-guess what a robot might be able to understand and avoided any 
distortion of their natural expressions. 

We were also interested in how subjects would refer to route previously instructed to 
the robot. This is because, in principle, when a given procedure has been explained to a 
robot, a user should be able to re-use it and refer to it when explaining more complex 
procedures. Routes given to subjects were organized so that certain routes would be 
extensions of previous routes with a few more turns or intersections. Subjects were 
instructed that, when appropriate, they could save time by referring to previously explained 
routes, instead of re-explaining all of the steps.  

 
 

3. Corpus analysis 
 

The corpus contained 144 routes produced by 24 subjects instructing 6 routes each. Its 
analysis had two purposes: i) Customise the speech recognition and natural language 
processing system for the domain of the application and ii) Define the functional primitives 
of the robot. 

On the natural language side, the recorded instructions were first chunked 
automatically into shorter utterances by detecting naturally occurring silences between 
functional chunks. This produced meaningful chunks in most of the cases. The utterances 
sound files were then transcribed by hand into text files. The transcripts were used to 
generate automatically a restricted grammar comprising the subset of all the rules of a wide-
coverage grammar hit by the corpus. This restricted grammar is then used to specialize a 
speech recognition system for the route instructions domain [5][6]. 
 On the robot primitive side, the corpus transcripts were annotated by hand, as there 
is no off-the-shelf tool for doing it automatically. The annotation consisted of identifying 
basic actions in the user instructions and then assign executable robot primitives to the basic 
actions (e.g. table 1.).  
 

Table 1. Example of functional annotation of a transcription. 
 

 
 
This annotation of instructions in terms of primitive procedures is a somehow subjective 
process guided by the knowledge that formal programs would have to be written for the 
procedures. Thus there was a bias towards grouping actions under a number of procedures 
as small as possible. The consequence was that each primitive accepts a number of 
parameter combinations. E.g “turn left, turn right, take the second right, turn left after the 
church” are all grouped as one primitive “turn(p1, p2, p3, p4, …)”, where p1,p2,.. are 
parameters such as direction, ordinal, etc. It should be noted that during the project, the 
specifications of primitives slightly changed due to various constraints. Another bias came 
from the need for a termination condition for each primitive. For instance when subjects say 
“keep going”, this is a non-terminated action that would set the robot into an infinite loop. It 
turned out that such instructions can be ignored. The reason is that each of the other 

[take your first right]  
‡ TURN (first, right)  
[continue down the street past derry's past safeway]  
‡ FOLLOW_ROAD_UNTIL (past, derry's)  
‡ FOLLOW_ROAD_UNTIL (past, safeway)  
[the car park will be on your right]  
‡ DESTINATION_IS(car park, right) 



 

terminating functions has a “keep going“ function already built into it. For instance, “turn 
left” functionally means “keep moving until you reach the left turn, and then take the turn”.  

This analysis methodology differs slightly from the one in [7] performed as part of 
research in psychology. For instance, in our analysis, there are no statements describing 
landmarks, as these are integrated into the parameter list of the primitives, and consequently 
there are no actions without reference to landmarks either. The 15 primitives found in the 
development corpus are shown in table 2. For more details about their implementation see 
[8]. Note that some of these functions would probably not have been conceive of naturally 
by a roboticist without the help of the corpus, e.g. “cross_to, take_road, goto_side”. 
 

Table 2. List of primitives. 
 

 Primitive Description 
1 Go(description_1, landmark_1, 

preposition_1, description_2, landmark_2) 
Instructs the robot to follow a known 
route (with known starting point and 
destination). 

2 location_is(description_1, landmark_1, 
direction_1, preposition_1, description_2, 
landmark_2, description_3, landmark_3, 
ordinal_1) 

Specifies the location of a landmark 
along a route. 

3 destination_is(description_1, landmark_1, 
direction_1, , preposition_1, description_2, 
landmark_2, description_3, landmark_3, 
ordinal_1) 

Indicates the location of the destination 
landmark. 

4 go_until(description_1, landmark_1, 
preposition_1, description_2, landmark_2) 

Follow known route to a landmark 
until a specified location along the 
route. 

5 Exit_roundabout(ordinal_1, preposition_1, 
description_1, landmark_1) 

Take a specified exit from a 
roundabout. 

6 Turn(ordinal_1, direction_1,  preposition_1, 
description_1, landmark_1) 

Take a specified turn off a road. 

7 follow_road_until(preposition_1, 
description_1, landmark_1) 

Move forward until a certain location. 

8 rotate(direction_1, extend_1, around_1) Rotate on the spot. 
9 Exit_from(description_1, landmark_1) Exit from a place, usually used for the 

car park. 
10 cross_to(description_1, landmark_1) Instructs the robot to cross the road to a 

landmark. 
11 enter_roundabout(direction_1) Enter the roundabout in a specific 

direction. 
12 park(preposition_1, description_1, 

landmark_1) 
Park on, or close, to a certain 
landmark. 

13 Take_road(preposition_1, description_1, 
landmark_1) 

Take a road in view. 

14 Goto_side(preposition_1, description_1, 
landmark_1) 

Go round a landmark to one of its 
sides. 

15 Fork(direction_1) Follow a one of the two branches of a 
fork (Y split). 

 
 
4. Development and evaluation methods.  
 
The corpus was divided at random into two sets of 72 route instructions: the development 
and the evaluation corpus. The development corpus was used to develop the NLP 



 

components and to establish the list of primitives as described in section 3. The evaluation 
corpus was used for the evaluation of whole and parts of the developed IBL system.  
 The system comprises several computational stages (speech recognition, semantic 
analysis, procedure extraction, route learning, route following) and, as far as possible, these 
were evaluated individually as a well as a whole. The speech recognition stage was evaluated 
automatically by comparing its output with the text transcription of the corpus.  The 
semantic analysis stage produces Discourse Representation Structures (DRS) that can not be 
evaluated automatically, as it was impractical to produce target DRSs from the corpus. In 
the Robot Manager (RM) the DRSs are translated into function calls by a purpose-designed 
translation routine using a Procedure Specification Language (PSL) to specify translation 
rules. The output of that stage could be compared with a list of function calls produced by 
hand for each utterance in the corpus. However, due to the variety of possible errors, it 
turned to be a problem in itself to conceive of a meaningful measure of performance. For 
instance, primitive calls could be missing, or in the wrong order, or with a wrong parameter. 
Eventually, errors were examined and classified by hand.  

For each of the primitives identified in the corpus, a corresponding program had to 
be written. More details on the vision-based navigation aspects can be found in [8]. The 
main challenge was to create primitives that would cope robustly with wide variations in 
environmental conditions. This is a crucial requirement human-robot communication, as 
natural language references to actions are heavily under-specified. To maximize robustness, 
the primitives were tested extensively on the routes in the development corpus. Their final 
performance was evaluated using hand-written1 script programs based on instructions in the 
evaluation corpus containing situations not seen during development.  

The system as a whole was tested in two ways. Firstly, by using as input the recorded 
instructions in the evaluation corpus. Secondly, through tests with human subjects who 
engage in an instruction dialogue with the system. 

To compare the system’s instruction following performance with that of humans 
learners, human subjects were asked to listen to the instructions in the corpus, make notes 
and then drive the robot via remote control, using only images transmitted from the on-
board camera. 

 
 

5. Results and discussion 
 

Corpus analysis.  The corpus of 6600 words contained approximately 330 distinct words 
but was not closed. Data analysis showed that one new word was expected to appear for 
every two route instructions [9]. This is a general problem with corpora in a limited 
application domain. In the navigation domain, such “out of grammar” expressions are 
expected to consist for instance of personal names or landmark names. How to handle these 
cases properly is important for practical systems but is a yet unsolved problem. Future 
robots should to be able to learn new words and extend their grammar to cover their use. 
 We found 15 primitives, but again there were indications that the corpus is not 
closed, with a reference to a new function expected for every 35 instructions [10]. This 
poses a more complex problem because not only the expressions referring to the primitive 
must be added to the grammar, but also the execution code for the new primitive must be 
created automatically. In certain cases, learning by example may prove useful (see e.g. [11]) 
but this is probably not a general solution. 

                                                
1 This enabled testing primitives independently of the performance of the other components of the system. 



 

 We also found that the route-instruction domain is not generic in the computation 
sense, as almost all instruction only comprised sequences. There were many cases of implicit 
decision and loops. For instance, a function such as “turn left” can be decomposed into 
“keep moving until a left turn is seen, then take the turn”. However, there were no explicit 
references to IF-THEN-ELSE structures in the corpus. Another domain may be more 
appropriate to explicitly generate conditions and loops in instructions.  

 
Speech recognition. Using standard error measures on the recognition of the recorded 
utterances, we obtained a 40% word error rate. However, a limited test with the final 
dialogue system where one of us spoke instructions from the corpus showed a word error 
rate as low as 3%, where none of the error was critical for the understanding process. The 
main reasons for the drastic improvement were that the utterances were spoken clearly, 
errors in automatic chunking were fixed, and disfluencies (starters, fillers and repetitions) 
were removed. Further, the dialogue system gave the opportunity to repeat utterances that 
were not correctly translated, based on internal verification procedures. So, it is possible that 
with a minor increase in the linguistic discipline of the users, speech recognition can become 
quite effective.  
 
Detecting references to previous routes. During corpus collection, subjects were encouraged 
to refer to previously taught routes. It turned out that such references are very difficult to 
detect in instructions. In one third of the cases, subjects referred to previous route implicitly, 
e.g. via a landmark that was part of a previous route. For instance, when a subject said “go 
to the roundabout”, it was unclear if this referred to a roundabout that is just in front of the 
robot or a roundabout further away that can be reached using parts of a route previously 
instructed. In two third of the cases, the destination of a previous route was explicitly 
mentioned “start as if you were going to the post-office” but in half of these cases, the 
sentences had structures that could not be properly translated. 
 Interestingly, experiments with human subjects listening to the instructions showed 
that only 55% of references to previous routes were detected in the instruction. Only when 
subjects started to drive the robot did they notice that there was a problem. 
 
Using references to previous routes when creating program codes.  Almost all references to 
previous routes required only a partial use of the instruction sequence: e.g. “take the route 
to the station, but after the bridge turn left”. One of the problems is that the bridge may not 
even be mentioned in the instruction of the route to the station. No definite solution has been 
found to that problem. One proposal was to implement a multi-threaded concurrent 
processing scheme where the robot would “follow the road to the station” and at the same 
time “try to find the left turn after the bridge”. The second process would remain the sole 
active as soon as the turn is found [12]. It remains to be seen if this solution is general 
enough, but it is interesting to note that the way users express themselves could end up 
dictating the computational architecture of the robot controller.  
 
Programming the final instruction.  The final instruction of a route instruction is often a 
statement like “and you will see it there on your left”2. The final instruction is especially 
interesting as it is the one requiring the most autonomy from the robot. It is highly under-
specified and the robot needs to visually locate the destination and then plan a path towards 
it. In our miniature town, we have not undertaken the difficult task of detecting the building, 

                                                
2 That is why there is no “enter_into” primitive corresponding to the primitive 9 in table 2 (“exit from”). 

Subjects just say “and the car park is in front of you” 



 

identifying it from its sign and locating its entrance. Instead, a coloured strip was placed at 
the foot of the building to signal its position. In a real urban environment the final instruction 
would pose vision and control challenges that are at the limits of current technical 
capabilities. 
 
Comparing human and robot performance.  When the robot followed the programs 
produced by hand for the evaluation corpus, it succeeded in reaching the goal only in 63% of 
the routes. In 29% of the routes, it failed because there were errors in the instructions or 
ambiguous statements. Quite frequently, subjects confused right and left. Sometimes they 
referred to a crossroad as a T-junction. In some cases they used utterances like “pass the 
first intersection. At the second intersection turn left”. If translated literally, the “second” 
intersection means two more after the previous one… Interestingly, in 3% of the routes, the 
robot failed because the subject referred to a parameter combination that was not 
encountered in the development corpus (“cross the car park”), or he referred to a function 
that was new to the system (“bear left”). This illustrates the problem posed by out-of-
grammar expressions in domain-specific IBL systems. In 5% of routes, the robot failed to 
reach the goal because of a limitation of its vision system, e.g. missing a landmark out of its 
field of view in a curve. 
 In contrast, with the same instructions, human subjects succeeded in 83% of the 
routes. When they failed, it was either because they had not listened carefully to the 
instructions or because there were fatal errors in the instructions, e.g. turn “left” instead of 
“right”. Interestingly, in many cases of erroneous instructions, human subjects still reached 
the goal e.g. by noticing the error while navigating (“why am I entering a dead end now?”) 
or by stopping to follow instructions as soon as the destination was in sight.  
 This suggests that human-human communication can be quite lax, yet effective, 
because the listener has the ability to correct errors. If this is the case, human-robot 
communication can become truly effective only if the robot also posses such an autonomous 
error correction capabilities. For safety reasons however, the robot would need to inform the 
user of its decisions prior to execution.  
 
Performance of internal error detection.  Details of the error detection in the IBL system 
will be described elsewhere, due to lack of space. The main finding is that not all errors done 
by the system in translating instructions into a program are detected. For instance, 32% of 
the recorded instructions are converted into a program. However, only 14% of these 
programs would actually lead the robot to the goal. In 18% of routes, errors in the 
translation from speech to program were not detected. This is an important issue because it 
is not safe for a robot to start a task that is not correctly specified. A human-in-the-loop 
approach seems also required here.  
 
 
6. Conclusion 
 
The starting point of corpus-based robotics is the fact that users are naïve in robot 
programming concepts and can only use their own terms to explain a task. The consequence 
is that a robotic system needs to be designed around utterances and functions natural to the 
user.  

Several complex issues arise from that approach. The first is that no domain is really 
closed and an effective system should be able to learn new words and new primitives. 
Secondly, very sophisticated sensory-motor capabilities are required from the robot, 
essentially because human speech is designed to communicate with beings having such 



 

abilities. Thirdly, errors in instructions do not impair human-human communication as much 
as human-robot communication. Humans are able of re-interpreting erroneous instructions at 
execution time or modifying them. For a robot, this would imply a significant autonomy 
which raises questions of safety. 

All in all however, given that future assistant robots will need to interact verbally 
with their users, it seems appropriate to use a corpus-based approach to robot design. It has 
the advantage of revealing early in the design process what bottleneck problems need to be 
solved.  
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