Phonological Data Types*

Fwan Klein

Centre for Cognitive Science, University of Edinburgh, 2 Buccleuch Place, Edinburgh
EHS8 9LW, Scotland

Table of Contents

1 Introduction
1.1 Abstract Data Types
1.2 Inheritance

2 More Examples: Metrical Trees

N Ot e W

3 Feature Geometry
4 Conclusions e 11

5 References e 12

1 Introduction

This paper examines certain aspects of phonological structure from the viewpoint
of abstract data types. Our immediate goal is to find a format for phonological
representation which will be reasonably faithful to the concerns of theoretical
phonology while being rigorous enough to admit a computational interpretation.
The longer term goal is to incorporate such representations into an appropriate
general framework for natural language processing.

One of the dominant paradigms in current computational linguistics is pro-
vided by unification-based grammar formalisms. Such formalisms (cf. [Shi86,
KR&86]) describe hierarchical feature structures, which in many ways would be
appear to be an ideal setting for formal phonological analyses. Feature bundles

* The work reported in this paper has been carried out as part of the research pro-
grammes of the DYANA project (BR 3175), funded by CEC ESPRIT, and of the Human
Communication Research Centre, supported by the UK Economic and Social Re-
search Council. It is based on a paper, written jointly with Steven Bird, presented to
the Twelfth International Congress of Phonetic Sciences, Aix-en-Provence, August
1991, and I am indebted to Steven for many of the ideas discussed here. I would also
like to thank Michael Newton and Jo Calder for comments on earlier versions.

2 Ewan Klein

have long been used by phonologists, and more recent work on so-called feature
geometry (e.g. [Cle85, Sag86]) has introduced hierarchy into such representa-
tions.

However, in their raw form, feature terms (i.e., formalisms for describing
feature structures) do not always provide a perspicuous format for representing
structure. Compare, for example, the ‘dotted pair’ representation of a list of
syllables with the feature-based one (where ‘I’ represents feature term conjunc-
tion):

(].) (01.02. Hll)
(2) FIRST : 01 MLAST : (FIRST : 03 LI LAST : nil)

The term in 2 is standardly taken to be satisfied by a feature structure of the
sort shown in (3):

FIRST 0
(3) FIRST og
LAST :

LAST mnil

In standard approaches to data structures, complex data types are built
up from atomic types by means of constructor functions. For example, _._
(where we use the underscore ‘.’ mark the position of the function’s arguments)
creates elements of type 1ist. A data type may also have selector functions for
taking data elements apart. Thus, selectors for the type 1ist are the functions
first and last.

It can be seen that the feature-based encoding of lists uses only selectors
for the data type; i.e. the feature labels FIRST and LAST in 3. However, the _._
constructor of (1) is left implicit. That is, the feature term encoding tells you
how lists are pulled apart, but does not say how they are built up. When we
confine our attention just to lists, this is not much to worry about. However,
the situation becomes less satisfactory when we attempt to encode a larger va-
riety of data structures into one and the same feature term; say, for example,
standard lists, associative lists (i.e. strings), constituent structure hierarchy, and
autosegmental association. In order to distinguish adequately between elements
of such data types, we really need to know the logical properties of their re-
spective constructors, and this is awkward when the constructors are not made
explicit.

For computational phonology, it is not such an unlikely scenario to be con-
fronted with a variety of data structures, since one may well wish to study the
complex interaction between, say, non-linear temporal relations and prosodic
hierarchy. As a vehicle for computational implementation, the uniformity of
standard attribute/value notation is extremely useful. As a vehicle for theory
development, it can be extraordinarily unperspicuous.

This problem has to a certain extent already been encountered in the con-
text of syntactic analysis, and in response various proposals have been made to

Phonological Data Types 3

enrich raw feature term formalisms with recursive type (or sort) specifications
([RM-R87, DE91)) or relational and functional dependencies [Rea91] so as to al-
low a more transparent encoding of data types. By virtue of their expressiveness,
these enrichments typically render the resulting formalisms undecidable. Thus,
some care has to be taken to ensure that a given encoding does not introduce
computational intractability into the grammar.

As hinted above, in the longer term, it would be sensible to embed phonolog-
ical analyses within a broader formalism for grammar processing, and enriched
feature formalisms of the kind alluded to above seem provide an appropriate
setting. However from a heuristic point of view, there seems to be some virtue in
being able to explore the complexities of phonological structure without being
overly concerned about this embedding into a feature-based formalism. The al-
ternative which we been exploring here treats phonological concepts as abstract
data types. A particularly convenient development environment is provided by
the language OBJ ([GW88]), which is based on order sorted equational logic. The
denotational semantics of an OBJ module is an algebra, while its operational
semantics is based on order sorted rewriting.

1.1 Abstract Data Types

A data type consists of one or more domains of data items, of which certain
elements are designated as basic, together with a set of operations on the do-
mains which suffice to generate all data items in the domains from the basic
items. A data type is abstract if it is independent of any particular representa-
tional scheme. A fundamental claim of the ADJ group (cf. [GTW78]) and much
subsequent work (cf. [EM85]) is that abstract data types are (to be modelled
as) algebras; and moreover, that the models of abstract data types are initial
algebras.?

The signature of a many-sorted algebra is a pair X' = (S, O) consisting of a
set S of sorts and a set O of constant and operation symbols. A specification
is a pair (¥ &) consisting of a signature together with a set £ of equations
over terms constructed from symbols in O and variables of the sorts in S. A
model for a specification is an algebra over the signature which satisfies all the
equations &. Initial algebras play a special role as the semantics of an algebra. An
initial algebra is minimal, in the sense expressed by the principles ‘no junk’ and
‘no confusion’. ‘No junk’ means that the algebra only contains data which are
denoted by variable-free terms built up from operation symbols in the signature.
‘No confusion’ means that two such terms ¢ and ¢ denote the same object in
the algebra only if the equation ¢ = ¢’ is derivable from the equations of the
specification.

Specifications are written in a conventional format consisting of a declaration
of sorts, operation symbols (op), and equations (eq). Preceding the equations

2 An initial algebra is characterized uniquely up to isomorphism as the semantics of
a specification: there is a unique homomorphism from the initial algebra into every
algebra of the specification.

4 Ewan Klein

we list all the variables (var) which figure in them. As an illustration, we give
below a specification of the data type LIST1.

(4) obj LIST1 is sorts Elt List
ops x y : —> Elt .
op nil : -> List .
op _._ : Elt List -> List .
op head_ : List -> Elt .
op tail_ : List -> List .
var X : Elt .
var L : List .
eq head(X . L) =
eq tail(X . L) =

endo

| |
[

Th sort list between the : and the -> in an operation declaration is called the
arity of the operation, while the sort after the -> is its value sort. Together,
the arity and value sort constitute the rank of an operation. The declaration
ops x y : —> Elt means that x, y are constants of sort E1t.

Although we have specified (4 as a type of lists of elements x, y, this is
obviously rather limiting. In a particular application, we might want to define
phonological words as a List of syllables (plus other constraints, of course), and
phonological phrases as a List of words. That is, we need to parameterize the
type LIST1 with respect to the class of elements which constitute the lists. We
will see how this can be done in the next section.

1.2 Inheritance

We have briefly examined the idea that data can be structured in terms of
sorts and operations on items of specific sorts. Another approach is to organise
data into a hierarchy of classes and subclasses, where data at one level in the
hierarchy inherits all the attributes of data higher up in the hierarchy. Inheritance
hierarchies provide a succinct and attractive method for expressing a wide variety
of linguistic generalizations. Suppose, for example, that we adopt the claim that
all syllables have CV onsets. Moreover, we wish to divide syllables into the
subclasses heavy and light. Obviously we want heavy and light syllables to inherit
the properties of the class of all syllables, e.g., they have C'V onsets.

In order to deal with inheritance, we need to generalise the many-sorted spec-
ification language to an order sorted language by introducing a subsort relation.?
Thus, we use heavy < syll to state that heavy is a subsort of the sort syll. We
interpret this to mean that the class of heavy syllables is a subset of the class of
all syllables. Now, let onset_ : syll -> mora be an operation which selects
the first mora of a syllable, and let us impose the following constraint (where cv
is a subsort of mora):

3 See [Car88] for a general discussion of inheritance between record structures in pro-
gramming languages, and [SA89] for an account of inheritance within the framework
of order sorted equational logic.

Phonological Data Types 5

(5) var S : Syll . var CV : Cv .
eq onset S = CV .

Then the framework of order sorted algebra ensures that onset is also defined
for objects of sort heavy.

In general, let ocand o'be sorts such that o' < o, let f be an operator of rank
o — 7, and let ¢ be a term of sort ¢’. Then f is defined not just for terms of sort
o, but also for ¢ of subsort ¢’, and f(t) is a term of sort 7. From a semantic point
of view, we are saying that if a function assigns values to members of particular
set X, then it will also assign values to members of any subset X' of X.

Returning to lists, the specification in (6) (due to [GW88]) introduces elt
and nelist (non-empty lists) as subsorts of list, and thereby improves on
list1 in a number of respects. In addition, the specification is parameterized.
That is, it characterizes list of Xs, where the parameter X can be instantiated to
any module which satisfies the condition TRIV; the latter is what [GW88] call a
‘requirement, theory’, and in this case simply imposes on any input module that
it have a sort which can be mapped to the sort E1t.

(6) obj LIST[X :: TRIV] is sorts List NeList .
subsorts Elt < NeList < List .

op nil : -> List
op _._ : List List -> List .
op _._ : NelList List -> NelList .

op head_ : NelList -> Elt .

op tail_ : NeList -> List .

var X : Elt .

var L : List .

eq head(X . L)

eq tail(X . L)
endo

non
o<

Notice that the list constructor _._ now performs the additional function of
append, allowing two lists to be concatenated. In addition, the selectors have
been made ‘safe’, in the sense that they only apply to objects (i.e., nonempty
lists) for which they give sensible results; for what, in 1ist1, would have been
the meaning of head(nil)?

2 More Examples: Metrical Trees

As a further illustration, we give below a specification of the data type BINARY TREE,
where the leaves are labelled o. This module has two parameters, both of whose
requirement theories are TRIV.*

4 The notation E1t.NONTERM, E1t.TERM utilizes a qualification of the sort E1t by the
input module’s parameter label; this is simply to allow disambiguation.

6 Ewan Klein

(7) obj BINTREE[NONTERM TERM :: TRIV] is
sorts Tree Netree .
subsorts E1t.TERM Netree < Tree .
op _[_,_] : E1t.NONTERM Tree Tree -> Netree .
op _[_] : E1t.NONTERM E1t.TERM -> Tree .
op label_ : Tree —-> E1t.NONTERM .
op left_ : Netree -> Tree .
op right_ : Netree -> Tree .
vars E1 E2 : Tree .
vars A : E1t.NONTERM .
eq label (A [E1 , E2]) = A .
eq label (A [E1]) = A .
eq left (A [E1 , E2]) = E1 .
eq right (A [E1 , E2]) = E2 .
endo

We can now instantiate the formal parameters of the module BINTREE [NONTERM TERM : :

with input modules which supply appropriate sets of nonterminal and terminal
symbols. Let us use uppercase quoted identifiers (elements of the OBJ module
QID) for nonterminals, and lower case for terminals. The specification in ([?])
allows us to treat terminals as trees, so that a binary tree, rooted in a node
"A, can have terminals as its daughters. However, we also allow terminals to be
directly dominated by a non-branching mother node. Both possibilities occur in
the examples below. ([?]) illustrates the instantiation of formal parameters by
an actual module, namely QID.

(8) make BINTREE-QID is BINTREE[QID,QID] endm

The next example shows some reductions in this module, obtained by treating
the equations as rewrite rules applying from left to right.

left (’A[’a,’b]l) . ~ ’a

left (CA[’B[’al,’C[’bl]) ~» ’B[’al
) left (CA[’B[’a,’b],’c]) ~» ’B[’a,’b]

right(left (CA[C’B[’a,’b]),’c])) .~ b

label (’A[’a,’bl) ~ 7A

label(right (’A[’a,’B[’b,’c]])) . ~ ’B

Suppose we now wish to modify the definition of binary trees to obtain metri-
cal trees, These are binary trees whose branches are ordered according to whether
they are labelled ‘s’ (strong) or ‘w’ (weak).

S/S\w

(10)

TRIV]

Phonological Data Types 7

In addition, all trees have a distinguished leaf node called the ‘highest terminal
element’, which is connected to the root of the tree by a path of ‘s’ nodes.
Let us define ‘s’ and ‘w’ to be our nonterminals:

obj MET is

sorts Label

ops s w : —> Label .
endo

In order to build the data type of metrical trees on top of binary trees, we can
import the module BINTREE, suitably instantiated, using OBJ’s extending con-
struct. Notice that we use MET to instantiate the parameter which fixes BINTREE’s
set of nonterminal symbols.?

(11) obj METTREE is
extending BINTREE[MET,QID] * (sort Id to Leaf)
op hte_ : Tree -> Leaf .
var L : Leaf .
vars Tl T2 : Tree .
vars X : Label .
eqhte (X [L])=0L.

ceq hte (X [T1 , T2]) = hte T1 if label Tl == s
ceq hte (X [TL1 , T2 1) = hte T2 if label T2 == s
endo

These allows reductions of the following kind:

hte(s[’a]) . ~ ’a
(12) label(right (s[s[’al,wl’bl])) .~w
hte (s[s[’a]l,w[’bl]) . ~ a

hte (s[slwl’al,s[’bl],wl’cl]) .~ b

The specification METTREE has to use conditional equations in a cumbersome
way to test which daughter of a binary tree is labelled ‘s’. Moreover, it fails to
capture the restriction that no binary tree can have daughters which are both
weak, or both strong. That is, it fails to capture the essential property of metrical
trees, namely that metrical strength is a relational notion. However, this seems
to be a weakness of the original formulation of metrical trees, and we will not
elaborate here on various solutions that come to mind.

3 Feature Geometry

The particular feature geometry we shall specify here is based on the articulatory
structure defined in [BC89].5. The five active articulators are grouped into a

5 The * construct tells us that the principal sort of QID, namely Id, is mapped to the
sort Leaf in METTREE. The == is a built-in polymorphic equality operation in OBJ.
6 For space reasons we have omitted any discussion of Browman & Goldstein’s constric-
tion location (CL) and constriction shape (CS) parameters. We also have omitted

the supralaryngeal node as its phonological role is somewhat dubious.

Ewan Klein

hierarchical structure involving a tongue node and an oral node, as shown in the
following diagram.

This structure is specified below. The nine sorts and the first three operations
describe the desired tree structure, using an approach which should be familiar
by now. However, in contrast with our previous specifications, this specification
permits ternary branching: the third constructor takes something of sort glottal
and something of sort velic and combines them with something of sort oral to
build an object of sort root.

obj

exte
sort
subs
op {
op {

op {_,_,_} : Nat Nat Oral -> Root .

op _
op _
op _
op -
op _
op -
op _
vars
vars
vars
eq {
eq {
eq {
eq {
eq {
eq {
eq {
endo

FEATS is
nding NAT .

s Gesture Root Oral Tongue .
orts Nat Root Oral Tongue < Gesture .

»,} : Nat Nat —-> Tongue .
,} : Tongue Nat -> Oral .

coronal : Tongue -> Nat .
dorsal : Tongue -> Nat .
labial : Oral -> Nat .
tongue : Oral -> Tongue .
glottal : Root -> Nat .
velic : Root -> Nat .
oral : Root -> Oral .

C C1 C2 : Nat .
0 : Oral .
T : Tongue .

Ci , C2 } coronal = C1 .
Cl, C2 } dorsal = C2 .
T, C3 tongue =T .
T, C} labial = C .

Cl, C2, 0} glottal = C1 .

Cl, C2, 0} velic = C2 .
Cl1,C2,0%}oral =0.

Phonological Data Types 9

3,4,4,1,1 oral . ~ 4,1,1
(13) 3,4,4,1,1 oral tongue . ~ 4,1
3,4,4,1,1 oral tongue coronal . ~ 4

The selectors (e.g. coronal) occupy most of the above specification. Notice
how each selector mentioned in the ops section appears again in the eqs section.
Consider the coronal selector. Its ops specification states that it is a function
defined on objects of sort tongue which returns something of sort coronal.
The corresponding equation states that (C,D) coronal = C. Now C has
the sort coronal and D has the sort dorsal. By the definition of the first
constructor, (C, D) has the sort tongue. Furthermore, by the definition of the
coronal selector, (C,D) coronal has the sort coronal. So the equation
(C, D) coronal = (respects the sort definitions.

Selectors can be used to implement structure-sharing (or re-entrancy). Sup-
pose that two segments S; and S, share a voicing specification. We can write
this as follows: S; glottal = S» glottal . This structure sharing is consis-
tent with one of the main motivating factors behind autosegmental phonology,
namely, the undesirability of rules such as [a voice] — [« nasal]. The equation
S glottal = S velic is illsorted.

Now we can illustrate the function of selectors in phonological rules. Consider
the case of English regular plural formation (—s), where the voicing of the suffix
segment agrees with that of the immediately preceding segment, unless it is a
coronal fricative (in which case there must be an intervening vowel). Suppose
we introduce the variables S;,S, : root, where S; is the stem-final segment
and S, is the suffix. The rule must be able to access the coronal node of S;.
Making use of the selectors, this is simply S;oral tongue coronal (a notation
reminiscent of paths in feature logic, [10]). The rule must test whether this
coronal node contains a fricative specification. This necessitates an extension to
our specification, which will now be described.

Browman & Goldstein [4:234ff] define ‘constriction degree percolation’, based
on what they call ‘tube geometry’. The vocal tract can be viewed as an inter-
connected set of tubes, and the articulators correspond to valves which have a
number of settings ranging from fully open to fully closed. These settings will
be called constriction degrees (CDs), where fully closed is the maximal con-
striction and fully open is the minimal constriction.

The net constriction degree of the oral cavity may be expressed as the max-
imum of the constriction degrees of the lips, tongue tip and tongue body. The

10 Ewan Klein

net constriction degree of the oral and nasal cavities together is simply the min-
imum of the two component constriction degrees. To recast this in the present
framework we employ our notion of percolation again. The definition of max
and min are as follows:

obj MINMAX

is protecting NAT .

ops min max : Nat Nat -> Nat

vars M N : Nat

eq min(M,N) = if M <= N then M else N fi .
eq max(M,N) = if M >= N then M else N fi .
endo

obj CD is

extending FEATS + MINMAX .

op _cd : Gesture -> Nat

ops clo crit narrow mid wide obs open : Gesture -> Bool .
var G : Gesture .

var N N1 N2 : Nat

vars 0 : Oral .

vars T : Tongue .

eq Ncd=N.

eq {N1,N2} cd = max(N1,N2)

eq {T,N} cd = max(T cd,N)

eq {N1,N2,0} cd = max(N1,min(N2,0 cd))
eq clo(G) = G cd ==

eq crit(G) = G cd ==

eq narrow(G) = G cd ==

eq mid(G) = G cd ==

eq wide(G) = G cd ==

eq obs(G) = G cd > 2 .

eq open(G) = G cd < 3 .

endo
3,0,4,1,1 oral tongue cd . ~ 4
3,0,4,1,1 oral cd . ~ 4
3,0,4,1,1 cd . ~ 3
(14) mid(3,0,4,1,1 oral labial) . ~» true

wide(3,0,4,1,1 oral labial) .~ false
0,4,1,1 oral labial) .~ true
clo(3,0,4,1,1 oral tongue) . ~» true

There are five basic constriction degrees (clo, crit, narrow, mid, and wide),
and these are grouped into two sorts obs and open.

Using the above extension, the condition on the English voicing assimilation
rule could be expressed as follows”, where Crit: crit:

7 A proviso is necessary here. Just because there is a critical CD at the tongue tip

Phonological Data Types 11

S; oral tongue coronal cd # crit

If this condition is met, the effect of the rule would be:

S; glottal cd =Sy glottal «cd

This is how we say that S; and S, have the same voicing.

Now the manner features can be expressed as follows (omitting strident
and lateral).

obj MANNER is

protecting CD .

ops son cont cons nas : Root —-> Bool .

var R : Root .

eq son(R) = open(R)

eq cont(R) = clo(R oral) == false .

eq cons(R) = obs(R oral)

eq nas(R) = open(R velic) and obs(R oral).
endo

son(3,0,4,1,1) . ~» false

cont(3,0,4,1,1) .~ false
(15) cons(3,0,4,1,1) .~ true

nas(3,0,4,1,1) . ~» true

It follows directly from the above definitions that the collection of noncon-
tinuants is a subset of the set of consonants (since clo < obs). Similarly, the
collection of nasals is a subset of the set of consonants. Note also that these def-
initions permit manner specification independently of place specification, which
is often important in phonological description.

4 Conclusions

We began this article by pointing out the difficulty of defining and using complex
phonological structures. In addressing this problem we have used a strategy from
computer science known as abstract specification. We believe this brings us a
step further towards our goal of developing a computational phonology.

This approach contrasts with the finite state approach to computational
phonology [1,6]. Finite state grammars have employed a rigid format for ex-
pressing phonological information, and have not hitherto been able to represent
the complex hierarchical structures that phonologists are interested in. OQur ap-
proach has been to view phonological structures as abstract data types, and to
obtain a rich variety of methods for structuring those objects and for expressing
constraints on their behaviour.

does not mean that a fricative is being produced. For example, the lips might be
closed. We can get around this problem with the use of CD percolation (as already
defined) and the equation Sioral = crit. Further discussion of this option may be
found in [2].

12 Ewan Klein

We have briefly examined the idea that data can be structured in terms of
sorts and operations on items of specific sorts. We also explored the organization
of data into a hierarchy of classes and subclasses, where data at one level in the
hierarchy inherits all the attributes of data higher up in the hierarchy. Inheritance
hierarchies provide a succinct and attractive method for expressing a wide variety
of linguistic generalizations. A useful extension would be to incorporate default
inheritance into this system.

Further exploration of these proposals, we believe, will ultimately enable the
mechanical testing of predictions made by phonological systems and the incor-
poration of phonological components into existing computational grammars.

5 References

References

[SA89] Antworth, E. L. (1990). PC-KIMMO: A Two-level Processor for Morpho-
logical Analysis. Dallas: Summer Institute of Linguistics.

[BP88] Beierle, C. & U. Pletat (1988). Feature Graphs and Abstract Data Types:
A Unifying Approach. Proceedings of COLING ’88

[Bir90] Bird, S. (1990). Constraint-Based Phonology. PhD Thesis. University of Ed-
inburgh.

[BK90] Bird, S. & E. Klein (1990). Phonological events. Journal of Linguistics, 26,
33-56.

[BC89] Browman, C. & L. Goldstein (1989). Articulatory gestures as phonological
units. Phonology, 6, 201-251.

[Car88] Cardelli, L. (1988) A Semantics of Multiple Inheritance. Information and
Computation 76, ppl38-164.

[Cle85] Clements, G.N.. (1985) The Geometry of Phonological Features. Phonology
Yearbook 2, pp225-252.

[DKK*87] Dalrymple, M., R. Kaplan, L. Karttunen, K. Koskenniemi, S. Shaio &
M. Wescoat (1987). Tools for Morphological Analysis. CSLI-87-108. CSLI,
Stanford.

[DE91] Ddrre, J. & A. Eisele (1991). A Comprehensive Unification-Based Gram-
mar Formalism. Deliverable R3.1.B, DYANA—ESPRIT Basic Research Action
BR3175, January 1991.

[EM85] Ehrig, H. & B. Mahr (1985) Fundamentals of Algebraic Specification 1: Equa-
tions and Initial Semantics, Berlin: Springer Verlag.

[GWS88] Goguen, J.A., & T. Winkler (1988) ‘Introducing OBJ3’. Technical Re-
port SRI-CSL-88-9, SRI International, Computer Science Laboratory, Menlo
Park, CA.

[GTWT78] Goguen, J.A., J.W. Thatcher and E.G. Wagner (1976) ‘An Initial Algebra
Approach to the Specification, Correctness and Implementation of Abstract
Data Types’. In R. Yeh (ed.) Current Trends in Programming Methodology
IV: Data Structuring, pp80-144. Englewood Cliffs, NJ : Prentice Hall.

[KR86] Kasper, R. & W. Rounds (1986). A Logical Semantics for Feature Structures.
Proceedings of the 24th Annual Meeting of the ACL, Columbia University,
New York, NY, 1986, pp257-265.

Phonological Data Types 13

[Rea91] Reape, M. (1991). Foundations of Unification-Based Grammar Formalism.
Deliverable R3.2.A, DYANA—ESPRIT Basic Research Action BR3175, July
1991.

[RM-R87] Rounds, W. & A. Manaster-Ramer (1987). A Logical Version of Functional
Grammar. Proceedings of 25th Annual Meeting of the Association for Com-
putational Linguistics, 6-9 July 1987, Stanford University, Stanford, CA,
pp96.

[Sag86] Sagey, E. (1986). The Representation of Features and Relations in Non-
Linear Phonology. PhD Thesis, MIT, Cambridge, Mass.

[Shi86] Shieber, S. (1986). An Introduction to Unification-Based Approaches to
Grammmar. CSLI Lecture Note Series, University of Chicago Press, Chicago.

[SA89] Smolka, G. and H. Ait-Kaci (1989) ‘Inheritance Hierarchies: Semantics and
Unification’. Journal of Symbolic Computation 7, pp343-370.

This article was processed using the K TEX macro package with ICM style

