
9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 15

Instruction Based Learning: how to instruct a personal robot to find HAL.

Stanislao Lauria, Guido Bugmann1, Theocharis Kyriacou, Ewan Klein*

Centre for Neural and Adaptive Systems, School of Computing, University of Plymouth
Drake Circus, Plymouth PL4 8AA, United Kingdom.

*Institute for Communicating and Collaborative Systems, Division of Informatics, University of Edinburgh, 2
Buccleuch Place, Edinburgh EH8 9LW, Scotland, United Kingdom.

http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/index.html

1 To whom correspondence should be addressed.

Abstract
Future domestic robots will need to adapt to the

special needs of their users and to their
environment. Programming by natural language
will be a key method enabling computer language-
naïve users to instruct their robots. Its main
advantages over other learning methods are speed
of acquisition and ability to build high level
symbolic rules into the robot. This paper describes
the design of a practical system that uses
unconstrained speech to teach a vision-based robot
how to navigate in a miniature town. The robot
knows a set of primitive navigation procedures that
the user can refer to when giving route instructions.

Since the user is likely to refer to a procedure
that is not pre-programmed in the robot, the system
must be able to learn it. This paper investigates
how to make the learning process possible. In
particular, a method is proposed to fasten the
choice of an initial set of primitives to the natural
human speech chunking. Moreover, the use of
Instruction-Based Learning (IBL) imposes a
number of constraints on the design of robotics
systems and knowledge representation. These
issues are developed in the paper and proposed
solutions described.

1. Introduction

Intelligent robots must be capable of action in
reasonably complicated domains with some degree
of autonomy. This requires adaptivity to a dynamic
environment, ability to plan and also speed in the
execution. In the case of helper robots, or domestic
robots, the ability to adapt to the special needs of
their users is crucial. The problem addressed here is
the one of how a user could instruct the robot to
perform tasks which manufacturers cannot

completely program in advance. In this case the
system will not work at all if it cannot learn.

Such learning requires interaction and
collaboration between the user and the robot. But,
as most users are computer-language-naïve, they
cannot personalise their robot using standard
programming methods. Indirect methods, such as
learning by reinforcement or learning by imitation,
are also not appropriate for acquiring user-specific
knowledge. For instance, learning by reinforcement
is a lengthy process that is best used for refining
low-level motor controls, but becomes impractical
for complex tasks. Further, both methods do not
readily generate knowledge representations that the
user can interrogate.

Instruction-Based Learning (IBL), which uses
unconstrained speech, has several potential
advantages. Natural language can express rules and
sequences of commands in a very concise way.
Natural language uses symbols and syntactic rules
and is well suited to interact with robot knowledge
represented at the symbolic level. It has been
shown that learning in robots is much more
effective if it operates at the symbolic level
(Cangelosi and Harnad, 2001). This is to be
contrasted with the much slower learning at the
level of direct sensory-motor associations.

Chunking, sequencing and repair are the aspects,
related to natural language interactions, shaping the
design of IBL systems discussed here. Chunking is
a principle that applies to the communication of
information. Chunking is meant here as the human
characteristic to divide, during explanations, tasks
into sub-tasks, so that all information should be
presented in small ‘basic’ units of actions. As
shown in (Miller 1956), chunking is done
spontaneously by humans and consequently the
system must be on the same ‘wavelength’ as the
user in order to be successful. This means
establishing for the robot the appropriate

http://www.tech.plym.ac.uk/soc/staff/guidbugm/ibl/index.html

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 16

prerequisites for the conversion of cognition,
carried in chunks, into the form of procedures. In a
robot involved with navigation tasks, a
fundamental prerequisite is that the system must
possess a set of pre-programmed procedures related
to the very basic chunks used in route instruction
situations. Moreover, since in the learning process
the user does not express his requirement with a
single chunk, the system must be able to sequence
the chunks correctly. For example, in a sequence of
instructions given by the user, the final state of an
action may not correspond to the expected state for
the next action. In this case, the system would not
be able to perform its task due to the missing
chunk. For this reason, it is necessary to define a
proper internal knowledge representation allowing
the system to detect the missing information. In this
way, the system would be able to make predictions
about future events so that the problem can be
solved while the system is still interacting with the
user.

 Finally, the system not only has to pay attention
to user knowledge and dialogue goals, but it also
has to adapt its dialogue behaviour to current
limitations of the user's cognitive processing
capabilities. Assistance is then expected from the
system, so that the interaction may naturally flow
over the course of several dialogue turns.
Moreover, a dialogue manager should take care of
identifying, and recovering from, speech
recognition and understanding errors.

This paper describes initial steps and
considerations towards a practical realisation of an
IBL system. The experimental environment is that
of a miniature town in which a robot provided with
video camera executes route instructions. The robot
has a set of pre-programmed sensory-motor action
primitives, such as "turn left" or "follow the road".
The task of the user is to teach the robot new routes

by combining action primitives. That task should
reveal all the constraints described above, and
enable testing of the developed methodology.

In the next section the IBL architecture
implications due to chunking, sequencing and
repair are discussed and how the rest of this paper
is organized is also specified.

2. The big picture: from verbal utterance to
robot action

With IBL, the system must convert verbal
instructions given by the user into procedures
containing internal program code controlling the
robot sensors/actuators. It is during the learning
process that such procedures are created and
become part of a pool of procedures that can then
be reused to learn more and more complex
procedures. In this way the robot becomes able to
execute increasingly complex tasks based on a set
of pre-programmed primitives.

The closer the correspondence between
primitives and chunks expressing the very basic
actions (such as "turn left") is, the less difficult the
learning is, since, in this way, the interaction
between the user and system is kept to the
minimum. For this reason, it is necessary to select
these primitives that corresponds as closely as
possible to the action expressed in the chunks.

Then, there is the problem of handling the
chunks. In table 1, an example is given showing the
various steps necessary to transform a user chunk
into a robot action. First, the robot must be able to
perform some speech recognition tasks in order to
convert speech into text. After that, some syntactic
parsing and semantic analysis is carried out. Then
at the functional mapping level, the system must be
able to transform the user utterance into internal

Analysis Repair

Speech
recognition

Tagging Go/VB to/TO the/DT end/NN of/IN the/DT street/NN
Syntactic Parsing [VG go] [to to] [NG the end of the street]
Semantic
Analysis

Robot (x), end_of_street (y), request_go (x, y)

Functional
Mapping

Goto(“end_of_street”)

↓

↓

↓

↓
Robot program Until found(end_of_street)

 follow_the_road()

↑

↑

↑

↑
Table 1. From speech to action. The various steps involved in the transformation of a user command into the
corresponding action are shown here.

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 17

symbols that the robot can understand. By
understanding we mean here that there is a
correspondence between symbols and actions or
real-world objects. In this way, the appropriate
procedure can be called to act on the
sensors/motors accordingly to the user intentions.

This multi-step approach has system-wide
repercussions on the design of a robot control
system. For example, the robot must be able to
distinguish a command to be executed immediately
from an instruction to be memorized. This requires
context resolution at the natural language
processing level. Moreover, the robot must be able
to verify that the instruction can be converted into
an executable procedure. It requires an internal
representation of consequences of actions and the
ability to verify the correct action sequencing. The
robot must also be able to execute a command
while listening to the user, and must cope with
interruptions and inappropriate answers to its
requests. This requires carefully designed system
architecture. Some of the aspects discussed here are
presented in more detail in the next sections. In
particular, section 3 clarifies how symbol-level
description and low-level sensory motor action
procedures are integrated. The proposed
representation of procedural knowledge is also
described. In section 4 the system architecture is
described.

The problems of considering the appropriate
selection of action primitives is described in section
5 by analyzing recorded route instructions, and
establishing a list of actions that are natural to
users. The results of this investigation are also
discussed. One of them is that the list of primitives
may not be a closed one. The implications of that
and other findings is discussed in section 6, along
with the question of how the proposed system
compares to other approaches. The conclusion
follows in section 7.

3. IBL model

3.1 Symbolic learning
The learning process is based on predefined

initial knowledge. This “innate” knowledge
consists of primitive sensori-motor procedures with
names, such as “turn left”, “follow the road” (the
choice of these primitives is explained in sections
3.3 and 5). The name is what we call here a
“symbol”, and the piece of computer program that
controls the execution of the corresponding
procedure is called the “action” (Figure 1A). As
each symbol is associated with an action, it is said
to be “grounded”.

When a user explains a new procedure to the
robot, say a route from A to B that involves a
number of primitive actions, the IBL system, on the
one hand, creates a new name for the procedure,
and, on the other hand, writes a new piece of
program code that executes that procedure and
links the code with the name (see section 3.2 for
details). The code refers to primitive actions by
name. It does not duplicate the low-level code
defining these primitives. For that reason, the new
program can be seen as a combination of symbols
rather than a combination of actions (figure 1B). As
all new procedures are constructed from grounded
primitives, they become also grounded by
inheritance and are “understandable” by the system
when referred to in natural language.

When explaining a new procedure, the user can
also refer to old procedures previously defined by
himself. In that way the complexity of the robot's
symbolic knowledge increases (fig. 1C).

3.2 Knowledge representation
The internal representation needs to support three

functions: (i) formal modeling of NL route
descriptions; (ii) internal route planning for
determining whether a given route description is
sufficiently specified; and (iii) the generation of

 A B C

Figure 1. Symbolic learning. (A) is a schematic representation of the initial system, comprising symbols associated with pre-
programmed (innate) primitive action procedures. In (B) the user has defined a new procedure (open circle) as a
combination of symbols. The new symbol is grounded because it is a construct of grounded symbols. In (C), the user has
defined a new procedure that combines a procedure previously defined by himself with primitive action procedures.

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 18

procedures for navigation at execution time. These
three functions require different representations
that will be described in turn.

(i) The utterances of the user are represented
using the discourse representation structure (DRS)
(Bugmann2001). This is then translated into
symbols representing procedures or is used to
initiate internal functions such as execution of a
command or learning of a series of commands
(section 4).

(ii) When the user describes a route as a
sequence of actions, it is important for the robot to
verify if this sequence is executable. The approach
proposed here associate each procedure with a
triplet SiAijSj with properties similar to
productions in SOAR (Laird et al, 1987). The state
Si is the initial state in which the action Aij can
take place. It is the pre-condition for action Aij.
The state Sj is the final state, resulting of the action
of Aij applied to the initial state (figure 2 clarifies
the difference between “initial state” and “pre-
condition”). For a sequence of actions to be
realisable, the final state of one action must be
compatible with the pre-condition of the next one.
To enable this verification, the robot must be able
to “imagine” the consequence of an action. For that
purpose, a PREDICTION function is associated
with each primitive action, and with each newly
created procedure. Figure 2 illustrates the use of the
prediction function during verification of the

consistency of the sequence of instructions from
the user. It should be noted that this process also
helps detecting some of the errors in natural
language processing.

(iii) When a robot executes a command, it
executes a piece of program code that contains the
sequence of primitive procedures to be executed.
Thus, a key part of IBL is the generation of a
program code. This is enabled by the use of a
scripting language (section 4). This program is
called the ACTION function. Both ACTION and
PREDICTION functions are physically located in
the same file that contains all information specific
to a procedure. This is schematised in figure 3.

3.3 Sensory-Motor primitives
Sensory-motor primitives are defined as actions

that users usually refer to in unconstrained speech
(chunking). These are not low-level robot control
actions, and often involve complex processing and
planning. A task such as "approach that building at
the end of the street" is a typical action that users
ask the robot to do at the end of a route instruction,
when the goal is in sight (section 5). It is a complex
action involving visual detection of a building and
of its entrance, its localisation in relation to the
street, and planning of a route along the street. All
this is easy for a human, but in many ways
stretches the limits of robot "intelligence".

 A

 B
Figure 2. Route instruction verification. (A) For each procedure there is a prediction function that transforms a state vector
into its future value. The function first determines if the input state satisfied the minimal criteria (“pre-condition”) to enable
the procedure to be executed. An action is executable only if selected elements of the state vector have required values. If
this is the case, the next state is predicted and processed by the prediction function associated with the next procedure in the
instruction. Each action modifies certain components of the state vector, and leaves the other unchanged. (B) If the
predicted state produced by one procedure does not allow the next procedure to be executed, an error handling process is
initiated. (Note: the “initial state” in the text corresponds to the “current state” in the figure).

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 19

We see here that, by setting the boundaries
between the symbolic level and the action level to
be the same as the one found in natural language,
the symbolic level processing has been simplified,
but at the cost of an increased complexity of "low-
level" procedures. These give the robot some
autonomy in the execution of commands, as the
execution details depend on the local conditions.

4. System Architecture

The architecture is comprised of several
functional processing modules (figure 4). These are
divided into two major units: the Dialogue
Manager (DM) and the Robot Manager (RM).

The DM and the RM are designed as two
different processes based on asynchronous
communication protocols. These processes run
concurrently on different processors. In this way,
the system can handle, at the same time, both the
dialogue aspects of an incoming request from the
user (i.e. speech recognition and semantic analysis,
or detection of a "stop" command) and the
execution of a previous user request (i.e. check if
the request is in the system knowledge domain, and
execute vision-based navigation procedures).

Two aspects are essential with this concurrent-
processes approach. Firstly, to define an
appropriate communication protocol between the
two processes. Secondly, to define an appropriate

architecture for the RM and DM allowing the two
processes to both communicate with each other
while performing other tasks. At present a
communication protocol based on sockets and
context-tagged messages is evaluated.

Moreover, the system must also dynamically
adapt itself to new user requests or to new internal
changes, by being able to temporarily suspend or
permanently interrupt some previous activity. For
example the user may want to prevent the robot
crashing against a wall and must therefore be able
to stop the robot while the robot is driving towards
the wall. Hence, the importance of a concurrent
approach where the system constantly listens to the
user while performing other tasks and at the same
time being able to adjust the task if necessary.

The Dialogue Manager is a bi-directional
interface between the Robot Manager and the user,
either converting speech input into a semantic
representation, or converting requests from the
Robot Manager into dialogues with the user. Its
components are run as different processes
communicating with each other via a blackboard
architecture. The RM must concurrently listen/send
requests from/to the DM and try to execute them.
For this reason a multi-threads approach has been
used. Its communication interface is a process that
only launches a message evaluation thread
“Execution Process” and resumes listening to the
DM. The execution process then starts an
appropriate thread for executing a command, or

 B
Figure 3. Procedural knowledge representation. (A) A procedure file contains an ACTION function that causes the
physical displacement of the robot, and a PREDICTION function that calculates the future state of the robot resulting from
the action. The ACTION is used during execution of a command, and the PREDICTION is used for consistency checking
during the learning process. (B) An instruction by the user results in a “New Procedure” file being written. In this file, the
actions components of the requested primitive procedures are combined (in the form of function calls) to create the new
ACTION function, and the prediction components are combined to create the new PREDICTION function. This includes an
additional procedure-specific pre-condition.

A

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 20

places a tagged message on a message board if it is
a part of a dialogue in a specific thread, e.g.
learning a route. The characteristic of this approach
is that all processes in the RM are sharing a
common memory stack so that threads can be
started and paused, depending on the user’s input.
At the moment, the Execution Process component
is implemented with the Process Launcher
controlling only the Learning and Execution
modules since the Stop component is in an early
stage of development. The Robot Manager is
written using the scripting Python2 language and C.
An important feature of scripting languages is their
ability to write their own code. For instance, a route
instruction given by the user will be saved by the
Robot Manager as a Python script that then
becomes part of the procedure set available to the
robot for execution or for future learning.

5. Corpus Collection and Data Analysis

To evaluate the potential and limitations of IBL,
a real-world instructions task is used, that is simple
enough to be realisable, and generic enough to
warrant conclusions that hold also for other task
domains. A simple route scenario has been
selected, using real speech input and a robot using
vision to execute the instructed route (see 5.1
below for more details). The first task in the project
is to define the innate actions and symbols in the
route instruction domain. For this reason, a corpus

2 http://www.python.org

of route descriptions has been collected from
students and staff at the University of Plymouth. In
section 5.2 and 5.3 corpus collection and data
analysis are presented.

5.1 Experimental Environment
The environment is a miniature town covering an

area of size 170cm x 120cm (figure 5). The robot
is a modified RobotFootball robot3 with an 8cm x
8cm base (figure 6A). The robot carries a CCD
colour TV camera4 (628 (H) x 582 (V) pixels) and
a TV VHF transmitter. Images are processed by a
PC that acquires them via with a TV capture card5

(an example of such image is shown in figure 6B).
The PC then sends motion commands by FM radio
to the robot. During corpus collection, the PC is
also used to record instructions given by subjects.

The advantage of a miniature environment is the
ability to build a complex route structure in the
limited space of a laboratory. The design is as
realistic as possible, to enable subjects to use
expressions natural for the outdoor real-size
environment. Buildings have signs taken from real
life to indicate given shops or utilities such as the
post-office. However, the environment lacks some
elements such as traffic lights that may normally be
used in route instructions. Hence the collected
corpus is likely to be more restricted than for
outdoor route instructions. The advantage of using

3 Provided by Merlin Systems
(http://www.merlinsystemscorp.com/)
4 Provided by Allthings Sales and Services
(http://www.allthings.com.au/)
5 TV Card: Hauppage WinTV GO

Figure 4. IBL system’s architecture (see text for description).

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 21

a robot with a remote-brain architecture (Inaba et
al., 2000) is that the robot does not require huge
on-board computing and hence can be small, fitting
the dimensions of the environment.

5.2 Collection of a corpus of route instructions
To collect linguistic and functional data specific

to route learning, 24 subjects were recorded as they
gave route instructions to the robot in the
environment. Subjects were divided into three
groups of 8. The first two groups (A and B) used
totally unconstrained speech, to provide a
performance baseline. It is assumed that a robot
that can understand these instructions as well as a
human operator would represent the ideal standard.
Subjects from group C were induced in producing
shorter utterances by a remote operator “taking
notes”.

The other two groups (A and B) were told that
the robot was remote-controlled and that, at a later
date, a human operator would use their instructions

to drive the robot to its destination. It was specified

that the human operator would be located in
another room, seeing only the image from the
wireless on-board video camera. This induced
subjects to use a camera-centred point of view
relevant for robot procedure primitives. Subjects
were also told to reuse previously defined routes
whenever possible, instead of re-explaining them in
detail. Each subject had 6 routes to describe among
which 3 were “short” and 3 were “long”. The long
routes included a short one, so that users could
refer to the short one when describing the long one,
instead of re-describing all segments of the short
one. This was to reveal the type of expressions
used by users to link taught procedures with
primitive ones. Each subject described 6 routes
having the same starting point and six different
destinations. Starting points were changed after
every two subjects. A total of 144 route
descriptions were collected. For more details about
collection and analysis of the corpus see (Bugmann
et al. 2001).

5.3 Corpus Analysis: The functional vocabulary
The aim of the corpus analysis is to twofold.

First, to define the vocabulary used by the users in
this application, in order to tune the speech
recognition system for an optimal performance in
the task. Secondly, to establish a list of primitive
procedures that users refer to in their instructions.
The aim is to pre-program these procedures so that
a direct translation from the natural language to
grounded symbols can take place. In principle, if
the robot does not know a procedure, the user could
teach it. However, this is a process that we wish to
avoid at this stage of the project, as discussed in
section 6. Hereafter, we report on the functional
analysis of the corpus. The reader interested in the
task vocabulary can refer to (Bugmann et al.,
2001). The functional vocabulary is a list of
primitive navigation procedures found in route

descriptions.

Figure 5. Miniature town in which a robot will navigate
according to route instructions given by users. Letters
indicate the destinations and origins of various routes
used in the experiment.

 A) B)

Figure 6 A. Miniature robot (base 8cm x 8cm). B. View from the on-board colour camera.

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 22

The initial annotation of instructions in terms or
procedures, as reported here, is somehow
subjective, and influenced by two considerations.
(i) The defined primitives will eventually be
produced as C and Python Programs. It was hoped
that only a few generic procedures would have to
be written. Therefore, the corpus has been
transcribed into rather general procedures
characterised by several parameters (table 2). (ii)
An important issue is knowledge representation.
According to the SAS representation discussed in
section 3.2, the executability of primitives can only
be evaluated if their initial and final states are
defined. Subjects however rarely specified
explicitly the starting point of an action and
sometimes did not define the final state in the same
utterance. Nevertheless, it was assumed that the
system would be able to infer the missing
information from the context. Therefore,
procedures without initial or final state were
considered to be complete, and were annotated as
such. The specifications of primitive procedures are
likely to evolve during the project.

This analysis methodology differs slightly from
the one in (Denis, 1997). In our analysis, there are
no statements describing landmarks, as these are
made part of procedures specifications, and
consequently there are also no actions without
reference to landmarks. Even when a subject
specified a non-terminated action, such as "keep
going", it was classified as "MOVE FORWARD
UNTIL", assuming that a termination point would

be inferred from the next specified action. The list
of actions found in the route descriptions of groups
A and C is given in table 2. Figure 7 shows that the
number of distinct procedures is increasing with the
number of sampled instructions, but at a rate much
smaller than the number of distinct words reported
in (Bugmann et al., 2001). Here we discover on
average one new procedure for every 38 route
instructions, while with words, we discovered in
average one new word for each instruction. New
procedures typically are the least frequent in table
2.

6. Discussions

Teaching a route to a robot using natural
language is an application of a more general
instruction-based learning methodology. The
corpus-based approach described here aims at
providing users with the possibility of using
unconstrained speech, whilst creating an efficient
natural language processing system using a
restricted lexicon. It is found that the functional
vocabulary is small, containing only 12 primitives
(although that number may vary with the
annotation method). From a roboticist's point of
view, route navigation could probably be achieved
with a smaller number of primitives. However,
when accepting spontaneous speech, a wider
variety of functions must be expected.

An important finding is that the functional
vocabulary is not closed. Hence, at some point in

Count Primitive Procedures
1 308 MOVE FORWARD UNTIL [(past |over |across) <landmark>] | [(half_way_of |

end_of) street] | [after <number><landmark> [left | right]] | [road_bend]
2 183 TAKE THE [<number>] turn [(left | right)] | [(before | after | at) <landmark>]
3 147 <landmark> IS LOCATED [left | right |ahead] | [(at | next_to | left_of | right_of |

in_front_of | past | behind | on | opposite | near) < landmark >] | [(half_way_of |
end_of | beginning_of | across) street] | [between <landmark> and <landmark>] |
[on <number> turning (left | right)]

4 62 GO (before | after | to) <landmark>
5 49 GO ROUND ROUNDABOUT [left | right] | [(after | before | at) <landmark>]
6 42 TAKE THE <number> EXIT [(before | after | at) <landmark>]
7 12 FOLLOW KNOWN ROUTE TO <landmark> UNTIL (before | after | at)

<landmark>
8 4 TAKE ROADBEND (left | right)
9 4 STATIONARY TURN [left | right | around] | [at | from <landmark>]
10 2 CROSS ROAD
11 2 TAKE THE ROAD in_front
12 2 GO ROUND <landmark> TO [front | back | left_side | right_side]
13 1 PARK AT <location>
14 1 EXIT [car_park | park]

Table 2. Primitive navigation procedures found in the route descriptions collected from groups A and C. Procedure 3 is
used by most subjects to indicate the last leg of a route, when the goal is in sight.

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 23

the robot's life, the user will have to teach it new
primitives (e.g. "cross the road") or reformulate its
instructions. To enable learning, the robot must
posses a larger set of primitives, which correspond
to lower level robot actions. For instance, the user
may wish to refer to a number of wheel turns in its
instruction. Examples of such instructions are
found in (FLAKEY)and (Seabra Lopes, 2000). With
our approach, this would require the collection of a
new corpus to determine the necessary additional
primitive procedures. Another solution may lie in
an appropriate dialogue management to suggest a
reformulation of the instruction. It is expected that
with the corpus-based method used here, the
frequency of such "repair dialogues" will be
minimised. An open question is the detection of
new functions in the user's utterance, as the lexicon
may not contain the required vocabulary.

The approach to robot control described may be
seen as an attempt to integrate the good properties
of Behaviour-based control and classical AI.
Behaviour-based control is an effective method for
designing low-level primitives that can cope with
real-world uncertainties, and AI has developed
effective tools for symbol manipulation and
reasoning (for a more detailed discussion about
hybrid systems see for example Malcom (1995)).
However, the system differs in several ways from
both methods. Here, the corpus defines what
symbols and primitives to use. Consequently, some
of the primitives are rather complex functions,
involving representations of the environment and
planning. These are not always compatible with the
representation-less philosophy of behaviour-based

systems. On the AI side, the system does not use
the full range of reasoning capabilities offered by
systems such as SOAR. There are no other aims in
symbolic processing than verifying the consistency
of instructions, and the construction of new
procedure specifications.

Other previous work on verbal communication
with robots has mainly focused on issuing
commands, i.e. activating pre-programmed
procedures using a limited vocabulary (e.g.
IJCAI’95 office navigation contest). Only a few
research groups have considered learning, i.e. the
stable and reusable acquisition of new procedural
knowledge. (Huffman & Laird, 1995) used textual
input into a simulation of a manipulator with a
discrete state and action space. (Crangle and
Suppes, 1994) used voice input to teach
displacements within a room and mathematical
operations, but with no reusability. In (Torrance,
1995), textual input was used to build a graph
representation of spatial knowledge. This system
was brittle due to place recognition from odometric
data and use of IR sensors for reactive motion
control. Knowledge acquisition was concurrent
with navigation, not prior to it. Whereas in (Matsui
et al. 1999), the system could learn new actions
through natural language dialogues but only while
the robot was performing them (i.e. it could only
learn a new route from A to B while it was actually
moving from A to B and dialoguing with the user).

In the IBL system described here, learning
operates purely at the symbolic level; hence it can
be done prior to performance. The ability to predict
future states enables to engage in a verification

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140

Route Descriptions

Figure 7. Average number of unique procedures as a function of the number of collected route instructions The curve
is obtained by averaging 50 sets comprising a random selection of n route descriptions. The number n is shown on the
x-axis of the graph. The slope of the curve indicates that, on average, one new function will be added to the functional
lexicon for every 38 additional route instructions collected.

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic 24

dialogue before execution errors occur. If
environmental conditions change such that an
instruction is not valid anymore, this can be
detected from the mismatch between the expected
result and the actual one. Learning however is not
autonomous. The system requires interaction with a
human user to learn new symbols and their
meaning. This simplifies the design of the robot
due to the transfer of part of the cognitive load to
the user. Future experiment will reveal if this
approach results in effective and socially
acceptable helper robots.

7. Conclusions

The project described in this paper is aimed at
exploring IBL for route descriptions. It has been
discussed how the design of the IBL system is
adapted to natural human behaviour. Indeed, both
the vocabulary matches to the unconstrained user
language and the functional primitives built into the
robot are determined from actions natural to the
users. This defines an architecture open to
spontaneous user interventions, unexpected replies
and errors. Nevertheless, user–friendliness is not a
prior specification, but a consequence of practical
constraints. Indeed, robots without learning will not
achieve specific tasks (such as finding HAL) and a
system without adapted vocabulary causes too
many errors. Similarly, explaining tasks is beyond
the cognitive capabilities of users without high
level primitives and, like with HAL, a robot that
listens only when it decide to do so would be out of
control. So far, the speech recognition part is in an
early stage of development while the DRS part is
operational for a limited number of examples, and
that work is in progress to improve the coverage of
corpus. However, it is found that the functional
vocabulary is small, containing only 12 primitives
(although that number may vary with the
annotation method). The full transformation from
NL utterances into procedures has been tested with
dummy primitives (i.e. preprogrammed robot
displacements). Programs for the proper sensory-
motor primitives are currently under development.
This will then allow further testing of the IBL
concept.

However the initial results presented here show
that neither the lexicon nor primitive procedures
are likely to form closed sets. Ideally, IBL system
should therefore also be capable of acquiring new
words, and users should be given the possibility to
teach new primitive ‘innate’ procedures.
Unfortunately, the former is beyond the capabilities
of current speech recognition systems. As for
learning new primitives procedures, this would
require a new set of more primitive procedures to

be combined via user instructions. Whether it will
be possible to explore this during the project is
unclear. To allow IBL to operate despite these
limitations, it is likely that dialogue management
will play a crucial role.

Acknowledgement: This work is supported by
EPSRC grants GR/M90023 and GR/M90160. The
authors are grateful to A. Cangelosi and K.
Coventry for enlightening discussions.

References:
Bugmann G., Lauria S., Kyriacou T., Klein E., Bos J.

and Coventry K. (2001) "Using Verbal Instruction
for Route Learning", Proc. of 3rd British Conf. on
Auton. Mobile Robots and Autonom. Systems:
Towards Intelligent Mobile Robots (TIMR'2001),
Manchester, 5 April.

Cangelosi A., Harnad S. (2001) The adaptive advantage
of symbolic theft over sensorimotor toil: Grounding
language in perceptual categories. Evolution
Communication. (in press)

Crangle C. and Suppes P. (1994) Language and
Learning for Robots, CSLI Lecture notes No. 41,
Centre for the Study of Language and
Communication, Stanford, CA.

Denis M. (1997) "The description of routes: A cognitive
approach to the production of spatial discourse",
CPC, 16:4, pp.409-458.

FLAKEY:
www.ai.sri.com/people/flakey/integration.html

Huffman S.B. and Laird J.E. (1995) "Flexibly
Instructable Agents", Journal of Artificial
Intelligence Research, 3, pp. 271-324.

Inaba M., Kagami S., Kanehiro F., Hoshino Y., Inoue
H. (2000) “A platform for robotics research based
on the remote-brained robot approach”,
International Journal of Robotics Research, 19:10,
pp. 933-954.

Laird J.E., Newell A. and Rosenbloom P.S. (1987)
"Soar: An architecture for general Intelligence"
Artificial Intelligence, 33:1, pp.1-64.

Malcom C. M. (1995), The SOMASS system: a hybrid
symbolic and behavioured-based system to plan and
execute assemblies by robot. In J. Hallam, et al.
(Eds), Hybrid problems and Hybrid solutions pp
157-168. Oxford: ISO-press.

Matsui T., Asoh H., Fry J.,et al..(1999) Integrated
Natural Spoken Dialogue System of Jijo-2 Mobile
Robot for Office Services,
http://citeseer.nj.nec.com/matsui99integrated.html

Miller G. (1956)‘The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity
Processing Information’. The Psychol. Review, v.
63, p. 81-97

Seabra Lopes, L. and A.J.S. Teixeira (2000) Human-
Robot Interaction through Spoken Language
Dialogue, Proceedings IEEE/RSJ International
Conf. on Intelligent Robots and Systems, Japan.

Torrance M.C. (1994) Natural Communication with
Robots, MSc Thesis submitted to MIT Dept of
Electrical Engin. and Comp. Science

9th European Workshop on Learning Robots, EWLR-9, Sept 8th-9th 2001, Prague, Czech Republic

	A
	Abstract
	
	Analysis

