
Genic Interaction Extraction with Semantic and Syntactic Chains

Sebastian Riedel S.R.Riedel@sms.ed.ac.uk

Ewan Klein ewan@inf.ed.ac.uk

Institute for Communicating and Collaborative Systems, School of Informatics, The University of Edinburgh,
Edinburgh EH8 9LW, Scotland UK

Abstract

This paper describes the system that we sub-
mitted to the “Learning Language in Logic”
Challenge of extracting directed genic inter-
actions from sentences in Medline abstracts.
The system uses Markov Logic, a framework
that combines log-linear models and First Or-
der Logic, to create a set of weighted clauses
which can classify pairs of gene named en-
tities as genic interactions. These clauses
are based on chains of syntactic and seman-
tic relations in the parse or Discourse Repre-
sentation Structure (drs) of a sentence, re-
spectively. Our submitted results achieved
52.6% F-Measure on the dataset without and
54.3% on the dataset with coreferences. Af-
ter adding explicit clauses which model non-
interaction we were able to improve these
numbers to 68.4% and 64.7%, respectively.

1. Introduction

This paper describes the system that we submitted to
the “Learning Language in Logic” (LLL) Challenge of
extracting directed genic interactions from sentences in
Medline abstracts. As an illustratation of the extrac-
tion task, given a sentence like (i), we wish to extract
information of the form in (ii):

(i) Localization of SpoIIE was shown to be dependent
on the essential cell division protein FtsZ.

(ii) genic interaction(FtsZ, SpoIIE)

The LLL Challenge organizers provided training and
test sets containing sentences with and without coref-
erential expressions. For all data sets, ‘enriched’ ver-

Appearing in Proceedings of the 4 th Learning Language in
Logic Workshop (LLL05), Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

sions were available which contained lemmas and syn-
tactic parses for each sentence.

Our initial goal was to explore whether relation ex-
traction could be effectively carried out over semantic
representations, rather than surface strings or parse
structures. In particular, we decided to take as our
starting point the logical forms produced by ccg2sem

(Bos, 2005), a tool whose input is a ccg (Steedman,
2001) dependency tree built by a wide coverage statis-
tical parser (Clark & Curran, 2004) and whose output
is a Discourse Representation Structure (drs) (Kamp
& Reyle, 1993). This approach was based on the hope
that target relations between entities would be easier
to recover once the whole sentence had been converted
into a set of semantic relations. Although we still
believe this approach has considerable potential, we
found that for the LLL Challenge dataset, it was less
successful than we had hoped, primarily due to the ef-
fect of parser errors and to problems in processing the
semantic output that ccg2sem yielded for coordinate
structures. However, it turned out that using syntac-
tic information from the enriched data sets improved
performance significantly.

We had a strong bias in terms of the clauses to be
learned: they had to connect both genes transitively.
With this requirement in mind and the observation
that our initial attempts to apply ilp systems (foil

and Aleph) did not yield such clauses, we decided in-
stead to generate a set of clauses based on chains of re-
lations between the two genes. Clause candidates that
were automatically extracted from the training corpus
were fed to a Markov Logic (Domingos & Richard-
son, 2004) system; this in turn learned probabilistic
weights that reflected how often the clause candidates
were actually observed in the training data.

Genic Interaction Extraction with Semantic and Syntactic Chains

ykud(x1)
transcribe(x2)
patient(x2,x1)
sigk(x3)
nn(x3,x5)
rna(x4)
polymerase(x5)
by(x2,x5)
...

x1,x2,x3,x4,x5,...

Figure 1. A simple drs in box representation

2. Data Preprocessing

2.1. Tokenization, Part-of-speech Tagging and

Parsing

In order for ccg2sem to create logical forms, the
training sentences had to be tokenized, part-of-speech
tagged and parsed into a ccg tree. Tokenization was
straightforward: the gene terms (retrieved from a list)
were mapped into single tokens even when containing
whitespace, hyphens or parentheses. part-of-speech
tagging and parsing were both handled by the ccg

parser(Clark & Curran, 2004).

2.2. DRS Construction

After parsing, the ccg tree was transformed by
ccg2sem into a Discourse Representation Structure
(drs), complete with resolved coreferences.

drss are defined as ordered pairs of a set of discourse
referents and a set of drs-conditions, where conditions
can be n-ary relations and equations over discourse ref-
erents (drs), together with implications, disjunctions
and negations of sub-drss. For a sentence like

ykuD was transcribed by SigK RNA polymerase
from T4 of sporulation

ccg2sem produced, among others, a discourse referent
x1 referring to the ykuD gene, x2 which refers to a
transcription event and x3, x4 and x5 which are asso-
ciated with SigK RNA polymerase. Figure 1 shows a
graphical representation of the drs the upper section
of the box contains the discourse referents, and the
main box contains the conditions.1

1Note that nn indicates an underspecified compound
noun relation.

x1

x2

x3 x5

patient

by

nn

ykud

transcribe

polymerasesigk

Figure 2. A semantic chain between two discourse referents

2.3. Chains

For every gene pair in a sentence, the shortest seman-
tic chain between the corresponding pair of Discourse
Referents (drs) was extracted. To find a dr given a
gene token we used the token-to-dr mapping recovered
from the drs file.

Given two drs a, b corresponding to gene terms, we
define a semantic chain between a and b, sema,b, as
a sequence of DRs dr1 = a, dr2, . . . , drn = b together
with a sequence of edges e1, e2, . . . , en−1, where each
edge ei = (reli, diri) consists of a relation reli (in the
set of relations produced by ccg2sem) between dri and
dri+1 and a direction diri ∈ {→,←} which indicates
whether reli(dri, dri+1) or reli(dri+1, dri) holds. Fig-
ure 2 illustrates a semantic chain extracted from the
drs in Figure 1. As can be seen, the circled nodes cor-
respond to drs, unary relations label the nodes, and
binary relations label the arcs between the nodes. In-
formally, Figure 2 says that there is a transcription
event x2, the patient of x2 is ykuD, the by agent of x2
is a polymerase x5, and SigK is in an underspecified
relation to x5.

Syntactic chains were calculated in the same fash-
ion, but based on the parse representations sup-
plied in the enriched LLL Challenge training data
rather than on the output of the ccg parser. Given
a phrase such as the essential cell division protein,
the set of parse relations would include the clause
relation(’mod att:N-ADJ’,13,10), where 13 and
10 are the word indices of protein and essential re-
spectively. More generally, then, syntactic relations
were of the form relation(reli, wi, wj), where reli is
one of a fixed set of syntactic relations assigned by
the LLL parser. We define a syntactic chain between
word indices i and j, syni,j , as a sequence of word in-
dices w1 = i, w2, . . . , wn = j and a sequence of edges
e1, e2, . . . , en−1, where each edge ei = (reli, diri) con-

Genic Interaction Extraction with Semantic and Syntactic Chains

sists of a syntactic relation reli between wi and wi+1

and a direction diri ∈ {→,←} which indicates whether
relation(reli, wi, wj) or relation(reli, wj , wi) holds.

3. Machine Learning

Initially we tried to apply Inductive Logic Program-
ming (ilp) directly to the conditions of our drss.
This yielded clauses which were very dependent on
the actual gene names due to the small size of the
training set. Moreover, it was not possible to extract
clauses which included the generalization that inter-
acting genes must have a connecting semantic chain.
This can be attributed to two reasons. First, since
the chains in question can be rather long, they would
induce correspondingly large clauses; however, the lat-
ter are filtered out by the ilp algorithms because they
failed to cover enough examples relative to their com-
plexity. Second, the chains can have varying lengths
and might match only in small subchains, which makes
it difficult for the ilp method to find generalizations.

In the light of this observation we decided to directly
extract a set of candidate clauses which capture certain
subparts of the semantic chains. Instead of discarding
clauses which don’t hold in all cases we used Markov
Logic2(Domingos & Richardson, 2004) to attach and
learn weights for them. In Markov Logic the weight
of a formula (or clause in our case) corresponds to the
difference in log-likelihood between a world where the
formula holds and a world where it doesn’t, all other
things being equal.

A Markov Logic Network L is a set of formula-weight
pairs (Fi, wi). Together with a set of constants it can
be mapped to a log-linear joint probability distribution

(1) pw (X = x) =
1

Z
exp





∑

f∈FeaturesL

wff (x)





over a sequence X = (X1, X2, . . .) of binary variables,
one for each possible ground predicate (with respect to
the available constants). The value of such a node is
1 if the ground predicate is true, 0 otherwise. The set
of feature functions FeaturesL is created by adding a
feature function f for each possible grounding of each
formula Fi in L. A function f returns 1 if its corre-
sponding ground formula is true given x, 0 otherwise.
wf is the weight wi of the original formula Fi defined
in L. Z is a normalisation factor.

2See (Riedel & Meza-Ruiz, 2005) for a publicly available
implementation.

3.1. Candidate Clause Generation

As mentioned above, we automatically extracted a set
of candidate clauses from the given data. All these
clauses were based on subchains within the shortest se-
mantic and syntactic chains of the gene pair to be clas-
sified. Every time we observed a particular subchain
we added a clause that entails genic interaction(A,B)
or ¬genic interaction(A,B) depending on the label of
the observed gene pair.

For instance, after seeing a (agent,←), (patient,→)
subchain in a genic interaction chain we generated:

genic interaction(A,B) : −

contains(semA,B , (agent,←), (patient,→))

This clause roughly3 reads “if gene term A is related to
some DR which is the agent of an event and something
related to gene term B is the patient of this event, then
there is a genic interaction between A and B”. Note
that ‘related’ here means reflexively and transitively
related with respect to the binary relations in the drs.

In addition, typed subchain clauses are extracted. A
typed clause requires certain DRs in the chain to be
members of a specified predicate:

genic interaction(A,B) : −

contains(semA,B , (agent,←), activate)

This clause reads “if something related to gene term
A activates something that is related to gene term B,
then genic interaction(A, B) holds” because activate is
the predicate of the dr followed by the agent relation.

In the case of syntactic chains, clauses look as follows:

genic interaction(A,B) : −

contains(synA,B , (subj,→), (comp of,→))

Typed syntactic clauses used words to type the rela-
tion members; an example is the following (negative)
clause:

¬genic interaction(A,B) : −

contains(synA,B , (comp of,←), activity)

3.2. Weight Estimation

To find the weights, we maximized the logarithm of
the conditional likelihood of the training data

(2)
∑

(xh,xo)∈T

log (pw (Xh = xh|Xo = xo))

3We say ‘roughly’ because one also has to bear in mind
that only shortest paths are extracted.

Genic Interaction Extraction with Semantic and Syntactic Chains

where Xh is a list of possible hidden variables and xh

are the corresponding values in a concrete observation.
In this case Xh contains all variables refering to pos-
sible grounded genic interaction atoms. Xo is the set
of observed variables and corresponds to all possible
instantiations of the contains predicates. T is the set
of all training observations (xh, xo). In our current
setting, each genic interaction atom only depends on
contains atoms, which are fully observed. This gives
rise to

pw (Xh = xh|Xo = xo) =(3)
∏

Gene pairs(a,b)

pw

(

Xg(a,b) = xg(a,b)|Xc(a,b) = xc(a,b)

)

where the variable Xg(a,b) corresponds to the ground
atom genic interaction(a, b), and Xc(a,b) is a list of all
variables corresponding to contains atoms that relate
to the syntactic and semantic chains between a and b.

With (3), the conditional in (2) simplifies to

(4)
∑

(xh,xo)∈T

∑

Gene pairs(a,b)

log
(

pw

(

xg(a,b)|xc(a,b)

))

.

where p(x|y) is an abbreviation for p(X = x|Y = y)

To calculate the conditional in (3), Bayes Rule yields

(5)

pw

(

xg(a,b)|xc(a,b)

)

=
pw

(

xg(a,b), xc(a,b)

)

pw

(

1, xc(a,b)

)

+ pw

(

0, xc(a,b)

)

where the joint probabilities can be calculated using
a version of (1) that only contains features of ground
clauses related to the gene pair (a, b). This is sound
due to the independence of genic interaction labels we
are assuming in our clauses.

Using the gradient of (4), we run several iterations of
L-BFGS (Liu & Nocedal, 1989), a gradient descent
implementation, until convergence.

3.3. Inference

To infer the truth value of an actual genic interac-
tion candidate pair, one could run an inference algo-
rithm such as Belief Propagation or Gibbs Sampling
in a Markov network equivalent to (1). However, as all
hidden atoms only depend on a set of fully observed
atoms this is not necessary; we simply calculate

(6) pg (a, b) = pw

(

xg(a,b)|xc(a,b)

)

for each possible gene pair (a, b) using (2). In the case
of the gene pair ykuD, SigK in our example in section

Table 1. Clause sets

No. Clause sets Neg. clauses

1 syn2-0, syn2-1 yes
2 sem2-0, sem2-1 yes
3 1, 2 yes
4 syn2-0, syn2-1 no
5 3, sem1-1l, sem1-1r no

2.2 xg(a,b) would correspond to a truth value for the
atom

genic interaction(ykuD, SigK)

and xc(a,b) would contain a sequence of truth values
for atoms such as

contains(semykuD,SigK , (patient,←), (by,→))

(true) or

contains(synykuD,SigK , (comp of,←), activity)

(false).

We classified a pair a, b as participating in a genic in-
teraction if pg(a, b) > 0.5. If both (a, b) and (b, a) are
classified as genic interactions we only accept the one
with the highest probability. However, in future ver-
sions this could be done more soundly using a clause
such as

¬genic interaction(A,B) : −

genic interaction(B,A)

on the assumption that genic interaction is always
asymmetric.

4. Results

We tested different sets of clauses as candidates for the
weight estimation. Table 1 enumerates the combina-
tions of clause sets we used during the experiments.
sem1-0, sem2-0 and syn2-0 refer to (untyped) clause
sets with semantic or syntactic chains of length one
and two, respectively. sem1-1l, sem1-1r, syn1-1l and
syn1-1r represent sets where either the left or right
node of all clauses is typed with a predicate or word,
respectively. sem2-1 and syn2-1 type the middle node
of subchains with length two.

4.1. Without Coreferences

Table 2 shows results for the test data without coref-
erences. Note that the submitted result was clause

Genic Interaction Extraction with Semantic and Syntactic Chains

Table 2. Results on the test data without coreferences

Clause set No. Precision Recall F-M

1 65.0 72.2 68.4
2 68.5 44.4 53.9
3 64.8 64.8 64.8
4 60.8 51.8 55.9
5 60.9 46.2 52.6

set 5, since this was the clause set that yielded the
best results on the cross-validated training set (65%
F-Measure). On the test data, it only achieved 52.6%
F-measure, as shown. Clause set 5 did not use nega-
tive clauses — this functionality was not implemented
by the submission date. It combined semantic and
syntactic chains which seemed to help only when no
negative clauses were added. Finally, it used chains of
length one — this only helped during cross-validation,
maybe due to the similarity in genic interaction pairs
in training and test folds when sentences were drawn
from the same abstract.

4.1.1. Syntactic vs. Semantic Chains

Results for the clause sets 1, 2 and 3 in Table 2
show that using syntactic chains alone (i.e., clause set
1) yielded a significantly higher F-Measure compared
with using semantic chains or a combination of seman-
tic and syntactic chains.

The main weakness of the semantic approach is its low
recall. It can be attributed to two factors. First, incor-
rect ccg parses were responsible for missing or incor-
rect semantic chains within the drss. Second, ccg2sem

generates multiple domain referents for indefinite ob-
jects of coordinated expressions.4 For instance, in the
drs for the sentence

Most cot genes, and the gerE gene, are transcribed
by sigmaK RNA polymerase.

there are two discourse referents for sigmaK RNA poly-
merase, due to the fact that the part-of-speech tagger
integrated into the ccg parser failed to label the term
as a proper name. Although it might be possible to
modify the chain extraction component to deal with
this, it would be preferable to change the output of
the tagger prior to syntactic analysis.

4Semantically, this is indeed the correct result.

Table 3. Results on the test data with coreferences using
the clause sets 1, 2 and 5 from Table 1

Clause set No. Precision Recall F-M

1 63.2 66.2 64.7
2 50.0 33.7 40.2
5 55.6 53.0 54.3

4.1.2. Negative clauses

Clause sets 1 and 4 contain the same positive clauses,
but clause set 1 benefits from the addition of nega-
tive clauses. As shown in Table 2, the performance of
clause set 1 is significantly superior to that of clause
set 4 in both recall and precision. Having a model
of what it means to have no interaction can improve
precision whenever positives clauses would “vote” for
a genic interaction with low confidence, while nega-
tive clauses “vote” against a genic interaction with
high confidence. Without negative clauses, this sce-
nario would result in a false positive. Negative clauses
can increase recall when they are highly confident that
a gene pair is “not a non-interaction” while positive
clauses are uncertain.

4.2. With Coreferences

As we mentioned briefly earlier, an attractive feature
of ccg2sem is its built-in coreference resolver. Thus, for
testing and training on data with coreferences5 we ex-
pected better results with semantic chains compared
to syntactic chains. However, even in this case syn-
tactic chains outperform semantic chains, as shown in
Table 3. This can be explained partly by the fact that
many coreferences were appositions which the parser
could extract. Furthermore, most sentences in the test
and training set lacked coreferences, and this also con-
tributed to syntactic chains performing better.

The submitted clause set was 5, since again this was
the best performing set under cross-validation on the
training data.

5. Conclusion

Perhaps the most striking observation is the dramatic
effect of adding negative clauses to the rule base. It
seems clear that clauses modeling non-interaction are
essential for good performance, increasing both recall
and precision as explained above.

5This corresponds to the “With and Without Corefer-
ences” data set of the LLL Challenge.

Genic Interaction Extraction with Semantic and Syntactic Chains

When comparing syntactic and semantic chains, syn-
tactic chains appear to be the clear winner. However,
this conclusion has to be tempered by the fact that
the syntactic chains were based on manually corrected
parses, whereas the semantic chains were based on
a completely automatic statistical parser (trained on
the Penn Treebank). Moreover, there is also potential
in exploiting semantic chains to incorporate domain
knowledge in future experiments.

It also turned out that we were unable to apply ilp

directly to the problem, due to the small size of the
training set and to the varying length and structure
of the chains we were looking for. Instead of carefully
biasing ilp towards the clauses we had in mind, we de-
cided to extract a set of chain-based clauses and learn
probabilistic weights. However, the two approaches
are in fact orthogonal — it would make perfect sense
to first generate a set of candidate rules using an ilp

system and then learn their weights using the Markov
Logic approach.

Acknowledgments

Many thanks to Malvina Nissim and Claire Grover for
their helpful input during the course of the project.

References

Bos, J. (2005). Towards wide-coverage semantic in-
terpretation. Proceedings of IWCS-6, Tilburg, The
Netherlands.

Clark, S., & Curran, J. R. (2004). Parsing the WSJ
using CCG and log-linear models. Proceedings of
ACL (pp. 103–110).

Domingos, P., & Richardson, M. (2004). Markov
Logic: A unifying framework for statistical re-
lational learning. Proceedings of the ICML-2004
Workshop on Statistical Relational Learning and its
Connections to Other Fields, Banff, Canada: IMLS.
(pp. 49–54).

Kamp, H., & Reyle, U. (1993). From discourse to
logic. Studies in Linguistics and Philosophy. Kluwer
Academic.

Liu, D. C., & Nocedal, J. (1989). On the limited
memory BFGS method for large scale optimization.
Math. Program., 45, 503–528.

Riedel, S., & Meza-Ruiz, I. (2005). Markov The
Beast - Markov Logic software platform url: http:
//homepages.inf.ed.ac.uk/s0349492/thebeast.

Steedman, M. (2001). The syntactic process. The MIT
Press.

