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Abstract

We develop a theory of abstract syntax with variable
binding. To every binding signature we associate a cat-
egory of models consisting ofvariable setsendowed with
compatible algebra and substitution structures. The syntax
generated by the signature is the initial model. This gives a
notion of initial algebra semantics encompassing the tradi-
tional one; besides compositionality, it automatically veri-
fies the semantic substitution lemma.

Introduction

It has long been recognised that the essential syntactical
structure of programming languages is not that given by
their concrete or surface syntax—as expressed, say, by a
language description in BNF oriented to parsing (there the
parse trees contain much information useless for language
processing). Rather, the deep structure of a phrase should
reflect its semantic import.

McCarthy [24] coined the termabstract syntaxfor such
structure, which is typically given as a tree with its top node
labelled by the main semantic constituent, or, equivalently,
by a term of first-order logic. Abstract syntax has bothsyn-
thetic and analytic aspects: the former concerns thecon-
structorsneeded to form phrases, the latter thedestructors
(predicatesandselectors) needed to take them apart [21].
Burstall [6] contributedstructural recursion—a generalised
form of primitive recursion—to analytic syntax, with an as-
sociated principle ofstructural induction.

Thealgebraicpoint of view of the ADJ group [14] (see
also [32]) regards abstract syntax as the initial algebra (of
the constructors) and semantics as the unique homomorph-
ism to a semantic algebra (themodel). Structural recursion
then arises from initiality. Thecategoricalview regards the
algebras as those of an associated signature functor: the ini-
tial algebra has an isomorphism as structure map and its
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inverse is analytic syntax. Finally, in therecursive type
view [32], the initial algebra is obtained as the solution to
a recursive (set) equation; this leads one to a treatment of
syntax within programming languages as exemplified in the
ML/LCF approach [15].

The first-order view can be problematic. In particu-
lar, when dealing with context-sensitive aspects of syn-
tax, it does not account satisfactorily forvariable bind-
ing, with its allied notions of scope, free and bound oc-
currences,α-equivalence, production of fresh variables,
and substitution (e.g., in λ-calculus, CCS with value
passing,π-calculus, logical quantifiers, and derivative and
integral expressions). Useful context-sensitive extensions
of BNF certainly exist, such as attribute grammars and
van Wijngaarden grammars; however, they do not in them-
selves give an account of deep structure.

One proposal for an abstract treatment, originating with
Church [7], is that ofhigher-order abstract syntax; there
one uses the binding apparatus provided by the typed
λ-calculus to express all other forms of binding—see [29,
27, 30, 28]. Normal forms (of ground type) play the rôle
of first-order terms, but with first-order signatures being
replaced by second-order ones. (The binding analogue
of trees is provided by theterm graphsfirst introduced
by Wadsworth—see,e.g., [17].) A form of analytic syn-
tax is given by matching or unification in associated lo-
gic programming languages [27, 30]. In implementations,
De Bruijn’s terms [9] are used to provide “α-equivalence
normal forms”.

Unfortunately, in the higher-order abstract syntax ap-
proach, many of the desirable properties mentioned above,
such as accounts of structural recursion and induction, and
recursive equations for abstract syntax, are missing, or at
least not fully developed (see [26, 25, 10]).

In this paper, we provide a (categorical) algebraic view
of syntax with variable binding. The analogue to universal
algebra is the theory of binding algebras originating in the
work of Aczel [1]—see also [20, 31, 37]. We replace algeb-
ras over sets bybinding algebrasovervariable sets. Form-
ally, variable sets are (covariant)presheavesand the funda-



mental idea is to turn contexts into the “index category” of
the presheaves.

We obtain a notion ofbinding signaturein which bind-
ing is again expressed by second-order types, but now us-
ing a special presheaf of variables or, equivalently, by a
first-order signature extended with a notion ofdifferenti-
ation (cf. [16]). Our models, thebinding algebras, are then
presheaves endowed with both an algebra structure (corres-
ponding to the operations in the signature) and a substitution
structure compatible with each other.

Abstract syntax is the initial such model, with the algebra
structure obtained as the solution to a recursive (presheaf)
equation and substitution defined by an associated structural
recursion. The unique homomorphism from the syntax to
another model (initial algebra semantics) preserves the con-
structors (i.e., is compositional) and the extra substitution
structure (i.e., verifies the semantic substitution lemma).

Organisation of the paper. We start in Section 1 by ad-
vocating the use of the category of (covariant) presheaves
SetF as a suitable mathematical universe in which to deal
with syntax with variable binding. The index categoryF
is a skeleton of the category of finite sets and functions;
it provides a notion of cartesian context allowing for ex-
change, weakening, and contraction. The structure ofSetF

relevant to modelling variable binding is studied in detail.
The study of signatures with variable binding in our

framework is carried out in Section 2. Our main result here
is that the presheaf of terms (with binders) associated to a
(binding) signature has an abstract universal characterisa-
tion as a free algebra over a presheaf of variables. This res-
ult is exploited in two directions: to give implementations of
abstract syntax (with variable binding)à la De Bruijn, and
to provide semantics by initiality. These two applications
are exemplified using theλ-calculus.

Section 3 is devoted to substitution. We treat both
single-variable and simultaneous substitution. The former
is handled by introducing the notion ofsubstitution al-
gebra; the latter first by the elementaryabstract clonesand
then, more abstractly, as certainmonoidsin the category of
presheaves. The three presentations are shown to be equi-
valent. We also define two “categorical programs” for sub-
stitution by structural recursion.

In Section 4, we define the category of models of a bind-
ing signature; the presheaf of terms is the initial such model.
We exemplify the corresponding initial algebra semantics
again using theλ-calculus. This semantics, besides being
compositional, automatically verifies thesemantic substitu-
tion lemma.

Future work. Various directions for further work are pos-
sible; we mention but a few here. First, the syntactic coun-
terpart of our treatment of substitution bycategoricalstruc-
tural recursion (i.e., parameterised initiality) will be worked

out. In particular, we envisage a type theory based on the
internal language of our semantic universe for manipulating
abstract syntax with binding. Again, structural induction
principles for reasoning about abstract syntax with binding
should be available within our framework.

Second, the investigation of more sophisticated syntax in
our setting will be pursued. Multi-sorted binding signatures
(like the simply typedλ-calculus) can be easily accommod-
ated; various linear settings (cf. operads [22]), in contrast to
the cartesian one explored here, also seem to fit; type theor-
ies with dependent types are yet to be tackled. Connections
between our approach and the general theory of substitution
provided byclubs[18, 19] will also be investigated.

Third, theories of operational semantics with binding
will be developed along the lines of [36]. Preliminary res-
ults indicate that some interesting syntactic formats of well-
behaved operational rules for languages with variable bind-
ing can be obtained.

1. The universe of types

We present the universe of types within which we work.
Our intent is to consider a notion of type broad enough to
encompasssyntax with variable binding(and, more gener-
ally, algebras for binding signatures) in a framework with
rich type structure (i.e., type constructors and operations on
types). To motivate our choice we start by examining the
structure of the set ofλ-terms.

Λ. In the course of our discussion we will consider the set
of (untyped)λ-termsΛVar given by the following grammar.

x ∈ Var ::= xi (i ∈ N+) ,
t ∈ ΛVar ::= x | λx.t′ | t1t2 .

In untyped settings, the treatment of the operatorλ as a
binder is typically dealt with by introducing the notion
of free/bound variable. However, as is well-known and
commonly used in typed settings, this information may be
presented by judgements, consisting of a term together with
a context, subject to a well-formedness condition. To sim-
plify the exposition we will consider the following well-
formedness rules which provide canonical representatives
for α-equivalence classes ofλ-terms by the method of
De Bruijn levels[9].

1 ≤ i ≤ n
x1, . . . , xn ` xi

x1, . . . , xn, xn+1 ` t
x1, . . . , xn ` λxn+1.t

x1, . . . , xn ` t1 x1, . . . , xn ` t2
x1, . . . , xn ` t1t2

(1)

Conceptually, the passage from the approach based on
free/bound variables to the one based on contexts consists
in turning the free-variable functionFV : ΛVar

// P(Var)



into extra structure on terms. As we will see, the latter view-
point is important for bringing out the structure of thetype
Λ of λ-terms (moduloα-equivalence). As a first step in this
direction notice that contextsstratify λ-terms. Indeed, for
all n ∈ N, we have a bijective correspondence

Λ`(n) ∼= Λα(n) : t
�

// [t]α (2)

where

Λ`(n) def= { t ∈ ΛVar | x1, . . . , xn ` t } ,

Λα(n) def= { [t]α | t ∈ ΛVar ∧ FV(t) ⊆ { x1, . . . , xn } } .

Next, note that the well-formedness rules (1) induce (and in
fact correspond to) the following bijection: for alln ∈ N,

n + Λ`(n + 1) + Λ`(n)× Λ`(n) / /

∼=
Λ`(n) (3)

i ∈ n
�

// xi

t ∈ Λ`(n + 1)
�

/ / λxn+1.t

(t1, t2) ∈ Λ`(n)× Λ`(n)
�

// t1t2

where, by abuse of notation, we writen for the set
{ 1, . . . , n }.

To conclude the analysis of the structure ofΛ we first
need to examine the structure of contexts.

The structure of contexts. The notion of context rel-
evant to this paper is that of (untyped)cartesian context.
This is reflected in the operations which we allow for con-
text manipulation:exchange, weakening, andcontraction.
These operations, when closed under composition, yield all
functions between contexts. Thus we take the category of
cartesian contextsF to be the full subcategory ofSet with
objects{ 1, . . . , n } (n ∈ N) representing generic abstract
contexts withn variables. (Note thatF is isomorphic to the
category of finite cardinals and functions.)

A conceptual description of the categoryF is as the free
cocartesian category on one object (seee.g. [23, § VIII.4,
Lemma 1]). As such, it may be understood as being gener-
ated from an initial object (the generic abstract empty con-
text) by an operation of context extension,(−)+1, with
a generic abstract context with one variable,1. Following
this viewpoint, we will henceforth consider the categoryF
as equipped with a chosen coproduct structure

n //

oldn
n + 1 oo

newn
1 .

In particular, we haveatomicoperations of exchange, weak-
ening, and contraction, respectively given by:

s def= [new1, old1] : 2 // 2 ,

w def= old0 : 0 // 1 ,

c def= [id1, id1] : 2 // 1 .

(4)

We are now in a position to spell out the structure ofΛ.

The structure of Λ. Since contexts stratify terms, it follows
that the operations on contextsact on them. Indeed, every
function ρ : m / / n in F (thought of as a renaming of
variables) induces an action

Λ`(m)
def

��

∼=

//

Λ`(ρ)
Λ`(n)

Λα(m) //

Λα(ρ)
Λα(n)

OO ∼=

whereΛα(ρ) : t
�

// t{xρ1/x1, . . . , xρm/xm}, which is
functorial in the sense that

Λ`(idn) = idΛ`(n) , Λ`(ρ′ ◦ ρ) = Λ`(ρ′) ◦ Λ`(ρ) ,

for all n ∈ F and for allρ : n // n′ andρ′ : n′ // n′′ in F.
That is,Λ` is an object of the presheaf category

F def= SetF ,

which we take to be ouruniverse of types. Following
common usage, thesetypesare referred to aspresheaves,
see [23]. Clearly,Λα is also a presheaf inF . The presheaf
of variablesVar is given, forn ∈ F andρ in F, by

Var(n) = { x1, . . . , xn } , Var(ρ) : xi
�

// xρi .

For a slightly more involved example consider the presheaf
L : F / / Set with L(n) given by the left hand side of the
bijection (3) and equipped with the functorial action

L(ρ) def= ρ + Λ`(ρ + id1) + Λ`(ρ)× Λ`(ρ) (5)

for everyρ in F.
An important non-syntactic example is provided by the

presheaf of operations(from A to B) 〈A,B〉 for objects
A,B in a cartesian categoryC:

〈A, B〉(n) = C(An, B)
〈A,B〉(ρ) : f

�

// f ◦ 〈πρ1, . . . , πρm〉
(6)

for n ∈ F andρ : m // n in F. In particular, the presheaf
〈A,A〉 is the so-calledclone of operationsonA.

Recall that a mapf : A // B between presheavesA
andB in F is a natural transformation,i.e., an indexed fam-
ily of functions{ fn : A(n) // B(n) in Set }n∈F subject
to the following naturality condition: for allρ : m / / n in
F, fn ◦ A(ρ) = B(ρ) ◦ fm. The bijection (2) yields an iso-
morphism of presheavesΛ` ∼= Λα in F . More interestingly,
notice that the particular implementation ofλ-terms (mod-
ulo α-equivalence) adopted in our exposition by the method
of De Bruijn levels is reflected in the mathematical struc-
tures under consideration. Indeed, the bijection (3) yields a
natural isomorphism of presheavesL ∼= Λ` in F if and only



if the chosen coproduct structure onF is taken to be the one
with oldn(i) = i (1 ≤ i ≤ n) andnewn = n+1 (cf. the rule
for λ-introduction in (1)). We will see in the next section
that an implementation ofλ-terms (moduloα-equivalence)
by the method ofDe Bruijn indices[9] is also available in
our framework.

We conclude with a description of the type constructors
and the operations on types (cf. [11]) in the universeF that
will be needed in the rest of the paper. As an application,
we will show how type constructors may be used to provide
a structural definition of the presheafL of (5).

The structure of F . The categoryF is a well-known and
interesting topos (see [23,§ VIII.4]). Many of the construc-
tions that follow in this and later sections can be cast in
the language of topos theory. However, we do not emphas-
ise this viewpoint here; rather we adopt a presentation that
generalises to othercontexts.

Sums, products, and exponentials:F is a complete and
cocomplete cartesian closed category, with limits and
colimits computed pointwise (see [23]).

V: The presheaf (ofabstract variables) V ∈ F is obtained
by embedding the generic abstract context with one variable
in F into F via Yoneda. Explicitly,V is the embedding of
F in Set given by

V(n) = n (n ∈ F) ; V(ρ) = ρ (ρ in F) .

δ: The type constructor (forcontext extension) δ : F / / F
is obtained from the operation of context extension(−)+1 :
F // F by precomposition:

δ( ) def= ( ) ◦ ((−)+1) .

In elementary terms, forA ∈ F , the presheafδA is given,
for n ∈ F andρ in F, by

(δA)(n) = A(n + 1) , (δA)(ρ) = A(ρ + id1) ;

and, forf : A / / B in F , the mapδf : δA / / δB is
given by

(δf)n = fn+1 : A(n + 1) // B(n + 1) (n ∈ F) .

Thus, intuitively, an element of typeδA in the contextn is
an element of typeA in the extended contextn + 1.

The operations on contexts extend fromF to F in the
same vein. For instance, the operations in (4) respectively
give rise to the natural transformationsswap : δ2 //

.
δ2,

up : Id //

.
δ, contract : δ2 //

.
δ with the following

explicit descriptions: forA ∈ F andn ∈ F,

swapA,n = A(idn + s) : A(n + 2) // A(n + 2) ,

upA,n = A(idn + w) : A(n) // A(n + 1) ,

contractA,n = A(idn + c) : A(n + 2) // A(n + 1) .

Note that, as the passage fromF to F is given by precom-
position, it preserves equational structures. In particular, the
monad((−)+1, { idn + w }, { idn + c }) onF yields the
monad(δ, up, contract) onF .

We examine some properties ofδ. First we note that, by
construction,δ has both a left and a right adjoint; hence it
preserves both limits and colimits (as a simple calculation
will also show). These adjoints are given by the following
natural bijective correspondences

X // δA
X ×V // A

δA // Y
A // 〈V + 1, Y 〉

(7)

Second, observe that the first correspondence above shows
that

δ(−)
.∼= (−)V , (8)

and states that the elements of typeδA in the contextX
are the elements of typeA in the extended contextX × V.
Finally, we note the important fact that the diagram

V //

old
δV oo

new
1 (9)

is a coproduct inF .

It should be clear that the typeL of (5) equals the struc-
tured typeV + δΛ` + Λ` × Λ`. We will show in the next
section that the inductive typeµX.V+δX+X×X charac-
terises the presheafΛ of λ-terms (moduloα-equivalence).

2. Binding signatures and their algebras

We show that the universeF provides a suitable setting
for modelling binding signatures and their algebras. In par-
ticular, we obtain a characterisation of syntax with variable
binding by initiality, which generalises the well-known res-
ult for the first-order case [14]. This yields a notion ofab-
stract syntax with variable bindingfor which an initial al-
gebra semantics is available.

Syntax with variable binding. A binding signature [31]
Σ = (O , a) consists of a set ofoperationsO equipped
with an arity function a : O // N∗. An operator of ar-
ity 〈n1, . . . , nk〉 hask arguments and bindsni variables in
thei-th argument (1 ≤ i ≤ k). For instance, the signature of
theλ-calculus has an operator of arity〈1〉, viz.λ-abstraction
with one argument and binding one variable, and an oper-
ator of arity〈0, 0〉, viz.application with two arguments and
binding no variables.

The terms associated to a binding signature over a set
of variables (ranged over byx) are given by the following
grammar.

t ∈ TΣ ::= x | o((x1, . . . , xn1).t1, . . . , (x
′
1, . . . , x

′
nk

).tk)



whereo is an operator of arity〈n1, . . . , nk〉. Obvious defin-
itions for free/bound variables andα-equivalence apply to
these terms.

Analogous to the case of theλ-calculus, for any binding
signature, there is a presheaf of terms (up toα-equivalence)
TVα ∈ F given by

TVα(n) def= { [t]α | FV(t) ⊆ { x1, . . . , xn } }
TVα(ρ) : t

�

// t{xρ1/x1, . . . , xρm/xm}

for everyn ∈ F andρ : m // n in F.

Abstract syntax with variable binding. To give the ab-
stract characterisation ofTVα we consider algebras of
binding signatures. Recalling that an operator of arity
〈ni〉1≤i≤k bindsni variables in thei-th argument and that
δ is a type constructor for context extension it is natural to
interpret an operation of arity〈n1, . . . , nk〉 on a presheaf
A ∈ F as a mapδn1(A)× . . .× δnk(A) // A, and hence
to define aΣ-algebra over a presheafA ∈ F as a map

∐

o∈O
a(o)=〈ni〉1≤i≤k

δn1(A)× . . .× δnk(A) // A .

Thus, to a binding signatureΣ = (O , a) we associate the
functorΣ : F // F given by

Σ(X) def=
∐

o∈O
a(o)=〈ni〉1≤i≤k

∏

1≤i≤k

δni(X) , (10)

and define the category of algebras associated to the signa-
tureΣ as the categoryΣ-Alg, with objects given byalgeb-
ras h : ΣA / / A and morphismsf : (A, h) / / (A′, h′)
given by mapsf : A / / A′ that arehomomorphicin the
sense thatf ◦ h = h′ ◦ Σ(f). This approach fits into the
paradigm of categorical algebra [4, 5]. However we remark
that the general theory allows for the treatment of more
sophisticated notions of signature (incorporating equational
theories and thus enabling us to deal with notions such as
λ-models) which will not be considered in this extended ab-
stract.

As is well-known (seee.g. [4]), the forgetful functor
Σ-Alg // F : (A, h)

�

// A has a left adjoint provid-
ing the freeΣ-algebra on a presheaf; which, for a presheaf
X ∈ F , is an initial(X + Σ)-algebra.

The presheaf of termsTVα of a binding signature
Σ = (O , a) has asyntactic algebra structure [τ (o)]o∈O

given, at stagen, by the mapping sending the tuple of terms
〈ti〉1≤i≤k to the term

o( (xnew(1), . . . , xnew(ni)).ti
{x1/xold(1), . . . , xn/xold(n)} )1≤i≤k ,

wherenew(j) = newn+j−1 (1 ≤ j ≤ ni) andold(j) =
oldn(j) (1 ≤ j ≤ n).

Theorem 2.1 The presheaf of termsTVα associated to a
binding signatureΣ (equipped with the syntactic algebra
structure) is a freeΣ-algebra on the presheaf of variables
V.

We show how the above general result may be used to im-
plement abstract syntax. To this end recall that the under-
lying presheaf of a freeΣ-algebra on a presheafX may be
computed as the union of the chain

0 ⊆ X + Σ(0) ⊆ X + Σ(X + Σ(0)) ⊆ · · ·

obtained by iterating the functorX + Σ on the empty
presheaf0.

In the particular case of the free algebraΛ on the
presheaf of variablesV for the signature of theλ-calculus
Σλ(X) = δX +X ×X this calculation amounts to the fol-
lowing inductive definitions:Λ(n) = { t | n ` t } (n ∈ F)
where

1 ≤ i ≤ n
n ` var(i)

n + 1 ` t
n ` lam(t)

n ` t1 n ` t2
n ` app(t1, t2)

and, forρ : m // n in F,

Λ(ρ)(t) = case t of
var(i) +3 var( ρi )
lam(t′) +3 lam( Λ(ρ + id1)(t) )
app(t1, t2) +3 app( Λ(ρ)(t1), Λ(ρ)(t2) ) .

This abstract view yields particular implementations of
λ-terms according to different choices of the coproduct
structure on the categoryF. For instance, ifoldn(i) = i + 1
(1 ≤ i ≤ n) and newn = 1 (n ∈ N) then the presheafΛ
implementsλ-terms by the method of De Bruijn indices;
as one can notice, for example, from the fact that, for
ρ : m // n in F,

Λ(ρ)(lam(var i)) =
{

lam(var 1) , if i = 1 .
lam(var ρi) , otherwise .

(The reader may wish to consider examples involvingswap
and up.) Of course, the implementation ofλ-terms by
the method of De Bruijn levels is obtained by choosing
oldn(i) = i (1 ≤ i ≤ n) andnewn = n + 1 (n ∈ N).

A glance at initial algebra semantics.To consider inter-
pretations of theλ-calculus letfold : DD C D : unfold be
a retraction in a cartesian closed categoryC [33].

The clone of operations〈D, D〉 ∈ F (see (6)) admits a
canonical interpretation of variablesι : V // 〈D, D〉 given
by

n // C(Dn, D)
i

�

// πi ,



and may be equipped with an algebra structure
δ〈D, D〉+ 〈D, D〉 × 〈D,D〉 // 〈D, D〉 as follows

C(Dn+1, D) // C(Dn, D)
f

�

// fold ◦ λλ(f) ,

C(Dn, D)× C(Dn, D) // C(Dn, D)
(f, x)

�

// ev ◦ 〈unfold ◦ f, x〉 .

As Λ is the freeΣλ-algebra onV, it follows from The-
orem 2.1 thatι : V // 〈D,D〉 has a uniquehomomorphic
extension[[−]] : Λ // 〈D, D〉 characterised as

V + δΛ + Λ× Λ

��

V+δ[[−]]+[[−]]×[[−]]

//

[var,lam,app]
∼= Λ

��

[[−]]

V + δ〈D,D〉+ 〈D, D〉 × 〈D,D〉 // 〈D, D〉 ,

and which can be easily shown to be the traditionalcompos-
itional interpretation functionΛ(n) // C(Dn, D) (n ∈ N)
of λ-terms [33].

3. Substitution

A program for substitution. To motivate the more abstract
development to follow, and to link our approach to program-
ming, we start by writing a (categorical) recursive program
for substitutingλ-terms in the type theory ofF .

Let Λ (the presheaf ofλ-terms) be the free algebra on the
presheaf of variablesV for the signature of theλ-calculus
Σλ (see Theorem 2.1 and the discussion after it). We aim at
defining an operation

σ : δΛ× Λ // Λ

that, roughly speaking, given a pair(t, u) consisting of a
term t with a newvariable (i.e., a term in an extended con-
text) and a termu, substitutesu for the newvariable int.
Using that

δΛ = δV + δδΛ + δΛ× δΛ

(sinceΛ = µX.V+δX +X×X andδ preserves sums and
products) we can define a recursive program forσ by case
analysis on its first argument. The definition is as follows

σ(t, u) = case t of
x : δV +3 β(x, u)
t′ : δδΛ +3 lam( δσ(swap t′, up u) )
t1, t2 : δΛ +3 app( σ(t1, u), σ(t2, u) )

(11)

where, using thatδV = V + 1 (see (9)), thebasic substitu-
tion β : δV × Λ / / Λ is defined as

β(x, u) = case x of old(y) +3 var(y)
new +3 u . (12)

Put in elementary terms, the natural family
σn : Λ(n + 1)× Λ(n) // Λ(n) (n ∈ F) is given by

σn(t, u) = case t of
var(i) +3 case i of oldn(j) +3 var(j)

newn
+3 u

lam(t′) +3 lam( σn+1(swapn t′, upn u) )
app(t1, t2) + 3 app( σn(t1, u), σn(t2, u) ) .

Note that the substitutionσn(lam(t′), u) proceeds byswap-
ping (the indices for) the binding and the new variables in
t′ ∈ Λ(n + 2), and by subsequently using the substitution
operationσn+1 with theweakenedargumentupn(u) (where
indices are shifted appropriately).

Interestingly, using thatδ(X) = XV (see (8)), we have
that the definition (11) corresponds to the following one

σ(t, u) = case t of
x : V + 1 +3 case x of old(y) + 3 var(y)

new +3 u
t′ : (ΛV)V +3 lam( λy : V. σ( λx : V. t′xy , u ) )
t1, t2 : ΛV +3 app( σ(t1, u), σ(t2, u) )

which resembles the traditional definition of substitution.
For instance, note that by construction the equality

t′ : (ΛV)V ` σ( λx : V. lam( λy : V. t′xy ) , u )
= lam( λy : V. σ( λx : V. t′xy , u ) )

holds.

As we show below, the above definition of substitution
amounts to a definition bystructural recursion. Hence in
our approach, unlike in the traditional one (see,e.g., [3]),
the well-definedness of the substitution operation need not
be established separately.

Definition of substitution by structural recursion. For
a binding signatureΣ, let φX : ΣTX // TX be a free
Σ-algebra over the presheafX.

To define a substitution operation

σ : δ(TV)× TV // TV

for the presheaf of termsTV by structural recursion we
proceed as follows. First, with the aid of the followingex-
changenatural isomorphisms

δn(δX) ∼= (XV)V×···×V ∼= (XV×···×V)V ∼= δ(δnX)

we define a distributive law

ψ : Σδ
.∼= δΣ (13)

of the endofunctorΣ over the monadδ in an obvious way.
Second, we observe that this construction yields a natural
isomorphism(δV + Σ) ◦ δ

.∼= δ ◦ (V + Σ); from which, by



theuniformity propertyof the fixed-point operator (see [12,
Theorem 7.3.12 (6)]), it follows that theΣ-algebra

Σδ(TV)
ψTV∼= δΣ(TV) //

δφV
δ(TV)

is free overδV. Finally, using thatΣ has astrength
str : Σ(A)×X / / Σ(A×X), we letσ be the unique ho-
momorphic extension of a basic substitutionβ as in (12).
That is, we defineσ to be the unique map such that the dia-
gram

Σ(δ(TV))× TV //

str

��

∼=ψTV×id

Σ(δ(TV)× TV) / /

Σσ
ΣTV

��

φVδΣ(TV)× TV

��

δφV×id

δ(TV)× TV //

σ
______________ TV

δV × TV
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e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

O O

δηV×id

commutes, where the mapηV : V / / TV, coercing vari-
ables into terms, is the universal arrow associated to the free
algebraTV.

Substitution algebras. We show that the opera-
tions σ : δTV × TV / / TV (obtained as above) and
pηVq = (δηV ) ◦ new : 1 // δTV obey the laws of sub-
stitution. To this end we introduce an axiomatisation of
single-variable substitution, whose justification is provided
by Theorem 3.3 below.

Definition 3.1 A substitution algebraX = (X, ς, ν) con-
sists of a presheafX ∈ F equipped with two operations
ς : δX × X / / X (a substitution) andν : 1 // δX (a
generic new variable) such that:

1. u : X ` ς(ν, u) = u .

2. t, u : X ` ς(up(t), u) = t .

3. t : δ2X ` δς(t, ν) = contract(t) .

4. t : δ2X , u : δX , v : X `
ς(δς(t, u), v) = ς(δς(swap(t), up(v)), ς(u, v)) .

The axioms have the following intuitive reading. Axiom 1
says that substituting for the generic new variable has the
expected result. Axiom 2 says that substituting for a vari-
able that is not in a term does not affect the term. Axiom 3
says that substituting the generic new variable in a term is
like performing a contraction. Axiom 4 is a version of the
substitution lemma.

Theorem 3.2 For every binding signatureΣ, the structure
(TV, σ, pηVq) is a substitution algebra.

Clones. Substitution algebras axiomatise single-variable
substitution. Here we show that they are equivalent to the
following axiomatisation of simultaneous substitution by
abstract clones (familiar, in the concrete case, from univer-
sal algebra—cf. [8, page 132]).

An (abstract) clone X = (X, µ, ι) consists of
a family X = {Xn}n∈N of sets, a family ι =
{ι(n)

i ∈ Xn | 1 ≤ i ≤ n}n∈N of distinguished elements,
and a family

µ = {µ(n)
m : Xn × (Xm)n // Xm}n,m∈N

of operations such that, for every elementt of Xn, every
n-tuple ~u = (u1, . . . , un) of elements ofXm, and every
m-tuple ~v of elements ofXl, the following three axioms
hold:

µm(ιi; ~u) = ui , µn(t; ι1, . . . , ιn) = t ,

µl(µm(t; ~u);~v) = µl(t; µl(u1;~v), . . . , µl(un;~v))
(14)

An example of a clone is given by taking: forXn the set
TV(n) of terms (in a context ofn variables) with respect to
a given signature; forι(n)

i the variablexi in TV(n); and for

µ(n)
m the simultaneous substitution of terms

σ(n)
m : TV(n)× TV(m)n

// TV(m) .

We writeσ(n)
m (t; ~u) in infix notation and with no indices as

t [~u]. Then the three axioms in (14) amount to the following
familiar properties of substitution:

xi[~u] = ui , t [x1, . . . , xn] = t ,

t [~u][~v] = t [u1[~v], . . . , un[~v]] .

(The last identity is thesyntactic substitution lemma—cf. [3,
page 27].)

For every objectC of a cartesian categoryC, the clone of
operations〈C,C〉 on C as defined after (6) yields another
example of an (abstract) clone:Xn = C(Cn, C) is then the
set of operations onC of arity n, ιi is thei-th projectionπi,
andµm is given by composition.

We remark that, just like clones of operations, abstract

clones X = (X,µ, ι) are presheaves, withX(n) def=
Xn and with action on renamingsρ : n / / m given by

X(ρ)(t) def= µm(t; ιρ1, . . . , ιρn).
Both clones and substitution algebras, together with the

evident homomorphisms, form categories.

Theorem 3.3 The categories of substitution algebras and
of clones are equivalent.

Monoids in F . There are several equivalent categorical
formulations of clones;e.g., as Lawvere theories, as fi-
nitary monads, or asone-object cartesian multicategories.



(See [13] for an elementary presentation of the connection
between substitution and Lawvere theories.) Here we recall
that clones (and thus also substitution algebras) are equival-
ent to monoids inF with respect to a suitable monoidal
structure. This compact and abstract presentation is im-
portant for reasoning about the structure of substitution and
its interplay withΣ-algebras. In particular, it allows us to
define the simultaneous substitution of terms by structural
recursion.

The monoidal structure we consider is given by a (highly
non-symmetric) tensor ‘•’ of presheaves with unitV. For
every presheafY , the functor • Y is left adjoint to the
endofunctor〈Y, 〉 onF :

X • Y // Z
X // 〈Y, Z〉

(15)

An explicit description of this tensor is given by the follow-
ing coendformula: for presheavesX andY ,

(X • Y )(m) def= (
∐

n∈NX(n)× Y (m)n)/≈

= {(t; ~u) | n ∈ N, t ∈ X(n), ~u ∈ Y (m)n}/≈

where≈ is the equivalence relation generated by

(t;u1, . . . , un) ∼ (t′;u′1, . . . , u
′
n′)

iff there exists a mapρ : n // n′ such thatX(ρ)(t) = t′ and
ui = u′ρi. For example, forX = Y = Λ,

(x1x2; u1, u2) ∼ (x2x3; u, u1, u2)
∼ (x1x3; u1, u, u2) ∼ (x2x1; u2, u1)

and(x1x1;u) ∼ (x1x2; u, u), for all u1, u2, andu in Λ(m).

A monoid X = (X,µ, ι) in F = (F , •, V) consists of
a presheafX, a unit ι : V // X, and amultiplication
µ : X •X // X such that the following diagrams com-
mute.

V •X //

ι•id

%%

∼=
J

J

J

J

J

J

J

J

J

J

X •X

��

µ

X •Vo o

id•ι

y y

∼=
t

t

t

t

t

t

t

t

t

t

X

(X •X) •X

� �

µ•id

/ /

∼= X • (X •X)

� �

id•µ

X •X / /

µ X X •Xoo

µ

The three isomorphisms in the above diagrams act as fol-
lows:

(i; ~u)
�

// ui , (t; 1, . . . , n)
�

/ / t ,

((t; ~u);~v)
�

// (t; (u1;~v), . . . , (un;~v)) .

(Note that every equivalence class ofX •V contains a tuple
of the form(t; 1, . . . , n).)

Monoids inF , with mapsf : (X, µ, ι) // (X ′, µ′, ι′)
given by morphismsf : X // X ′ such thatf ◦ ι = ι′ and
f ◦ µ = µ′ ◦ (f • f), form a categoryMon(F) with initial

objectV = (V, V • V //

∼=
V, idV). Similarly, one defines

the categoryMon(C) of monoids in any monoidal category
C = (C,⊗, I).

Proposition 3.4 The categories of clones and of monoids
in F = (F , •, V) are equivalent.

A program for simultaneous substitution. Let F be an
endofunctor on a monoidal closed categoryC = (C,⊗, I).
If F has a strengthstX,Y : F (X)⊗ Y / / F (X ⊗ Y ),
then its free algebras are alsoparametrically free with
respect to⊗. In particular, if F has a free algebra
φI : FTI / / TI overI, then there is a unique map
σ : TI ⊗ TI / / TI making the following diagram com-
mutative

F (TI)⊗ TI

��

φI⊗id

//

stT I,T I
F (TI ⊗ TI) / /

Fσ
FTI

��

φI

TI ⊗ TI //

σ
____________ TI

I ⊗ TI

OO

ηI⊗id
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g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

whereηI is the universal arrow corresponding to the free
algebraTI. That is,σ is the unique (parametric) homo-

morphic extension ofI ⊗ TI //

∼=
TI.

Proposition 3.5 Under the above hypotheses,
TI = (TI, σ, ηI) is a monoid inC.

The adjunction (15) shows thatF = (F , •, V) is closed.
Moreover, endofunctors corresponding tofirst-ordersigna-
tures are strong with respect to• in the obvious way; for
instance, for binary operations, the strength maps(t1, t2; ~u)
to ((t1; ~u), (t2; ~u)). Moving on to binding signatures, one
has to proveδ strong. This holds in the categoryV/F
of pointed presheaves; indeed,δ restricts to an endofunc-
tor on V/F (via up : Id / / δ) and it has a strength
stX,Y (m) : (δX • Y )(m) // δ(X • Y )(m) which acts as
follows,

(t; ~u)
�

// (t; [upm(~u), ιm+1(newm)]) ,

whereι : V / / Y is the point ofY . In particular, the free

Σ-algebraTV overV has a pointηV
def= var : V // TV

given by the insertion of the variables (mappingi to xi).
The above proposition then yields the following:



Corollary 3.6 Let Σ be a binding signature and letTV be
its free algebra overV. Then(TV, σ, ηV) is a monoid inF ,
whereσ : TV • TV // TV is the unique homomorphic

extension ofV • TV //

∼=
TV.

The aboveσ is defined bystructural recursion. For in-
stance, for theλ-calculusσ : Λ • Λ / / Λ is defined as
follows: for all (t; ~u) in (Λ • Λ)(m),

σm(t; ~u) = case t of
var(i) +3 ui
lam(t′) +3 lam( σm+1(t′; [upm(~u), var(newm)] )
app(t1, t2) +3 app( σm(t1; ~u), σm(t2; ~u) )

Taking oldn(i) = i + 1 (1 ≤ i ≤ n) andnewn = 1 we
get De Bruijn’s definition of substitution for indices, while
oldn(i) = i (1 ≤ i ≤ n) and newn = n + 1 give the
definition for levels. (Cf. [9, 34].)

4. Initial algebra semantics

The key to initial algebra semantics for syntax with vari-
able binding is the definition of a category ofbinding al-
gebras(consisting of compatible algebra and substitution
structures) in which the syntactic algebra equipped with the
usual substitution operation is characterised as an initial ob-
ject. In this section we consider two equivalent formulations
of the concept of binding algebra (viz.asΣ-monoids and as
Σ-substitution algebras) and establish the required property
(i.e., that the freeΣ-algebraTV with the monoid structure
given by Corollary 3.6 is an initial object in the category of
Σ-monoids).

For any strong endofunctorF on C = (C,⊗, I),
let F -Mon(C) be the category with objects given by
F -monoids, i.e., quadruplesX = (X,µ, ι, h), where
(X,µ, ι) is a monoid inC and(X, h) is anF -algebra such
that

F (X)⊗X

��

h⊗id

/ /

stX,X
F (X ⊗X) //

Fµ
FX

� �

h

X ⊗X //

µ X

(16)

commutes; morphisms are maps ofC which are both
F -algebra and monoid homomorphisms.

Theorem 4.1 Let F , TI, σ, ηI , andφI be as in Proposi-
tion 3.5. ThenTI = (TI, σ, ηI , φI) is an initialF -monoid.

This result, together with Corollary 3.6, ensures that we can
take Σ-monoids as our category of models for a binding
signatureΣ; the type of termsTV is then the initial such
model. We remark thatΣ-monoids and the commutativity

of diagram (16) specialise, respectively, to the models and
theuniformity conditiongiven in [2].

We call the unique morphismTV / / M from the ini-
tial Σ-monoidTV to aΣ-monoidM the initial algebra se-
manticscorresponding toM. By definition of morphism in
Σ-Mon(F), the initial algebra semantics iscompositional,
it preserves the variablesand it always satisfies thesemantic
substitution lemma[35, Lemma 4.6].

Consider, for example, theλ-calculus. For
M = (M, µ, ι, [abs, ·]) to be a Σλ-monoid the follow-
ing should hold: for alld in M(n) and~e in M(m)n,

µm(abs(d);~e) = abs(µm+1(d; [upm(~e), ιm+1(newm)])

µm(d1 · d2;~e) = µm(d1;~e) · µm(d2;~e) .

The initial algebra semantics of theλ-calculus with respect
to such a modelM is the unique morphism[[ ]] : Λ // M
such that:

[[λx.t]] = abs[[t]] , [[tu]] = [[t]] · [[u]] ,

[[xi]] = [[ιn(i)]] ,

[[t [u1, . . . , un]]] = µm([[t]]; [[u1]], . . . , [[un]]) .

In particular, one can easily verify that the model〈D, D〉
for the λ-calculus defined at the end of Section 2 is a
Σλ-monoid and that the corresponding initial algebra se-
mantics is the desired one.

Using substitution algebras rather than monoids we
define an equivalent category ofΣ-substitution algebras
as follows: objects are quadruplesX = (X, ς, ν, h) con-
sisting of a substitution algebra(X, ς, ν) and aΣ-algebra
(X, h) that are compatible in the sense that the diagram

Σ(δ(X))×X //

strδX,X

��

∼=ψX×id

Σ(δ(X)×X) //

Σς
ΣX

��

hδΣ(X)×X

��

δh×id

δ(X)×X //

ς X

commutes (whereψ is the distributive law of (13)); morph-
isms are maps inF that are bothΣ-algebra and substitution-
algebra homomorphisms.

Theorem 4.2 The categories ofΣ-substitution algebras
and ofΣ-monoids inF are equivalent.
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In Combinatoireénumerative, volume 1234 ofLNM, pages
126–159. Springer Verlag, 1987.

[17] W. Kahl. Relational treatment of term graphs with bound
variables.Logic Journal of the IGPL, 6(2):259–303, 1998.

[18] G. Kelly. An abstract approach to coherence. InCoher-
ence in Categories, volume 281 ofLNM, pages 106–147.
Springer-Verlag, 1972.

[19] G. Kelly. Clubs and data-type constructors. In M. P. Four-
man et al., editors,Applications of Categories in Computer
Science, volume 177 ofLondon Mathematical Society Lec-
ture Note Series, pages 163–190. CUP, 1992.

[20] J. W. Klop. Combinatory Reduction Systems. PhD thesis,
University of Utrecht, 1980. Published as Mathematical Cen-
ter Tract 129.

[21] P. Landin. Aλ-calculus approach. InAdvances in Program-
ming and Non-Numerical Computation, pages 97–141. Per-
gammon Press, 1966.

[22] J.-L. Loday, J. Stasheff, and A. Voronov, editors.Operads:
Proceedings of Renaissance Conference. Am. Math. Soc.,
1996.

[23] S. Mac Lane and I. Moerdijk.Sheaves in geometry and logic:
A First Introduction to Topos Theory. Springer-Verlag, 1992.

[24] J. McCarthy. Towards a mathematical science of computa-
tion. In IFIP Congress 1962. North-Holland, 1963.

[25] R. McDowell and D. Miller. A logic for reasoning with
higher-order abstract syntax. InProc. 12th LICS Conf., pages
434–445. IEEE Computer Society Press, 1997.

[26] D. Miller. An extension to ML to handle bound variables
in data structures: Preliminary report. InInformal Proceed-
ings of the Logical Frameworks BRA Workshop, June 1990.
Available as UPenn CIS technical report MS-CIS-90-59.

[27] D. Miller and G. Nadathur. A logic programming approach
to manipulating formulas and programs. In S. Haridi, editor,
IEEE Symposium on Logic Programming, pages 379–388,
San Francisco, Sept. 1987.

[28] T. Nipkow. Higher-order critical pairs. InProc. 6th LICS
Conf., pages 342–349. IEEE, Computer Society Press, 1991.

[29] B. Nordstr̈om, K. Petersson, and J. M. Smith.Program-
ming in Martin-L̈of type theory: An Introduction. Clarendon,
1990.

[30] F. Pfenning and C. Elliott. Higher-order abstract syntax. In
Proc. SIGPLAN ’88 Conf.ACM Press, 1988.

[31] G. Plotkin. An illative theory of relations. In R. Cooper et al.,
editors,Situation Theory and its Applications, number 22 in
CSLI Lecture Notes, pages 133–146. Stanford Univ., 1990.

[32] D. Scott. The lattice of flow diagrams. In E. Engeler, editor,
Symposium on Semantics of Algorithmic Languages, volume
188 ofLNM, pages 311–366. Springer, 1971.

[33] D. Scott. Relating theories of theλ-calculus. In J. Hindley
and J. Seldin, editors,To H.B. Curry: Essays on combinat-
ory logic, lambda calculus and formalism, pages 403–450.
Academic Press, 1980.

[34] A. Stoughton. Substitution revisited.Theoretical Computer
Science, 59(3):317–325, Aug. 1988.

[35] R. Tennent.Semantics of Programming Languages. Prentice
Hall, New York, 1991.

[36] D. Turi and G. Plotkin. Towards a mathematical operational
semantics. InProc. 12th LICS Conf.IEEE, Computer Soci-
ety Press, 1997.

[37] S. Yong. A Framework for Binding Operators. PhD thesis,
LFCS, Edinburgh, 1992.


