
~q OPERATIONAL SEMANTICS FOR CSP 

(Extended Abstract) 

Gordon Plotkin 

The present work is intended to illustrate a method of giving the operational 

semannics of programming languages. As an example a variant of Hoare's language, 

CSP, of communicating sequential processes is considered [Hoa]. At the same time 

some attempt is made to develop an approach to language analysis following a 

guiding principle of simplicity of the abstract syntax. This idea is independent 

of the semantic method used and can just as well be combined with other approaches, 

such as that of denotational semantics. 

The operational semantics employs the well-known idea of transition systemsn 

<F,T,+>, where F (ranged over by y) is a set of configurations and T c F is the set 

of final configurations and ÷ c F x F is the transition relation. A typical 

configuration could be <c~0>, where c is a command and ~ is a store; further any 

store u could be a final configuration (no command left to be executed). What is 

new is the specification of the transition relation. For this we follow the 

modern emphasis on structure and define the transition relation by structural 

induction on the abstract syntax by means of such rules as: 

Sequence !o <C0~> ÷ <C0~'C~> 

<C0;Cl,g> + <Co';Cl,g'> 

2. <C0~g> ÷ g' 

<C0;Cl~> ÷ <Cl,a'> 

Dijkstra~s guarded command language underlies CSP [Dij]. Applying our 

principle of simplicity we try to minim~se the number of syntactic categories 

in a non-artificial way and take guarded commands as 5eing themselves commands so 

that for example if b is a Boolean expression and c is a command so is b + c. As 

another application we do not wish to allow n-ary syntactic constructions (for 

every n) as implied by this syntax for conditions: 

__if b I + C 1 ~ ..o ~b n + Cn --fi 

Rather we regard this~ for each n, as a composite (= derived) construction from 

the above binary guarding construction, b + c, a Dinary choice construction c Q c 

and a unary conditional if c fi. The syntax for commands is then 

[ c::= a I skip I c;e I b => c I fail I c ~ c 1 

[ abort I if c fi I do cod 



251 

where a ranges over primitive actions and h => c is a strong guarding construction, 

useful for concurrency, which does not allow any interruption by any process 

between the testing of b and the first action of c. The above weak guarding can 

be derived from the strong one by: 

b ÷ c = b => nil; c 
def 

This can be expressed by the rules: 

Guarding i. <c, ~> ÷ y (if b is true in ~) 

<b => c,o> +7 

2. <b => c,a> ÷ failure (if b is false in o) 

where failure is a new configuration standing for failure. The other constructs 

are specified along similar lines (and another new configuration, abortion, is 

needed). 

The advantage of the strong guarding is that it allows the resolution of 

complex guarded commands in CSP containing input commands, such as b~ A ? x ÷ c, 

into h => (A ? x; c) and that in turn avoids the redundancy of input commands 

appearing in two places in the syntax. 

The most complex construct in CSP is the parallel command 

[Pl::c11[---llPn::Cn] 
where, of course, the c. can perfectly well contain further parallel commands. 

l 
We view this as a block (with II replacing ~) and regard the process identifiers, 

Pi' as analogous to label identifiers; then the scope of the Pi can he taken, 

following the Usual rules, as the whole of the block. With this idea we can 

analyse the parallel conlmand into a binary parallel construction, cIle and a unary 

labelling construction P::c and a binary declaration construction process P~c as 

follows 

process PI~...; process Pn ~ 

begin 

P1::cl ii---[I ~ ::c 
n n 

e n d  

( w h e r e  b e g i n  . . .  e n d  a r e  j u s t  a p a i r  o f  b r a c k e t s ) .  

for CSP 

And we have a simple syntax 

C: := (guarded command construction) I P?r I Q.'w I 

c II e I P::c I process P; c 



252 

where r ranges o~er a set of input operations and w over a set of output operations 

and we have omitted certain details relating to non-interference between parallel 

processes. We have also omitted variable declarations, process arrays or guarded 

commands with ranges. 

For the operational semantics we employ the well-known idea of labelled 

transition systems, <r,T,M,+> where now M is a set of messages (= communications) 

and ÷c F × M x F.. The rules for the guarded commands are the same as before, but 

with an m above the arrows for the messages. For CSP the appropriate messages 

with their intuitive meanings are: 

- an internal action of a process 

P ? v - P sends v to an unknown agent 

Q I v - an unknown agent sends a value v to Q 

P,Q ? v - Q receives v from P 

P,Q I v - P sends v to Q. 

Here are some typical rules 

Q:v 
Output <Q ~ w,0>-=---9~ (where v is the value transmitted by w given store ~) 

Labelling <c~0> P?v )<ca j,> (if P # Q) 

<Q: :c ,~>  "-p'Q?V 2 < Q : : c ' , ~ ' >  

p ~  
Communication <C0'G> p,Q?v ~<c0, ~><Cl,0 ~ .,Q.v )<cl, O > 

<%1 lh,o> ~ ><e0'IIh',°'> 
This treatment omits cQnsideration of Hoare's termination convention, which 

would require a little additional complication. (One adds a third component to 

the configurations, namely a set of process labels; these are intended to be the 

set of labels of all terminated processes.) Finally we note a great difference 

between this kind of operational semantics and the usual denotational semantics. 

We only specify one step of executions and do not say how to put these together 

to make up global behaviours or what it means for two such behaviours to be equal. 

There are many choices in general and we remain neutral between them. On the 

other hand any normal denotational semantics both automatically reflects such a 

choice and does not in general specify all the details of the execution sequences. 

References 

[Dij] Dijkstra, E.W. (1976) A Discipline of Programming. Prentice-Hall. 

[Hoa] Hoare~ C.A.R~ (1978) Communicating Sequential Processes~ CACM, vol. 21, 

No. 8, 666-677. 


