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Normally, one thinks of probabilistic transition systems as taking an initial probability distribution
over the state space into a new probability distribution representing the system after a transition.
We, however, take a dual view of Markov processes as transformers of bounded measurable func-
tions. This is very much in the same spirit as a “predicate-transformer” view, which is dual to
the state-transformer view of transition systems.

We redevelop the theory of labelled Markov processes from this view point, in particular we
explore approximation theory. We obtain three main results:
(i) It is possible to define bisimulation on general measure spaces and show that it is an equivalence
relation. The logical characterization of bisimulation can be done straightforwardly and generally.
(ii) A new and flexible approach to approximation based on averaging can be given. This vastly
generalizes and streamlines the idea of using conditional expectations to compute approximations.
(iii) We show that there is a minimal process bisimulation-equivalent to a given process, and this
minimal process is obtained as the limit of the finite approximants.

Categories and Subject Descriptors: F.1.2 [Theory of Computation]: Probabilistic Computa-
tion; F.3.2 [Theory of Computation]: Semantics of Programming Languages; G.3 [Mathe-
matics of Computing]: Markov processes

General Terms: Theory, Verification

Additional Key Words and Phrases: Markov processes, Markov operators, approximation, bisim-
ulation, duality, modal logic

1. INTRODUCTION

Markov processes with continuous state spaces or continuous time evolution or both,
arise naturally in many areas of computer science: robotics, performance evaluation,
modelling and simulation, for example. For discrete systems there was a pioneering
treatment of probabilistic bisimulation and logical characterization by Larsen and
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Skou [Larsen and Skou 1991]. The continuous case, however, was neglected for a
time. For a little over a decade there has been significant activity among computer
scientists [Desharnais et al. 2002; de Vink and Rutten 1999; Desharnais et al.
2000] [M. Mislove and Worrell 2004; van Breugel and Worrell 2001a; Danos et al.
2003] [Ferns et al. 2005; Bouchard-Côté et al. 2005; Cattani et al. 2005] [Danos
et al. 2006; Goubault-Larrecq 2007a; Doberkat 2003] as it came to be realized
that ideas from process algebra – like bisimulation and the existence of a modal
characterization – would be useful for the study of such systems. In [Blute et al.
1997] continuous-state Markov processes with labels to capture interactions were
christened labelled Markov processes (LMPs). Some of this material has appeared
in book form [Panangaden 2009; Doberkat 2010]. There is a vast literature on timed
systems, hybrid systems, robotics and control theory that also refer to systems with
continuous state spaces.

A labelled Markov process is a discrete time dynamical system combining nonde-
terministic and probabilistic behavior. The intuitive picture is the following. The
system evolves within a state space X. A user can control this system via a set of
actions A, assumed to be finite. To each action is associated a probabilistic tran-
sition within the system. The system undergoes these transitions when the user
chooses the corresponding action. For each action, the transitions are Markov and
time homogeneous, and thus only depend on the current state of the system. The
user has full control over which action to choose; the nondeterminism of the system
stems from the user interaction.

However, there is a crucial difference in the way such systems are interpreted in
comparison to usual stochastic processes or dynamical systems. Typically, the
current position in the state space is what one keeps track of; in our case, we
are concerned with the interaction between the user and the actions. Indeed, at
each point in the state space, the actions may have a nonzero probability of being
disabled, and the user knows when the action he chose was disabled. Furthermore,
this information about actions is the only information the user can obtain from the
system, as the system’s state is internal and not visible to the user.

In [Desharnais et al. 2000] and [Desharnais et al. 2003] a theory of approximation for
LMPs was initiated and was refined and extended in [Danos and Desharnais 2003]
and [Danos et al. 2003]. Finding finite approximations is vital to give a computa-
tional handle on such systems. These techniques were adapted to Markov decision
processes (MDPs) and applied to find good estimates of value functions [Ferns et al.
2005]. The previous work was characterized by rather intricate proofs that did not
seem to follow from basic ideas in any straightforward way. For example, the logi-
cal characterization of (probabilistic) bisimulation proved first in [Desharnais et al.
1998] requires subtle properties of analytic spaces and rather awkward and ad-
hoc seeming constructions [Edalat 1999]1. Proofs of basic results in approximation
theory also seemed to be more difficult than they should be.

In the present paper we take an entirely new approach: we consider Markov pro-

1Later these results were put together in a much more systematic way by [Doberkat 2010] using
the machinery of descriptive set theory.
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cesses as transformers of measurable functions on the state space rather than as
transformers of probability distributions on the state space. This is in some ways
“dual” to the normal view of probabilistic transition systems. It is akin to the rela-
tionship between predicate-transformer semantics and state-transformer semantics.
However, both styles of semantics can be accommodated in our viewpoint; it is
purely because the theory is slightly smoother in the predicate-transformer view
that we develop that viewpoint in the paper. Instead of working directly with a
Markov kernel τ(s,A) that takes a state s to a probability distribution over the
state space, we think of a Markov process as transforming a function f into a new
function

�
f(s�)τ(s, ds�) over the state space. This is the probabilistic analogue of

working with predicate transformers, a point of view advocated by [Kozen 1985] in
a path-breaking early paper on probabilistic systems and logic.

This new way of looking at things leads to three new results:

(1) It is possible to define bisimulation on general spaces – not just on analytic
spaces – and show that it is an equivalence relation with easy categorical con-
structions. The logical characterization of bisimulation can also be done gen-
erally, and with no complicated measure theoretic arguments.

(2) A new and flexible approach to approximation based on averaging can be given.
This vastly generalizes and streamlines the idea of using conditional expecta-
tions to compute approximation [Danos et al. 2003].

(3) It is possible to show that there is a bisimulation-minimal realization equivalent
to a process obtained as the limit of finite approximants.

There is a key mathematical fact that allows these results to be established and
it hinges on duality. In the usual theory of Lp spaces in functional analysis one
defines the space Lp(X,µ) as the space of functions2 whose absolute values raised
to the pth power are integrable with respect to µ. Now if 1 < p, q < ∞ the
space of continuous linear functionals on Lp is isomorphic to Lq if 1

p + 1
q = 1; the

spaces Lp and Lq are duals; for example L2 is self-dual. However, for L1 and L∞
one does not have a duality. In the present paper we consider cones rather than
vector spaces. One can think of cones as subsets of vector spaces consisting of the
“positive” vectors; of course, this needs to be axiomatized properly. When one has
such a cone, say C, the vector space V can be viewed as having a partial order
defined on it by the simple device of saying u ≤ v if v − u ∈ C. One can now use
order-theoretic continuity to strengthen the requirements on the spaces and obtain
a perfect duality between the L1 and the L∞ spaces. In fact, we will axiomatize
cones ab initio rather than viewing them as subsets of vector spaces; this will allow
us to work with the space of all positive measures as a cone rather than artificially
embedding it into some vector space. The ability to switch between these dual
views is very useful and allows easy proofs of many facts.

A second main innovation in the present paper is a functorial view of the conditional
expectation. Some of the key properties of conditional expectation turn out to be

2We are only considering real-valued functions, in functional analysis one usually considers
complex-valued functions.
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nothing more than functoriality. This facilitates the view of conditional expectation
as a coarsening of the description of the system and hence makes it a key step in
the approximation process. It also provides a unified view of bisimulation and
approximation.

The rest of the paper is organized as follows. In Section 2 we review some of the
background needed to read the paper. In Section 3 we describe categories of cones
and develop duality theory for these categories. In Section 4 we define conditional
expectation functorially. In Section 5 we define labelelled abstract Markov processes
(LAMPs) and we define the notion of approximation of LAMPs in Section 6. In
Section 7 we define bisimulation and we show that it is an equivalence relation
in Section 8. In Section 9 we obtain the minimal realization of a LAMP from
which the logical characterization follows. In Section 11 we develop the theory of
approximation and show that the limit of the finite approximants gives the minimal
realization of a process. In Section 12 we review the history of LMPs and review
other related work.

2. BACKGROUND

In this section we review some of the mathematical background needed for this
paper. We need some basic measure theory and functional analysis.

2.1 Measure theory

We assume that the reader is familiar with the definitions of σ-algebras, measurable
spaces (set equipped with a σ-algebra), measures, measurable functions, integration
and basic concepts from topology [Billingsley 1995; Dudley 1989; Kingman and
Taylor 1966; Rudin 1966; Williams 1991]. By a finite measure we mean a measure
that assigns a finite value as the measure of the whole space on which it is defined.
We recall the definition of measurable function to avoid a common confusion.

Definition 2.1. A function f from a measurable space (X,Σ) to a measurable
space (Y,Λ) is said to be measurable if f−1(B) ∈ Σ whenever B ∈ Λ.

Note this is not the definition in [Halmos 1974], but is the one used by most modern
authors. Halmos’s definition has the annoying property that the composite of two
measurable functions need not be measurable; a price he is willing to pay in order
to integrate a few more functions.

We define the category Mes where the objects are measurable spaces and the
morphisms are measurable functions. There is an obvious forgetful functor into
Set which preserves limits.

Definition 2.2. A probability triple (X,Σ, p) is a measurable space with a
measure p with p(X) = 1; such a measure is called a probability measure.

We also use the term subprobability measure on (X,Σ) to mean a finite measure q
with q(X) ≤ 1. Given a measurable space (X,Σ) we write M(X) for the space of
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finite measures on X. We will always work with finite measures, usually – but not
always – probability or subprobability measures.

We say a real-valued measurable function f on a space (X,Σ) equipped with a
measure µ is integrable if the integral

�
fdµ is finite. Since we are working with

finite measures, positive bounded measurable functions are always integrable.

Given (X,Σ, p) and (Y,Λ) and a measurable function f : X −→ Y we obtain a
measure q on Y by q(B) = p(f−1(B)). This is written Mf (p) and is called the
image measure of p under f . We say that a map f : (X,Σ, p) −→ (Y,Λ, q) is
measure preserving if Mf (p) = q.

In measure theory it is more convenient to work with equivalence classes of func-
tions that are equal “almost everywhere.” Given a measurable space (X,Σ) with
a measure µ we say two measurable functions are µ-equivalent if they differ on a
set of µ-measure zero. L1(X,µ) stands for the space of equivalence classes of inte-
grable functions. Similarly we write L+

1 (X,µ) for equivalence classes of integrable
functions that are positive µ-almost everywhere. We will often write just L1(X) if
the µ is clear from context and similarly for the variations that crop up. The space
L1 is a real vector space but the space L+

1 (X) is not; it is a cone, a concept to be
defined below.

We need a bit more standard measure theory for the approximation results. A π-
system is a family of sets closed under finite intersection. The following proposition
appears as Theorem 10.3 in [Billingsley 1995].

Proposition 2.3. If two measures agree on a π-system they agree on the σ-
algebra generated by the π-system.

2.2 The Radon-Nikodym theorem

Given a measurable function α : (X,Σ, p) −→ (Y,Λ, q) recall that we denote by
Mα(p) the image measure of p by α onto Y .

The Radon-Nikodym theorem [Rudin 1966] is a central result in measure theory
allowing one to define a “derivative” of a measure with respect to another mea-
sure.

Definition 2.4. We say that a measure ν is absolutely continuous with re-
spect to another measure µ if for any measurable set A, µ(A) = 0 implies that
ν(A) = 0. We write ν � µ.

Theorem 2.5. If ν � µ, where ν, µ are finite measures on a measurable space
(X,Σ) there is a positive measurable function h on X such that for every measurable
set B

ν(B) =

�

B
h dµ.

The function h is defined uniquely up to a set of µ-measure 0. The function h is
called the Radon-Nikodym derivative of ν with respect to µ; we denote it by dν

dµ .

Since ν is finite, dν
dµ ∈ L+

1 (X,µ).
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The Radon-Nikodym theorem applies to a more general class of measures called
σ-finite measures: these are measures where the total space can be written as the
countable union of sets of finite measure. In this more general case it will not be
true in general that the Radon-Nikodym derivative is in L+

1 .

Given an (almost-everywhere) positive function3 f ∈ L1(X, p), we let f · p be the
measure which has density f with respect to p. Two identities that we get from
the Radon-Nikodym theorem are:

—given q � p, we have dq
dp · p = q.

—given f ∈ L+
1 (X, p), df ·p

dp = f

These two identities just say that the operations (−) · p and d(−)
dp are inverses of

each other as maps between L+
1 (X, p) and M�p(X) the space of finite measures

on X that are absolutely continuous with respect to p.

2.3 Conditional expectation

A random variable on a measurable space is just a measurable function. We will use
the language of measurable functions rather than random variables, because our
emphasis is more measure theoretic than probabilistic. In the probability literature
everything is usually stated in terms of random variables.

The expectation Ep(f) of a measurable function f is the average computed by�
fdp and therefore it is just a number. The conditional expectation is not a mere

number but a random variable. It is meant to measure the expected value in the
presence of additional information.

The additional information takes the form of a sub-σ algebra, say Λ, of Σ. In what
way does this represent “additional information”? The idea is that an experimenter
is trying to compute probabilities of various outcomes of a random process. The
process is described by (X,Σ, p). However she may only have partial information
in advance, by knowing that the outcome is in a measurable set Q. Now she may
try to recompute her expectation values based on this information. To know that
the outcome is in Q also means that it is not in Qc. Note that {∅, Q,Qc, X} is in
fact a (tiny) sub-σ-algebra of Σ. Thus one can generalize this idea and say that for
some given sub-σ-algebra Λ of Σ she knows for every Q ∈ Λ whether the outcome is
in Q or not. Now she can recompute the expectation values given this information.
The point of requiring Λ-measurability is that it “smooths out” variations that are
too rapid to show up in Λ.

It is an immediate consequence of the Radon-Nikodym theorem that such condi-
tional expectations exist.

Theorem 2.6 Kolmogorov. Let (X,Σ, p) be a measure space with p a finite
measure, f be in L1(X,Σ, p) and Λ be a sub-σ-algebra of Σ, then there exists a

3Of course, one should really say “equivalence class of functions” but it is common to abuse the
terminology in this fashion.
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g ∈ L1(X,Λ, p) such that for all B ∈ Λ
�

B
fdp =

�

B
gdp.

This function g is usually denoted by E(f |Λ).

We clearly have f · p � p so the required g is simply df ·p
dp|Λ , where p |Λ is the restric-

tion of p to the sub-σ-algebra Λ. The conditional expectation is linear, increasing
with respect to the point wise order and possesses other pleasing properties to be
described below. It is defined uniquely p-almost everywhere.

2.4 Markov kernels

We begin with some preliminary definitions. Let (X,Σ) and (Y,Λ) be measurable
spaces. We define a stochastic transition from X to Y :

Definition 2.7. A Markov kernel from X to Y is a map

τ : X × Λ −→ [0, 1]

such that:

—for all x ∈ X, τ(x, ·) is a subprobability measure on Y

—for all B ∈ Λ, τ(·, B) is a measurable function

The interpretation of such functions is that τ(x,B) is the probability of jumping
from the point x to the set B. Thus, if (X,Σ) = (Y,Λ), the Markov kernel may
be iterated to determine the evolution of a discrete-time and time-homogeneous
Markov process where the state is a point in X; we will call such a Markov kernel
a Markov kernel on X. Note that this definition is slightly different from the usual
definition of a Markov process on a measurable space, as we allow our transition
probabilities to be subprobabilities. One may interpret this difference as follows:
given a point x with τ(x, Y ) = k ≤ 1, the process τ has a probability 1 − k to be
disabled at the point x.

We now give the definition of a labelled Markov process, first given in this form in
[Blute et al. 1997].

Definition 2.8. A labelled Markov process (LMP) on a measurable space
(X,Σ) is a collection of Markov kernels τa on X, indexed by a finite or countable
set A, called the set of actions.

Note that the set of labels A will be fixed once and for all.

2.5 Cones

Cones are a way of combining order structure with linear structure. The idea is
that a subset of a vector space is designated as the set of “positive” vectors. A
cone, viewed as a subset of a vector space, will need to satisfy some natural closure
properties. Then we can define u ≤ v for two vectors u and v by saying that
v − u is positive. We can, however, define cones intrinsically without reference to
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an ambient vector space. This is sometimes important particularly in speaking of
probability distributions where subtraction is not always defined. Cones are well
known in the functional analysis literature; however, we base the definition and
discussion of cones below, on a paper by [Selinger 2004] which we found particularly
apt for our purposes, partly because it introduces cones abstractly rather than as
subsets of vector spaces. We discuss related concepts of cones in the related work
section.

Definition 2.9. A cone is a set V on which a commutative and associative
binary operation, written +, is defined and on which multiplication by positive real
numbers is defined. There is a distinguished element 0 ∈ V , which is an identity for
the + operation; in short, (V,+, 0) forms a commutative monoid. Multiplication by
reals distributes over addition and the following cancellation law holds:

∀u, v, w ∈ V, v + u = w + u ⇒ v = w.

The following strictness property also holds:

v + w = 0 ⇒ v = w = 0.

Cones come equipped with a natural partial order. If u, v ∈ V , a cone, one says
u ≤ v if and only if there is an element w ∈ V such that u+ w = v. One can also
put a norm on a cone, with the additional requirement that the norm be monotone
with respect to the partial order.

Definition 2.10. A normed cone C is a cone with a function
|| · || : C −→ R+ satisfying the usual conditions:

(1 ) ||v|| = 0 if and only if v = 0

(2 ) ∀r ∈ R+, v ∈ C, ||r · v|| = r||v||

(3 ) ||u+ v|| ≤ ||u||+ ||v||

(4 ) u ≤ v ⇒ ||u|| ≤ ||v||.

The only slight difference from the usual definition of norm is the requirement that r
be positive. Owing to the lack of a subtraction operation, it is not possible to speak
of a sequence being Cauchy in the usual sense; however, order-theoretic concepts
can be used instead.

Definition 2.11. An ω-complete normed cone is a normed cone such that

(1 ) if {ai | i ∈ I} is an increasing sequence with {||ai||} bounded then the lub�
i∈I ai exists and

(2 )
�

i∈I ||ai|| = ||
�

i∈I ai||.

The norm gives a notion of convergence as does the notion of lub of a chain. The
following lemma from [Selinger 2004] relates the two.

Lemma 2.12. Suppose that ui is a countable chain with a least upper bound in
an ω-complete normed cone and u is an upper bound of the ui. Suppose furthermore
that limi−→∞ �u− ui� = 0. Then u =

�
i ui.
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A linear map of cones is precisely what one would expect: i.e. a map that preserves
the linear operations. Note than any such map is monotone.

Definition 2.13. An ω-continuous linear map between two cones is one that
preserves least upper bounds of countable chains. More precisely if C and D are
cones and f : C −→ D is linear we say that it is ω-continuous if for every countable
chain {ai} in C such that

�
i ai exists then so does

�
i f(ai) and f(

�
i ai) =

�
i f(ai).

We will also want to restrict our attention to bounded linear maps of normed cones.
A bounded linear map of normed cones f : C −→ D is one such that for all u in C,
||f(u)|| ≤ K||u|| for some real numberK. A lemma in [Selinger 2004] shows that any
linear map of ω-complete normed cones is bounded; it is thus superfluous to mention
boundedness when discussing a map of ω-complete normed cones. The norm of a
bounded linear map f : C −→ D is defined as ||f || = sup{||f(u)|| : u ∈ C, ||u|| ≤ 1};
this is analogous to the operator norm for bounded linear maps between vector
spaces.

We need the concept of dual cone; indeed it is one of the central concepts of the
present work. Given an ω-complete normed cone C, its dual C∗ is the set of all
ω-continuous linear maps from C to R+. We define the norm on C∗ to be the
operator norm. It is not hard to show that this cone is a ω-complete normed
cone as well, and that the cone order corresponds to the point wise order. For
the latter one needs to show that if g is less than f point wise then f − g is
also an ω-continuous map. If {xi} is an increasing sequence in C with sup x we
need to show that sup {(f − g)(xi)} = (f − g)(sup {xi}). This follows from the
fact that sup {(f − g)(xi)} = sup {f(xi)− g(xi)} = sup {f(xi)} − sup {g(xi)} =
f(sup {xi}) − g(sup {xi}), where the last equality follows from the continuity of f
and g and the one before that is an elementary “� argument.”

The ω-complete normed cones, along with ω-continuous linear maps, form a cate-
gory which we shall denote ωCC. If we define the subcategory ωCC1 of ωCC as
the one where the norms of the maps are all bounded by 1 then isomorphisms in this
category are always isometries. It is easy to see that given any linear map F between
normed spaces, if F−1 exists and has bounded norm then ||F | · ||F−1|| ≥ 1. Thus
if we are working in ωCC1 this condition implies that both F and F−1 have norm
1. Many of the cones of interest and the maps between them live in ωCC1.

In ωCC, the dual operation becomes a contravariant functor; if f : C −→ D is a
map of cones, we define f∗ : D∗ −→ C∗ as follows. Given a map L in D∗, we define
a map f∗L in C∗ as f∗L(u) = L(f(u)). Now ||L(f(u))|| ≤ ||L|| · ||f || · ||u|| and thus
||f∗|| ≤ ||f ||.

Note that this dual is stronger than the dual in usual Banach spaces, where we only
require the maps to be bounded. This has nice consequences with respect to the
cones we are considering. For instance, we shall see that the dual to L+

∞(X,Σ, µ)
(to be defined below) is isomorphic to L+

1 (X,Σ, µ), which is not the case with the
Banach space L∞(X,Σ, p).

Next, we introduce the cones that we use in the present work. They are all ω-
complete normed cones.

Journal of the ACM, Vol. 1, No. 1, May 2010.
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3. CONES OF MEASURES AND OF MEASURABLE FUNCTIONS

Let (X,Σ) be a measure space. We write L+(X,Σ) for the cone of bounded mea-
surable maps from X to R+. This is an ω-complete normed cone as the supremum
of countably many measurable functions is measurable. Closely related to this is
the cone M(X,Σ) of finite measures on (X,Σ). The ordering on this cone is the
cone order as defined in the previous section. Explicitly, µ ≤ ν if there is a finite
measure λ such that ν = µ + λ; note this is not the same as the pointwise order.
The cone order implies the pointwise order but the reverse may not be the case.
The norm of a measure µ is just µ(X).

Proposition 3.1. M(X,Σ) is an ω-complete normed cone.

Proof. Checking the norm axioms is routine. Suppose that µi+1 = µi + θi for

all i. We can define θ(k) :=
∞�

i=k+1

θi. It is straightforward to verify that all the θ(k)

are finite measures and that for all k, µ = µK + θ(k) so µ is an upper bound in
the cone order and since the cone order implies the pointwise order, it is the least
upper bound in the cone order.

We will usually just write L(X) and M(X). The real action occurs in subcones of
these cones.

If µ is a measure on X, then one has the well-known Banach spaces L1 and L∞
mentioned above. These can be restricted to cones by considering the µ-almost
everywhere positive functions. We will denote these cones by L+

1 (X,Σ, µ) and
L+
∞(X,Σ); if the context is clear we will drop the Σ and often the measure as well.

These also are complete normed cones.

We also work with cones of measures on a space. Let (X,Σ, p) be a measure space
with finite measure p. We denote by M�p(X), the cone of all measures on (X,Σ, p)
that are absolutely continuous with respect to p4. If q is such a measure, we define
its norm to be q(X). It is easy to see that this norm coincides precisely with
the norm on L+

1 (X,Σ, p) if q is viewed as a density function through the Radon-
Nikodym theorem. Hence M�p(X) is also an ω-complete normed cone. In fact,

one can say more; it is easy to show that the maps d(−)
dp : M�p(X) −→ L+

1 (X,Σ, p)

and (−) · p : L+
1 (X,Σ, p) −→ M�p(X) are both ω-continuous maps of cones which

are furthermore norm-preserving. Thus the cones M�p(X) and L+
1 (X,Σ, p) are

isometrically isomorphic in ωCC.

Similarly, one can consider Mp
UB

(X), the cone of all measures on (X,Σ) that are
uniformly less than a multiple of the measure p; in other words, q ∈ Mp

UB
means

that for some real constant K > 0 we have q ≤ Kp. For such a measure q, we
can define the norm of q to be the infimum of all constants K such that q ≤ Kp,
which coincides with the norm on L+

∞(X,Σ, p) when q is considered as a density
function; thus Mp

UB
(X) is an ω-complete normed cone. As with M�p(X), the

4Since a cone has to be closed under multiplication by positive reals this cone cannot consist of
just probability measures; we have to consider general finite measures
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cones Mp
UB

(X) and L+
∞(X,Σ, p) are isomorphic. The two maps d(−)

dp and (−) · p
also are norm-preserving.

Proposition 3.2. The dual of the cone L+
∞(X,Σ, p) is isometrically isomorphic

to M�p(X).

Proof. Let L be an element of L+,∗
∞ (X). We define a measure q on X as follows:

q(B) = L (1B)

The countable additivity of q is a direct consequence of the ω-continuity of L: given
a countable collection of disjoint measurable sets Bi, we have that

1∪n
i=1Bi =

n�

i=1

1Bi

Clearly the functions 1∪n
i=1Bi form an increasing sequence, and are bounded by 1X

because the Bis are disjoint. We can write q (
�∞

i=1 Bi) as L (supn
�n

i=1 1Bi). Since
1X has finite norm in L+

∞(X), we have

L

�
sup
n

n�

i=1

1Bi

�
= sup

n
L

�
n�

i=1

1Bi

�
= sup

n

n�

i=1

L (1Bi) =
∞�

i=1

L (1Bi) .

This shows countable additivity of q. Furthermore, q(∅) = L(0) = 0, and thus q is
a measure.

We want to show that the operator norm of L is q(X). We have that

�L� = sup
�f�∞≤1

L(f) = L (1X) = q(X)

since L is monotone and 1X is the least upper bound of the unit ball of L+
∞(X).

Finally, if p(B) = 0, we have that 1B = 0 in L+
∞(X), and thus q is absolutely

continuous with respect to p.

Thus, each element of L+,∗
∞ (X) can be associated with a measure in M�p(X) via

a map, which we call φ, such that, in the above discussion, we have φ(L) = q.

It is easy to check that φ is linear and ω-continuous. Furthermore, we just showed
that it was norm-preserving. On the other hand, it is clear that every element q of
M�p(X) corresponds to an unique element of L+,∗

∞ (X). If u is the Radon-Nikodym
derivative of q, we have the functional f �→

�
X fu dp on L+

∞(X) which is bounded
by Hölder’s inequality. Thus φ is an isometric isomorphism.

Since M�p(X) is isometrically isomorphic to L+
1 (X), an immediate corollary is

that L+,∗
∞ (X) is isometrically isomorphic to L+

1 (X), which is of course false in
general in the context of Banach spaces.

The following proposition is proved analogously:

Proposition 3.3. The dual of the cone L+
1 (X,Σ, p) is isometrically isomorphic

to Mp
UB

(X).

Journal of the ACM, Vol. 1, No. 1, May 2010.



12 · Philippe Chaput et al.

We will not give the proof but we will note a minor lemma that is used in the
proof.

Lemma 3.4. If α : (X, p) −→ (Y, q) satisfies Mα(p) ≤ Kq for some real positive

constant K (i.e. Mα(p) ∈ Mq
UB

) then dMα(p)
dq is in L+

∞(Y, q).

Proof. We write h for dMα(p)
dq . The Radon-Nikodym theorem tells us that h is

in L1(Y, q). For any g in L+
1 (Y, q) we have

�
gdMα(p) ≤ K

�
gdq. Fix a positive

real η and define Zη = {y|h(y) > η}, then

ηq(Zη) ≤
�

Zη

hdq = Mα(p)(Zη) ≤ Kq(Zη).

So if q(Zη) �= 0 we have η ≤ K; thus, except for a set of q-measure 0, h is bounded
by K; i.e. h in L+

∞(Y, q).

As above, asMp
UB

(X) is isometrically isomorphic to L+
∞(X), an immediate corollary

is that L+,∗
1 (X) is isometrically isomorphic to L+

∞(X).

Definition 3.5. There is a map from the product of the cones L+
∞(X, p) and

L+
1 (X, p) to R+ defined as follows:

∀f ∈ L+
∞(X, p), g ∈ L+

1 (X, p) �f, g� =
�

fgdp.

This map is bilinear and is continuous and ω-continuous in both arguments; we
refer to it as the pairing.

This pairing allows one to express the dualities in a very convenient way. For
example, the isomorphism between L+

∞(X, p) and L+,∗
1 (X, p) sends f ∈ L+

∞(X, p)
to λg.�f, g� = λg.

�
fgdp. A trivial but useful lemma about the pairing function is

that it is multiplicative.

Lemma 3.6. For all g, h ∈ L+
∞ and f ∈ L+

1 , �g, hf� = �gh, f�.

The proof is immediate from the definition; the only point to note is that the
product of a function in L+

1 and a function in L+
∞ is again in L+

1 .

Using the pairing the following is a consequence of the duality of L+
1 (X) and L+

∞(X)
in ωCC.

Proposition 3.7. Given A : L+
1 (X, p) −→ L+

1 (Y, q) in ωCC, there is a unique
adjoint arrow L+

∞(X, p) ← L+
∞(Y, q) : A† in ωCC, such that:

�g, Af�Y = �A†g, f�X
for all f ∈ L+

1 (X, p), g ∈ L+
∞(Y, q). Similarly, given L+

∞(X, p) ← L+
∞(Y, q) : A† in

ωCC, there is a unique adjoint A : L+
1 (X, p) −→ L+

1 (Y, q) such that the above holds.

Proof. Suppose A is given, we define:

g ∈ L+
∞(Y, q) �→ λf ∈ L+

1 (X, p).�g, Af�Y .

The right hand side is linear, continuous and ω-continuous in f so is in L+,∗
1 (X, p) ∼

L+
∞(X, p). This defines A†g in dual form; this definition is unique because it is
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forced by the adjointness relation. This map is clearly linear and continuous as:
����A†g

��� =
��λf ∈ L+

1 (X, p).�g, Af�Y
��

where the tilde indicates that it is defined in the dual space. Now the right hand
side of the above is equal to

sup
f∈L+

1 (X,p)

�g, Af�Y / �f�1 ≤ �g�∞ �A� .

which tells us in passing that
��A†

�� ≤ �A�, and is ω-continuous as for all f ∈
L+
1 (X, p) and for all sequences gn converging from below to g in L+

∞(Y, q)

�gn, Af�Y −→ �g, Af�Y
by the monotone convergence theorem.

The dual version is essentially the same.

We define two categories Rad∞ and Rad1 that will be needed for the functorial
definition of conditional expectation.

Definition 3.8. The category Rad∞ has as objects probability spaces, and as
arrows α : (X, p) −→ (Y, q), measurable maps such that Mα(p) ≤ Kq for some
real number K. The category Rad1 has as objects probability spaces and as arrows
α : (X, p) −→ (Y, q), measurable maps such that Mα(p) � q.

The reason for choosing the names Rad1 and Rad∞ is that α ∈ Radx maps to
d/dqMα(p) ∈ L+

x (Y, q) (here x is 1 or ∞). For x = 1 this is true by the Radon-
Nikodym theorem while for x = ∞ it follows from Lemma 3.4. The fact that the
category Rad∞ embeds in Rad1 reflects the fact that L+

∞ embeds in L+
1 .

When we define bisimulation we will need the subcategory of Rad∞ consisting of
measure-preserving maps. We call this category Rad=.

3.1 Summary of spaces and their relationships

We summarize the various categories that we have defined and the relationships
between them which we have proved in this previous section. All the spaces are
ω-complete normed cones, thus, isomorphism always means isomorphism in the
category of ω-complete normed cones.

We fix a probability triple (X,Σ, p) and focus on six spaces of cones that are based
on them. They break into two natural groups of three isomorphic spaces. The first
three spaces are:

A1 M�p(X) - the cone of all measures on (X,Σ, p) that are absolutely continuous
with respect to p,

A2 L+
1 (X, p) - the cone of integrable almost-everywhere positive functions,

A3 L+,∗
∞ (X, p) - the dual cone of the the cone of almost-everywhere positive bounded

measurable functions.
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The first space above, M�p(X) is clearly a subspace of M(X), the space of all
finite measures on X.

The next group of three isomorphic spaces are:

B1 Mp
UB

(X) - the cone of all measures that are uniformly less than a multiple of
the measure p,

B2 L+
∞(X, p) - the cone of almost-everywhere positive functions in the normed

vector space L∞(X, p),

B3 L+,∗
1 (X, p) - the dual of the cone of almost-everywhere positive functions in the

normed vector space L1(X, p).

The functions that arise in the equivalence classes of functions constituting L+
∞(X, p)

and L+
1 (X, p) are contained in L+(X) the space of non-negative real-valued func-

tions on X.

The spaces defined in A1, A2 and A3 are dual to the spaces defined in B1, B2 and
B3 respectively. The situation may be depicted in the diagram

M�p(X)

��

∼ �� L+
1 (X, p)��

��

∼ �� L+,∗
∞ (X, p)��

��

Mp
UB

��

∼ �� L+
∞(X, p)�� ∼ ��

��

L+,∗
1 (X, p)

��

��

(1)

where the vertical arrows represent dualities and the horizontal arrows represent
isomorphisms. The proofs of the isomorphism go through the first column, but
once they are established, we can mainly work with the second column.

The traditional theory of labelled Markov processes (LMP) was formulated in terms
of the spaces M(X) and L+(X). The Markov kernels used in the definition of an
LMP are of the form τ(x,A): they are subprobability measures for each x and
positive bounded measurable functions for each A. The essential shift of viewpoint
that we propose in this paper is to work with the spaces in A2 and B2 instead: this
will be the key definition in the next section.

4. CONDITIONAL EXPECTATION FUNCTORIALLY

There is a very pleasant view of conditional expectation as a functor; this view sets
the stage for the approximation theory. The key ingredient is the duality between
the cones L+

1 and L+
∞ as captured by the pairing map �·, ·� : L+

∞×L+
1 −→ R+.

First, recall the categories Rad1 and Rad∞ defined in Def. 3.8 and the pairing
function defined in Def. 3.5. We have the isomorphism between L+

∞(X, p) and
L+,∗
1 (X, p) mediated by the pairing function:

f ∈ L+
∞(X, p) �→ λg : L+

1 (X, p).�f, g� =
�

fgdp.
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Approximating Markov processes by averaging. · 15

Now, precomposition with α inRad∞ gives a map P1(α) from L+
1 (Y, q) to L

+
1 (X, p).

To see this consider α ∈ Rad∞ and g ∈ L+
1 (Y, q). Now

�
P1(α)(g) dp = � d

dq ·Mα(p), g�
Y

which shows that P1(α)(g) is in L+
1 (X, p). Dually, given α ∈ Rad1 : (X, p) −→ (Y, q)

and g ∈ L+
∞(Y, q) we have

�
P∞(α)(g) dp = �g, d

dq ·Mα(p)�
Y

which implies that P∞(α)(g) ∈ L+
∞(X, p). Thus the subscripts on the two precom-

position functors describe the target categories. Using the ∗-functor we get a map
(P1(α))∗ from L+,∗

1 (X, p) to L+,∗
1 (Y, q) in the first case and dually we get (P∞(α))∗

from L+,∗
∞ (X, p) to L+,∗

∞ (Y, q).

We are now ready to define the expectation value map.

Definition 4.1. The functor E∞(·) is a functor from Rad∞ to ωCC which,
on objects, maps (X, p) to L+

∞(X, p) and on maps is given as follows. Given
α : (X, p) −→ (Y, q) in Rad∞ the action of the functor is to produce the map
E∞(α) : L+

∞(X, p) −→ L+
∞(Y, q) obtained by composing (P1(α))∗ with the isomor-

phisms between L+,∗
1 and L+

∞ as shown in the diagram below

L+,∗
1 (X, p)

(P1(α))
∗

��

L+
∞(X, p)��

E∞(α)

��
L+,∗
1 (Y, q) �� L+

∞(Y, q)

(2)

It is an immediate consequence of the definitions that

Proposition 4.2. for any f ∈ L+
∞(X, p) and g ∈ L+

1 (Y, q)

�E∞(α)(f), g�Y = �f, P1(α)(g)�X .

One can informally view this functor as a “left adjoint” in view of this proposition.
Note that since we started with α in Rad∞ we get the expectation value as a map
between the L+

∞ cones.

We calculate E∞(α)(1X) to illustrate the definition. We start with 1X ∈ L+
∞(X, p).

Under the ∗ isomorphism it maps to λg : L+
1 (X, p).

�
gdp, which is an element of

L+,∗
1 (X, p). Then under the action of P1(α)∗it maps to λh : L+

1 (Y, q).
�
(h ◦ α) dp

which is in L+,∗
1 (Y, q). Note that because α satisfies Mα(p) ≤ Kq for some K, it

follows that h ◦ α is in L+
1 (X, p). Finally taking the iso back we get dMα(p)

dq as the

value of E∞(α)(1X), which is in L+
∞(Y, q).

It is a well-known elementary fact that
�
X g ◦ α dp =

�
Y g dq if and only if α

is measure preserving. It follows then that E∞(α)(1X) = 1Y if and only if α is
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measure preserving. The general statement is

∀f ∈ L+
∞(X, p).E∞(α)(f) =

d

dq
·Mα(f · p).

In exactly the same way we can define a functor from Rad1 to ωCC.

Definition 4.3. The functor E1(·) is a functor from Rad1 to ωCC which
maps the object (X, p) to L+

1 (X, p) and on maps is given as follows: Given α : (X, p)
−→ (Y, q) in Rad1 the action of the functor is to produce the map E1(α) : L

+
1 (X, p)

−→ L+
1 (Y, q) obtained by composing (P∞(α))∗ with the isomorphisms between L+,∗

∞
and L+

1 as shown in the diagram below

L+,∗
∞ (X, p)

(P∞(α))∗

��

L+
1 (X, p)��

E1(α)

��
L+,∗
∞ (Y, q) �� L+

1 (Y, q)

(3)

Once again we have an “adjointness” statement; this time it is a right adjoint.

Proposition 4.4. Given f ∈ L+
∞(Y, q) and g ∈ L+

1 (X, p) we have

�f,E1(α)(g)�Y = �P∞(α)(f), g�X .

The relationship between these two expectation value functors and the correspond-
ing precomposition functors is given by the following proposition.

Proposition 4.5. Given α ∈ Rad∞[(X, p), (Y, q)] we have

(a) E1(α)(f ◦ α) = E∞(α)(1X)f, for f ∈ L+
1 (Y, q) and

(b) E∞(α)(f ◦ α) = E1(α)(1X)f, for f ∈ L+
∞(Y, q).

Proof. We prove the first, the second is virtually identical, one just has to
dualize every step; in fact they are the same up to adjunction.

In view of the duality, it suffices to show that for any g ∈ L+
∞(Y, q) we have

�g,E1(α)(f ◦ α)� = �g,E∞(α)(1X)f�.

We calculate as follows:

�g,E1(α)(f ◦ α)� = �g ◦ α, f ◦ α� right-adjointness of E1()
= �1X(g ◦ α), f ◦ α� obvious
= �1X , (g ◦ α)(f ◦ α)� Lemma 3.6
= �1X , (gf) ◦ α� pointwise multiplication
= �E∞(α)(1X), gf� left-adjointness of E∞()
= �g,E∞(α)(1X)f� Lemma 3.6 twice.
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One last detail that needs to be tied up is the calculation of the norm of some
operators. We start with an almost immediate observation; we write �·� for the
operator norm.

Lemma 4.6. Given any linear F : L+
∞(X) −→ L+

∞(Y ), �F� = �F (1X)�∞.

Proof. If f ∈ L+
∞(X) we have f ≤ �f�∞ 1X , where ≤ is the cone order. In

particular, if �f�∞ = 1 we have f ≤ 1X . For such an f and for monotone F , we have
F (f) ≤ F (1X), so by monotonicity of the norm we have �F (f)�∞ ≤ �F (1X)�∞.
Hence by definition of the operator norm �F� = �F (1X)�∞.

We have two immediate consequences.

Lemma 4.7. Suppose we have a map α : (X, p) −→ (Y, q) in Rad∞. Then:

(1 ) E∞(α) : L+
∞(X) −→ L+

∞(Y ) has norm �E∞(α)(1X)�∞.

(2 ) The map P∞(α) : L+
∞(Y, q) −→ L+

∞(X, p) has norm 1.

We have already seen that there is a dagger functor introduced in Proposition 3.7.
This adjoint is a contravariant functor which is defined on the subcategories that
arise as L+

1 and L+
∞.

5. LABELLED ABSTRACT MARKOV PROCESSES

5.1 Markov processes as function transformers

It is a pleasing fact that Markov kernels can be viewed as linear maps on function
spaces. This idea was first elaborated by [Yosida and Kakutani 1941] and underlies
much of the present work.

Given τ a Markov kernel from (X,Σ) to (Y,Λ), we define Tτ : L+(Y ) −→ L+(X),
for f ∈ L+(Y ), x ∈ X, as Tτ (f)(x) =

�
Y f(z)τ(x, dz). This map is well-defined,

linear and ω-continuous. If we write 1B for the indicator function of the measurable
set B we have that Tτ (1B)(x) = τ(x,B) and hence is measurable for every B ∈ Λ.
Thus Tτ (f) is measurable for any measurable f by the usual argument starting
from simple functions and using first linearity and then the monotone convergence
theorem.

Conversely, any ω-continuous morphism L with L(1Y ) ≤ 1X can be cast as a
Markov kernel by reversing the process above. The interpretation of L is that
L(1B) is a measurable function on X such that L(1B)(x) is the probability of
jumping from x to B. Thus L does encode a transition probability.

We can also define an operator on M(X) by using τ the other way. We define
T̄τ : M(X) −→ M(Y ), for µ ∈ M(X) and B ∈ Λ, as T̄τ (µ)(B) =

�
X τ(x,B) dµ(x).

It is easy to show that this map is linear and ω-continuous.

The two operators Tτ and T̄τ have interesting interpretations. The operator T̄τ

transforms measures “forwards in time”; if µ is a measure on X representing the
current state of the system, T̄τ (µ) is the resulting measure on Y after a transition
through τ .
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On the other hand, the operator Tτ may be interpreted as a transformer of ran-
dom variables that propagates information “backwards”, just as we expect from
predicate transformers. This inversion can be seen from the reversal of X and Y
in the definition of the operator. Note that Tτ (f)(x) is just the expected value
of f after one τ -step given that one is at x. Thus, we have an expectation-value
transformer.

5.2 Abstract Markov processes

If our measurable spaces X and Y are endowed with measures p and q, respectively,
which we shall assume finite, it is tempting to consider positive operators on L+

1

and L+
∞ instead of on L+: we call these abstract Markov processes because they

operate on equivalence classes of functions rather than on the concrete functions,
but, in view of the isomorphisms discussed in Section 2, they can also be regarded
as operating on spaces of measures.

This view was first explored by [Hopf 1954]. We will slightly modify the classical
definitions in order to work with cones; the interested reader may consult standard
sources [Schaefer 1974; Arendt et al. 1986; Hawke 2006] for the usual framework in
Banach spaces or Banach lattices.

Definition 5.1. A Markov operator from a state space (X,Σ, µ) to a state
space (Y,Λ, ν) is a linear map T : L+

1 (X) −→ L+
1 (Y ) such that �T� ≤ 1.

Note that the operator norms of both Tτ and T̄τ are less than one. Here T̄τ : M(X)
−→ M(Y ) and Tτ : L+(Y ) −→ L+(X) and the operator norms are computed using
the norms on the cones M(X),M(Y ),L+(X) and L+(Y ).

This is the analog of the measure transforming operator T̄τ above, as the elements of
L+
1 (X) correspond to measures which are absolutely continuous with respect to our

given measure µ (and similarly for L+
1 (Y )). In this case the map is automatically

order-continuous.

Proposition 5.2. If F : L+
1 (X,µ) −→ L+

1 (Y, ν) is linear and has finite operator
norm, i.e. it is a continuous linear map, then F is ω-continuous.

Proof. Suppose that we have an increasing sequence {fi} with a pointwise lub
f , then by the monotone convergence theorem we have that

�
fi dµ converges to�

f dµ. Since F is monotone, F (fi) is increasing and is bounded by F (f). Since
F has finite operator norm we have �F (f)− F (fi)�1 ≤ �F� �f − fi�1 and by the
monotone convergence theorem we have limi−→∞ �f − fi�1 = 0. Now note that
F (fi) ≤ F (f) since F is linear, hence monotone. Also, from the definition of �F�,
we have �F (fi)�1 ≤ �F� · �fi�1 so the sequence �F (fi)�1 is bounded and, since
the cone is complete, has a least uper bound. Thus from Lemma 2.12 we have
F (f) =

�
i F (fi).

From the “backwards transformation” point of view the operator we work with is
the equivalent of Tτ . We have the following definition:
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Definition 5.3. An abstract Markov kernel from (X,Σ, p) to (Y,Λ, q) is an
ω-continuous linear map τ : L+

∞(Y ) −→ L+
∞(X) with �τ� ≤ 1.

Definition 5.4. A labelled abstract Markov process on a probability space
(X,Σ, p) with a set of labels (or actions) A is a family of abstract Markov kernels
τa : L+

∞(X, p) −→ L+
∞(X, p) indexed by elements a of A.

Requiring that �τ� be less than 1 is equivalent to requiring that τ1X ≤ 1X . Hence,
an abstract Markov kernel is an arrow in the category ωCC. Note the inversion of
Y and X in the definition.

In this definition, we require that τ be ω-continuous in addition to being linear.
Unlike the L+

1 case, linearity does not guarantee ω-continuity; [Selinger 2004] gives
a counter example. It is worth understanding the counter-example because it sheds
light on why we have a perfect duality in our setting. We work with the space
L+
∞(N,#), where N is the natural numbers and # represents the counting measure.

We write l+∞ for this space: it consists of bounded sequences of real numbers. We
write s for such a sequence and s[i] for the ith element of the sequence. Let U
be a non-principal ultrafilter on N. We define a function limU : l+∞ −→ R+ as
follows:

lim
U
(s) = sup {x | {i | s[i] ≥ x} ∈ U}.

It is not obvious but one can show that limU is linear. Consider the increasing chain
of sequences sn = [1, 1, . . . , 1, 0, 0, . . .] where the first n entries of sn are 1s. Since
U is a non-principal ultrafiler we have limU sn = 0 for all n. However, the limit is
the constant sequence of 1s and the limU of this is 1. Thus this functional is not
continuous. It was important to have a non-principal ultrafilter for this example
to work. Note that this example shows that just taking bounded linear maps to
construct dual spaces will not give us the perfect duality that we have. The ω-
continuity controls the dual more stringently than the usual norm continuity and
gives us duality.

The following corollary, though not needed for any of the results, gives the relation
between Markov operators and abstract Markov kernels.

Corollary 5.5. Given finite measure spaces (X,Σ, µ) and (X,Λ, ν), there is a
bijection between Markov operators from X to Y and abstract Markov kernels from
X to Y . The bijection is given by the adjoint operation.

Remark 5.6. One can find a similar bilinear form which demonstrates that the
operators T̄τ and Tτ are adjoints.

We can relate Markov operators to a special type of Markov kernel. If X and
Y are endowed with measures µ and ν, respectively, a Markov kernel from X
to Y is nonsingular if, for all measurable sets B ⊆ Y such that ν(B) = 0, we
have τ(x,B) = 0, µ-almost everywhere. The following result is essentially due to
[Hopf 1954], one has to make very minor modifications to adapt it to the cone
situation:

Proposition 5.7. Every Markov operator from (X,Σ, µ) to (Y,Λ, ν) corresponds
uniquely to a nonsingular Markov kernel from X to Y .

Journal of the ACM, Vol. 1, No. 1, May 2010.



20 · Philippe Chaput et al.

As an immediate corollary, one obtains a one-to-one correspondence between non-
singular Markov kernels and abstract Markov kernels from X to Y . Informally,
one obtains a Markov kernel τ̂ from an abstract Markov kernel τ from X to Y as
follows: given a measurable set B in Λ, we let τ (1B) (x) = τ̂(x,B); this is precisely
the interpretation we had for the operator Tτ .

The above proposition is not completely trivial because the functions τ (1B) (x) are
only defined µ-almost everywhere. The proof of this proposition will be omitted;
however, we give an intuitive justification of why it holds. If τ̂ is a nonsingular
Markov kernel fromX to Y , we require that ν(B) = 0 ⇒ τ̂(x,B) =µ 0. Interpreting
τ̂ as an abstract Markov kernel, we thus require that τ (1B) =µ 0 if ν(B) = 0, or
if 1B =ν 0. This is a necessary condition for τ to be linear; the proposition above
shows that it is sufficient.

6. THE APPROXIMATION MAP ON LAMPS

The expectation value functors essentially project a probability space onto another
one with a possibly coarser σ-algebra. This is what we use to define the notion of
approximation. Given an AMP on (X, p) and a map α : (X, p) −→ (Y, q) in Rad∞,
we have the following approximation scheme:

L+
∞(X, p)

τa �� L+
∞(X, p)

E∞(α)

��
L+
∞(Y, q)

α(τa) ��

P∞(α)

��

L+
∞(Y, q)

(4)

Here we write τa for all the Markov kernels associated with the AMP. Thus any a
that appears is intended to be universally quantified. It follows from Prop. 4.5 that
if α is measure preserving then α(Id) = Id where Id is the identity on L+

∞. There
is no reason why α should be a functor though. Note that �α(τa)� ≤ �P∞(α)� ·
�τa� · �Eα� = �τa� · �E∞(α)(1X)�∞. Thus, if α is measure preserving we get
�α(τa)� ≤ �τa�.

A special case of this is when we have (X,Σ) and (X,Λ), i.e. the two spaces have the
same underlying point set but are equipped with different σ-algebras and Λ ⊂ Σ,
now the identity function id from (X,Σ) to (X,Λ) is measurable and we can define
an approximation by moving to a coarser σ-algebra. In our set up we are approxi-
mating along any measurable function rather than just identity maps between the
same spaces but with different σ-algebras.

In the same situation as in the previous paragraph, the map E1(id) : L
+
1 (X,Σ, p) −→

L+
1 (X,Λ, p) is the exactly function that is traditionally written E(·|Λ) [Billingsley

1995]. The functoriality of the expectation value is what is called the “tower law
of conditional expectation” in probability theory [Williams 1991].

The notion of approximation immediately applies to LAMPs. Given probability
spaces (X, p) and (Y, q) and a Rad∞ map α from (X, p) to (Y, q) we can project
each τa of a LAMP on (X, p) to one on (Y, q) as described just above. Since an
AMP has a norm less than 1, we can only be sure that α yields an approximation
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for every AMP on X if �E∞(α)(1X)�∞ ≤ 1. We call the AMP α(τa) the projection
of τa on Y .

7. BISIMULATION

The notion of probabilistic bisimulation was introduced by [Larsen and Skou 1991]
for discrete spaces and by [Blute et al. 1997] (see also [Desharnais et al. 2002])
for continuous spaces. Subsequently a dual notion called event bisimulation or
probabilistic co-congruence was defined independently by [Danos et al. 2006] and
by [Bartels et al. 2004]. For a more detailed discussion of the history see Section 12.
The idea of event bisimulation was that one should focus on the measurable sets
rather than on the points. This meshes exactly with the view here.

7.1 The category AMP

We have developed the functorial theory of conditional expectation in a fairly gen-
eral setting with mild conditions on the maps: for example, in Rad∞, the image
measure is bounded by a multiple of the measure in the target space. From now
on, we consider a category where the objects are LAMPs that will be relevant to
the approximation theory. We will work with probability spaces equippaed with
abstract Markov processes. The maps will be measure-preserving maps. These
maps are essentially surjective but there is no real reason not to restrict to maps
that are not surjective in the usual sense.

Definition 7.1. We define the category AMP as follows. The objects consist
of probability spaces (X,Σ, p), along with an abstract Markov process τa on X. The
arrows α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) are surjective measurable measure-preserving
maps from X to Y such that α(τa) = ρa.

In words, this means that the Markov processes defined on the codomain are pre-
cisely the projection of the Markov processes τa on the domain through α. When
working in this category, we will often denote objects by the state space, when the
context is clear.

7.2 Event bisimulation and Zigzags

We begin with the definition of event bisimulation which comes from [Danos et al.
2006] where it was developed for LMPs.

Definition 7.2. Given a LMP (X,Σ, τa), an event-bisimulation is a sub-σ-
algebra Λ of Σ such that (X,Λ, τa) is still an LMP [Danos et al. 2006].

More explicitly, the condition that needs to hold for Λ to be an event bisimulation
is that τ(x,A) is Λ-measurable for a fixed A ∈ Λ. This is the case if and only if
τa : L+

∞(X,Σ, p) −→ L+
∞(X,Σ, p) sends the subspace L+

∞(X,Λ, p) to itself, where we
are now viewing τa as a map on the function space. In other words, the following
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diagram commutes:

L+
∞(X,Σ, p)

τa �� L+
∞(X,Σ, p)

L+
∞(X,Λ, p)
��

��

τa �� L+
∞(X,Λ, p)
��

��
(5)

This is the notion we need for LAMPS.

We can generalize the notion of event bisimulation by using maps other than the
identity map on the underlying sets. This would be a map α from (X,Σ, p) to
(Y,Λ, q), equipped with LMPs τa and ρa respectively, such that the following com-
mutes:

L+
∞(X,Σ, p)

τa �� L+
∞(X,Σ, p)

L+
∞(Y,Λ, q)

P∞(α)

��

ρa �� L+
∞(Y,Λ, q)

P∞(α)

��
(6)

This corresponds to a morphism of coalgebras in the concrete case. Note that if,
in Diagram 6, we consider the special case where α is the identity map (X,Σ)
−→ (X,Λ), we get Diagram 5.

We will refrain from calling these maps bisimulation maps yet; we will call such
maps zigzags; they are essentially the same as zigzags for labelled Markov pro-
cesses [Desharnais et al. 2002].

Definition 7.3. A zigzag from an abstract Markov process (X,Σ, p, τa) to an-
other abstract Markov process (Y,Λ, q, ρa) is a measurable, measure-preserving sur-
jective function from X to Y such that Diagram 6 commutes.

Note that if there is a zigzag α from X to Y , then the LAMP on Y is very closely
related to the projection of τa onto Y via α, i.e. to α(τa) = E∞(α) ◦ τa ◦ P∞(α).
We have the following commuting diagram:

L+
∞(Y )

ρa ��

P∞(α)

��

L+
∞(Y )

E1(α)(1X)·(−)

��

P∞(α)

��
L+
∞(X)

τa �� L+
∞(X)

E∞(α) ��
L+
∞(Y )

α(τa) ��
P∞(α)

��

L+
∞(Y )

(7)

We have that E∞(α)(f ◦ α) = E1(α)(1X)f from the second equation of Prop. 4.5.
This implies that α(τa) = ρa ·E1(α)(1X). In particular, if E1(α)(1X) = 1Y – which
happens if and only if Mα(p) = q – then ρa is equal to α(τa), the projection of τ
onto Y . Note that the condition Mα(p) = q means by definition that the image
measure is precisely the measure in the codomain of α. In short if we “approxi-
mate” along a measure-preserving zigzag then the approximation is the same as the
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exact result. This means that approximations and bisimulations live in the same
universe and bisimulations appear as special approximations, or, put another way,
the approximations are really approximate bisimulations. This explains why we
restricted to the measure-preserving case in this section.

We record the fact that zigzags are arrows in AMP as a Lemma.

Lemma 7.4. If α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) is a zig-zag then α(τa) = ρa,
which is to say that α is a morphism of AMP.

Proof. From the Diagram 7 we have that

α(τa) = ρa · E∞(α)(1X).

Since α is measure preserving we have E∞(α)(1X) = 1Y so we get α(τa) = ρa.

7.3 Bisimulation Defined on AMP

It should be noticed that surjective measure-preserving maps between probability
spaces typically involve information loss. This information loss is encoded in the
requirement that the maps be measurable: one only asks for the preimages of
the measurable sets to be measurable. To recall the situation that we discussed
earlier; consider the identity map on a set X equipped with two σ-algebras Λ ⊂ Σ.
This map id induces the conditional expectation operator E(·|Λ) : L+

1 (X,Σ, p)
−→ L+

1 (X,Λ, p) or E1(id) which effectively “pixelizes” the functions in the sense
that Σ-measurable functions become only Λ-measurable.

The existence of a zigzag is a very strong condition, too strong for a reasonable
theory; bisimulation as originally defined is a relation. The relational aspect is
captured by using cospans5.

Definition 7.5. We say that two objects of AMP, (X,Σ, p, τ) and (Y,Λ, q, ρ),
are bisimilar if there is a third object (Z,Γ, r, π) with a pair of zigzags

α : (X,Σ, p, τ) −→ (Z,Γ, r, π)
β : (Y,Λ, q, ρ) −→ (Z,Γ, r, π)

giving a cospan diagram

(X,Σ, p, τ)

α

��

(Y,Λ, q, ρ)

β��
(Z,Γ, r, π)

(8)

Note that the identity function on an AMP is a zigzag, and thus that any zigzag
between two AMPs X and Y implies that they are bisimilar.

5When bisimulation was developed for LMPs [Desharnais et al. 2002], the authors used spans

rather than co-spans. Later [Danos et al. 2006] it was realized that the theory is smoother with
co-spans. The two notions turn out to be equivalent on analytic spaces but are not the same if the
underlying σ-algebra does not arise as the Borel algebra of an analytic space. See the historical
review for more discussion of this.
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8. BISIMULATION IS AN EQUIVALENCE

This section is devoted to establishing that bisimulation is an equivalence relation.
The crucial step is Theorem 8.1 which shows that one can paste together cospans
of zigzags in order to show transitivity.

Theorem 8.1. The category AMP has pushouts. Furthermore, if the mor-
phisms in the span are zigzags then the morphisms in the pushout diagram are also
zigzags. More explicitly, let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) and β : (X,Σ, p, τa)
−→ (Z,Γ, r, κa) be a span in AMP. Then there is an object (W,Ω, µ, πa) of AMP
and AMP maps δ : Y −→ W and γ : Z −→ W such that the diagram

(X,Σ, p, τa)

α
�� β ��

(Y,Λ, q, ρa)

δ ��

(Z,Γ, r, κa)

γ
��

(W,Ω, µ, πa)

(9)

commutes. If (U,Ξ, ν, λa) is another AMP object and φ : Y −→ U and ψ : Z −→ U
are AMP maps such that α, β, φ and ψ form a commuting square, then there is a
unique AMP map θ : W −→ U such that the diagram

(X,Σ, p, τa)

α
�� β ��

(Y,Λ, q, ρa)

δ ��

φ

��

(Z,Γ, r, κa)

γ
��

ψ

��

(W,Ω, µ, πa)

θ

��
(U,Ξ, ν, λa)

(10)

commutes. Furthermore, if α and β are zigzags, then so are γ and δ.

We will present the proof in stages. First we observe that pushouts can be con-
structed in the category Set. This can then be lifted to the category Mes, then we
show that this construction can be lifted to Rad= and finally to AMP. In fact,
the pushout object in each case will be built on the previous one and the maps will
be the same. Thus the couniversality property that we need for AMP follows from
that of Set, once we show that the mediating morphism constructed in Set has the
right properties to qualify as an AMP morphism.

Proof. It is straightforward to show [Desharnais et al. 2002; Danos et al. 2006;
Panangaden 2009] that pushouts exist in the category of measurable spaces: it is the
usual pushout in Set, equipped with the largest σ-algebra making the pushout maps
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measurable. We thus have the following pushout diagram in Mes, the category of
measurable spaces:

(X,Σ)

α

��
η

��

β

��
(Y,Λ)

δ ��

(Z,Γ)

γ
��

(W,Ω)

(11)

Note here that, of course, η = δ ◦ α = γ ◦ β. Couniversality is captured by the
following diagram:

(X,Σ)

α

��

β

��
(Y,Λ)

δ

��

φ

��

(Z,Γ)
γ

��

ψ

��

(W,Ω)

θ

��
(U,Ξ)

(12)

where θ, the mediating morphism, is unique. It is also constructed exactly as in Set;
it can be readily verified that when the other maps in the diagram are measurable
it is also measurable.

We have to construct a measure on W such that the maps δ and γ are measure
preserving, we already know that they are surjective by the construction of the
pushout in Set. Let us define on (W,Ω) the measure µ in the obvious way: for
B ∈ Ω, µ(B) = p(η−1(B)). Note that by the definition of η and the fact that α
and β are measure-preserving, we have6 µ(B) = p(η−1(B)) = p(α−1(δ−1(B))) =
q(δ−1(B)) = p(β−1(γ−1(B)) = r(γ−1(B)) and so we automatically have that γ
and δ are measure-preserving. In short we have shown that we have a commuting
square in the category Rad=. To show the couniversality property we consider the

6We have used the explicit definition of the image measure here, i.e. we write, for example,
p(η−1(B) instead of Mη(p)(B) in order to make the calculations clearer.
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diagram

(X,Σ, p)

α

��

β

��
(Y,Λ, q)

δ

��

φ

��

(Z,Γ, r)
γ

��

ψ

��

(W,Ω, µ)

θ

��
(U,Ξ, ν)

(13)

where now all the maps, except θ, are assumed to be measure preserving. We need
to show that θ is also measure preserving. Let A ∈ Ξ be a measurable subset of U ,
we need to show ν(A) = µ(θ−1(A)). We calculate as follows

ν(A) = q(φ−1(A)) = q(δ−1(θ−1(A))) = µ(θ−1(A))

where the first equality holds because φ is measure preserving, the second from
φ = θ ◦ δ and the last because δ is measure preserving.

Finally, we have to construct kernels πa on (W,Ω, µ) in such a way that δ and γ
are AMP morphisms. We take πa = η(τa). Thus, for all f in L+

∞(W ), we have
πa(f) = E∞(η)(τa(f ◦ η)). Note that as E∞(−) is a functor and α is an arrow
in AMP, we have πa(f) = E∞(δ)(E∞(α)(τa((f ◦ δ) ◦ α))) = E∞(δ)(ρa(f ◦ δ)) =
δ(ρa)(f), and thus δ is an arrow in AMP as well. The same argument works for
γ. Thus we have a commuting square in AMP.

To show that θ is an AMP morphism we calculate similarly. Let h ∈ L+
∞(U,Ω, ν),

then

λa(h) = φ(ρa)(h)
= E∞(φ)(ρa(h ◦ φ))
= E∞(θ)(E∞(δ)(ρa((h ◦ θ) ◦ δ)))
= E∞(θ)(πa(h ◦ θ)) = θ(πa)(h).

This completes the proof that we have pushouts in AMP.

We now need to show that if the morphisms α and β are zigzags then so are δ and
γ. This requires some preliminary lemmas.

Lemma 8.2. Let X be a set and (Y,Λ) be a measurable space. let α : X −→ Y
be a surjective function and let Λ� = α−1(Λ) be the induced σ-algebra on X. Then
for all h : X −→ R, h is Λ�-measurable if and only if h factors as h� ◦ α for some
measurable h� : Y −→ R.

Proof. The right to left direction is immediate since the definition of Λ� clearly
makes α measurable and h� is assumed measurable. For the reverse direction we
start with the claim that if α(x) = α(x�) for any x and x� in X then h(x) = h(x�).

Journal of the ACM, Vol. 1, No. 1, May 2010.



Approximating Markov processes by averaging. · 27

Consider the set B = {h(x)}, which is Borel-measurable. Since h is assumed
measurable we have that A = h−1(B) is Λ�-measurable. By the definition of Λ�,
there is some C in Λ with A = α−1(C). Now x ∈ A so α(x) ∈ C, but since
α(x) = α(x�) we have that x� ∈ A so h(x�) ∈ B, i.e. h(x) = h(x�). This means that
h is constant on subsets of X of the form α−1({y}). Thus we can define h� : Y
−→ R by h�(y) = h(x) for any x in α−1(y). This map clearly satisfies h = h� ◦ α.
We need to show that h� is measurable. Let B be some Borel subset of R and
let A = h�−1(B). Then α−1(A) = h−1(B) is in Λ� since h is Λ�-measurable, so
α−1(A) = α−1(C) for some C ∈ Λ, but since α is surjective we have that A = C so
h�−1(B) = C is in Λ, hence h� is measurable.

Note that h and h� have the same image, and α is measure-preserving so if h ∈
L+
∞(X) then h� ∈ L+

∞(Y ), in fact the essential sups coincide so we even have
�h�∞ = �h��∞.

Lemma 8.3. Let α : (X,Σ, p) −→ (Y,Λ, q) be a measure-preserving map of prob-
ability spaces. Then for all h ∈ L+

∞(X), E∞(α)(h) ◦ α = h ⇔ h is α−1(Λ)-
measurable.

Proof. We know that precomposition and conditional expectation functors com-
pose to the identity if we have a measure preserving map, i.e. E∞(α) ◦P∞(α) = id
if α is measure preserving. This follows from the remark just after Diagram 7 which
in turn follows from Proposition 4.5. So the statement of the lemma is equivalent
to saying that h is in the image of P∞(α) iff it is α−1(Λ) measurable, but this is
just what Lemma 8.2 says.

Lemma 8.4. Let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be an arrow in AMP. Then α
is a zigzag if and only if P∞(α)◦E∞(α) = id, i.e. if and only if for all f ∈ L+

∞(Y ),
Eα(τa(f ◦ α)) ◦ α = τa(f ◦ α).

Proof. If α is a zigzag, the following diagram commutes:

L+
∞(X)

τa �� L+
∞(X)

E∞(α)

��
L+
∞(Y )

ρa ��

P∞(α)

��

P∞(α)

��

L+
∞(Y )

P∞(α)

��
L+
∞(X)

τa �� L+
∞(X)

(14)

and the diagram shows the “only if part”. The reverse direction is trivial, as
E∞(α)(τa(f ◦α)) = ρa(f) since α is an arrow in AMP. Thus ρa(f) ◦α = τa(f ◦α)
and α is a zigzag.

Corollary 8.5. α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) in AMP is a zigzag if and
only if for all f ∈ L+

∞(Y ), τ(f ◦ α) is α−1(Λ)-measurable.

Lemma 8.6. If α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) in AMP is a zigzag, β : (Y,Λ, q, ρa)
−→ (Z,Γ, r, κa) is a map in AMP, and γ = β ◦ α is a zigzag, then β is a zigzag.
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Proof.

κa(f) ◦ β ◦ α = κa(f) ◦ γ
= τa(f ◦ γ) γ is a zigzag
= τa(f ◦ β ◦ α)
= ρa(f ◦ β) ◦ α α is a zigzag

Now α is surjective, hence epi, which means right-cancellable, and thus κa(f)◦β =
ρa(f ◦ β) and β is a zigzag.

We are now ready to complete the proof of Theorem 8.1 by showing that δ and γ
are zigzags. Let f be in L+

∞(W ), then we have

τa(f ◦ η) = τa(f ◦ δ ◦ α) = ρa(f ◦ δ) ◦ α as α is a zigzag
= τa(f ◦ γ ◦ β) = κa(f ◦ γ) ◦ β as β is a zigzag.

Let ρa(f ◦ δ) = g and κa(f ◦ γ) = h. We have the following diagram in Mes:

(X,Σ)

α

��
η

��

β

��
(Y,Λ)

δ

��
g

��

(Z,Γ)
γ

��

h

��

(W,Ω)

j

��
R

(15)

As this is a pushout diagram, there is a unique measurable map j : W −→ R such
that g = j ◦ δ and h = j ◦ γ. Thus τa(f ◦ η) = g ◦ α = j ◦ δ ◦ α = j ◦ η. Thus
τa(f ◦ η) is η−1(Ω) measurable and, from Corollary 8.5 we have that η is a zigzag.
Now from Lemma 8.6 we conclude that δ and γ are zigzags.

The main point of Theorem 8.1 is to show the following corollary.

Corollary 8.7. Bisimulation is an equivalence relation on the objects of AMP.

Proof. Clearly bisimulation is reflexive and symmetric, so we only need to check
transitivity. We will label objects in AMP by just their state spaces to avoid
cluttering up the diagram. Suppose X and Y are bisimilar, and that Y and Z are
bisimilar. Then we have two cospans of zigzags, as in the following diagram:

X

α
��

Y

β�� δ ��

Z

γ
��

W

ζ ��

U

η
��

V

(16)
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The pushouts of the zigzags β and δ yield two more zigzags ζ and η (and the
pushout object V ). As the composition of two zigzags is a zigzag, X and Z are
bisimilar. Thus bisimulation is transitive.

It is worth noting that this proof did not require any assumptions about the na-
ture of the measure spaces. In [Desharnais et al. 2002], the proof of transitivity
requires the σ-algebras of the measure spaces to be the Borel algebra of an analytic
space. There are counter-examples showing that transitivity fails for the span def-
inition of bisimulation on non-analytic spaces. We discuss this in the related work
section.

Another point worth noting is that these pushouts exist in the category AMP,
thus we can compose not just bisimulations, which are cospans of zigzags, but any
cospans. In particular, this means that one can compose approximate bisimula-
tions.

9. MINIMAL REALIZATION

There is a very pleasing bisimulation-minimal realization theory for AMPs. Of
course the notion of “minimal” cannot be based on counting the number of states,
instead it is based on a suitable universal property. Given an AMP (X,Σ, p, τa), one
may ask whether there is a “smallest” object in AMP up to bisimulation.

The precise definition is as follows.

Definition 9.1. Given an AMP (X,Σ, p, τa), a bisimulation-minimal re-
alization of this abstract Markov process is an AMP (X̃,Γ, r, πa) and a zigzag in
AMP η : X −→ X̃ such that for every zigzag β from X to another AMP (Y,Λ, q, ρa),
there is a unique zigzag γ from (Y,Λ, q, ρa) to (X̃,Γ, r, πa) with η = γ ◦ β.

If we think of a zigzag as defining a quotient of the original space then X̃ is the
“most collapsed” version of X.

We now proceed to the proof that such an object exists for every AMP (X,Σ, p, τa).

Theorem 9.2. Given any AMP (X,Σ, p, τa) there exists another AMP (X̃,Γ, r, πa)
and a zigzag η in AMP, η : X −→ X̃ such that (X̃,Γ, r, πa) and η define a
bisimulation-minimal realization of (X,Σ, p, τa).

Proof. We first note that the intersection of event bisimulations on (X,Σ, p, τa)
(or any AMP) is again an event bisimulation so there is a well-defined least event
bisimulation Ω. We define an equivalence relation R on X by xRx� if for every
A ∈ Ω, x ∈ A ⇐⇒ x� ∈ A. We define the set X̃ as the quotient X/R. Let Q be
the canonical surjection Q : X −→ X̃. We equip X̃ with a σ-algebra Γ, defined to
be the finest (largest) σ-algebra making Q measurable; i.e. a subset C of X̃ is in Γ
if and only if Q−1(C) ∈ Ω. We define the measure r by ∀B ∈ Γ, r(B) = p(Q−1(B));
this makes Q a surjective, measurable, measure-preserving map.

We need to define πa in such a way as to make Q a zigzag. This requires that
∀h ∈ L+

∞(X̃), τa(h◦Q) = πa(h)◦Q. Now h◦Q is constant on R-equivalence classes,
by definition of Q; we claim that τa(h◦Q) is also constant on R-equivalence classes.
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Since Ω is an event-bisimulation we know that τa(h◦Q) is Ω-measurable. Let x ∈ X
and let τa(h ◦Q)(x) = u ∈ R. Then (τa(h ◦Q))−1(u) is in Ω, call this set A; clearly
x ∈ A. Suppose that xRx�, then by the definition of R, x� ∈ A so (τa(h◦Q))(x�) = u;
i.e. the claim is true. We can define ∀w ∈ X̃, πa(h)(w) = τa(h ◦ Q)(x) where x is
such that Q(x) = w, this is well defined since Q is surjective and by virtue of the
claim just proved. By construction, this establishes Q as a zigzag. The identity
map of the underlying sets id : (X,Σ, p, τa) −→ (X,Ω, p |Ω, τa) is a zigzag because
Ω is an event bisimulation.

Now we claim that η
def
= Q◦id and (X̃,Γ, r, πa) is a minimal realization of (X,Σ, p, τa).

Let β : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be a zigzag. We claim that if β(x1) = β(x2)
then Q(x1) = Q(x2) for any x1, x2 in X. Since β is a zigzag, we have that
β−1(Λ) is an event bisimulation and hence that Ω ⊆ β−1(Λ). Now suppose that
β(x1) = β(x2), then there cannot be a set in β−1(Λ) that separates x1 and x2.
Since Ω ⊆ β−1(Λ) there cannot be a set in Ω that separates them either, hence
x1Rx2 or Q(x1) = Q(x2). Now we can define γ(y) to be Q(x), where x is an
member of β−1({y}), this is well defined and surjective. Let A be a measur-
able set in Γ, γ−1(A) = β(Q−1(A)). Since Q is measurable, Q−1(A) ∈ Ω, hence
Q−1(A) ∈ β−1(Λ) from which it follows that β(Q−1(A)) is in Λ, thus γ is measur-
able. Also for A ∈ Γ we have

q(γ−1(A)) = q(β(Q−1(A))) = p(Q−1(A)) = r(A)

hence γ is measure preserving. The first equality is by definition of γ, the second
because β is a zigzag and the third because Q is a zigzag. Now from Lemma 8.6 it
follows that γ is a zigzag. Clearly it is the only map that one could have defined
to make the equation γ ◦ β = η hold.

The minimal realization is unique up to isomorphism; this is an immediate conse-
quence of the universal property.

Corollary 9.3. Up to isomorphism, (X̃,Γ, r, π) and η is the unique minimal
realization of (X,Σ, p, τa).

Another immediate corollary is that the minimal realization is terminal in an ap-
propriate category.

Corollary 9.4. The map η is the terminal object in the category where the
objects are zigzags β : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) from (X,Σ, p, τa) and a mor-
phism from β to β� : (X,Σ, p, τa) −→ (Y �,Λ�, q�, ρ�a) is a zigzag γ : (Y,Λ, q, ρa)
−→ (Y �,Λ�, q�, ρ�a) such that β� = γ ◦ β.

A slight restatement of these is the following corollary.

Corollary 9.5. If ζ : (X̃,Γ, r, πa) −→ (W,Ξ, r, λa) is a zigzag then it is an
isomorphism in AMP.

Proof. The composed map ζ◦η is a zigzag fromX toW . Hence by the universal
property of (X̃, η) there is a unique map γ : W −→ X̃ such that γ ◦ (ζ ◦ η) = η,
hence, since η is an epi, γ ◦ ζ = idX̃ . Now we also have ζ ◦ (γ ◦ ζ) = (ζ ◦ γ) ◦ ζ) = ζ
and since ζ is an epi, we have ζ ◦ γ = idW . Thus ζ is an isomorphism in AMP.
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The most important consequence of the minimal realization theory is the following
proposition that will be crucial in the approximation theory of Section 11.

Proposition 9.6. Two AMPs (X,Σ, p, τa) and (Y,Λ, q, ρa) are bisimilar if and
only if their minimal realizations (X̃,Γ, r, πa) and (Ỹ ,∆, s, θa) respectively are iso-
morphic.

Proof. If (X̃,Γ, r, πa) and (Ỹ ,∆, s, θa) are isomorphic we immediately have the
cospan

X

η
��

Y

β��
X̃

(17)

showing that X and Y are bisimilar. If X and Y are bisimilar we have the following
diagram

X

α
��

Y

β��
Z

(18)

where all the arrows are zigzags in AMP. Now consider the minimal realizations
of X and Y , namely η : X −→ (X̃,Γ, r, πa) and ξ : Y −→ (Ỹ ,∆, s, θa) respectively.
By the universality property for each one, we get zigzags γ : Z −→ X̃ and δ : Z
−→ Ỹ such that γ ◦ α = η and δ ◦ β = ξ as shown in the diagram below.

X

α
��

η

��

Y

β��
ξ

��

Z

γ
��

δ

��
X̃

��

Ỹ

��
W

(19)

The span formed by Z, X̃ and Ỹ has a pushout with, say W , at the vertex. By
Corollary 9.5 the maps from X̃ and Ỹ to W (to which we have not given explicit
names) are both isos and hence X̃ and Ỹ are isomorphic.

Here are two lemmas that are useful for the approximation theory of Section 11.
The relation between event bisimulations and zigzags can be made precise now
using a lemma proved in Section 8.

Lemma 9.7. Suppose α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) is a map in AMP such
that α−1(Λ) = Σ. Then α is a zigzag.
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Proof. This is a direct consequence of corollary 8.5. Given f in L+
∞(Y ), τ(f ◦α)

is in L+
∞(X) and thus is Σ-measurable. Hence it is α−1(Λ)-measurable, and so α

is a zizag.

Lemma 9.8. Let α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa) be a zigzag. Then α factors into
two maps as follows: iα : (X,Σ, p, τa) −→ (X,α−1(Λ), p, τa), which is the identity
on X, reducing the σ-algebra; and α̂ : (X,α−1(Λ), p, τa) −→ (Y,Λ, q, ρa) which is
the same as α above on the sets, but in which the σ-algebras are isomorphic.

Proof. α̂ is a zigzag by virtue of the previous lemma; iα is a zigzag by corollary
8.5.

10. LOGICAL CHARACTERIZATION OF BISIMULATION

One important consequence of the minimal realization theory is that one gets a
logical characterization theorem for bisimulation. [Danos et al. 2006] showed that
a simple modal logic gives a characterization of event bisimulation. This result can
be presented in the framework of the present paper. We omit the proofs as they
are all in [Danos et al. 2006]. As always we have some fixed set of actions A.

Definition 10.1. We define a logic L as follows, with a ∈ A:

L ::= T|φ ∧ ψ| �a�q ψ

Given a labelled AMP (X,Σ, p, τa), we associate to each formula φ a measurable
set �φ�, defined recursively as follows:

�T� = X
�φ ∧ ψ� = �φ� ∩ �ψ��
�a�q ψ

�
=

�
s : τa(1�ψ�)(s) > q

�

We let �L� denotes the measurable sets obtained by all formulas of L.

Theorem 10.2. (From [Danos et al. 2006]) Given a labelled AMP (X,Σ, p, τa),
the σ-field σ(�L�) generated by the logic L is the smallest event-bisimulation on
X. That is, the map i : (X,Σ, p, τa) −→ (X,σ(�L�), p, τa) is a zigzag; furthermore,
given any zigzag α : (X,Σ, p, τa) −→ (Y,Λ, q, ρa), we have that σ(�L�) ⊆ α−1(Λ).

Hence, the σ-field obtained on X by the smallest event bisimulation is precisely the
σ-field we obtain from the logic.

11. APPROXIMATIONS OF AMPS

In this section we develop a theory of approximating AMPs using “finite” systems.
In previous work [Desharnais et al. 2000; 2003] the idea was to collapse the state
space to a finite set of equivalence classes. One could view the approximation
construction as using an approximate version of bisimulation. Here we think of finite
approximations in terms of finite σ-algebras. We have defined a category, AMP
in which the maps defining bisimulation and the maps defining approximations
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are on the same footing: the viewpoint of the earlier papers pushed to its logical
conclusion.

11.1 Preliminary lemmas

Before we begin, we need some elementary preliminary lemmas. The first one is a
simple observation.

Lemma 11.1. Suppose α : (X,Σ) −→ (Y,Λ) is a surjective measurable map such
that α−1(Λ) = Σ. Then the forward image of every measurable set is measurable;
that is, if A ∈ Σ, α(A) := B is measurable, and α−1(B) = A.

Thus a surjective map which preserves the σ-algebras is an isomorphism of σ-
algebras.

The next lemma gives a pushout diagram which we will need later in relating
approximations and minimal realizations.

Lemma 11.2. Suppose α : (X,Σ) −→ (Y,Λ) is surjective and α−1(Λ) = Σ. Sup-
pose that Ω ⊆ Σ is a sub-σ-algebra of Σ. Then the following is a pushout square in
the category Mes:

(X,Σ)

α

��

iΩ

��
(Y,Λ)

jα(Λ) ��

(X,Ω)

α̂��
(Y, α(Ω))

(20)

where α(Ω) = {B ⊆ Y | α−1(B) ∈ Ω} is a σ-algebra, iΩ is the identity on X, jα(Λ)

is the identity on Y , and α̂ is the same as α on X.

Proof. For any α, α−1(Bc) = (α−1(B))c, so α(Ω) is closed under complements
since Ω is. It is also easy to see that α(Ω) is closed under countable intersections
so α(Ω) is a σ-algebra.

We know pushouts exist in Mes, so we need to show that this object satisfies the
pushout conditions. Clearly, Y is the pushout in Set, with the maps described.
In Mes, a pushout has the same underlying set as the corresponding pushout in
Set equipped with the largest σ-algebra making the maps measurable. By the
definition of α(Ω) and the fact that α is measurable it follows that α(Ω) ⊆ Λ hence
the map jα(Λ) is measurable and also that α̂ is measurable. Clearly if we added any
measurable sets to the σ-algebra α(Ω) the map α̂ would cease to be measurable
since we have already included every set whose inverse image is in Ω.

To show the (co)universality property of pushouts in Mes we consider the following

Journal of the ACM, Vol. 1, No. 1, May 2010.



34 · Philippe Chaput et al.

diagram

(X,Σ)

α

��

iΩ

��
(Y,Λ)

jα(Λ) ��

f

��

(X,Ω)

α̂��

g

��

(Y, α(Ω))

h

��
(W,Γ)

(21)

where the outer square commutes and the maps are all measurable. Clearly the
only choice for h that can make the diagram commute is for h = f as a set theoretic
map. Now let C ∈ Γ, we need to show that h−1(C) ∈ α(Ω) in order to show that h
is measurable. This follows from α̂−1(h−1(C)) = g−1(C) ∈ Ω. Thus in Mes there
is a unique measurable mediating morphism h.

11.2 Finite approximations

In this section we construct finite approximations of a LAMP by constructing first
finite σ-algebras and then finite spaces from them.

Let (X,Σ, p, τa) be a LAMP. Let P = 0 < q1 < q2 < . . . < qk < 1 be a finite par-
tition of the unit interval with each qi a rational number. We call these rational
partitions. We define a family of finite π-systems, subsets of Σ, as follows:

ΦP,0 = {X, ∅}
ΦP,n = π

��
τa(1A)−1(qi, 1] : qi ∈ P, A ∈ ΦP,n−1, a ∈ A

�
∪ ΦP,n−1

�

= π
���

�a�qi 1A

�
: qi ∈ P, A ∈ ΦP,n−1, a ∈ A

�
∪ ΦP,n−1

�

where π(Ω) means the π-system generated by the family of sets Ω.

For each pair (P,M) consisting of a rational partition and a natural number, we
define a σ-algebra ΛP,M on X as ΛP,M = σ (ΦP,M ), the σ-algebra generated by
ΦP,M . We call each pair (P,M) consisting of a rational partition and a natural
number an approximation pair.

The following result links the finite approximation with the formulas of the logic
used in the characterization of bisimulation.

Proposition 11.3. Given any labelled AMP (X,Σ, p, τa), the σ-algebra σ (
�
ΦP,M ),

where the union is taken over all approximation pairs, is precisely the σ-algebra
σ �L� obtained from the logic.

Proof. ΦP,M contains precisely the measurable sets associated with formulas of
length at most M , using rational numbers contained in P, and so

�
ΦP,M = �L�.

The conclusion is then clear.
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In order to describe the maps that arise it will be convenient to use the following
notation. When Λ ⊆ Σ are σ-algebras on a spaceX we have the measurable identity
map i : (X,Σ) −→ (X,Λ). If we have a LAMP τa on the space (X,Σ, p) we can
define a LAMP on the space (X,Λ, p) as described in Diagram 4. We will write
Λ(τa) rather than i(τa) since there will be many identity maps inducing LAMPs
and it will not be helpful to label all the induced LAMPs with an i.

Consider the σ-algebra ΛP,M . We have the map

iΛP,M : (X,Σ, p, τa) −→ (X,ΛP,M , p,ΛP,M (τa))

which is obtained from Diagram 4. Now since ΛP,M is finite, it is atomic, and
so it partitions the state space X, yielding an equivalence relation. Quotient-
ing by this equivalence relation gives a map πP,M : (X,ΛP,M , p,ΛP,M (τa)) −→
(X̂P,M ,Ω, q, ρa), where X̂P,M is the (finite!) set of atoms of ΛP,M and Ω is just the

powerset of X̂P,M . The measure q and AMPs ρa are defined in the obvious way,
that is, q is the image measure through πP,M and ρa = πP,M (ΛP,M (τa)). Note

that πP,M is a zigzag as π −1
P,M (Ω) = ΛP,M .

We thus have an approximation map φP,M = πP,M ◦ iΛP,M from our original state
space to a finite state space; furthermore it is clear that this map is an arrow in
AMP. When we collapse the space X to one of the quotient spaces, say X̂P,M the
map φP,M induces a projected version of the LAMP τa which we denote as usual
as φP,M (τa).

11.3 A Projective System of Finite Approximations

We define an ordering on the approximation pairs by (P,M) ≤ (Q, N) if Q refines
P and M ≤ N . This order is natural as (P,M) ≤ (Q, N) implies ΛP,M ⊆ ΛQ,N ,
which is clear from the definition. This poset is a directed set: given (P,M) and
(Q, N) two approximation pairs, then the approximation pair (P∪Q, L) is an upper
bound, where L is max(M,N).

Given two approximation pairs such that (P,M) ≤ (Q, N), we have a map

i(Q,N),(P,M) : (X,ΛQ,N ,ΛQ,N (τa)) −→ (X,ΛP,M ,ΛP,M (τa))

which is well defined by the inclusion ΛP,M ⊆ ΛQ,N ⊆ Σ. The fact that it is
an arrow in the category is clear from the functoriality of conditional expectation.
Furthermore if (P,M) ≤ (Q, N) ≤ (R,K) the maps compose to give

i(R,K),(P,M) = i(R,K),(Q,N) ◦ i(Q,N),(P,M).

This also follows from funcotiality. In short we have a projective system of such
maps indexed by our poset of approximation pairs.

We can induce maps between the approximation spaces as follows. Recall that an el-
ement of X̂P,M is an equivalence class ofX where two points are equivalent if no sets
in the σ-algebra separate them. If (P,M) is refined by (Q, N) then the σ-algebra
ΛP,M is refined by the σ-algebra ΛQ,N hence an equivalence class represented by an
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element of X̂Q,N is contained in a unique equivalence class represented by an ele-

ment of X̂P,M ; this correspondence defines a map j(Q,N),(P,M) : (X̂Q,N , p, φQ,N (τa))

−→ (X̂P,M , p, φP,M (τa)) such that the following commutes:

(X,ΛQ,N ,ΛQ,N (τa))
i(Q,N),(P,M) ��

πQ,N

��

(X,ΛP,M ,ΛP,M (τa))

πP,M

��

(X̂Q,N , φQ,N (τa)) j(Q,N),(P,M)

�� (X̂P,M , φP,M (τa))

(22)

Hence, the maps j(Q,N),(P,M) along with the approximants X̂(P,M) also form a
projective system with respect to our poset of approximation pairs. In addition,
the approximation map φ(P,M) factors through the approximation map φ(Q,N) as
φ(P,M) = j(Q,N),(P,M) ◦φ(Q,N) so that maps φP,M form a cone above the projective
system.

One can understand this functorially as follows. Given a measurable space (X,Σ)
one can define an induced equivalence relation R by xRx� if for every measurable
set B x ∈ B ⇐⇒ x� ∈ B; this is the same equivalence relation that was introduced
in the proof of the minimal realization theorem. It might be the case that R is the
identity relation, for example this happens with the Borel algebra on the real line.
In this case one says that Σ separates points. In any case, the quotient X −→ X/R
is actually an endofunctor on Mes. To see this consider a measurable function
f : (X,Σ) −→ (Y,Λ) and let the equivalence relations induced by Σ and Λ be R and
T respectively. Then we can define the map f̂ : X/R −→ Y/T by f̂([x]R) = [f(x)]T ;
this is easily seen to be well-defined and measurable using arguments similar to
the ones in the proof of Theorem 9.2. The preservation of composition is clear
so we are entitled to call this functor F : Mes −→ Mes. The statements in the
paragraph above assert that F preserves projective diagrams. Later we will show
that F preserves projective limits.

11.4 Existence of the Projective Limit

The existence of projective limits of our family of approximants rests on a result of
Choksi [Choksi 1958]; we need to be careful about exactly which category we are
talking about however. The following proposition is from his paper. In stating his
result we skip any mention of the LAMPs for the moment. A topological measure
space is a topological space where the σ-algebra is induced by the open sets of the
topology. A compact Hausdorff topological measure space is simply one where the
topology is compact Hausdorff.

Proposition 11.4. Suppose that we have a projective system of compact Haus-
dorff topological measure spaces (Xi,Λi, pi) with measurable measure preserving
maps φji : Xj −→ Xi. There is a topological measure space (X∞,Γ, γ) also com-
pact Hausdorff, and maps ψi : X∞ −→ Xi that are also measurable and measure
preserving such that the entire diagram formed by the φs and ψs commutes.
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In his work, as was typical for analysis at the time, there is no proof that this
“limit” object satisfies any kind of universal property. The finite approximants
to the measure space underlying a LAMP have a projective limit in the category
Rad=; recall this is the category where the objects are measure spaces and the
morphisms are measurable and measure preserving maps. We will consider the
LAMPs later.

Theorem 11.5. The probability spaces of finite approximants X̂P,M of a mea-
sure space (X,Σ, p, τa) each equipped with the discrete σ-algebra (i.e. the σ-algebra
of all subsets) indexed by the approximation pairs, form a projective system in the
category Rad=. This system of finite approximants to the LAMP (X,Σ, p, τa) has
a projective limit in the category Rad=.

Proof. The situation is shown in the diagram below:

(Y,Ξ, r)

fP,M

��

fQ,N

��

λ
��

(proj lim X̂,Γ, γ)

ψP,M

��

ψQ,N

��
X̂P,M X̂Q,Nj(Q,N),(P,M)

��

(X,ΛP,M , p,ΛP,M (τa))

πP,M

��

(X,ΛQ,N , p,ΛQ,N (τa))i(Q,N),(P,M)

��

πQ,M

��

(23)

In order to make the diagram fit on the page we have written X̂P,M

instead of (X̂P,M ,ΩP,M , p̂P,M , πP,M (ΛP,M (τa))) and X̂Q,N instead of

(X̂Q,N ,ΩQ,N , p̂Q,N , πQ,N (ΛQ,N (τa))).

The spaces (X,ΛP,M , p, iΛP,M (τa)) are only shown to remind the reader where
the finite approximants come from; they are not part of the projective diagram
whose limit we are taking. The measure space (Y,Ξ, r) is any7 measure space and
the family of maps fP,M are assumed to be measurable and measure preserving.
Note that we are not claiming the existence of a projective limit in AMP. For this
reason we consider only a measure space and show that we have a unique mediating
morphism λ which is measurable and measure preserving.

The projective limit in Mes is constructed from the projective limit in Set in
much the same way as pushouts in Set can be made into pushouts in Mes. Con-
cretely, proj lim X̂ is the projective limit in Set – that is, the subset of the product�

X̂P,M which is compatible with the maps j(Q,N),(P,M) of the projective system.

We have the usual projection maps in Set ψP,M : proj lim X̂ −→ X̂P,M for every

approximation pair. The spaces X̂P,M are finite sets equipped with the discrete

7Recall that all the measures are finite in this paper.
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σ-algebra. They can be viewed as topological measure spaces with the discrete
topology, which, of course, generates the discrete σ-algebra. Viewed as such these
finite approximants are compact Hausdorff spaces and Choksi’s Theorem 11.4 ap-
plies, so we get a σ-algebra Γ and measure γ which makes the ψs Rad= morphisms.

The σ-algebra Γ is the smallest σ-algebra that makes the ψ’s measurable. If
(Y,Ξ) is a measurable space and fP,M is a family of measurable maps from Y

to (X̂P,M ,ΩP,M ) there is a measurable function λ : Y −→ proj lim X̂ making the
diagram commute. To see this we use the same λ that one obtains in Set from
the universality of the projective limit in Set. Γ is generated by sets of the form
ψ−1
P,M ({x}) where x is an element of X̂P,M . In order to check that a map is mea-

surable it suffices to check that the inverse image of a set in the generating family
of the σ-algebra is measurable. Thus we need to check that λ−1(A) is in Ξ for any
set of the form A = ψ−1

P,M ({x}). Now we can write λ−1(A) as

λ−1(ψ−1
P,M ({x})) = f−1

P,M ({x})

which is in Ξ because the fs are measurable.

Now we know that λ is measurable, we need to show that it is measure preserving.
The collection of sets of the form ψ−1

P,M (AP,M ), where each AP,M is a measurable

subset of X̂P,M
8 generates the σ-algebra Γ; we use ∆ to refer to this collection of

subsets of proj lim X̂. We claim that ∆ forms a π-system of sets. Accordingly we
only need to check that λ preserves the measures of these sets to conclude that it is
measure preserving. To establish the claim it suffices to show that the intersection of
two sets of the form ψ−1

P,M (x) is in ∆. Consider ψ−1
P,M (x) and ψ−1

Q,N (y). Because we
have a projective system we have some (K,K) such that (Q, N), (P,M) ≤ (K,K);
of course (K,K) could be one of (P,M)) or (Q, N) but that is a special case. For
brevity we temporarily write m,n, k for the subscripts (P,M), (Q, N) and (K,K)
respectively. Now the maps jkm and jkn are surjective. Define B = j−1

km({x}) ∩
j−1
kn ({y}). Now since the entire diagram commutes we have

ψ−1
k (B) = ψ−1

k (j−1
km({x}) ∩ j−1

kn ({y})
= (ψ−1

k ((j−1
km({x})) ∩ ψ−1

k (j−1
kn ({y}))

= ψ−1
m ({x}) ∩ ψ−1

n ({y}).

We have shown that ∆ a π-system.

Now a set in ∆ looks like ψ−1
P,M (AP,M ). Let the elements of AP,M be {x1, . . . , xk}.

The sets ψ−1
P,M ({xi}) for i = 1, . . . , k are all disjoint. Consider any one of these, say

xi. We have

r(λ−1(ψ−1
P,M ({xi}))) = r(f−1

P,M ({xi})) = p̂ΛP,M ({xi}) = γ(ψ−1
P,M ({xi}))

where the second equality holds because the fs are assumed to be measure pre-
serving and the last because the ψs are measure preserving. Thus λ is measure
preserving on sets of this form. But a generic set in ∆ is the disjoint union of sets

8Of course this just means any subset.

Journal of the ACM, Vol. 1, No. 1, May 2010.



Approximating Markov processes by averaging. · 39

like this so we have

γ(ψ−1
P,M (AP,M )) =

k�

i=1

γ(ψ−1
P,M ({xi})

=
�

r(λ−1(ψ−1
P,M ({xi})))

= r(λ−1(ψ−1
P,M (AP,M ))).

Thus the measures r ◦ λ−1 and γ agree on the sets of ∆. Since ∆ is a π-system
generating Γ, the two measures agree on all of Γ by Prop. 2.3. We have completed
the proof of the universal property in Rad=.

We can now consider the LAMP structure. We do not get a universal property in
the category AMP, however, the universality of the construction in Rad= almost
forces the structure of a LAMP on the projective limit constructed in Rad=.

Proposition 11.6. A LAMP can be defined on the projective limit constructed
in Rad= so that the cone formed by this limit object and the maps to the finite
approximants yields a commuting diagram in the category AMP.

Proof. We can define the LAMP ζa on proj lim X̂ as follows. We recall that
we get a cone over the projective system of finite approximants from the LAMP
(X,Σ, p, τa) with which we started as shown in the diagram below:

(X,Σ, p, τa)

φP,M

��

φQ,N

��

κ
��

(proj lim X̂,Γ, γ, ζa)

ψP,M

��

ψQ,N

��
X̂P,M X̂Q,Nj(Q,N),(P,M)

��

(X,ΛP,M , p, iΛP,M (τa))

πP,M

��

(X,ΛQ,N , p, iΛQ,N (τa))

πQ,N

��

��

(24)
From universality in Rad= we have a unique map κ : X −→ proj lim X̂ such that
ψP,M ◦ κ = φP,M , i.e., the approximation maps from X factor through κ. This κ
is measurable and measure preserving being a Rad= morphism.

We define the AMP ζa on proj lim X̂ in the obvious way; that is, as the projection
of τa through κ. Then the projection of ζa onto the finite approximants through
ψP,M is equal to πP,M (iΛP,M (τa)) since ψP,M ◦ κ = φP,M . This shows that the
diagram formed by the projective limit, the finite approximants and the maps ψP,M

and the j(Q,N),(P,M) form a commuting diagram in AMP.

Note that the finite approximants coming from the logic do not play a special role
here. If we had used any other family of finite approximants we would still construct
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some kind of limit which would itself be an approximant. The special properties of
the approximants that we are using comes across in the next subsection.

11.5 Minimal realization and Finite Approximation

The main result in this section is that the LAMP obtained by forming the projective
limit in the category Rad= and then defining a LAMP on it is isomorphic to the
minimal realization of the original LAMP. This gives a very pleasing connection
between the approximation process and the minimal realization.

Theorem 11.7. Given an AMP (X,Σ, p, τa), the projective limit of its finite ap-
proximants (proj lim X̂,Γ, γ, ζa) is isomorphic to its minimal realization (X̃,Ξ, r, ξa).

In order to prove this we need some preliminary results. It already follows from uni-
versality that κ is measurable, but we can show something slightly stronger.

Proposition 11.8. The σ-algebra κ−1(Γ) is precisely equal to σ �L�; in partic-
ular κ is measurable.

Proof. The σ-algebra Γ is the generated by the inverse images of ψP,M ; letting

ΩP,M be the σ-algebra on X̂P,M , we have Γ = σ(
�

ψ −1
P,M (ΩP,M )), where the

union is over all approximation pairs. Now we know that

ψP,M ◦ κ = φP,M = πP,M ◦ iΛP,M .

Since preimages preserve intersection, union and complement we have,

κ−1(Γ) = κ−1
�
σ
��

ψ −1
P,M (ΩP,M )

��

= σ
���

κ−1
�
ψ −1
P,M (ΩP,M )

���

= σ
���

i −1
ΛP,M

�
π −1
P,M (ΩP,M )

���

= σ
���

i −1
ΛP,M

(ΛP,M )
��

= σ (
�
ΛP,M )

= σ (�L�)

where the last step is justified by Proposition 11.3. Note that σ(�L�) is indeed a
sub-σ-algebra of Σ as can easily be shown by induction on the structure of formulas.

Proposition 11.9. The map κ : (X,Σ, p, τa) −→ (proj lim X̂.Γ, γ, ζa) obtained
from the projective limit diagram is a zigzag in AMP.

Proof. As κ−1(Γ) = σ (�L�), we can factor κ as κ̂ ◦ iκ, where

iκ : (X,Σ, p, τa) −→ (X,σ (�L�) , p, τa)
κ̂ : (X,σ (�L�) , p, τa) −→ (proj lim X̂,Γ, γ, ζa)

iκ is a zigzag as σ (�L�) is an event bisimulation; κ̂ is a zigzag by Lemma 9.7. Thus
κ is a zigzag.
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If we let (X̃,Ξ, r, ξa) be the minimal realization obtained as in proposition 9.2, we
have a zigzag ω : (proj lim X̂,Γ, γ, ζa) −→ (X̃,Ξ, r, ξa) from Corollary 9.4. The proof
of Theorem 11.7 will establish that there is a zigzag in the other direction.

Proof. (of Theorem 11.7) AsX and X̃ are bisimilar, they have the same approx-
imants, and thus the projective limits of these approximants (proj lim X̂,Γ, γ, ζa)
is the same. Therefore, by Proposition 11.9 there is a zigzag � : (X̃,Ξ, r, ξa)
−→ (proj lim X̂,Γ, γ, ζa). Hence, by Corollary 9.3, � is an isomorphism of AMPs.

There are a number of other facts that show that the approximations capture
something that is intrinsic to bisimulation equivalent LAMPS.

Theorem 11.10. Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Then these
two LAMPs have the same finite approximants.

Corollary 11.11. Two bisimilar AMPs have the same finite approximants.

In order to prove Theorem 11.10 we need some preliminary lemmas.

Lemma 11.12. Let α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) be a zigzag. Let A ∈ Θ and
q be a rational number. Then

α−1 ({y : ρa (1A) (y) > q}) =
�
x : τa

�
1α−1(A)

�
> q

�

Proof.

α−1 ({y : ρa (1A) (y) > q}) = α−1
�
ρa (1A)

−1 (q, 1]
�

= (ρa (1A) ◦ α)−1 (q, 1]
= (τa (1A ◦ α))−1 (q, 1]

=
�
τa

�
1α−1(A)

��−1
(q, 1]

=
�
x : τa

�
1α−1(A)

�
> q

�

Lemma 11.13. Let (X,Σ, p, τa) be a labelled AMP and Ω ⊆ Σ be an event-
bisimulation. Then (X,Ω, p, τa) and (X,Σ, p, τa) have the same finite approximants.

Proof. The finite σ-algebras ΛP,M yielding the approximants are sub-σ-algebras
of σ (�L�). As σ (�L�) is the smallest event-bisimulation, we have the inclusion

ΛP,M ⊆ σ (�L�) ⊆ Ω ⊆ Σ

and so the approximation maps from (X,Σ, p, τa) factor through the approximation
maps from (X,Ω, p, τa)
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Proof. of proposition 11.10 Consider the following diagram of LAMPs:

(X,Σ, p, τa)
α ��

iΛP,M

��

(Y,Θ, q, ρa)

jα(Λ)

��
(X,ΛP,M )

α̂ ��

πX
P,M

��

(Y, α(ΛP,M ))

πY
P,M��

X̂P,M

(25)

The measures and LAMPS on the approximants are defined in the manner described
in the approximation construction described above. We suppress explicit mention
of them to make the diagram less cluttered. By Lemma 11.13 and the factoring
property of zigzags (by Lemma 9.8), we need only verify our claim on a zigzag
α : (X,Σ, p, τa) −→ (Y,Θ, q, ρa) such that α−1(Θ) = Σ. By Lemma 11.1, α is an
isomorphism of σ-algebras. Let ΛP,M ⊆ Σ be an approximating σ-algebra on X.

By Lemma 11.2, the upper square in Diagram 25 commutes and is a pushout.

Note that α (ΛP,M ) is precisely the approximating σ-algebra obtained on Y by the
approximation pair (P,M). This follows from Lemma 11.12 as expressions of the
form ({y : ρa (1A) (y) > q}) generate the approximating σ-algebras. This shows
that the right hand side of the diagram in indeed part of the approximation of
(Y,Θ, q, ρa).

Finally, the quotienting map πX
P,M reducing the measure space (X,ΛP,M ) to a finite

state space factors through the similar map from Y , πY
P,M , as α is surjective. This

factorization extends to LAMPs, and so the bottom triangle of the above diagram
commutes; thus the two original LAMPs (X,Σ, p, τa) and (Y,Θ, q, ρa) have the
same finite approximations.

12. RELATED WORK

12.1 History of labelled Markov processes

We review the history of the theory of labelled Markov processes as described in the
recent expository book [Panangaden 2009]. It is not necessary to read this section
to follow the technical development of the present paper. Some of the points made
here are repeated in the main text in order that a reader can read the rest of the
paper without having to read this section.

The earliest work on incorporating probability in the theory of verification of tran-
sition systems is Vardi’s work on concurrent Markov chains [Vardi 1985]. This is
aimed at adapting techniques like model checking developed for finite transition
systems to the probabilistic situation. The theory of bisimulation for probabilis-
tic systems was initiated by [Larsen and Skou 1991] who described a modal logic
for characterizing probabilistic bisimulation and explored the relation with testing.
This prescient paper began the modern era of exploration of the field. There is
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a significant literature exploring variants like weak bisimulation and real-time sys-
tems: all this was done for discrete transition systems. A good review of model
checking for discrete probabilistic systems appears in Chapter 12 of the recent text
book Principles of Model Checking [Baier and Katoen 2008].

The theory was extended to continuous state spaces by [Blute et al. 1997] and
by [de Vink and Rutten 1997]. The latter worked on ultrametric spaces and used
the machinery of ultrametric spaces to show that bisimulation – defined in terms
of spans – is transitive. In our opinion, ultrametric spaces are not at all like the
continuous spaces that arise in physical systems: they are totally disconnected, for
example. However, that work did emphasize the coalgebraic nature of the theory
and that was a very important step.

The work begun in [Blute et al. 1997] was elaborated in [Desharnais et al. 2002]
and later papers [Desharnais et al. 2003; Danos and Desharnais 2003; Danos et al.
2003; Desharnais et al. 2004] where theories of approximation and of metrics were
developed. Much of the work of [Desharnais et al. 2002] was reworked by Doberkat
in a series of papers that use powerful tools from descriptive set theory to put the
theory in a more elegant, general and pleasing form. This work appeared in several
papers and are summarized in two recent books [Doberkat 2007; 2010].

12.1.1 Labelled Markov processes and bisimulation. There are two main approaches
to bisimulation, and they are closely linked. The first is to equate states, that is, to
determine which states behave the same with respect to the user. Loosely speaking,
two states are bisimilar if they indistinguishable from the user’s perspective. The
other approach is to equate LMPs among themselves. In this higher level point
of view, two LMPs are bisimilar if each state in one is bisimilar to a state in the
other; or, in other words, if the two LMPs contain states which have the same
behaviour. Note that we shall always assume that when speaking of bisimulation
between different LMPs, the action set A will be fixed.

For each of these points of view, different definitions of bisimulation have been
postulated. We review these briefly, following [Danos et al. 2006].

LMPs are the coalgebras of a monad, essentially discovered by Lawvere and dis-
cussed in detail by [Giry 1981]. The notion of zigzag that we have used comes
from there, it is exactly the homomorphism notion for the coalgebras of Giry’s
monad [Rutten and de Vink 1997; de Vink and Rutten 1999; Desharnais et al.
2002].

Generally speaking, a morphism f from a LMP (X,Σ, τa) to another (Y,Λ, ρa)
is a measurable map of the underlying measurable spaces, which is assumed to
respect some compatibility condition relative to the Markov kernels. The idea of
a zigzag morphism is that we should be able to specify a condition on f which
would imply that the two LMPs are bisimilar. Specifically, we have the following
definition:

Definition 12.1. A zigzag morphism from a LMP (X,Σ, τa) to another (Y,Λ, ρa)
is a surjective measurable map f : (X,Σ) −→ (Y,Λ) such that, for all a ∈ A, x ∈ X,

Journal of the ACM, Vol. 1, No. 1, May 2010.



44 · Philippe Chaput et al.

B ∈ Λ,

τa
�
x, f−1(B)

�
= ρa (f(x), B)

Hence, the transition probabilities are essentially the same in both systems. How-
ever, information is still lost across a zigzag morphism. This loss is twofold; first, as
the map is surjective (but not necessarily injective), different points in the domain
space are sent to the same point in the target space and thus equated. Secondly, as
f is measurable, we have that f−1(Λ) ⊆ Σ, and thus the complexity of the σ-algebra
may decrease. Nevertheless, note that since ρa(y,B) must be a Λ-measurable func-
tion for a fixed set B, Λ cannot be trivial. Following the notion of bisimulation
via open maps [Joyal et al. 1993], [Desharnais et al. 2002] defined two LMPs to be
bisimilar if there exists a span of zigzags between them.

Definition 12.2. Two LMPs (X,Σ, τa) and (Y,Λ, ρa) are bisimilar if there
exists a LMP (U,Ω, σa) such that there is a zigzag morphism f from U to X and
another zigzag morphism g from U to Y .

As the identity map from a LMP to itself is trivially a zigzag, any two LMPs
with a zigzag between them are bisimilar. The reasoning behind the use of spans
stems from the idea that bisimulation is often interpreted as an equivalence relation
between states. Given two sets X and Y , any relation R ⊆ X × Y can be viewed
as a span of functions from a set R to X and Y .

Example 12.3. Let (X,Σ) be any measurable space. Define on X a Markov
kernel τ such that τ(x,X) = 1 for all x ∈ X. We thus have a labelled Markov
process with a single action. Our condition on τ means that the single action of
this process is never disabled. Let ({�} ,Ω) be a one point space with the obvious
σ-algebra, and define a Markov kernel on π on {�} as π ({�} , {�}) = 1. Then the
obvious map f : (X,Σ) −→ ({�} ,Ω) is a zigzag; indeed, we need only check the
zigzag condition on the set {�}. Thus, the two LMPs (X,Σ, τ) and ({�} ,Ω, π) are
bisimilar.

The main difficulty with the above definition of bisimulation is proving that it is a
transitive relation among LMPs; it is clearly reflexive and symmetric. Transitivity
could only be shown when the measurable spaces were analytic spaces with their
Borel algebra.

In [Desharnais et al. 2003], bisimulation was defined as a relation on states of an
LMP, in the spirit of [Larsen and Skou 1991]. One has to tie in measurability with
the relation, but showing transitivity of the bisimulation is quite straightforward.
In the paper of [Danos et al. 2006], a new definition of bisimulation, called event
bisimulation, appeared. Its intent also is to relate similar states, but instead of
thinking in terms of points one works with measurable sets.

Definition 12.4. Given an LMP (X,Σ, τa), an event bisimulation is a sub-
σ-algebra Λ ⊆ Σ such that (X,Λ, τa) is still a LMP.

In order to be an event bisimulation, the only condition that Λ needs to respect
is that, for fixed action a and measurable set B ∈ Λ, τa(x,B) is a Λ-measurable
function.
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Event bisimulation and zigzag morphisms are closely related, as the following propo-
sitions show ([Danos et al. 2006]).

Proposition 12.5. Given an LMP (X,Σ, τa), the σ-algebra Λ is an event bisim-
ulation if and only if the map iΛ : (X,Σ) −→ (X,Λ), which is the identity as a set
function, is a zigzag.

The proof is straightforward. The above proposition can be generalized:

Proposition 12.6. Given a zigzag morphism f : (X,Σ, τa) −→ (Y,Λ, ρa), the
σ-algebra f−1(Λ) ⊆ Σ is an event-bisimulation.

Thus, every event bisimulation comes from a zigzag morphism, and every zigzag
morphism yields an event bisimulation; thus one can view an event-bisimulation
as the “signature” of a zigzag morphism. If the idea of a zigzag morphism is to
be central to the theory of LMPs, then event-bisimulation truly is the notion of
state equivalence that we want to use, and is, in this context, the right notion of
“measurable relation”. It appears näıve to us to generalize the usual concept of
an equivalence relation on a finite state space to a continuous state space; indeed,
on a finite state space, every topology and every σ-algebra can be construed as an
equivalence relation, and thus it is not clear how a concept of equivalence relation
should generalize to a larger space while respecting the relevant structure. More
details about the relationship between event bisimulation and state simulation (as
a relation) are available in [Danos et al. 2006].

12.2 Logical characterization of bisimulation

The results of [van Benthem 1976] and [Hennessy and Milner 1985] established a
characterization of ordinary (non-probabilistic) bisimulation in terms of a modal
logic. Later [Larsen and Skou 1991] established such a characterization for proba-
bilistic bisimulation using a probabilistic modal logic; of course, this was only for
the case of discrete transition systems.

It turns out that a modal logic L characterizes bisimulation for labelled Markov
processes as well [Desharnais et al. 1998]. The logic has the following grammar,
with a ∈ A and q ∈ Q:

L ::= T|φ ∧ ψ| �a�q ψ

The logic is interpreted on states as follows. Every state satisfies T. Conjunction
is clear, so the last construct is the only one requiring explanation. A state s in a
particular labelled Markov process (X,Σ, τa) is said to satisfy �a�q ψ if, following
an a transition from s, the probability of being in a state satisfying ψ is strictly
larger than q, a rational number. More precisely, one can associate to each formula
ψ ∈ L a measurable set �ψ� consisting of all points satisfying this formula. These
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sets are defined recursively as follows:

�T� = X

�φ ∧ ψ� = �φ� ∩ �ψ�
�
�a�q ψ

�
= {s : τa (s, �ψ�) > q}

and thus a state s satisfies ψ if and only if s ∈ �ψ�.

As an example, consider the formula ψ = �a� 1
2
�b� 3

4
T. A state satisfies ψ if it has a

probability higher than 1
2 to accept an a action and, by doing so, to transition to a

state which has a probability higher than 3
4 to accept a b action and to transition

to another state where T is trivially satisfied.

The logic L characterizes bisimulation in the following sense. Given the restrictions
on the underlying state spaces (specifically, the space must be an analytic space),
two LMPs X and Y are bisimilar in the sense of definition 12.2 if and only if for
each state in one LMP, there is a state in the other satisfying precisely the same
formulas [Desharnais et al. 2003]. Keeping the same restriction on the state space,
the logic also characterizes the relational definition of [Desharnais et al. 2003]: two
states are bisimilar if and only if they satisfy the same formulas of L.

If the underlying state space is not analytic it is possible to construct a variety
of counter-examples. One can show that the basic constructions that allow one to
prove that the traditional notion of bisimulation is transitive fail. One can show
that the state and event bisimulation notions do not coincide. One can show that
the modal logic does not in fact characterize bisimulation. These counterexamples
are not very difficult to describe and should be appearing in print soon.

However the most interesting property of the logic L is that it unconditionally
characterizes event-bisimulation. We let �L� denote the measurable sets obtained
by all formulas of L. We state the results of [Danos et al. 2006].

Theorem 12.7. Given any LMP (X,Σ, τa), the σ-algebra σ(�L�) generated by
the logic L is the smallest event-bisimulation on X. That is, the map i : (X,Σ, τa)
−→ (X,σ(�L�), τa) is a zigzag; furthermore, given any zigzag α : (X,Σ, τa) −→
(Y,Λ, ρa), we have that σ(�L�) ⊆ α−1(Λ).

This generality survives in the present paper. In fact the earlier paper was a strong
hint to work with a dualized point of view; a hint that we have finally taken in the
present paper.

12.3 Approximation of labelled Markov processes

Approximation is a key aspect of the theory of Markov processes, especially if one
is interested in applying all the tools developed for discrete systems to systems with
continuous state spaces.

The first such theory was developed by [Desharnais et al. 2003]. The main idea
was that one can focus on the behaviour of the LMP until a fixed upper bound of
transitions; that is, we only care about the behaviour for the first N action choices.
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One can then discretize the space with respect to the Markov kernels and obtain
an approximation of the starting LMP as a finite directed tree. Given an action
depth N , this directed tree is split into N + 1 levels, from 0 to N , in such a way
that a transition in this tree must increase the current level by one; hence, level N
consists of a single point where no further transition is possible. The idea is that one
typically chooses an initial state at level 0; thus, if the original LMP allows it, one
can perform at most N transitions until being forced into a state where all actions
are disabled. The transition probabilities are chosen to be an underestimate of the
actual transition probabilities in the full system, which allows the approximants to
be placed in a poset of LMPs.

The main drawback of this technique is that every level of the tree consists of a finite
partition of the original state space; we are thus stuck with N + 1 “finite copies”
of X. This is particularly problematic for simple systems. Consider the LMP
consisting of one point and one action; if the transition probability is nonzero, any
finite approximation using the above scheme will consist of a chain of length N +1,
which is counterintuitive.

Thus, it appeared that the best strategy to approximate LMPs would be to aggre-
gate the states into a finite number of chunks; thus, a one-point space would remain
a one-point space under any approximation. The problem with such a scheme is
twofold; first of all, one needs an appropriate notion of state aggregation, and,
ideally, a scheme to create this partition. Secondly, given a method to aggregate
states, one needs to define transition probabilities on these aggregates.

One approximation scheme [Danos and Desharnais 2003] is to define an equivalence
relation on X which respects some compatibility property with respect to the σ-
algebra of the LMP; the space of the approximate LMP is obviously the quotient
space. Once this partition is defined, the transition probabilities are given by an
infimum construction, again so that the approximate probabilities are an under-
estimate of the actual probabilities. However, one quickly runs into problems, as
this technique does not yield probability measures on the approximate spaces, but
what the authors call a pre-probability, yielding a new class of processes called
pre-LMPs.

Another paper [Danos et al. 2003] described a third method of approximation,
which contains some of the ideas of the present paper in a primitive form. Given
a way to aggregate the states, we would like to compute an “average” transition
probability in between the lumped states and of course, this means that one needs
to use conditional expectations.

Given an LMP (X,Σ, τa), suppose that we have a probability distribution p on the
underlying measurable space. As argued in the discussion of event-bisimulation, the
appropriate notion of an equivalence relation that we want to use is a σ-algebra.
Thus, in order to reduce the state space X, one needs only consider a sub-σ-algebra
Λ ⊆ Σ. Then, in order to approximate our given LMP, one needs only project the
Σ-measurable functions τa(x,B), for each a ∈ A and B ∈ Λ, to a Λ-measurable
function, by conditioning on Λ through the measure p. Of course, some difficulties
arise; in particular, conditional expectation only yields a function which is defined
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p-almost-everywhere. To circumvent this difficulty, one can impose on the sub-σ-
algebra that every set in Λ have nonzero measure, thereby forcing the conditional
expectation operation to yield a unique function. In order to generate a sub-σ-
algebra for the given LMP, the authors use the measurable sets given by a fragment
of the logic L.

12.4 Other related work

In the area of continuous state spaces there has been some substantial contributions
from other authors as well. [van Breugel and Worrell 2001b] developed the coal-
gebraic theory of transition systems using metric spaces (not ultrametric spaces).
In later work [van Breugel et al. 2003] they gave an intrinsic characterization of
approximate bisimilarity. [D. Pavlovic and Worrell 2006] studied testing equiva-
lences and made the connection with process logics. [M. Mislove and Worrell 2004]
developed a beautiful theory of duality for labelled Markov processes which relates
LMPs to C∗-algebras.

A monumental program to combine probability and nondeterminism has been un-
dertaken by Jean Goubault-Larrecq. He has written several papers [Goubault-
Larrecq 2007a; 2007c; 2007b; 2008b; 2008a] which represent a small part of a
massive unpublished book available (in French) on his web page.

There is an extensive literature on probabilistic model checking, on weak bisimula-
tion on discrete spaces, on applications to machine learning all of which are part of
the general area but it would take us too far afield to review them all here.

In the stochastic process literature entities like LAMPs have been studied under the
name of Markov operators [Foguel 1980] and approximation techniques for them
have been studied by [Kim 1972]. The approximations introduced by Kim are of a
different kind – they are not finite in any sense – and are aimed at finding a dense
subset, in the weak∗ topology of the space of Markov operators. He also explores
uniform approximation and convergence in the strong operator topology for related
operators. There is no connection to logic or bisimulation.

13. CONCLUSIONS

The main contribution of the present work is to show how one can obtain a pow-
erful and general notion of approximation of Markov processes using the dualized
view of Markov processes as transformers of random variables (measurable func-
tions). Following [Kozen 1985], one has the following analogy between ordinary
logic and probability theory: truth values correspond to [0, 1], states correspond to
distributions, predicates correspond to measurable functions and satisfaction corre-
sponds to integration. Carrying the analogy further, we have that Markov processes
viewed as function transformers as we have done, is the “predicate transformer”
view of probabilistic processes. Our main result is to show that this way of working
with Markov processes greatly simplifies the theory: bisimulation, logical charac-
terization and approximation. The key point is that working with the functions
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(properties) one is less troubled by having to deal with things that are defined only
“almost everywhere” as happens when one works with states.

A very nice feature of the theory is the ability to show that a minimal realization
exists. Furthermore, this minimal object can be constructed as the projective limit
of finite approximants.

In our development the duality between L+
∞ and L+

1 plays a key role and allows one
to move back and forth. The theory could have been developed with an L+

1 version
of “predicate transformers” and worked out in a strikingly analogous fashion. We
have, in fact sketched this out to the extent that it is clear that one could have
gone either way. It may be that the other approach gives a better handle on
constructing limits in AMP but in either case that seems to require substantially
deeper results in measure theory to settle one way or another. It is possible that
a forward version of the theory could have been developed as well; we have not
investigated this thoroughly as yet.

One of the problems with any of the approximation schemes is that they are hard
to implement. In a paper [Bouchard-Côté et al. 2005] a few years ago, an approach
based on Monte Carlo approximation was used to “approximate the approxima-
tion.” The point is that it hard to compute the approximations based on applying
τ−1 in practice. What happens is that there are lots of sets of very small measure.
A sampling based technique will not see these sets and the method becomes more
practical.

One line of future work is to explore the possibility of implementing the approxi-
mation scheme and, perhaps using some technique like Monte Carlo, to compute
the approximations concretely. It is curious that the abstract version of Markov
processes makes it more likely that one can compute approximations in practice
and is another argument in favour of a “pointless” view of processes.
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