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Chapter 3 The mathematics of generalisation

1. Preliminaries

1.1 Notation

Our notation is that of Robinson (1965), with some additioms. A
word is a 1£tera1 orva term. The symbols V, V’l’ W,.,;, are used as
meta-linguistic variables ranging over words. The symbol ;5 is used as
a meta-linguistic variable ranging over predicate symbols and function
symbols. Var(V) is the set of variables occurring in V. Suppose
that some property cen be shown to hold for Variabl_es and constants and
that whérever it holds for terms t,,...0,% it holds for ¢(t1,,,.,tn).
The property can then be seen to hold for all words. This method of

proof is called induction on words. A translation is a substitution

of the form, T’ = {y,i/x,I ,...,yn/xn} where the y, are all distinct. The
. 3 o
inverse of T is T 1. {X1/y’l""’xn/yn§' Note that ( T ) =T
and if Var(V) € {X>ili=1 ,nl, then VT v~ = V. fThe Greek letters © ,

; and ’)Z are reserved as meta-linguistic variables ranging over

translations. The translation, T , standardises W and V apart iff WT°

and V have no common variables. Similarly T standardises the clauses

C and D apart iff CT and D have no common variables.

e

The words W and V are alphabetic variants iff there is a

translation T such that W =V. Alphabetic variance is an equivalence

relation. Similarly, C and D are alphabetic variants iff there is a

translation T such that C7° = D. Again, this defines an equivalence
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relation.

We denote sequences of integers,-perhaps empty, by the symbols,

Isggoooa o
The term t is in the Ith place in the word W iff:

when T = <», t = W or else

when I = <119000091n>_(n>0) then W has the form y‘(tq,ooao,tm) (m>0)
and i,5m and t+ is in the <129°°°°91n>th place in ti1°
For example, x is in the <»th place in x, the <2>th place in

g(y,x) and the <3,2>th place in P(a,b,8(y.x)).
Note that & term t is never in the <>th place in a literal, L.

1.2 Generalisation

We say that W V (read W generalises V ) iff there is a 0~ such
that WT = V, Tn the literature on automstic theorem proving, W<V is

usually read as "V is an instance of w".

Cmxample  P(x,x,£(g(y))) < P(e(a(); k(a());£(e(x)))

We can take O = {k(a())/x,x/y}

i

rd

If W<V, there is a unique minimal CTB such that W CT'O = V. For
let € be such that WG~ = V and let O = {t/x|t/x ¢ O and x appears

inWl. ThenW &= V.

To see that (o is minimal suppose Wi = V. Let t/x ¢ © e

.

&
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It follows that x appears in W, A simple induction on words shows that
[ Fe _ ¢ . E 3 ? —_
for any W' if W G‘O = W/m and x appears in W' then x (5"'0 = X/A o
. . _ c
Applying this to W, we see that t/x e’/m - Hemce O, .,/M,o '

Uniqueness is evident,

We say that G<D (read C generalises D) iff there is a 6 so that
C6 & Do In the literature on automatic theorem proving, C<D is usually
read as "C subsumes D%, If we identify literals, for the moment, with
their unit sets, < on liferals is just the restriction of < on clauses to
literals. Robinson (1965) shows that subsumption is decidable., Tt

follows that genéralisation on literals and on words are as well.

Generalisation on clauses is a quasi-ordering. It is reflexive
as Ce € C. It is transitive}for' suppose that Ce € D and D/u < B,
Then ‘Ca;u < D/q < B, as required. It follows that geﬁeralisation on
literals is also a quasi-ordering. It is easy to see, then, that

generalisation on words is a gquasi-ordering.

One can show, much as above, that if C<D, there is a umigue finite
set § O gs O yseoves 6‘n§ of distinct substitutions such that
C G‘i < D(Oiiin), and for all different i and J O"l $ 6'3,9 and if

C/u._ €D then/a?_ﬁ; for some i,

The algorithm ’f‘or deciding subsumption is easily extended to one

which will generate this set.

Brample  {P(x), P(E())} < [P(£O))}.  We can take 6 = {£()/x}e
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We say that H,<H, (read H, generalises H2) iff for every D in H,,
there 1s a C in I-I1 such that C<D.
i
Example {{Q(m())}, {P(x), P(£())], [P(x),Q(x)}} < {H{R(£OD)], ’

{P(e()), (s}

Bvidently, this is a decidable relation.

1.3 Relative generalisation

We say that the literal L generalises M relative to Th iff there is
a O so that h—m Lo =M. This is written as I<M (Th). For the
terms t. and u, relative generalisation is defined by: t<u (Th) iff
there is a € such that I—Th t6" = u. When Th is empty, this reduces
to the previous definition of generalisation between words. For

- Lo~ = M holds iff L6~ = M and |-t § = u holds iff + 6 = u.

For clauses relative generalisation may be defined by: C<D (Th)

iff there is an E such that ,-Th E = D and C<E. An equivalent
definition iss C<D (Th) iff there is a & so that i_Th Cg => D.

Suppose C<E and ‘ lTI;‘lh ES D. There is @ O such that C~°_ € E. Then

%—Cﬁ‘ "=> B and so hIh C o~ -> D. Conversely, suppose l’"% C o - Do

Then }—Th Co- VD = D, and C<6& U D. We can, therefore, take

E =Co U Ds - So the definitions are equivalent. When Th is empty and

D is not a tautology, the definition reduces to the previous definition

of generalisation between clauses, as was seen in chapter 2. The

relation of ®equivalence, provable from Th" is a congruence for relative

generalisation. Suppose that \?h C = C*' and C<D (Th).. There is a
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6" so that \-,-l;h ¢ o -> D and further, |z, Co=C'c" .
Consequently I—Th C's” => D and C'<D (Th). Suppose,conversely,
l—nTh‘D = D' and C<D (Th). There is an E so that C<E and i—i‘h E = D.’

Then, |, E = D' and CD'.

Relative generalisation is a gquasi-ordering. Since tﬁlC_& ~> G,
C<C (Th). Suppose C<D<E (Th). There are G, M so that
/&—Th Co~ -> D and lvﬂTh D/M, => B Then, as (C&o~ -> D)/M is
Com ->Du hﬁh Cou -> Du and tuTh Cg -> E. So G<B (Th).

It follows that relative generalisation on words is a quasi-ordering.

Define equivalence, relative to Th, by: C ~AsD (Th).iff c<D (Th) .
and D<C (Th)o Since reiative generalisation is a quasi-—ofdering;
relafive equi;vaience is an equivalence relation. If h_;‘"h D= D', '
then D ~~ D' (Th). The converse does not hold, as will be seen. We
also define equivalence by C ~v D iff C<D and D<C. As geﬁeralisation
is a quasi-%rdering, equivalence is an equivalence relation.‘ If ¢ ~D
then C ~ D {@). On the other hand if C ~~ D (@) then either C and D
are both tautologies or else C ~ D. The following lemma is well-known

(Robinson ,1965), and so mo proof is given.
Lemma 1 U ~s W iff they are alphabetic variants,

, o |
We see that P(x) ~ P(y), although it is not the case that
FP(X) = P(y). A characterisation of equivalence of clauses will be

e

given later.

There is an interesting reformulation of the definition of relative




W
b2

.
( ﬂ%%é 22 i

.

=51 =

generalisation. It is shown that CLD (Th) iff D is a tautelogy or
else can be cbtained from {C} U Th by means of a special sort of

derivation.

A derivation in which binary resolution is the sole deduction rule,.

is a C-derivation iff no two descendants of an occurrence of G at a tip

are resclved together. (We assume a knowledge of some standard

formulation of derivation trees, such as that of Andrews (1968)).

Let Th;' be the set of Skolemisations of members of Th. We assume
that none of the Skolem function symbols im Th*® ocecur in C or D.
Notice-that Th' is a conéervative extension of Th. That is.‘3 in this
case, if a formula A does not contain any of the Skolem constants in
Th' then [‘Th A iff‘ t"‘Th,vA. It follows that for any C and D,

C<D (Th) iff C<D (Th').

There is one other useful fact. If Yz A then C<D (Th) iff
C<D (Th U {A}l), for any C, D, Th and A. We define &(ESD) = {clc is

a resolvent of E and Di.
Lemma 2 If D,<D (Th) and D, ¢ R(EgDz) then D,<D (Th L } YV El).

Proof As D, ¢ @(E,DZ) we can write E as B' U E® and D, as D) U D}
and find a O and,}a/u such that B® o~ and D'Z’/M are unit sets

containing complementary literals and D, = BV Dé S
As D1iD (Th) there is a l such that l"fh D1L => Do

Now [%-ED"/\,DZ/(A => D1o Therefore, FE 0“2,/\_D2/4'2_==> D1 l .
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It follows that l‘i;h E (3"2, > (DQ/U./'L -> D) and so
' =2 Ye 2 ' : U !
i-_Th v | V Bl DZ/UL/L > D As this means that D2_§;D (Th § ‘VEJ)9

the proof is finished. [

Theorem 1  C<D (Th) iff D is a tautology or there is a C-derivation from

Tht U {c} of a clause D' which subsumes D.

Proof  Sufficiency If D is a tautology then f‘

e =>1D d s
Th C and so

C<D (Th).

In any C—derivation there are either no occurrences of C on a tip or
else there is exactly one occurrence. If there are none in the
derivation given in the hypothesis then k%h“ D and so PEh D as Th'
is a conservative extension of Th and no Skolem function symbol of Th'

ocours in D. Therefore |-, C& =-> D which implies that CgD (Th).

Suppose there is exactly one occurrence of C at a tip of the
derivation given by the hypothesis. There must then be clauses

Ei(i=19n; n>0) derivable from Th® such that
e R (R(E oo RELC)..D)

As D'<D, n successive applications of lemma 2 show that
C<D (Th' U { \7.E1|1:19n}) As |y, B for all i, we see that

p
C<D (Th') and conclude that C<D (Th).

Necessity  Suppose that C<D (Th). For some O , %%h coc => D

et = i o r I o ¢
Let C {Lill 1,n}. Then %‘ih f.6° v D for each L. Let Th' be

the set of Skolemisations of members of The. None of the Skolem
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function symbols should occur im C & ~-> Do By the subsumption theorem
(Lee 1967, Kowalski 1970) for each 'L:.L ‘either fsiG‘ V D is a tautology or
else there is a derivatien of a clause Di from Th*, which subsumes !

{E, o U D, We may assume, without loss of generality, that the first
Ti , ‘ _

alternative holds for L, a..,L and the second for L eosl o
193°° 2 m- Tmi1?°°9n

If D is a tautolegy, we are finished. If m=n then
Co :'{Li o~ |i=1,m} € D and we are also finished. Finally, suppose

that m<n.

-4

Then we may express D as {Lic' | i=1,m} U D.
Bvidently there is a clause in

Rai, ot Ri. Rz, o 1o
which is a subset of §Li S |i=1,m}.

Consequently there is a clause, D', in

R (i o tv o Re... R

S} UD), CO )eos))

m+1

which is a subset of D U {L. 0~ |i=1,m} = D.

Since C subsumes C " and Di subsumés if}id‘ ! U D for m<icn, it
follows from the cgntraot:ion theorem (Kowalski, 1970) that there is a
C-derivation of a clause D" from {Di|m<i_§_n} U {c} which subsumes D',
and therefbre D, As the D, are derived, in their turm, ffom Th? wé see

that there is a C-derivation from Th' U {C} of a clause D" which subsumes

. D
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This concludes the proof.

One can obtain other versions of theorem 1 by using any other
resolution principle‘for which the subsumption theorem holds. For

example, one can use M=clash resolution (Kowalski, 1970).
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2. Generalisation theory of literals

In this seetion we establish the theery of the relatieh, <, on
literals, For technical convenience, the results are often derived for /
words. The corresponding result for literals is then an immediate

specialization.

2.1 Least general generalisations of literals

A least general generalisation of some words is a generalisation which
is iess general thanm any other such generalisation,. for example a least
general generalisation of the literals Black(crowi), Black(crow2) is
Black(x). One may, roughly, view this as inducing "Everything is black®
from "This crow is black" and "That crow is black". The evident
absurdity of such an induection was one of the reasens for considering

elauses rather than literals.

Less trivially, we shall show later that a least general generalisation

of P(£(a(),8(3)),x,8(y)) and P(h(a(),g(x)),x,e(x)) is P(y,x,e(z)).

Let K be a set of words. We say that W is a least general

generalisation of K, abbreviated by W is a l.g.g. of K, iff:

1 TFor every V in K, W<V

2 1If for evefy V in K, W15V, then W15W°

It follows from requirement 2 and lemma 1, that any two least general

generalisatiens of K are alphabetic variants.
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Similarly, one can give a definition relativised te Th. We say

that W is a least general generalisation of a set of literals, K

relative to Th (abbreviated by W is a l.g.g. of K relative to Th), iff: ;b

!

=

For every M in K, W<M (Th)

2 If, for every M in K, W,<M (Th), then WQE}:(Th),

Two words are compatible iff they are both terms or have the same

predicate letter and sign.

We can define alse the least generalisation as a preduct in the
following category. The objects are the words ard O~ is a morphism from
V to Wiff VO = W and O acts as the identity, & , on variables not in
V. There is at most one morphism from V to W. If ¢ is a morphism
from V to W, and/ﬂ is one from W te U, then their categorical composition
is the unique morphism from W to U. It should be noted that the
categorical composition is not the same as the standard composition of
substitutions defined in Robinson (1965). For example, if W is x,

V is £(y), and U is £(g(z)), then O is {f(y)/x} and M is {g(z)ﬂy}.

The categorical cempesition of & ang/u is {f(g(z))/x}, but their standard

compesition is {f(g(z))/k, g(z)/y}o

V is the least generalisation of §W1,W2§ iff it is a product of W1

, in the abote category. The category will be used mainly for

and W2

expository purposes.

Theorem 7

Every n@nuempfy, finite set of werds has a least general
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generalisation iff any two words in the set are compatible.

Let W W2 be any two compatible words, The follewing algorithm

1’

terminates at stage 3, and the assertion made there is then correcte. f

1o

3o

Set V, to W, (i=1,2). Set éi to € (i=1,2). € is the empty

substitution.

v

Try to find terms t t, which have the same place in V1, 2

1?7 72
respectively and such that t1%t2 and either t1 and t2 begin with

different function letters or else at least one of them is a variable.

If there are no such t,, t, then halt. V,l is a least general

12 72
generalisation of EW{,W2§ and V,=V,, V; B'i:Wi(1=1,2)°

Choose a variable x distinct from any in V& or Vé and wherever t1

and t, oceur in the same place in V, and Vz, replace each by X.

2 1
Change ej.to {ty/x} b i(i:1,2).

Go to 2.

Example. We will use the algorithm to find a least general

generalisation of {P(f<a<)9g(y))sxsg(Y))a P(h(a(),g(x)),x,g(x))}.

Initially (at stagg 1),

v,=P(£(a(),8(y)),x,8(y))

v,=P(h(a(),&(x)),x,8(x)),

and 912 62= €.
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We take t1:y, t2=x and z as the new variable at stage 2. Then after

stage Ik,

v,=P(£(a(),8(2)),x,8(2)) |
V,=P(h(a(),e(z)),x,8(z))

and after stage 5,

B=(s/als  B=l/al.

Next, we take t1=f(a(),g(z)),tzzh(a(),g(z)) and y as the new

variable at stage 2. After stages L4 and 5,

V,=P(y,%,8(2))=V,

8, =12(a(),8(2))/y}1y/5}
={£(a(),8(y))/y,3/2}
[h(a(),8(2))/ylix/2}
{h(a(),8(x))/y,x/2}.

il

BE

]

The algerithm then halts at stage 3 with P(y,x,g(z)) as the least

general generalisation.

Proof Evidently the compatibility condition is necessary. Let
{w1,,o,°gwn§ be a finite compatible set of words. If n=1, then the
theorem is trivials Supéese that the algorithm worké and that
inf{V,W} is the result of applying it to V and W. Then it is easy to

see that

inf{W1ginf{WZ,oiooBinf{Wﬁm1,Wh§o°°§§
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is a least general generalisation of the set. Hence we need only show

that the algorithm works.,

The rest of £he proof proceeds as follows. In order to avoid a
constant repetition of the conditions on t19 t2 given in stage 2, we sa&
that t1 and t2 are replaceable in V,I and Vé iff they fulfil the conditions
of stage 2. We also denote by V/, Vé the result of replacing t
in.Vﬂ, V2 by x in the way described in stage L. To show that the

" and t2

algorithm halts and that when it does V%

function by differenoe(v1gv2) = number of members of the set {I l if t1zib

=V2, we define a difference

are both in the Ith place in V1, V. respectively then they are replaceable

in V1

replaceable terms is replaced the difference drops. Consequently by

and V2§, Lemma 1.2 below then shows that every time a pair of

lemma 1.1, below it will eventually become zero and when it does, lemma 1.1,

below shows that we must have V,=V

155 and the algorithm will then halt.

We still have to show that the replacements take us in the correct
direction. First of all, V{iﬁi since by lemma 1.3, belom'Vi{ti/kg = Vi°
It is also immediate from this that when the algorithm halts, Vi Gi.: Wia
Now suppose that W is any lower bound of {WH’W2}° Then a lower bound V
is a product of Wq, W2 if the diagram of figure 1 can always be filled in

along the dotted line, so that it becomes commutative in a unique way.

S

‘iﬁgme1 ’ 1 2
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The category is the one defined above. In it there is either one
or no morphisms between any two objects and hence it is not necessary in
figure 1 to name the merphisms. Indeed, if a diagram can be filled in at ;

all, it can be filled in commutatively and uniquely.

We show in lemma 1.4 below that the diagram on figure 2 can be filled

in commutativelye.

Thus every time a replacement is made, the Vi are greater than any
lower bound of W W Consequently when the algorithm halts, we have.a

product. We now give the statements and proofs of the lemmas.

Figure 2

Lemma 1.1 If V1 and V2 are distinct compatible words, then there are

t1, t2 which are replaceable in them.

Proof By induction on words on V1. If one of V1, V2 is a constant or a
variable, or if they begin with different function symbols, then V1, V2
will do for t1, tz;respectively.

Ir V’I is ¢(t1,.”.,,t:1) and V2 is ﬁ(tf,..",ti), then for some i,
2
tl%ti and by the induction hypothesis, applied to tl, there are w, U,

which are replaceable in t1, t2 which have the same place im V V
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respectively, and so u, and Ug age also replaceable in V V N

1 1?

Lemma 1.2 If V V are distinct compatible words, then

-leference( ,V') < D1fference(V1,V )e

Proof By induction on words on V1. If one of V1 or V2 is a variable

or a constant then t1=V1, t2—V2 and V'-V' =X, SO O=Difference(V;,Vé) <1 =

Difference(V1,Vé).

If V, is f(v1,..o.,vn) and V, is g(u1,....,um) where f#g, then if
ti=Vi(i=1,2), O=Difference(V{,Vé) < Difference(V1,V2), by lemma 1.1;

otherwise

‘] 8 1 - 3 . 1 1
leference(V{,Vz) =1 1, min(m,n) leference(vi,ui)
< 1V+i=1,min(m,n) leference(vi,ui)

(by induction hypothesis, since m, nf0)

Difference(V1,V2).

In the remaining case where V, and V2 both have the form ﬂﬁ (t1"°"’tn)’

1

a similar but less complicated argument applies.
§ ] — S -
- Lemma 1.3 Vi{ti/x} = v5(1_1,2).

Proof Since Vi is cbtained from Vi by replacing some occurrences of ti
in Vi by x, and §ince x does not occur in Vi’ substituting ti for x in
V! will produce Vi(i:1,2).

3

Lemma 1,4 I V1, V2 are distinct compatible words and Vcra=Vi(i=1,2),

then there are @y, O SO that V CT;=Vi<i=1:2)-
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Proof Tt is convenient to denote by fi(u,],u2,t1 ,tz) the result of
applying the operation of I to uy (with u1 and U, starnding for V1 and
V2) for i=1,2, ;

Let the variables which occur in V be Fyseeeesyy and suppese that
- j 3 = a LJ- ? | 2 'j j
Y G-i"ui(1“1’2’ j=1,m) and choose O} so that Y Gi_fi(u‘l 255t ,tz)

(121 525 J=1 9m)°
By lemma 1.3, Y, 9375 O :.’L{ti/x} (i=1,2; j=1,m).

We need only show, by induction on words with variables FyseeresVy
applied to W that if W, W, and W, are such that W O, = Wi(i=1,2) then

Vo= fi(w1 ,Wz,t1,t2) = Wi, say (i=1,2).

Suppose W is a corstant; then W=W,| =W, and the result is trivial,

i)

2

Suppose W is the variable Y3 Then u:‘.z;-Wi(i:’l ,2) and so:

13

v J..J
yJ O- i - fi(u19u29t1»3t2)
£5(Wy o, ty585)

W:.'L(i=1 52)

i

Suppose W is ¢ (u,l seecs ’un)' Then Wi has the form ¢(w?{',.. .,wi’l)
. it it it 12 \ (s
and so W! is ¢(W’I’°°°"wn ), say, where W) =fi(wl,.w:1,-t t2),(1=’1,2; 1=1,n).

(i=1,2). y

1’

Therefore, W O ! ?5 (u1 (ol PRRRE LN

c4)

s g - 9
Sb (w?l’,o . ....,w:“l ) (by induction hypethesis)

=W.'°
1

" This concludes the induction and the proofs
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There is a more efficient version of the algorithm given in the
statement of Theorem 1. This involves fewer passes through W1 and W2.

It is a slight generalisation of the algorithm given by Reynolds (1970)._ ;

1 Set Vi to Wi(i=‘| ,2). Set 01 to £, the empty substitution

(i=1,2).

2 Try to find terms t1, t2 which have the same place in _V1 and V2
respectively and such that t1#i2 and either t1 and t2 begin with
different function letters or else at least one of them is a
variable.

3 If there are no such t1, t2 then halt. V1 is a l.g.g8. of

Q §w1gw2§m V,=V, and V; Bi =W, (i=1,2).

L TFind a variable x such that . 1q9i=ti(i:1,2). If there is ne
such variable, let x be a variable distinct from amy in V& or
Voo

5 Find an occurrence of t1 in V1 and an oceurrence, in the same
place, of t2 in V2 and replace the occurrence of t1, and the
occurrence of t2 by one of X.

6 Change 91 to {ti/XEGE (i=1,2).

71 Go to 2.

We shall adopt the conventionthatinf{W1,W2§ is the l.g.g. of W, and

Ve

W, produced by applying some definite version of one of these algdrithms

2
to {W1 nggo

2.2 A technical lemma
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The following lemma is useful in establishing the existence of

l.g.g.'s of clauses.

Lemma 1

Let K = {Wi‘i=1 ,n} be a set of words with a l.g.g. W and let

/Ici(i=1 ,n) be substitutions such that W A, =Wi(i=1 ,m)e

l._\

fro

Proof

minimal

=

Iro

If t occurs in W, then t is a l.g.g. of {t /ui|i=1,n}.
If x, y are variables occurring in W and x My = y/lzLi(:'L:’l ,n),

then X=y.

We can assume, without loss of generality, that the /“i are the

substitutions such that W M, =W, .

Evidently, t is a generalisation of {t /qi’|1=1 ,nl. Let u be
any other and suppese that u /’l = t/u.(i=1 ,n). Let

i i
T = {y1/x1,..,,.,yn/xm§ be a translation such that X,,.ce.5X
are the variable symbols of u, and u? and W have no common
variables. Let W' be W, but with every occurrence of t
replaced by one of u? . Then J = {x1 /Q,i/y,l,....,xm/l i/ym§u/li
is defined, using the minimality of /ﬂi(i=1 ,n). From the

construction of O3, W' Oy =Wi(i=‘l ,n). Hence there is a Y so

that W'Y =W, as W is a l.g.g. of {Wili=1 ,n}. Hence

1l

u (T v; (UT )Y =t. Sotisa l.geg. of {t/“ilifl ,nle

Suppose that yfx. Let W' = Wiy/x}.

Then W', W are not alphabetic variants, but W<W'.  Let

W= W, ’y’y3’““’y [x,y,yj,..,.,,ym], Where X,¥,¥gzsee e sy aTe

the variables occurring in W. We have:
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Wy :W_/“i:Wx,'y,yB,ﬁ...,ym[X/Mi’y/‘i’yB/u:’L"'”’ym/"(i]
- Wx,y,yyun,ym[y/“i’y/“ g Myeeeeo¥y Mgl
(by hypothesis)

:W o "0 O .
X,y,yB,.f..,ym[y,Y:YB,, ,yﬁ]l/u i

W'/uj_(by construction) (i=1,n).

This contradicts the fact that W is a least generalisation of

EWili=1,n§, Hence y=x.
This completes the proof.

2.3 Lattice properties of literals

Tt is possible to define the dual of the l.g.g. of two words.
The word, U, is a most general instance (m.g.i.) of V and W iff:

1 Vsﬂ'and w<u

2 If v<U! and WSU' then USU'°

Note that, by lemma 1.1, any two m.g.i.'s of V and W are alphabetic
variants. The relevant theorem here, is the Unification Theorem of
Robinson (1965). A version suitable for our present purposes is given

in the following }emma.
s

Lemma 1 (Unification Theorem) If V& =WO for some substitution 6 s

there is a most general umifier, (m.g.u.)/u , with the properties:

LVu =V
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2 For any O , if Y& =W & , then there is a A such that

U- :/Alo
Robinson gives an algorithm for calculating the m.g.u.

In terms of the category described in seetiom 2.1, there is a close

correlation between the co-product and the m.g.u.

Lemma 2 Let W T and V have no variables in common. Then W and V
are unifiable iff W and V have a co-product. If/ﬂ is an m.g.u. of W

and V, and U is a co-product, then U‘NW?.’/'{ .
We leave the rather easy proof to the reader.

In terms of m.g.i.'s, the appropriate remark, again easily proved,

iss

Lemma %3 Let WT and V have no variables in common. Then WT and V
are unifiable iff W and V have an m.g.i. If‘/ﬂ is an m.g.u. and U an

m.g.i. of W and V, then w"c]a ~ .

We can now define a lattice following Reynolds (1970). First
the ordering < on words is extended by adding special top and bottom

elements, /@"and JL respectively. So we consider the set Words+ =

fwlw is a word} ¥ {/@’,(ﬂa%o

More formally, < is defined on Words+ vto be:

{<W,v> W<V} U {< AW |wis a word} U {<W,db>|W is a word} U

i< A, >,
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For the rest of us the section, we will use, W, W', WO ete. to

stand for an arbitrary member of Words™.
The following facts are then obvious. ' !

. + . . . .
The relation < on Words is a quasi-ordering. The extension of

to Words+, defined by:

W~ W' iff W<W' and W'<W, is an equivalence relation. If we

consider the set of equivalence [W] classes of members of Words+:
(wl = {welwr ~ wi,

then the induced ordering, <, on equivalence classes given by [W]<[W']

iff W<W' is a well-defined partial ordering.
In fact it is a lattice.

Let us define Il and U as operations on Words ™" by:

1 alBIN W= 1B =1H
b If V and V' have an l.g8.8. U then [v] 1 [v']

#1.
(wln [Jb] = [w].

[U], otherwise

vlirm [v']
(b1 1 [w]

el

[(wl u [Jb] = [Jb].

i~
Y

a [Jb] Ll/[w]

(U], otherwise

b If V and V' have an m.g.i. U then [V] U [V']
[vlyu [v'] = [Jb].
c [ uwl=[wlu [#] = [w].
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Reynolds shows that Wordst is indeed a lattice under the (well-
defined) operations Tl and U . We will not consider the relativised
lattice obtained from the relativised generalisation relation. The ’

lattice is non—moaular sinces
[P(£(x),7)] < [P(£(x),2(y))]
but:

([BCx,x)] T [R(£(x),2())]) W [P(£(x),3)]
[P(x,y)] Y [P(£(x),y)]

[P(£(x),¥)]

[P(£(x),2(y))]

[B(£(x),£(x))] I [P(£(x),£(x))]

([P(x,x)I U [P(£(x),y)]) N [P(£(x),f(x)],

I N ’ i 1l

contradicting the meodular equality.

Let [W]<[W'] mean tw]i[w'], but [w] # [w']. Then {[Wi]ﬂizp}

is an infinite ascending chain iff Wi<Wi+1(i20)° Infinite descending

chains are defined similarly. One sees immediately that [P(f(x))],
[P(e(r(x)))],[P(e(£(£(x))))]..is an infinite strictly ascending chain.
Tt follows easily from Reynolds' work that there are no infinite

strictly descending chains and no infinite strictly ascending chains
i[Wi]ﬁi20§ such that every W, contains no function symbols. On the

other hand, the lattice is complete, that is any subset of Words™ has

a greatest common instance and a least common generalisation. Later,
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we will contrast this situation with that of a lattice of

. . . . +
equivalence classes of clauses which is even more irregular than Words »

i
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3. Generalisation theory of clauses

The theory of the generalisation relation, <, defined on clauses

is developed in this section.

3,1 Elementary properties

The relation < is a quasi-ordering and /v is an equivalence relation.
However, two equivalent clauses need not be alphabetic variants. For

example, let C = {P(x),P(£())} and D = {R(f())}.

As neither C nor D are tautologies, this gives an example, with

Th = @, where C ~V D (Th) but C # D.

We develop a slightly more complicated characterisation of
equivalence. The clause C is reduced iff D € C, D ~/C implies that
C =D. In other words, C is reduced iff it is equivalent to no proper

subset of itself.

A clause C is a reduction of a clause D iff it is a reduced subset

of D which is equivalent to D.
Lemma 1 Suppose that C/M- = C, Then

. ng _ ‘ . .
1) TFor somf£1nteger, n031, L’/L = L for every literal L in C

and x /M B0 _ x for every variable x in C.

2) The substitution/ﬁA maps distinct variables of C to distinct

variables of C.
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Proof 1) Define a mapping 7y : C -> C by L) = L/M . Since
C/M = C, T\ is onto and therefore, as C is finite, T is a !
permutation. There is therefore an integer, nog_’l such that
7t "0 = (, the identity permutation. So if L is in G,
L M 0 - mU0(L) = (L) = L. Let x be a variable in C.
Tt must occur in some literal, L say, in C. As L /uno = L,
it follows that x /1,{ 10 x. (Strictly speaking, this last

step requires an easy proof by induction on words. )
2) This is an obvious consequence of 1).

Tn order to calculate reductions of clauses, a slight variant of

the test for subsumption is useful (Robinson, 1965).

Lemma 2 Let C, D and E be clauses and let g: {a1()/x1,o,.,,an()/xn}
where X1,...,Xn are all the variables in B and the a, are distinct
constants. Then there is a O such that Ec €C and, for all L in D,

Lo =LiffES <CO .

Proof Suppose there is a ¢ satisfying the conditions. Then
X, & = %55 for all i and so SGS=O~S, for x, 8(5‘8 :ai():xig
= xio—S and if y é Xss for any i, then ySG‘S =y O"S,. Therefore,

Eod =ES0 S S 8 which shows that ES < C§ .

Suppose that E b < C S . Then there is a substitut‘ion/& such

that B S/u c c$. As E & contains no occurrence of an X, We may
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assume, W.l.0.g8e, that Xi/L =X, for all i. Therefore, if L is in E,
L/VL = L. Further, as above, S/MS :/a %) .  Therefore,
E/{AS =B 3/48 c ¢ 88 =¢c8§ . As g maps distinct variables to

distinct constants, we see that E/IA S C which completes the proof.

The question of the existence of a substitution satisfying the
conditions of the lemma can, therefore, be answered by using the standard

test for subsumption.

Theorem 1 If C ~ D and both C and D are reduced, then they are
alphabetic variants. Every clause has a reductien. The following

algor"it.hm gives a reduction, E,| , of a given clause C.
1) Set E, to § and E, to C.
2) Iif E2 is empty, stop.
3) Choose a literal, L, in E,.

L) If there is a substitution < such that E?G‘ < (E‘l v E2) \ L}
and M G = M for every literal M in E1 , then change E2 to
E2°-\ E1 o Otherwise remove L from E2 and add it to E1<>

5) Go to 2).
A

A
(To implement step 4, one finds a g as described in lemma 2 and
then tests whether EZS < (E2 \ @S . In doing this one can

increase efficiency by noticing that if B S~ = (E2 N )&  then

I ) 86' is in E2 8 o Therefore one need only calculate all the‘
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minimal substitutions O(J=1,s) such that L SO“j is in B, S

testing for each,in turn, whether E, 5 5_3 < (EZ \ ) S ).

Preof  Suppose that C &~ D and C and D are reduced. There are
substitutions G and M- such that C U‘é D and ?/u,é'q. ?herefore
Cc}u < ]}u < C, l}s C is reduced, C oM =_Q. Thereforé, by
lemmsa 1, q%d ﬁaps distinct variables of C to distinct variables of C.
Hence O  maps diétinct variables of C to distinct variables of D.

New D < C6& since D/(A.O‘ S ¢ o~ and therefore, as Co- €D and D is
reduced, C o~ = D, Combining this with the fact that O~ maps

distinct variables of C to distinct varlables of D, we see that C and

D are alphabetic variants.

Next we show that any clause, C, has a reduction. Let
H={pD €¢ | C<D}. Let C'be a minimal, with respect to <,
member of H. We claim that C' is a reduction of C. Certvainly
C' € GCand C'A Co If C' is not reduced, it has a proper subset
C" which is reduced and is equivalent to C'e.  But C" must be in H,

and this contradicts the minimality of C.

The algorithm always terminates since the number of literals in

E2 always decreases by at least one every time round the loop.

i
e
£ f . .
Let E1 and E2 be the final values of E,,‘ and E2 respectively,
We show that Ef S C and C < Efo The first assertion is obvious.

~

To prove the second, suppose that E,| and E2 have the values Eq'
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and B! at some stage when the execution reaches step h7and the values

2
Ejl’ and Eg immediately after step L. We show that E,I v, Eé < ESI' v E'Z’.

Suppese a suitable O exists. Then EJ = E} SN E; and

E‘fl' = EJ’I’ = E}0°. Therefore,
i - i

T 1 _ 1 ? — t 4 ]
(E1 v EZ)G‘ =E6 UBlo™ = E] U (EZG' \E1)
— L1 #1
= B! U E.
If no .suitable & exists, E,I U Eé = E? v Eg since
ESI’ = E,; v {LE and Eg = Eé \ {L} for some L.

Tt follows easily that at every stage of the execution,

E1 V) E2 < Ef v Eg = Ef. Applying this to the initial values, @
and C of IE1 and E‘2 we see that C < Ef as required.

We show next that Ef is reduced, which will completbe the proofs.
The proof is by induction with the hypothesis that there is at any stage

a clause E which is a reduction of E’l v Ezland contains E1.

This is true initially since E1 = @ then and we have already shown
that every clause has a reduction. Suppose E,;‘, Eé, E',l’ and E’z’ are as

described sbove and that B 2 E1’ is a reduction of E," v Eé.

Suppose theré is a suitable O as described in step k. Then

EC2 Elc =E = BY.  Further EG‘E—(E{ UEé)o- =E U B <

E! ) By <E<BC . Therefore B~ (B} U E}) ~ E. There is

therefore a subs’citution/u such that E a;%SE. Therefore E o?u ~ B
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and as E is reduced, EG/A = B, By lemma 1, 6‘//‘ maps distinct variables
of E to distinet variables. So therefore does O and so E and E ¢ are
alphabetic variants. Therefore, E G is reduced, equivalent to i

? 1 2 ?
E’I v E2 and contains Eq.

Suppose there is no such suitable c . Suppose alsoe that the
literal L chosen in step 3 is not in E. Then there is a/{A such that
(131v ] Eé)/AEE (E‘ v E) \ {Ll. As B < (E; U Eé),

E i < (E,r v Eé}(,{ < E. Therefore, as E is reduced B s = B. By
lemma 1, there is an integer ng > such that M/M—no = M for every
literal M in E. Then/m B0 j5 a suitable substitution in stage L as,
if M is inE13M/unO:Mas E, S E end (E v By M0 =

(8] UB) g . w"0McE M0 o p & (m U B \ (B, This
contradicts the assumption that L is not in E. Therefore L is in B
and so Eil’ = E1' U {1} € E and furthermore, as Eﬁl' L E'z’ = E1' U

is a reduction of E}I' U E’z’ which concludes the inductive proof.

Applying the result to the final stage we see that there is a clause

" 2 Ef which is a reduction of E’lf U Eg = Efo Therefore Ef € E S Ef

and so Ef is reduced completing the proof.

Corolilary - C ~ D iff any two reductions of C and D respectively are

alphabetic variafits.

Preof Obvious from theorem 1.

It is convenient to develop a characterisation of equivalence
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between sets of clauses at this point.
This relation is defined by:
H~H' iff H< H' and H' < H.

A set, H, of clauses is reduced iff H' £ H and H' v H implies that

A set, H', of clauses is a reduction of a set, H, of clauses iff H'

is reduced, H' -V H and H' € H.

Theorem 2 If H* »~ H and H' and H are reduced then there is a unique

bijection @: H' -> H such that 6(c) ~ ¢ for every clause, C, in H.

The following algorithm gives a reduction, H', of a given set of

clauses H.
1) 8et H' to He
2) Stop if every clause in H' is marked.
3) Choose an unmarked clause, C, in H.
L) If H' \ {c} < {C} then change H' to H' \ {Cl. Otherwise

mark C.
ps

s

5) Go to 2).

Proof Choose 6 H' -> H so that G(C) < G for every clause, C, in H'.

This is possible as H' < H.
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Similarly one can choose a mapping @': H -> H' so that
9'(C) < C for every clause, C, in H.

i

Then, if C is in H', ('(&4C)) < 6(C) < C. But H! is reduced

A

and therefore £'(6(C)) = C. Similarly, if C is in H,
6 (0 ()

too that C

C. Hence D is a bijection with inverse @'. We see

il

f'(e()) « () < C. Therefore é(c) ~ c.

If O" is another bijection from H' to H such that @"(C) v C
for any clause C in H' then it must also have 8 as an inx}er*se by a

similar argument to that above. Therefore 8= 4.

Since the number of unmarked literals in H' decreases vby one every
time the execution of the algorithm goes round the loop, the algorithm

terminates.

TLet Hf’, be the final value of HY, It is evident that Hfﬂ € H

and Hi" < H and indeed that Hf’,_S,—' H' and H%, < H' for any value of H',

To complete the proof we need only show that Hi', is reduced.

If it is not we can find a marked clause C in H! such that

f
Hl:. \ {c} < Hl;. Let H' be the value of H' just before C was marked.
4 o) T ; v t 3 7 v
Then Hf \ fcy 2 B\ fcl, as HY 2 H, end Hp \ {c} in;_H,l

Therefore HI \ ] < HY < {c}] which contradicts the fact that C is

marked in Hf. This concludes the proof.

Corollary 2 HJI FaV H2 iff given two reducti':ofris H,]' and Hé of H,| and

H2 respectively there is a bijection, 4 y from H,; to Hé such that
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that ©(C) ~v C for any clause C in H,.

Proof Obvious from theorem 2.

3,2 Least general generalisations of clauses

A least general generalisation of some clauses is a generalisation
which is less general than any other such generalisation, For example,
a least general generalisation of the clauses {Trow(crowl), Black(crowl)}
and iazgﬁ(crowé), Black(crow2)} is {Crow(x), Black(x)}. This may be
viewed as an induction from ®This erow is black® and "That crow is black®
to "Al1l crows are black®., This is a much more satisfying phenoﬁenon
than our induction of "Everything is black™ when we were restricted to

literals. We shall give a rather less trivial example later.

The opefation of taking a least general gene£alisation;followed by
a reduction of the result will play a major role in algorithms for finding
nicest explanatory hypotheses. Reductions afe taken in order to make
the output mbre perspicuous and in order to reduce demandé on the intermnal
storage space éf'the computer beiﬁ% used to implement such algorithﬁs.

Both these points will be illustrated later in this section.

Let H be a set of clausess The clause, C, is a least general

generalisation (Wﬁich is abbreviated by legege.) of H iff:

1 For every D in H, C < D.

2 If for every D in H, C' < D, then G* < C.
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Any two l.g.g's of H are evidently equivalent.

In an analogous way, we say that C is a least general !

generalisation of H, relative to Th iff:
1 For every D in H, C < D (Th).
2 If for every D in H, €' < D (Th) then C' < C (Th).

One sees that if C and C' are l.g.g.'s of H (relative to Th),

then they are equivalent (relative to Th).

By temporarily introducing some auxiliary syntactic concépts, it
is possible to give a short demonstration of the existénce of least
general generélisations of a finite set of clauses. Wé consider‘
sequences of literals including the null sequence. A 1iterai is
identified with that one element sequence whose only meﬁber is the
literal. The behaviour of sequences of literals is very similar to

that of literals,

n
7r( Li is defined to be the séquence with n members whose ith

i=1

member is Li' Ngtice that if n=0, this is the null sequence. We

Va

extend the meaning of the TT operator, so that sequences themselves

may be "multiplied",iby:

noo(d)
Z:S[ ( ‘?3 Lij) = L,Hn.eoL1m(1),ooooLn'l?,,,]'_,nm(n)
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The reader is left to provide proper formal definitions.

Powers of literals are defined by: ;
n
n

- TIX s = L.
L = i=1Li’ where, for every i, Li L

Application of a substitution to a sequence is defined by:

<1731Li)°' = ,i.lq(LiG')o

m
The sequence WL is a generallsatlon of ]\-M iff for some &

(TFL ) & = 7TM . This is written symbollcally as NLl < J'R;MJ.

Notice that if this relationship does hold then n=m.

We leave the reader to provide e definition of a least‘general
generalisation efa.&i ef seQuences of literals and to eﬁlarge the
definition of word, place and occurrence given in 3.1.1 to inelude and
apply to sequences of literals. Notice that no word can appeaf in any

place other than the <>th in the null sequence.

: n m '
Two sequences gT.Li and 3§;Mj are compatible iff m=n and for
every i between 1 and min(n,m) Li and Mi are compatible (that isy
have the same predicate letter and sign). The next lemma shows how

to calculate l.g.g's of sequences and when this is possible.

/’; .
Lemma 1 Every non-empty finite set of sequences of 1iterals‘has a
least general generalisation iff any two sequences in the set are

,compatible(

n m , a0 ,
Let ZZI'ILi and jT—T1Mj be any two compatible sequences of literals.
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The algorithm given in theorem 3020101 may be applied to them., It
terminates at stage 3, and the assertion made there is then correct.

!

Proof We do not give the proof which is directly analogous to that of

theorem 3.2.1.1,

0f course one could also use Réynolds' (1970) algorithm, given in.

section 3.2.1.
The next -lemma relates lig.g's of certain related sets of sequences.
h n n n
Lemma 2 Let .T(L. be a lego.g. of T(M and FUN..
e T £y R . 1=1"1 i=11

. n
1) If T is a permutation of the numbers 1,...,n then :v-.’;‘:lLﬂ(l)
n .

. n
o 4 7v 7 .
is a le.g8eg. Of i=1M‘n(i) and i:’an'(i)

n
2) Let n, be positive integers (1<in). iELIili is a lege.ge
n n
of JUME and JUno,
i=17"1 i=11

nt

_ n'
: . ) ,
3) If 1<n'<n then i;=(1Li is a l.gege of ::r:[l M, and AR

L) Let ™ be a permutation of the numbers 1,...,n and let n.
: L
i

) Il . . o} ni .
be integers (1<i<n). ELI,;J(LI) is a l.g.g. of :Z-:‘;Mn(i) and 17; (1)

Proof 1) and 2) are obvious. The proof of 3) is analogous to that of

lemma 3.20201 Pgrt L) follows immediately from the other three parts.

This concludes the necessary supply of lemmas on sequences of

literals.
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A set of literals K = {Li | i=1,n} is a selection from

H= {Ci Il i=1,n} iff L:.L is in Ci (i=1,n) and any two literals in K are

i

cempatible. To see the motivation for this definition, suppose that
E<C, for every i. Then there are O‘i such that E c . < Gi for
evéry i, Choose a literal L in E, if it is not empty. (L S, I i=1,n}

is a selection from H.

Theorem 1 Bvery finite set, H, of clauses has a least general
generalisation which is not ,25 iff H has a selection. Let C and D be two
clauses Wlth selections EM SN }D where 1<:L<n) 50 that C and D have at

léast Qne_“s-elictlon, et 7TL be a l.g.g. of .7TM and TSN o Then

| i=1,d1%s a 1.g.g., of C and D.

Proof We demonstrate the last part first. Bvidently {Iii | i=1 ,n—} is
a generalisation of C and D. Suppose E = §Lj‘ | j=1,m} is a generalisation
of G and D, . Then there are substitutions O and/f/1 such that E6~S G and
E/u € D. Therefore {L"J S, L'./{A }ois a selection from C and D' for any
Je Consequently we can find a permu‘tatlon "’ of the numbers 1,,...,,n and
integers nl > 0 (1 1,n), such that 7YL' is a generallsatlon of 5 Mn
n
TUN L. 2. Mo is a l.g. ;
and {11 By lemma 2.3, 7TL7[' 1) is a l.geg. of the 1atter two
. | ﬁ- 71:‘1- N v
) - . 1 s _ .
.sequenceso Therefore =1 5 1=1L7t(i) and so E < {Li | i=1,n} which
‘ é
proves that {Li. | 4=1,n} is a l.geg. of C and D.
Notice that if some combination of sign and predicai:e letter occurs

in both C and D then it also occurs in {Li I =1 ,n}. Therefore, if a

finite set, H, of clauses has a selection it has a nonempty least general
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generalisationAebtained by repeatediy taking 1;g.gfs of'peirs-of
clauses in e eiﬁilar way to that in the.proof of theorem 3.24&.1.
~Suppose H has no selectlon. Then it cannot have a nonemptj ;
generalisation° (See the remark after the definition of selectlono)

Therefore its only, and hence its least, generalisation is @. This

concludes the proof .

It followe ffem lemma 1, theorem 1 and its proof that one can
effectively obtaln the l.g.g. of a flnlte.nonempty set of clauses,
Consequently we can find an effective function inf from sets of
clauses to clauses such that if H % ¢ then 1nva is a l.g.g. of H and
(for convenlence) if H = ¢ then inf H is some fixed tautology.. This
definition seems to confllct with another deflnltlon of 1nf glven in ‘
302016 However;‘we can define inf s0 that 1nf{{-l l i= 1,n§ ; 1nf l i=1 ,ni,
where the new definition is belng used on the left and the old on the

right of the equation. This follows from the following:

Qerollarx 1 A literal L is a l.g.g. of two literals M and N iff {L} is

a l.g.g. of the clauses {M} and {Ni.

Proof If {L} is'a l.g.g. of {M} and {N} then it is smmediate that L is
& 1.g.go of M and N. If L is & l.geg. of ‘M and N then {M} and {N} have

a selection and the result follows from the second part of theorem 1.

Thus identifying literals with the corresponding one élement clauses

would not cause any conflict between the two definitions of l.ge.g. This

,‘is not a trivial result.




-8~

Here is a less trivial example than the one presented at the

beginning of this section.

Suppose that some two-person game is being played on a board with
two squares, 1() and 2() and that the positions in figure 1 are won

positions for the first player:

X0 | X[X

Position p1()> | Position PZ()

Figure 1

1() is the name of the left hand side square, and 2() of the right

hénd square; p1<)-and pé() are the names of the po;itions and O(); X()

are the namés'of the marks O, x. The use of p, n1; n, as variables

is temporary. We describe the fact that these positions are wins by means

of the following two clauses:

1o 1855(10),%0)5p, ), T55(20),00),p, ()5 Win(p, O]
2. {555(100,20),5,0))s 0e(20),%(),p5())> Win(p,())]-

The course oﬂ;the calculation is indicated in table 1,
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0oc (1(),%0)5p, ()) Vec(1(),X(),p)
E(’] ()9X(),P2()) 66—5(1()9X()9P)

002 (1(),%(),p,()) Tec(1(),2(),p) Occln, ,X(),p)

BEE(ZG)',X(),pZ()) E(Z(),X(),p) 6?(?(1’11 ,X(),P)

Be0(20),00),2,()) B55(2(),00),p) Toa(2(),0(),p) Bee(n,,0(),p) Toc(nys*,p)

555 (10),20)50,()) Toa(1(),X(),p) T6(1(),X(),p) Toa(n,,X(),p) Too(ny,x,p)

‘633(2():0()3131()) 6};(2(),0('),1)) 63;(2()30():17) E(Q(),O(), )E(z()’x’p)

055 (2()»X(),p,()) oc(2(),x(),p) Tec(2(),x(),p) Tec(2(),x(),p)0ec(2(),x,p)

win(p, ()) Win(p)
 Win(p,()) Win(p)
Table 1

Each vertical column displays on alternate rows the sequences M1
and M2 at én instance of'stage 2 of the algorithm of thédrem 3,216l
We find t1 and t2 by searching through M1 and M2 from left to right which
is top to bottom in the table. As soon as two literals Have become the

~ same in a column, we do not mention them in subsequent columns.

Thus the least generalisation is:

’

| 553?(1 ( )sx( ) a’P) :‘0_55(111»9/}(( ) sP )60?(112 3‘X9~P7) :‘6-53(2( ) :Xsp) 9Win(P)§ °

‘We use the algorithm of theorem 3.3.1.1. We can take L=00c(n1,X(),p)

and & = §1()/h1§. This gives
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E,=C0 = im({"l(),x(.),p), Egg(ﬁzﬂxsp): 6?(;(2(»),}(913); Win(P)} and

"E, = P

1
' !
Next, we can take L=635(p2,x,p) and O = {2()/n2§ and obtain
E2 =00 = 26&;(1()9)(()913)’ 6&;(2(),}(,:9), Win(p)} and E1 = #.

After this every literal in E2 goes into E1 and eventually,

15 500_061()5}((')&)9 BC;C/Z(),X,p), Win(p)} and E2 = p.

td
i

The aigofithﬁ stops at this point.. The final'cléuse says that if
a position has anlx in hole 1 and hole.2 hés something in it, then the
positioh is .a Win,.which, given the evidencé; is fairly reasoﬁa‘ble°

The main.éomputational weakness in the meth@d‘for finéing a
reduced 1ea§t generalisatiqnylies-in that part of the reducing:algorithm
which ;équirés a tést for subsumption. For éﬁﬁposé that we éreilooking
for the i.g.golﬁf two claﬁses each with niné 1iterais_in-a single prédicate
letter (thisveaﬁ arise in descriptions of tic;tac-toe, sa&); there will
be at least eighfy—one'literalsvin the raw l.gego, énd we‘wiii have to
try to fgll whether or not a cléﬁse of eighty;bne literals subsumes one

of eightye.

It may very well be possible to find an algorithm which alternates
= 4 R .
the processes of finding an l.g.g. and reduction. . In this way, in the
'ticetag—toe example, for instance, sequences of eighty—onelliterals

- simply mighfwnot arise. Unfortuﬁatély we have not investigated this

~ possibility.




S
_

22
R

-87=

3.1 Lattice properties of clauses

It is possibie to define a lattice of equivalence classes of clauses ;
i
in a way analogous to the construction of the lattice of equivalence
classes of literals, given in 3.2.3. Once again, we will not consider -

the relativised lattice one could obtain using generalisation relative

to Th. .

Therlattice,.élthough not in general modular, does have a limited

form of distributivity.

We a1SO’give a repre;enfatidn theorem which shows thatvfheAgeneralb
clausés'can be réached by a single lattice operation from thélground
clauses. Héweﬁer it is not possible in general to take supé or infs of
infinite se%sﬂaﬁd ﬁg give some counfer—examples° We also give examples
of strictly aséending and descending infinite chains of clauses with one
binary preﬁicéﬁe‘gymbol and no funotibn symbols. This is in strong
cbnstrast with the lattice of equivalence classes oé 1ite£ais where such

chains (and all strictly descending infinite chains, even with function

symbols) are impossible.

The representation theorem in the form of theorem 3.3.1.4. will
prove a useful‘t09J in later chapters. Section 3%3.3.2 on the infinitary
properties of the lattice will be a source of oounterexampies for various

conjectures. The rest of the material is not essential.

%3.3.1 Finitary properties

Before we are able to define the lattice, we need the dual of
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the notion of an l.g.g. of two clauses.
The clause C is a most general instance (m.g.i.) of D and E iff: s

1 D<Cand E< Ce

2 For all C', if D< C' and E < C', then C < C'.
Evidently, any two m.g.i's of D and E are eqliivalento

Lemma 1  Let § be a translation such that D E and E have no common

variables. Then D§¥ V E is an m.g.i. of D and E.

Proof 1 D<D¥ < DY UE.

2 Suppose D < C' and E < C'. Then D§ < D < C' and so, for
some minimal &~ and AL, DE(S-_C_C’ and E/M.S-: C'c Since o~ and M are
minimal and D } and E have no common variables, CJ‘U/M exists and
PfVUESUM) = DSs UEM) € C'U C'=C'.

We may now define the lattice. Let

[c] = {c* ‘l ct~ Clo

This set can ;ge made into a lattice by the following definitions.

1 [c»] m [_D] [.inf{.C,D}]

2 [cl v [p]

[c5UD] where § is a translation such that C}

and D have no common variables.
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3 [c] < [p] iff ¢ < D.

One may see from the definition of inf and lemma 1 and the
properties of ~/ that this does provide a good definition of a lattice.
Notice that since m.go.i's and l.g.g's always exist, it is unnecessary

to add any special elements. There is a natural bottom element, [ﬂ],

for # < C for all C.

There is, in general, no top elemént; For example suppose
By (i>1) is an infinite set of distinct predicate symbols. Then there
can be no clause C such that {Pi(x)§ < C for all i. Altérnafively let
P be a unary prédicate symbol and_f a unary function symbol. There can
be no clause C such that {P(fi(x))§ < C for all i. However, suppose we
consider only the equiValence olésses of tho;e clauses whose predicate
symbols gomé from some fixed finife set whqse function éymbols are all
from some fixed fiﬁite set and whose terms have depth less than or equai
to some fixéd infeger. "~ This set of equivalence classes forms a
sublattice of the iattioe of equiﬁaience_olasses of clau;es.as may be
seen from lemma f and the remarks preceding the definition bf inf. The
sublattice has a top element, namely [{L | [{13] is in the sublattice

and the only variable in L is x}].

The lattice 4 not modular, in general, for if one takes

[c]
(D]
[E]

[{a(x),P(£())}]
[{Q(x),P(£()),P(x)}]
[{a(£()1]
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~ then C < D but

(t€] N o)) u [c] .
= ([fa(O)}T M [fe(),B(£()),P(x)}1) U [c]

ta=)i1 u [ie(),P(£())}]

[Q(3),0(x),P(£0))}]

[Q(x),P(£())}]

{P(£()),P(x),Q(x)}]

(P(£()),e(£)}] M [1e(x),P(£()),P(x)}]

= [{e(x),P(£0)),a(£())}] A D

= ([fa(zO)] b [fa@x),p(s())31) N »

= ([8] W [c]) N [D]

[
[
= [
A1
(

This contradicts the modular equality. The corresponding non-modular

sublattice is given in figure 1.

Lip(£()),QE())}]
[{B(£()),P(x),Q(x)}]
[{al£()]3]
[{a(x),P(£())}]
[1Q(x)1]
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However we have:

Theorem 4 1) If B and C have no common ground terms, then ,

(a1 0 ((s] U [c]) = ([a] A [2]) U ([a] A1 LeD),

2) If A and B have no common ground terms and A and C have no

common ground terms then

[a] U ([2] M [c]) = ([al b [BD) M ([a] W [e]).

Proof 1) First of all, it follows from lattice theory that

(5] = ([a] 7 [8]) U ([a] A [c]) < [a1 1 (8] U [cD).

That is, [E] is a lower bound of [A] end [B]l U [c]. We show

that it is the greatest and hence that equality holds.

Suppose [D] [A], [D] [B] U [C] We need only show th»at

LD] < [E] to prove the theorem.

As [p] < [3] W [c], there is a o so that Do~ € B’E U ec wheref
standardises B and C apart, and so we can set D = D1 V] D2 where

D, o< B; H DZO' < Co- Now if D and D, have a common variable x,

then B } and C have a common term X O" which is 1mp0531b1e - for it

cannot be ground s B and C have no common ground terms and it cannot

be general as § standardlses B and C apart. Hence D1 and D2 have no

- common variable and so; [D] [D ] U [D ]

Hence as [;D1] i: [p] < [A] and [D1] < (8],
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[p,1 < ([a] 11 [B])
similarly [D,] < ([a] M [c]) | ;

Hence [p] = [D1] Ll [D2] < (a1 3y u (falm [cl) = [E]

which completes the proof.:
2) Applying part 1 three times, we get

(Cal U [8]) 1 ([a] W [c]) = ([a] M [aD) L ([aA1N1 [cD)
U(B1M (a]) U ([3] 11 [eD)
= [al U ([B] N [c]), since
[al 1 [a] = [a); [A] Ly ([a] 17 [c]) = [A]
and  [A] W ([B] T [a]) = [4]

by the &bsortive laws.

Corollary 1 The sublattice containing only the equivalence classes of

those clauses which do not have any constant symbols is distributive.

Proof Note that this 1§ a sublattice, since if A A B then A has no
constant symbols iff B has none and [ and LJ do not 1ntroduce constant
symbols. Dlstrlbut1v1fy is then 1mmed1ate from Theorem 1 as B and C
have no constant symbols implies that B and C have no ground terms (and

hence no common ongs).
Vi -

We cbﬁjecture the following converse of theorem 1:

re (4] 1 ([B).10 [c]) = ([a] 11 (31) L1 (L1 11 [e])

 for all A, then B and C have no ground terms in common.
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However to completely "understand" distributivity (or similarly
for any other lattice properties) it would be best to have.aunecéssary
and sufficient simple syntactic criterion for A,B,C together for ,

satisfaction of the distributive law.

Representatibn»theorem

We need some definitions:

Let Xys Xpy eoo be all the variable symbols written out as an

infinite 1list.

et &= {h() /% 5000500) /x}
T = (8@ /%y eeest (BO) /%)

Theorem 2. If C does not contain the unary function symbol f then for

all n,
(el =[c §,1M [c ¥l

Before‘?foving this, we remark that by choosing n large enough,
we can expréss the equivaience class of any clause as the meet of the
equivalenCevélasses of two ground clauses. This theorem enfails
Reynold®'s Theorem 8 for literals, as can be seen using corollary 3.%.2.1«

P

s : .

However in this special case, one can strengthen Theorem 2 to:

Theorem 3. For every literal L and every n,

[{nil = [y § 1M iw ¥l
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We do not give the proof of theorem > which is a modification of

Reynolds' proof of his theorem 8.

In general, one cannot remove the hypothesis of theorem 2. For if’

c EP(x ) » P(f(x, W
smefe 8,0 ¥,1 =fp(x) 5 B(y) , P(E(RO)) ;5 PG
), B(EMO)) 5 P(E()) S
P.

We need some more definitions and a lemma for the proof of theorem 2.

Suppose W is a word. Then W' is obtained from W by continued

application of (*) until this is no longer possible.

(*) Let n be the largest positive integer such that £2(n()) occurs in W.

Replace every occurrence of £2(n()) in W by X o

Suppose - O = §t1// yq,oo,o,tm// ym§ where the y; occur amongst

the x,. We define ' = {t;,’ y1,.o,,té'/ ym§o
Lemma 2,1 Suppose W does not contain f. Then
N V1o~
L (WY =W
2 Wo) =W o

Proof 1  This is obvious.

2 By induction on words on W.
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Proof of theorem 2

Evidently C is a lower bound of C Sn and C Xn' We show that o

!

ifD<C Snandng_Cf B’nthean_C.

Since D < C Sn and C does not contain f and Sn does not

introduce f, D itself does not contain f%
For some O ,‘ DG €C Tn.
Let L be in D. Then for some M in C
Lo =N f)’n

Hence L &' = (LG )' (lemma 2.1.2)
= (M)
= M (1emma 2.1 01).

Hence D &~ ' < C, which concludes the proof.

For practical applications another version of the représentation
theorem is convenient. Let aij (i,ji1) be a doubly infinite sequence

of distinct constant terms chosen so as to leave at least denumerably

mé.ny constants unused.
Ki ’)L 5 . :
Let j-:{ai1/x1’ccoo’aij/xj§ (J:>=1).

Theorem L  Suppose C does not contain any of the aij' If ifi' then

for a1l §, [C=[C e ¥




g
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Proof Evidently C < C ‘b’; for all i and Jj. Let W be a word.W® is
obtained from W by continued application of (**) until this is no -

longer possible, §
(**) Replace an occurrence of aij by one of Xj

R i . ‘ #_§ 40/ L S
If Cfiuitq/y1,°°,o,tn/ym§ then CT»-{t1/51,oooa,tm{ym§o fhe rest
of the proof is exactly analogous to the proof of theorem 2; the rocle

"

of the operation, ', being played by the operation, ".

30302 Infinitary properties

T+ is shown here that the lattice has no pleasaht infinite
properties. It has strictly ascending and descending chains and is

incomplete.

Infinite chains

We write C < D when C ¢ D but not D g Co

| 1> 1} is a strictly ascending chain of clauses.

iff G, < Oy (i »1). Strictly descending chains are defined

similarlys

We could define [C] < [D] When.[C] gj[D]:but not [D] < [G] and say
that E[C ] | 1> 1} is a strictly increasing chain of equivalence classes
of clauses iff [C 1< [C ] (i > 1). But since {[Ci] | 4> 1% is

strictly increasing iff Ci | i 2,1§ is, we prefer to deal with clauses

rather than equivalence classes of clauses. A similar remark holds for
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descending chains.

We will give examples of both ascending and descending chains using
f

positive clauses with a single binary predicate symbol P and no function

symbolse

Such a clause can be pictured as a graph whose nodes are“the variable
symbols appearing in the clause. The graph has an arc from x to y if and

only if P(x,y) is a literal in the clause.

Thus to {P(x,y), P(y,z), P(z,x)] corresponds the graph:

Figure 1

If C‘l o i ECZ then ¢ is a homomorphism of the corresponding graphs
and in fact there is a 1=1 correspondence between such substitutions and

graph homomorphisms.

We do not use this correspondence in any formal way, but with its

‘help the reader should be able to see the truth of the various theorems.

A

Here is an example of a strictly ascending chain. ﬁefine

€y I i‘i’l by C gP(XOSX )}and C; = Cy_y Uél?(xi-1 9xi)} where the

x, are all different. In graph terms, Ci is the chains
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. ) o 1 C »
Evidently Gi < Cim as ~Ci c Ci+1 Suppose Cib‘ c Ci—’l

If x, o~ =X, then as P(xk,x 5oq°

k+1) is in G, P(xl,xk+1d’) is 1n C.

Hemce x,_ o = X1, 88 P(xl,xlﬂ) is the only literal in C,i+1"‘that

has X, as its first argument. Thus it follows easily that b‘is
injective = but this contradicts the fact that C has i variables and

. C. only i-1, Hence no such © ex1s’cs and C i C.

i=1 i-1°

This chain is bounded above byZ:P(x,x)} for C, O ='§P(X,x)3whér\e' -
={x / Xy 9o0e,X / Xi§ « The ascending chain could have been produced
' ‘ i
in a trivial way by using a unary function, one takes the clauses

zQ(fl(x)_)}, or we could use an infinite supply of unary predicate symbols

Qil and take -the ohain:
[ i > 1} where c, —EQ (x)} Ciq = U§Q1+1 }

With a little more effort we can produée a strictly Qescendipg'
chain. et [1,n] (i‘_>_ O, n > 1) be the equivalence class of i under
congruence modulo n. Thus [0,2] is the set of even integeré.‘ Let
X[i,n] be an infinjte supply of/', variables labelled by the set

{[i,nm] | 1 >0, n > 1}.

We define the positive clause Dn in the binary predicate letter

P, with no function symbols and whose variables are a subset. of
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{X[i n] | 1 >0, n> 1} by
9

¢ D 3 '
PO ) 5,000 ¢ P 2EE /

m=1=mnandj = i+l (mod n). D contains n literals.

" In graph terms, Dn is the cycles

; Z
| ) |

[1,0] " 2,n] T * TP [net,0] T2 a,n]

Figure.B

‘Then we will shbW that:
§D2n | n>1}] is a strictly descending chain.
Let TTQ be a sqbstitution such that

x[132n+1] ?rn': x5 0"

n+1

Such a U exists as if 1 T § (mod 2°7') then i T j (mod 2™,

i

Then D2n+1 2fn

{P(x[i92n+1]9 X[i+132n+1]) ]fﬁ | 0 < i< n

{P(x[is2n]9 x[i+1,2n]) | 0 < i< nl

il

D2no

On the other gﬁndg suppose that 6:155 a substitution such that
n = ° » ; = y

D2 crn.._ D2n+1 Let x[192n] G n x[132n+1]

We will show by finite induction that if

n
1 <1< 2 then xr. ,n n+iq 6
- = [i,27] ]

On = ¥[141-1, 2
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This is true for i=1. Suppose that it holds for i. Then as
L = P(x[192n]9 X[i+192n]) ¢ Dyn, it follows that , ;

L o, = P(x[i+1=192n+1]9 X[592n+1]) say. Hence by the

n+lqe
]

o aas ' s o s n+1 _
definition of Dyn+l, § = i+l (mod 277) so X[14,2"] szi—:x[i+1 5

2

This completes the induction.

Now, L P(x[zngzn]? x[192n]) ¢ D,ne  Hence

1L & =Pz

0 [2n+1=192n+1]9 X[lsznﬁﬂ]) ¢ Dyn+le

241y, This is false and it follows

Hence 2"41=1 = 1-1 (mod 2
that no such O exists. Hence, D,n (n > 1) is indeed a strictly
descending chain of clauses with one binary predicate symbol and no

function symbols,

One can show easily that there are only a finite number

¢ 1= :
(2 )wﬁ) of inequivalent, under ~, positive clauses with n unary
1

(<2
. predicate symbols and no functien symbols. It follows thattthere can be
no strictly descending chain of clauses with unary predicate symbols but
no fgnction symbols. Hence our result is the best possible as regards

arities of the predicates involved.

Incompleteness

We show next that {[Ci] | 1 > 1} has no supremum and
{[p.5]1 | 5 > 1} has no infimum. Thus our lattice is not complete wrt,
2 =

sups or infs. The existence of infinite strictly ascending and
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descending chains would follow from this by general lattice theory but

it .is better to display actual examples.
Lemma 1 1) Giing (1,3 21)

2) There is no E such that

C. < E< Dy for a}l i, § 2%

i
Then cixij’_. .= {P'(xlgxlsi1) | 0<1<il ¥,

Proof 1) Let O.. = {X[OSZJ@ / Xgseoses¥[y od] / ,Xi}o

%P(X[lgzg]g X[1+19£J]) ‘ 0 < 1 < 1%0
c s ’
= DZJo

2) Suppose there is such an E. Bvidently E must be a
pf)sitive ela‘uzse9 with no function symbols, in the single binary predicate
symbol P, Suppose B has n variable‘symbols, There is a b"n such
that C O S B. Now C_ has n+l variable symbols. Hence there are

i

1y9 1o (11 < 12)9 se that X, ST =X S e We choose such an 1,5 3,

1 1 n 12

se as to minimise izmiqo

T} - ’g 5 < : |
Then E® = {P(xlgxl_M) S I i, g 1< i, € E. We show that

Eq lad D(iz=i1 )0‘

Let = {Xp. s _s /X, S geeeesXr. s < 1/ % O3
Vs [is51, 1.1] i, n 1,51, 11] i, @ n
Then/Ul is well=defined and 1=1 for xlc"n = X

1
=1, (by minimality of :12-=11)

1, o, (11 < 12) <=> 1,=1,

and 1. =31 ir;l

2 72 1

<=>1, F 1, (mod 5,2-:1,1)
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{L=> X = X . 2
[1 ] [12912 11]

1” Lo 1
<=f>Xl1 G-n/w::xlz g-n/a. | ,k

Next E“/LL, D(izmi']) for E‘/M = {P(Xl G‘n/u s X4 o-‘n/u) | :|'.,1 <1 <» 112§

x . s i 1<i,}
{p( ’123,11])‘ g 1<,

[1,1,-1,1° 1w
Dr. _s Ve
(1,74,)
Hence E' ~/ D,. _.
(1,74,
there is a ¥ se that

. w since . < < D, il
) Now since D(ig"’lq) ~E' S EB< DZJ(J?J)y

D(i -=:“11)v EE2€2=11). We can show that this is a contradiction in

exactly the same way we showed that there is no o-n such that

Dzn c‘“n C D211+’l9 thus completing the proef.

Note that since {Ci | £ > 1} is a striet chain, all the inequalities

of the first part of lemma 1 are actually strict.

Theorem 1 {[Cl] | 4 > 1} has no supremum and {[Dzj] | 5> 1% has no

infimum.

Proof Suppose [E] = U[Ci] exists. Then as C, < D,J, by the first
part of lemma 1, and since [E] is a supremum, E < Dzjo This contradicts

the second part of lemma 1. One proves that H[Dzj] cannot exist in the

A

same way.

Note that the two trivial examples of strictly increasing infinite
chains have no upper bound at all, This contrasts with the strictly

.1111} is an

~deereasing case where @ is always a lower bound. {Ci
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example of a strictly increasing infinite chain, which has no supremum but is

bounded above by {P(x,x)}..

It is pessibie by a further extensien of the abeve methods to
produce a set of equivalence classes of clauses {[Gi] | - 00 <i<+ o0 |
which has no supremum or infimum and is such that Ci < Ci+1° However
we have done enough to show that the lattice dees not pessess any of the

usual properties of infinite sets of elements, at least in the general

Case.




