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Chapter & Solvability of the general preblem

We are now in-a position to consider questions of the solvability of

the general problem raised at the end of chapher 2, which we restate:

Given a notion of niceness »§ and £ and e, it is required to find

the sets of clauses, H, satisfying:
1) H g Hy (Th)

n
2) \fH ATIrr A Th A {2% (ei A fi) is consistent.

3) H is minimal with respect to-—g amongst those clauses satisfying

1) and 2).

Under the assumption that every finite set of clauses has a l.ge.ge
relative to Th, we can locate the set of solutions when.«f is ““gcpg’
Let infTh H be a2 legeg. of H relative to Th, Note that any tautclogy is
8 logege of @ relative to any Th. When Th = ﬁs we require that
' infgfi = inf H, if H does not contain a tautology, where inf is the
function inf defined in section 3.3.2 in order that the notation be

consistent.

There is a ledtice which contains all the possible solutions.
Let éjTh(H) where H is a finite set of clauses be the set of equivalence
classes of the set EinfThH’ l H' < H}, where the equivalence relation is

equivalence relative to Th. The equivalence class of infThH“ is denoted

by [lnfThH 1o Th(H) is ordered by:
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B A [inf, H,] iff inf H < inf (Th).

ThH2

This is evidently a good definition. Th(H) is actually a d

lattice with infs given bys

[:i.nfThHJi] 5| [infThHZ] [inf‘Th(H1 v Hz)]

This is a well=defined operation. If H1 C H and H, C H then
[1nfTh(H’l U Hz)] is in gTh(H), Suppose inf, H, inf,, H] (Th) and

. . ¢ fm
1nfThH2 ~ 'lnfThHZ {Th). Then,

. - . o . o

lnf‘I‘h(H’] U H2> ~s lnfTh%’lnfThH’I ’l'nf'l‘hﬂ?_ 5 (Th)
o s P 9]

~ 1nfTh{ inf,, H pinfy, B! (Th)

. I ? % )
NlnfThcﬂ‘i v HZ) (Th).
Therefore ] is well-defined.

As :Lm‘?Th(I-LI v H2) < infp, H (Th) for i=1,2, [1 does give a lower

I ° YUPPY i < inf o, h » A= °
beound Suppose :Lnf’ThH3 < infp H, (Th) for i=1,2 Then

inf  H

™ < inf

TR SR PR

Ninf‘Th(H,l v Hz) (Th).

3 i, { (Th)

Therefore [l'nfThHB] [ hnfThH‘l] m [1ILfThH2], and {1 gives the

greatest lower b@ﬁ)ndo As Th(H) is finite, arbitrafy subsets have

infs, given by:

ﬂg[infThHi] | i=t,n} = [infy, 1,1 M (line B)ewoo(Lint 1 10 [y B L))

)y
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[ itne, 2,18 = Lo 8 ],

I1p - [1{P(x), BGILL. .

Consequently there is a sup operation defined by:

[infThH,i] U [infThHZ] = ﬂ i[mehH‘B] ¢ ﬁTh(H') | [infThHi] E[infThHBJ y

for i=1,2}.

Thus, equipped with =, 'l and U . Th(H) is a finite lattice.

P 1

Example Suppose H = EC,' 902_905§ where Cy = §P(f())9Q(f‘())§}
¢, = {P(e())>e(e(N)},
¢, = (PO,

~ Then inf{C ng n g1:‘(X)5’Q<X)§J

ﬁs
inf{C, 0,1 s inf{C,0, 8 A InfiC, 40,050 = [P(x)1s

The lattice gg(H) is displayed in figure 1

}

3§Qinfic1902303

{infic, ,03} »inf{C,,,C

Figure 1
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We can now show that the solutions are located in Th(HO) when <
is [
‘Tgcpg
The set of clauses in Ho that an arbitrary clause C explains is
defined to be:

Explainset(C) = {C*' « H | ¢ <c? (Th)i.

Notice that Power{C) = cardinality of Bxplainset(C).
We alse set Complexity(H) = ||H||, the cardinality of H.

Relative equivalence between sets of clauses is defined by:

H ~ H' (Th) iff H < H' (Th) and H' < H (Th).

A set, H, of clauses is reduced, relative to Th, iff H' € H and

H' ~ H implies that H' = H.

If H ~ H® (Th) and both H and H' are reduced then there ic a
unique biﬁection @: H' -> H such that @(C') ~ C' for every C* in
H'. This may be proved in a way analogous te the corresponding part of
the proof of the corresponding part of the statement of theorem 3.3¢1.2s
One can eazily extend the analogy to the rest of the theorem if relative

generalisation is a recursive relation.

#
Theorem 1 H is & solution when -§ is _%;pg iff it is reduced relative
to Th and is equivalent, relative to Th, to an H' satisfying:

/ v & §=
1) H' € {inf, H, IHJI gHO}.

2) H' < Hy (Th).
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n
5) Yar A m ATera N (e, A £) is consistent,

L) H' is minimal w.r.t. «%cp amongst those sets of clauses §

satisfying 1), 2) and 3).
Further, any H' satisfying these conditions is a solution.

Proof Let H be a solution. If it is not reduced relative to Th

then let H"™ be reduced and equivalent, relative te Th, to H, Then
Complexity(H") < Complexity(H), H" < Hy (Th) and VH" A Th Alrr A 1/5
(ei A f;‘i,) is consistent, since ﬁ"’"VH = VH". This contradicts the

fact that H is a solution. S H is reduced relative to Th.

Define H' = {infThEXplainset(C) | ¢ ¢ Hl. We see that

H* € {inf_H, | H, € H}, Complexity(H') < Complexity(H), Power(H) = Power(H"),

Th™1 1

and H < H' (Th), and H* ¢ Hy (Th). It follows from H < H' (Th) that
Vi A ™ A Ire A :{>i<ei A f:‘i) is consistent. So since H is a

solution, Complexity(H') = Complexity(H) and HAs/ H' (Th). Suppose

H* satisfies 1), 2) and 3) and H" _gcp H'» Then as H' %Gp H,

" . : o s ’ ) H "
H 'gcp H So, as H is a solution and H %GP-H’ H .‘%cp _gop H

This establishes condition L) for H' and concludes fhe first part of the
proof,
Y.

We demonstrate the last part of the theorem next. Suppose that
H' satisfies conditions 1) to L). Then it satisfies conditions 1) and

2) for being a solution. Suppose that H" also satisfies conditions 1)

and 2) for being a solution and that H" _%epg H'. We will show that

H ,gcpg H*, TLet H"' = {infTh Explainset(C) | C ¢ H". We see that
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H" < H*' (Th), H*' 3 H"® and H"' satisfy condition 1). Therefore

cpg
H"® satisfies conditions 1), 2) and 3). Further H"' ——-S,p H®, As )
<
f

] t "0 - ? 0o 9. 3 ? 7 -f’~°v
H _gcpg o+, H -—Scp H' and so H —gcp H As H' satisfies

diti Y) it fellows that H" H"', But H®' H* H
condition 4) it fcllows tha ‘gcp —gepg ’gcpg

Therefore H' < H"'.

There is therefore a map @ : 5" -> H' such that G(cnr) < C"t (Th),
for any C%' in H*'. If the map is not onto, there is a C' in H' such
that @(C"*) £ C' for any C"' in H®'. Then H' \ {C'] satisfies
sonditions 1), 2) and 3) which contradicts the fact that H' satisfies
condition %)%  Therefore 0 is onto. Since Complexity(H"') = Complexity(H"),
as H¥? ‘—gcp H* and HY —{GP H**, B nust be a bijection. Therefore as
Power (C*') < Power( @ (C"*)) for any C®*' in H"' and Power(H') = Power(H"')
then Power(C**) = Power( O(c"')) for any C"' in H"', But as
6(c*) < c" (Th), Explainset( @(C"*)) 2 Bxplainset(C"') for any C*' in
H*'. Therefore Explainset(@ (C*')) = Explainset(C"') amd so
cMr < infThExpla:i.nset(Q(C"')) < @ (c**) (Th), as H' satisfies condition
1), for any C"' in H"'. Now, as O is a bijection, H"' ~ H' (Th) and

taking this with H™ ~—§Opg H" and H* -3 H"' we see that H' ~§ H"

cp %S
which concludes the proof that H' is a solution.

Suppose next #hat H' satisfies conditions 1) %o L) and that H is
reduced, relative to Th, and that H -V H' (Th). Then H' is a solution

and so is redused by the above. Therefore by the remark after the

definition of when a set of clauses is relatively reduced, there is a

bijection O H' => H such that G(C') A €' for every C' in H'.
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Therefore H ‘1§;pg H® and since H satisfies conditions 1) and 2) for

being a solution as H~ H? (Th) it follows that H is a solution, ,

concluding the proof.

Let us look at some examples. Here is another appearance of the

Crows,
£ e
£, = Black{crow’) e, = Crow(crowl )
f2 = Black{crew?) &, = crow(crow2)
Table 1

Also Th is empty. We have H, = {C1SC2} where

0
C, = i Crow(crowt ), Black(crowt)},
C, = {Crow(crow2), Black(crow2)i,
Now, C, = inf{C,,C,} = {Crow(x), Black(x)}.

Evidently VC3 N e, A e, A f’,]_ A f2 is consistent and so §C3§

is the only solution. We have induced 'All crows are black’.

Next, we give & less trivial example from Hunt, Marin and Stone (1966).
7
We must learn that all bears or large animals are dangerouss Our

observational data consists of a deseription of various animals, both

dangerous and non-dangercus, in terms of the -attributes Size, Animality

~and Colour ds given in table 2. Again, Th is empty.




Now, Hy = {Ci | 1 <i< 7. The members of {inf H' | 5t € Hy» H' # O}
;

which are censistent with

7 (ei/\ fi) are, apart from C, to C. i

1 73

Cg = inf{019C2§

= {Size(x,5), Colour(x,black), Animal(x,bear), Dangerous(x)}

and
Co = inf{GB,C6BC7§
= {Size(x,large), Colour(x,c), Animal(x,a), Dangerous(x)}.

The solution is H = {08909’Ch905§ and ineludes the following

version of the generalisation to be learnt:

'Anything that has a size and is a black bear is dangerous' and

"Anything that is a large coloured animal is dangerous'.

Notice that if we assume that all animals have a colour and all
bears have a size, then this generalisation is equivalent te the

original one.
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t e
£, = Dangerous(animal?l) e, = Size(animall,small)AColour(animali,black)A
' Animal(animall ,bear)
£, = Dangerous{gnimal?) e, = Size(animal? ,medium)AColour{animal?,black)A
Animal(animal? bear)
f3 = Dangercus(animal3) ey = Size(animal3,large )AColour{animal3,brown) A
Animal(animal3,dog)
£, = Dangerous{animall) & = Size(animall,small)AColour{animall black)A
Animal(animall,cat)
f5 = Dangerous{gnimal5) ey = Size(animal5,medium)AColour(animal5,black)A
Animal(animal5,horse)
£, = Dangercus{animal6) e = Size(animal6,large )AColour(animaléb ,black)A
Aunimal (animalb horse)
f7 - Dangerous{animal?7) &, = Size(animal?,large )AColour(gnimal7,brown)A
Animal(animal?7,horse).
Table 2
Note that'in fact the solutions have been located in
{infThHﬁ | H, < Hb§ rather than in éirh(ﬂo), One can reword theorem 1
to find the 10catigF in Th(HO)° ;yTh(HO) was introduced in order

to find a well-known mathematical structure in which the selutions could
be located; it is expected to make any associated computational problems

a little easier, In future, we shall generally confuse ;7Th(HO) with

; c
,ijinfThH1 Hﬂ < Ho}o
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Corollary 1 For the case where ’g is ’éapg’ every problem has a

sclution.

Proof We need only show that there is an~H' satisfying conditions 1),

- N c
2) and 3) of theorem 1, for as E:LnfThH1 | Hy € Hb}

will then be a suitable minimal one, with respect to ~1§ep and this will

is finite, thers

be a solution by theorem 1.
Now H. € {inf H | H < H. and certainly H, < H, (Th). It is
0 Th ™1 1= 70 0 0="0
part of the problem conditions that Th A Irr {}1(ei A fi) is consistent,

n
Since I i/‘}d,(ei A f’i) -> Hy, it follows that Hy satisfies condition 3),
. e .

which comncludes the proof.
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Now that we know there is always a solution we can try to construct
an algorithm for finding one. Let us consider the simplest case where
Th and Irr are empty. Now infTh is calculable and so, therefore, is f
finfy, B, | B, & Hol = {inf H, | H S Hol. For each subset, H', of
this set we can check whether H' < HO (Th), and if we could only check
the consistency condition, we could then isclate the solutions, using
theorem 1, since -—gcp is certainly decidable. Now, in general, the
consistency of an arbitrary set of clauses is an undecidable property.
We might hope, though, to avoid the difficulty since H* has arisen by
means of the special process of generalisation. Unfortunately it can

be shown that undecidability persists.

Theorem 2 Suppose that —$ is —gopg. There is no algorithm which
will, given any f and Ev produce a solution to the resulting

generalisation problem. (Here both Th and Irr are emptyo)

Proof We will show that if such an algorithm exists them it is possible
to tell whether or not the universal closure of an arbitrary set of
clauses is consistent. As this is not possible we shall then have

demonstrated the non-existence of the algerithm.

To this end let H be an arbitrary set of clauses. We may assume,
without loss of géherality that no aij used in the representation
theorem, theorem 3.3.1.kh, appears in H, that H contains no tautclogies
and that all clauses in H are standardised apart. For if H does not
have these properties we can effectively find another set of clauses

which does and whose universal closure is equiconsistent with that of H.
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With H we will associate an f and an Ev in such a way that H is
consistent iff any solution to the resulting generalisation problem has

a certain decidable property. This will complete the proof.

Let H = {D1,o.,9Dn§ and suppose that the predicate symbols
appearing in H are Pj(j=1,p). If Pj has degree m, associate with it

a new predicate symbol Qj of degree m+n+2 for J=1,p. (Notice that

n=|[B]].)

It is convenient to temporarily introduce some new syntactie

notation. If t,,c005t are terms and L = (+) Pth1,.°°°,tm),

m+n+2

for some j, we set

L[[tm+1,o.nu,t 11 = (+) Qj(t1,,o.,t Yo

m+n+2 m+n+2

If L doez not begin with some Pj’ we set

L[[tm+1’°°°’tm+n+2]] = L

In the above (+) P, is either Pj or ﬁj and (+) is used according to

the usual conventions.

11 | &ecl
11 | ¢ ¢ H'Y,

Similarly we set C[[tm+1,,m°., 11 = {ull[t bogeeeeent o

1] = 0Ll seenest

m+n+2

for any clause C and H'[{t sescesd
y m+1

for any set, H', of clauses.

m+n+2 Mm+1+2

Notice that if H' does not centain any of the Qj then h{H' is

1.

° " . [ .
equiconsistent with b{ H [[tm+1,..uo, e

Let X1SX2,y1,y2,u1,u2 be variables not appearing in H and let P be




-

o

=416

a new n+2-ary predicate symbol.

We define auxiliary terms &, (i=1,n; k=1,n) by te, = f(uz) and
RN if k # 1 and set

- 7
Hz - iEi[[XJ'Pf(yli)"t.i/‘s"“"stin]] U {P(Xrlﬂf(y1)9‘ti19°°°’tin)5 |

D. ¢ Hi.
i
We alsc set

H = {E)i[[f(XZ)’yQSti’l’”’"tin]] v Eﬁ(f<xz)9ky23ti1s°°°3tin)§ l

D. ¢ Hi.
i

Now V(H+ U HS.') is eguiconsistent with VH. For suppose
V@t y ®) is consistent. Notice that for any i,
.. + -
Di[[f(xz)9f(y1)f’t‘11’°°°’tin]] is in R (E" U H). Therefore
R@E* U B < HIF(x),eeef(x)]]e S0 VEII£(x),...,0(x)]] is

consistent and it follows, by a remark above, that VH is,

Suppose VH is consistent. Then VH[[X,] ,f(y,,l );u,l ,ooc,uﬁ]] is
also consistent, by the remark made above., As H[ [X’l ,,,1"(;5@l ),,u1 ,.,,.,,un]]
generalises B and does not contain any occurrence of the predicate
symbol P, any extension of a 'model of H[[X,! ;f(yq),u1,o’,.,un]] to an
interpretation of I}f will be a model of H'. If we choose that
extension which assigns to P the empty i)rédicate, of the appropriate
degree, then the extension will alse "t>—e a rﬁodel of H . Thus if VH

is consistent, so is V(H+ V) H’—).

We have proved, therefore, that VH and V(H+ U H ) are
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.

equiconsistent, : .

1
" both in HY or else they are both in H }.

Set Gen, = {inf(D,D'} ?:D D" | D # D' and either D and D' are ’
b4

The translations, Z:D D must be taken so that all the variables
2 . .
in Gen1 are new and the clauses in GenJl are standardised apart. Notice

that every clause in Gen1 has a single ocecurrence of the predicate letter

P°

Set Gen, = fp* | D e Gen, and D* is D except that the sign of P is
changed} s

Recall the 25? used in theorem 3.3.3.71.4 (the representation
theorem).

Let. bj'z ?f;, where n' is the first integer such that
"V H V Gen, V Genz) B’;vvcontains no variable symbols (i > 1).
Notice that any literal has at mest one occurrence in this set of-

clauses.
. _ fut - 3/1 U + - 2 3 I
Define, Hy = (H"V H) (U H) ¥ UGen ¥~ UGen, g

We may now define an f and an Ev with the preperties promised at
A
the beginning of the proof.

Let f be the set of literals with predicate letter P appearing in

If L ¢ £, there is, by a remark above on the properties of the "Xl,
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a unique clause, D, in H, in which L occurs.
Set Bv(L) = My A -eoo Al (where {M | k=1, k(L)} = DNL3)e

Notice that Hj = {(Bv(L) U {Ll | L ¢ £} and so Hy has its usual
meaning. We must now show that we have a genuine problem,
1
that is that j/—\1 (ej A f‘j) is consistent. (1 depends on n = ||H|]|,

and in fact 1 = lmz)} and H

0 contains no tautologies,

. 1
Suppose that f.,! and f.2 are contradictory literals in j/__}(ej A fj)'

From the properties of the b’l, and the fact that all clauses in

" VU B U Gen, are standardised apart, L, end L, must occur in a

1
single clause D in HO’ and so they cannot begin with the predicate letter

P.

Since H contains no tautologies, neither does " U H and so D
is in Gem, ¢f > v Gen, J % Since neither literal has predicate
symbol P, we may assume, by the construction of Genz, that D is in

Gen1 b’j. But if D' is in Gen, then D' generalises some non-tautologous

1
clause in H+7U H and so must itself be non-tautologous. As 3’3
substitutes distinct constants for distinct variables D must also be

non-tautologous, which contradicts the assumption that L’l and L2 are

contradictory. P
1
Therefore, j/‘\“ (ej A fj) is consistent. Since P does not occur in
n

H, and j/-\lej is consistent, HO contains no tautologies.

Let H = H+U " U Gen,] b’ 3U Gen2 T L‘"o We are going to

test
demonstrate that if HSO

1n is a solution to the problem defined by Ev and
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f then H is consistent iff Hsol As equivalence is decidable

~S

n H’ses’c'
we will then be able to tell, effectively whether H is comsistent, if an
algorithm for producing a solution is available. This will conclude the
proof, as we remarked at the beginning. To do this we need two lemmas.
1
> (e,

Lemma 2,7 VH is equiconsistent with VHtestA : j

/\f.'o
d J)

. 1 -
Proof  Suppose VH is consistent. As P j/~~\ (ej A fj) -> Hy and
1
r 3 Ll— < N\ o _ o
Gen2 T v Gen, T 1... 0° VHtest A H (ej A fj) is equiconsistent
with V(H+ UH)A j/"\*i (ej A fj)o Suppose then that
1 - !
WH+ U H) A j/m\% (ej A fg“) is inconsistent. Then
+ - L :

~ ->=A (e, f.).

- \/(H VH)- j::’l(ea A J)

1 v
Now we have shown above that j/"}1 (ej A f‘j) is consistent.
1 3=

Therefore Coiz {EJ H Jg=1 ,l§ V) ,jL::I;i;j is not a tautology-. It follows
from the subsumption theorem (Lee, 1967 and Kowalski, 1970) that there is
a clause C :"an 'an(’_Hih VU H ), for some n', which subsumeé. Coe IFC has
been obtained by resolution from more than one member of H' v} H_S it
follows ffom the construction of H+ v H that every literal in C will
contain at least three occurrences of the'uﬁar'y function symbol f. = Now
it is impossible that C be @, for then V(H+U H’_) would be inconsisfent
and this contradicts the fact that V(H* U H ) is equiconsistent with
VH taken together with the assumption thafVH is consistent. Further no
literal in CO can contain more than tv;ro‘ occﬁrrences of the unary function

symbol f.  Therefore if C has been obtained by resolution from more than

one member of H' U Hz, it is impossible for C to generalise CO. This

- dontradiction establishes the existence of a D in H' U H such that C
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is in R (1D}).

Let us assume that D is in H'. Then C wili contain a positiVe
literal L with bredicate letter P containing two oqéurrences-of the
function letter f, one of which is in the second argument place of L.
But a positive literal occurring in CO whose predicate letter is_?
must be the negation of a literal oceurring‘in a clause in.H_ 2f1 v
H O 2 U Gen, 2{3 U Gen, B’h} Any such literal oceurring in
H Yrq-U H= v 2 v Gen1 ?{»3 has no oceurrence of the function
symbol f in its second argument plaée. By the construction of Genz,
any such literal occurring in a clause ip Gen2 2f h’will have éxaotly
one occ;rrence of the function symbol f. fherefore thenéralises no
literal in CO and se C i CO' This is a contradiction. If D is in
H the contradiction islestablished similarly. So we have established
that \7"(1{3r U H)A ;}1 (ej A fj): and so VHtest A j2___\1(e'j A f‘j)
is consiétento

1

Suppose bgH A 53a(ej A fj) is consistent. We see,

test
sucecessively, that so are k/Htest’ k/(H+ UV H) and %fH. This

concludes the proof of the lemma,

Lemma 2,2  Suppose HSol is a solution to the problem determined by

n

| B 3 y
Ev and £, and that/Hsolng j(Ho)o Then, Gen, 7}’ U Gen, ¥ <

< . )
Hoo1n S HO, U Htest" (We may assume that H.testu Hy QS/ (Ho)o)

Proof For this lemma we need the easily proved fact that if

C<D 2{? for some i, J and C contains none of the constants 83 50 for
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any i>1and j>1, then C < D. This fact is implicit in the proef

of the representation theerem, theorem 3.3.3.71.4-

Suppose B is 'in Gen 3’ 3 but not in HSO Now as Hso. is a

1 1n® in
. —~ . - .
solution Hsoln < HO =2 {E%. So there is a clause, C, in Hsoln which
generalises B and, since Hsolng j(HO)’ C must generalise some other

member of HO and so C does not contain any of the constants aij for any

i>1and §> 1,

For some D, D' in H', E = inf{D,D'] ?:D D! ¥ 2. Therefore
,D!

C < inf{DsD'} T D.D*? using the fact given at the beginning of the
_ ) ‘ _
proofs "~ We can find an fj in £, such that B* = gj V] {fj’} and so as

inf{D,D*} T is inconsistent with ej A fjs' so is C and so therefore

D,D!

is H o This contradiction establishes the fact that Gen1 5 5 <H

soln soln’

. b |
Similarly we can show that Gen2 ‘U > Hsoln"

Any clause in y(HO) which is not in Htest‘ ) HO must generalise
a member of Gen,| v Gen2, by applicationsof one or both of the
representation theorem and the remark made at the beginning of the proof.
This clause 1s inconsistent with the evidence, as was shown above, and so

cannot be a member of Hsoln° This concludes the proof,

We may now firﬁsh the proef of theorem 2. We have to show that if

Hsoln is a solution to the problem defined by Ev and f then H is consistent

‘ <
By theorem 1, we may assume that Hsoln"‘ d (Ho)p

e Hoomn™ H’cest °

g : C
We may also assume that Htest v HO & 0‘7 (Ho)o
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Suppose that H is consistent, that Hsoln is a solution and that

H 1, A H .. Then by lemma 2.2, H_ . S H U Hyp

Therefore Hy 4 < Htest‘J Hy 2 H oan® So Hsoin 4 Htest'and there is i:?
a Ctest in Htest.sﬁch that ne clause in Hselﬁ géheralises Ctest° _
Since Gen,i ' 3 U Gen, ¥ b c H 1n bylemﬁia 2.2, Ctest is inH U H .

. . ' ! ) 1
Now there are clauses C,’ CZ inH_ such that C, < Cp ¥  and

8

2 . _
Cp & Cyegy U simoe Hyy, < Hge

Gﬂkcannet generalise any clause in HO other than Ctest 2( s, for

then it generalises Ctest"by the remark made at ﬁhe beginning of the

proof of lemma 2.2. Therefore C1 :‘Ctest ?7 1 and similarly

— . 2 . ? _ . .
02 - Ctest 14 %:C1° Let H501n - (HsclnU §C’ce’stg) N {C1’CZE°

1

/\ e. A f.) is consistent b

fuleg A £y) Y
—< H but -

in > Hsoln b3 HO’ soln

This contradicts the fact that H is a solution.
soln

Then as H H A

< ? ]
test = soln’ soln

H

lemma 2.1, Further H! 1
50 soln

H Vil

L °
soln ‘% soln

We have shown that if \/H is consistent, H ~ H .
soln test

Suppose ka is inconsistent and H AU H o Then
1 soln test 1
A . . . . /
A j=1(ej A fj).ls equiconsistent with \/erst A 52%(65 A fj)

Vs

which is inconsistent by lemma 2.1 since &/H is. This certainly

soln

contradicts the fact that H_ , 1is a solution,which concludes the proofs
ps

ya
The same result can be obtained for a variety of other -§f's if we

change the construction of £ and Ev slightly.

The construction proceeds as above until Genﬂ and’Gen2 hdve been
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defined. - Then one sets:

Hy = M (5 U H) Y5 U Gen, ¥ " U Gen, ¥ ™ (> 2).

The construction given above corresp@ndé to the case where m=2,
One may then define ™ and Evm analogously to the above construction and

1 > .
verify that 3@H(E? A f?) is consistent. (Here, 1 =M o+ 2n(m—2)°)

One can then define Hﬁest and prove:

v \ / m lm m m
- .

! 3 i i - i - /\, A e . f,

1 H is equlconS:Ls‘ten‘t with H[ } - (e A J)

. e 0
2 If Vi is inconsistent, VH A j/}1 (Ej A fj) is consistent

soln-

and H < HY then | |1
soln = S

in 0 olnH 2 Mo

The proof of 1 is analogous to that of lemma 2.1. To see that

| = || > m under the assumptions of 2 suppose otherwise and choose a

soln

clause C in H™ U H. There are clauses C, ,00005C_ in H .  such that
1 m soln

k ,. i . \
C,sC ¥ (k=1,m) as H__, < Hje Since ‘leqlnll < m, two of these
are the same and so there is a Ck in Hsoln such that Ck < G, by the

representation theorem. Hence HS < H Y H , and so

oln 1
et - m m m, m N .
CH L. : A N, AT,
Hsoln <HE UV HUY HO i“test But k/Htest j21(e3 /\l J) e
: m
. A ; . . A ¢ 1
inconsistent as VH is, using 1. Therefore Vleoln/\ 3= (ej A fi;l)

is also inconsistent which contradicts one of the assumptions of 2, which
Ve

therefore,;shows that ‘lH > Mo

solnH -

Recall the definitions of —31, %> 3, and =3, given in

chapter 2,
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Corollary 2  Let ~3 be one of —{Og —{OPS ”%3} —519’ ‘{s or -1§S‘..
There is no algorithm which will, given any f and Ev produce a solution

to the reéulting generalisation problem, although such a solution exists.,

Proof Suppose H is a set of clauses as described at the beginning of
the proof of theerem 2. We need merely show an effective way, given an
algorithm which always produces a solution, of deciding whether \/H is

consistent,

Suppose>1f is -fco There is aquys a solution, given m, to the
problem defined by Ev" and fm, since the complexities of any solution
must lie between zero and [nglr as Hg satisfies conditions 1 and 2 for
to

being a solution. Choose m > llH |, PFind a solution, H

m
test soln’®

the problem defined by Ev" and me If kf}lis inconsistent then

|| > m by 2 abeve. If VH is consistent, so is V" A

‘|H test

soln

m, m m m "
{;1 (ej A fj.) and as H < Hys | |1 | < m.

2est - solnlll S'III_Iril:Iest‘

Therefore k/H is consistent iff llHaoln‘[ < my, which concludes

the proof f‘or-§ = —§c°‘

The proofs for "31, ‘1§1q, —3 s ahdf%v are all similar to the
above. In each case if \/H is consistent, H?éét’provides‘an upper

bound for the measure being used. IfV% is inconsistent one obtains

Ve .

a lower bound, which increases to infinity, with m, on the measure of
a solution. As one sees that there must be a solution in each case,

one can tell in each case whether k/H is comnsistent.

When ~§ is —fnp'we see that there is always a solution to the
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problem defined by Ev" and £7, For Hg satisfies cenditions 1 and 2

for being é solution. Hence the complexity of any solution must be

less than or equal te l|Hg|l and - so the boWef must be less than or ;
equal to Ingluzo . These bounds show that a solution exists. If

there is an algorithm for producing a éolutién then the same algorithm
will produce a solufion when ‘€ is —gcgkfor —ﬁep'minimal implies

that '1§C is minimal, Together with the result for -{;, this implies

the result for —fcpe This concludes the proof,

This fechnique will establish the régulf for any‘reaéonable way ofk
combiniﬁg integer—-valued domplexity measﬁres° When the result has beeh
establisgedvfor some ‘~§1 then it follOws‘ét-once fog ény ieiicograﬁhic
refinément of *§1 which always allows sélutidnso (Compare the pfoof

of the last part of the corollary).

This unsoiﬁability resulﬁ seems rather paradoxicél, since we seem
to have littie, if any, trouble with consisténcy; when forming
generalisations either in ordinary or scientifiec 1ifea Furthermore,
there can no 1onéer be any hope of a genérél mefcho@n BEverything may be
reconciled, hoﬁéVe:, by postulatiﬁg that our sef of generaiisation
vproblems is too inclgsive;~ we have ndf suééééded in restricﬁing oufseiﬁeé
to’brdinary? géneralisation problems, .We will nét‘try to formulate
restrictioﬁs which’;ive exactiy the ordiﬁary prcblems‘and no others,

To show that some proposed solution céptﬁres the generalisafion prdblems

faced by any human being could no doubt involve us in uninviting

problems of psychology. Similarly, to capture ordinary scientific
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classificatory generalisation problems may involve comparisons with, say,

'

19th century zoological practise, another uninvitiﬁg task.

What we will do is indicate the kind of restrictions that may be
formulated, with a view to giving some that are potentially useful for

work in A.Tl.

One could make restrictions on the ﬁocabulary used, Resﬁricﬁions
on the possible predicate symbols and fuﬁction symbélsg could rulé‘out
the type of umsolvability proef used above. One extreme péssibility is
to requife that the only function symbols are oonsfant ones. Then every
problem Where -3 is ‘1§cpg and Th and irr'afé arbitrary sets of clauses
(with no function symbols, other fhau constant ones) is solvéble9 by the
discussion after theorem 1. We would iike to single out one
particulariy;simple subcase, Suppose Th is empfy and every member of
the (finite) Herbrand base of Th }/\ Irr A 1/\21 (‘ei.L A fi)vor its negation
is implied by Th‘/\ Irr A {31(ei A fi)n In other words,

n

Th A Irr A
Coi=t

’ n
C={L | ™MA Irr A Q1 (e; A f.) implies L and L is in the Herbrand

(ei.A fi) has exactly one Herbrand model. Let

base of Th A Irr A 1/1-{1 (e; A £)}. Then if H & [inf H' | H' & Hy,
H £ 8%, VH ATh A Irr A 1/:\1 (ej A fi) is consistent iff H { {el.

In other words, we test H against the unique Herbrand model.
~
#

Another kind of restriction is to fix on a speecific Th. We might
require that Th always contains a "basic® soiéntific theeory, which

includes some universal assumptions (for example meaning postulates or

‘principles of causality). One extreme is to demand that Th A Irr is
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a decidable theery, or, at any rate, that one can decide the sentences

produced bj thé process of taking relative infimao In this case it

follows from the dlscu331on of theorem 1 that an arbitrary problem is i
| decidable if -‘3 is equal to —§cp and the vocabulary of R (e AT, )

is a subset of that of Th A Irr.

Finally one might place restrictions on the kind of data
generalised. Most psychological and taxonomic géneralisation problems
(Hunt, Marin and Stone, 1966) form classes from attributes, which are

maps from objects to finite sets, or to real numbers.

Supposes then, that some solvable case has been found, when -§ is
’gepgo We give some propertles of solutlons, 1ndependent of whlch
subcase is being considered, but which can be of help when looking for

solutionse

First we show that solutions ére irrédundan‘b° H is said to be

irredundant. iff:

1) If C is in H then Explainset(C)

%t L} Explainsét(D)e;

DeH
2) If C is in H and D is in Hj then elther C<D (Th) or
Th A Trr X VH A infTh {c,Dl A (e A £.) is

ineonsistent.

Intuitively, H is irredundant if it cannot be improved (in the

a1§epg ordering) by removing clauses or generalising clauses, without
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violating one of the first two conditions for it to be a solution,
Theorem 3 Any solution is irredundant. ;

Proef  Suppose condition 1 for H to be irredundant fails. Then for
some C in H, H' = H \ {¢C} < H, (Th) iff H g Hy (Th). Then

Gomplexity(H) > Complexity(H‘)o‘

Suppose H fails condition 2. Let H' = (H \ {C}) uginfic,niﬁ
where D is that member of HO determined by.the failure. Then

Complexity(H') = Complexity(H) but Power(H') > Power(H).

In both cases H' satisfies the first two conditions for being a

solution iff H does. So H cannot be a soluticn.

It would, evidently, be helpful if ohe could divide the solution
of the fofmal problem into the solutioh‘of séveral 'smaller problemé_s
_or at any rate to restrict the search to é smallér'par% of é;Th.<HO)
the set of generalisations of Hoe Ouf next‘few lemmas are a step in

this direction.

Under some hypotheses, the search space, jTh(HO) can be divided

into several positive and negative parts.

+P

Let £ = fif€ £ | f, is positive and has predicate symbol P}

{

féP {fi ¢ T | fi is negative and has predicate symbol P}
{
{

Hy =105 « Hy | £, « £7}
'=P ¢ "'P
Hy =16, e Hy [ £, « £ 1.
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Let Pj(j=13m) be the predicate symbols appearing in f.
We need two lemmas.

Lemma 1 ’ Let P be a predicate symbol ﬁot occurring in Th. Suppose
E<C (Th) and it is not the case that hﬁl &fC and P only occurs
positively (negatively) in C. Then P can only ocecur positively

(negatively) in E.
Proof  Suppose P only oceurs positively in C.

Suppose P occurs negatively in E. For some D, E < D and

\_ThD Z . C. P must occur negatively in D.

' - y
Let Cl be a model of Th and %fD. Define CZ to be that structure
which is identical to CZ except that it assigns @ to P. Then A is

also a model of Th since P does not occur in Th, and of D since P occurs

i

. , .
negatively in D. Therefore CZ is a model of bﬁ] as t%hD

is the set of

C
implies that }—Th VD =Vc. Ietoc = G, U G, where C,

/7
literals in C whose predicate symbol is P. As CZ assigns @ to P and
’ | : .
is a model of t/b, éz is a model of k/%1o Therefore so is Cl and sméz
is a model of ¥/C° As A is an arbitrary model of Th, this contradicts

the fact that %/C is not a consequence of ‘The

A

When P only occurs negatively in C, the preof is similar.

Lemma, 2 Let P be a‘predicate symbel not occurring in Th. Suppose

C1 v 02 is a ground clause where C1 coﬁtaiﬁs no pesitive (negative)

occurrences of P and every literal in C, contains a positive (negative)
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6oouxjrence of P. = Suppose, further that C1 ¥ 02 is not deduceable
from Th., If B contains no positive (negative) occurrence of P and

E<C, U Cp (Th) then B < G, (Th). , ;

Proof We prove only the positive part of the theorem. The negative

part follows sﬁ_milarlyn For some E*, and © , E' = E G and

‘"‘ThE' > (01 V) _02)° E' contains no ’positive occurrence of P. If

we show that hEhE' -> C,, then it will follow at once that

E<C, (Th)e Let Th' be the set of Skolemisations of members of Th.

It is wel}—k.nown that Th' is a conservative extension of Th. Suppose

t-hat E' => G1 is not deducible from Th, Then neither is it deducible from
Th'. Th.eref‘or'e there is.a Herbrand médel d. s of Th' and a

substitution "' such that (E' —> 01) G~ ' is ground and false in ﬂ .

Therefore B* ¢ ! is true in a amd._C,1 6! = C‘l is false. Since

i“ThE" -> (C,] v 'C2), h[‘h'E' -> (C,] v Cz)o Therefore
t‘%hvE" o' - (C,lO""UC‘2 o~') and so C2 o (= 02) must be true in d .

/
Let dn be obtained from d by stipulating:
’ 3/
1) If L ¢ C,s L is false in d’,
2) IfL{GC,, Lh ' in &7 in
09 as the same value in as in 4 .

Since 02 is a set of positive literals with predicate symbol P and
“

/s

the only pessible literals in E' &' witil predicate symbol P are

I'4
negative, B' ¢ ' must also be true in a/o If a literal, L, in C,1

changes truth value then L« C2 and so "’" C,! v C2 which contradicts

the assumption that C’l (V) C2 is not deduecible from Th. Hence no literal
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4
in C’l changes truth value and so C,‘ is false in CZ By definitdion,

/ ’ /
C, is false in d. Therefore (B' -> C, v C2) is false in b

2
which contradicts the fact that b= B! => (01 v Cz)o Therefore ;

E' - C,; is dedﬁcible from Th, which completes the proof.

We are now in a position to prove two theorems on division of the

search spacee.

Theorem L.  Suppose that no Pj appéars in Th, and that P_,l “”Pm' appear
only positively in the ey if at all (i=1,n) and Pm'+4 MMPm appear only

negatively in the e; if at all (i=1,n).

Then any solution, H & Th(HO) is equal to H (U H wherse

m! m
+ +P 5 & -P- +
< gj HY J v - ,
- JU m (5o Y j=m' +1 JTh(HO 9) gTh(HO% say, and

G 1

- C =P & 4P -
T = 3= yT‘h(HOJ) v j:mL'j+1 y'ﬁ[‘hﬁio ) = gTh(HO) say.

Proof We consider first the case where all the Pj appear positively,

. . + U P . . ) = s
that is, m' = m and then (yTh(HO) = (HO J) and similarly for gTh(‘HO)“
It follows from theorem 41 that it is only necessary toc show that if

€ .\ »
c é‘/Th(HO) ( OVTh(HS) uyTh(Ho)), then VG A Th A Irr A

/X(e. A f.) is inconsistent.
iroi i

Such a G is gf the form inf ﬂD,‘E?where there are predicate

) Th

symbols Pj and Pj' such that D contains a positive occurrence of P, and
)

perhaps negative ones of Pj and Pj' and B contains a negative occurrence

of P., and perhaps negative ones of Pj and Pj'o It is possible that
oJ .

j=§'. From lemma 1 and C < D (Th), C contains only negative occurrences
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of Pjo Further, D is of the form Ei v §fi§ for some i, where fi
contains a positive occurrence of Pj' Hence by lemma 2}0 < gi (Th)

for some i and so C is indeed inconsistent Withfg(ei A fi) A The. i

The generél case may be proved eithér by a similaf détailed
examination of another threé cases or elsebby‘renaming'the predicate
_symbols Pj(mﬂ < j < m) as —le(m‘ < j's m) so that the general case
reduces to the above using the easily proven fact that, with the
evident définitionsg the solutions to the rehaming of a formal problem,
of the ciass considered, are the renamings of the solutions to the

formal problem. This concludes the preoof,

Under the assumptions of theorem l., we may consider the predicate

symbols Pj as divided into three classes viz. quooﬁo,Pm o, the symbols -
' 1
whose occurrences in the e, are all positive and which do have at least

one such occurrence and P ,....P , the symbols whose cccurrences in
m, 1 my
the e, are all negative and which do have at least one such occurrence
and the P osesP , the symbols which have no occurrence in any e,.,
m2+4 m ’ _ i

‘then we see from the argument used in the proof of theorem L that if D

is in Hy, has an occurrence of Pm,(m2 <m'¢m)and m" # m', and

+P - P w oo i , . ,
Ec¢Hym v Hy m" then 1nfTh{C,D§ is inconsistent with Th /\/}(ei A fi)o
Combining this observation With theorem L we obtain:

Ve

‘Gorollary 5  If the P are categorised as aboveg and no P appears in

Th, then any solution H is equal to mt v H v JKJFIH+P v kuj 153PU
g J=m,+

wheres
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m,
+ 1 m
g < v y (H"'P' 2 -
c VU iyou Py
#1 % mlfo?) §=1m, +1 dTh(HO ’1))
- ! m
e U F wh ;
M ‘ 3 ] 5
321 & apHgd) U J=i, + I 55 I,

+P y
;R +P3 ~
bz‘h(Ho J) (m2 < J < m)/

P ;
H d € P
T3 (my < 5 < ).




