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Chapter 5 “Applications and extensions

1. Some philosophical remarks 1

There is a connection between problems of Jjustification and
discovery. Any hypothesis discovery scheme is, as previously remarked,
only a part of a total system. It is necessary that hypotheses suggested
by the scheme be justified (or criticized or whatever). In faet we wili
show that, under suitable conditions, best explanations, as described
above, with almost arbitrary —% , are acceptable in the sense of Hintikka
and Hilpinen (1966), whose work is in the spirit of Carnap. They wish to
give an analysis of the concept of probable knowledge. Kuowledge of I

in the light of evidence e, is defined by:
K(h,e) = Ac(h,e) A h.

Ac(h,e) is té mean that e gives h enough support to make it acceptable.

The naive analysis of Ac(h,e) is in terms of high probability:
Ac(h,e) = P(h,e) > 1 - & where & > 0.5,

Unfortunately, the naive definition leads to an incomsistency with
some generally accepted closure principles. In particular, Hempel (1962)

has formulated these conditionss
é

CM: If Ac(h,,e) and .... and Ac(h ,e) and if - (b, A cco An) =>

then Ac(h,e).

. CAz

The set {h | Ac(h,e)} is logically consistent.

LY
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Condition CA1 fails because the multiplication theorem for
probabilities makes it possible that P(hq,e) >1 = € and

P(h,,e) > 1 = & but P(h1 A h2,e) <1 - € .

Condition CA2 fails since one can, for example, find hypotheses
hi(i=1,n) such that P(hi,e) >4 - & (i=1,n) and P(}/ - hipe) >1 = €,
v

However {h1’°°°°’hn’ 5 - hi§ is inconsistent. These difficulties come

under the general heading of the lottery paradox of Kyburg (1964 )

Hintikka and Hilpinen solve these problems in the context of a
simple language with exactly k monadic predicate symbols B, some fixed
numbe£ of constant symbols but no other function symbols. The authors
seem to make a background assumption that different constants denote
different individuals in the universe. The lack of detail in the
article makes this unclear. There is also the assumpticn that every
universe contains infinitely many individuals. This is however a
matter of convenience, and can, it appears, be dropped in a more

detailed account.

In the context of an infinite universe, it seems that the assumption
that different constants denote different individuals can be drepped.
For if a and b are different constants then it seems that, on a priori
»
V4
grounds, probability(a=b) = O.
. . I
Using the predicate symbols Pi(1=1,k) one can define K = g,

different kinds of individuals using complex predicates Ctj(jmisk)

~which have definitions of the form:
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= A
Ctj(x) = i=1(ﬁ_u) Pi(x).

By saying of each Ctj whether or not it is instantiated, diff‘erenit ;
world descriptions Cl(1=1 ,Zk) can be given. To give a more exact
definition we introduce the symbols +, -, JSband the metalinguistic
variables & and/3 , possibly with suffixes, to range over them. The
symbols have an ordering L = {< B, +, >, < b, - >}. Pseudo-
formulae are defined by the conditions that if h is a formula then A h
is a pseudo-formula, if h1 and h2 are pseudo-formulae so are ™ h1 "h'I/\hZ
o° (The implication sign is regarded as an abbreviation. )

Pseudo-formulae are abbreviations for certain formulae. It is

and h1 v h

sufficient, for our purpose, to give examples of the use of the symbols;

rather than give a detailed definition:

+P, (x) A= +P2(x)/\()2>P3(x) abbreviates P, (x) A™ P2(X)°

- -P, (x) V- JLPZ(X) denotes P, (x).

Roughly - denotes ™™ , + should be ignored and Jz’means that the
immediately following pseudo~formula should be removed. (Think of them
as being analogous to +1, -1 and 0.) Nasty cases like
JL BXP,I (x):’v JLPZ(x) are handled by the rule that the empty conjunction
abbreviates an arbitrary tautology and the empty disjunction abbreviates
the negation of‘/an arbitrary tautology. Thus C/ABXP,l (X)VJ&PZ(X)
abbreviates =1 (VxP1 (x)v dx = P, (x)), say. In these terms the

Ctj have definitions of the form:

k
Ctj(x) = {; ol iPi(x) (A 1 Adb).
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They are called attributive constituents.

Constituents, C1 have definitions of the form: ;

, K
K
ey =1 %, Auor,l A [V, & ot (0] (K £ )

Rach constituent is a description of a possible world, in so far

as this is possible in the monadic calculus.

Only a certain type of evidence, e, is considered. It is assumed
that there are n distinct constant symbols a:s such that

n k
e = i{:‘l i/=\1 4 Pi(ai') (where o( 150 ;édz )e

ii!
Using a probability function P due to Hintikka, the authors find

by an effective means a constant ngy = 0 ( € ,k) such that Ac may be

defined by:

Ac(h,e) = P(h,e) >1 - & and n > n,, where h is a general
sentence. This definition satisfies conditions CA1 and CA2 applied to

general sentences only. That is:

1) If Ac(h,l,e) and ... and Ac(hn,e) and if h,,...,h and h are

general sentences and '--(h.1 A eee A\hn) -> h then Ac(h,e).
2) The sef {h | Ac(h,e) and h is general} is consistent.

The function P has an important difference from the probability
function of Carnap. It assigns non-zero values to generalisations.

It is in fact one of a whole family of probability functions,

Hintikka's O -continuum (Hintikka (196%a)), for which the same results
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can be established.

. n
consider the unique constituent, Cl(e)E [{; axctn (X)] A

N |
[ Vx :'L=1Ctni',(x>]’ then one may show that if n > n, then Ac(Cl(e),e)

and further that, if n > Nys Ac(h,e) if and only if }—Cl(e) -> h,

Tt is necessary to extend this analysis to other sentences than

general onese.

Every general sentence h can be expressed as
. 2K
h = 14 =4 1C1 where o(l £ -,

as is well-known (Hintikka, 1953).

One can show that every sentence, h, can be expressed as

K
2 ,
h = M ok_L(Cl A hl) where no & = - each h. is singular that is,

1 1
contains no variable whether bound or not. (Singular just means ground. )
| x v 2K'
Suppose that h = }!1 A l(Cl A hl) and h' = i\___/1 X i(C:L A h]'_)
where no & 1 or d\i is -, Then }"h -> h' if and only if whenever
oL £ b, O f Jband l--cl Ahy - hi.

4

s’

Define a partial function of two Variables, max, on f4, =, JZ% by
Ir ol Qo' then max(eX , o ') =X and if ol 'I A, max( o ,o{') = '

Otherwise max(e{ , o{ ') is undefined.

Define min similarly, with = replaced by E.
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Then h A h' _:'—:\:{min( X l,o(_ i) (Cl A 'h'l A hi))

| g \/ ¥ 3
hA b = YVmax(L 5K 1) (6 A (B vh]))-
The right hand sides of these equations are defined.

h is defined to be an e-sentence iff it is equivalent to a sentence

of the form J ot 1-(011 A hl_) where | e —> h. and no C><1 is =e

1

\1/0< l(cl/\ hl) is a representation of h. -From the above we see that

if h and h' are e-sentences, so are h /AN h' and h'V h'.

Any general sentence h EvD‘:LCl (no X 1= -) is an e-sentence,
since h -'—'_-‘\/0(1(01 A (e Vme)). If e' is singular and e = e

then e! is an e-sentence since e'= V(01 A e')e

We are now in a position to define acceptability of e-sentences on

the groundé of evidence e:

Let h'= \:{ e{ 1(01/\ el) be a representation of h as an e-sentence.

Then:
ao(n,e) = ao(Yol 161,9).

The definition is independent of the representation, since if
1

\{ok i(cl N ej‘_), A ] = o(i for all 1. Further the new definition

: ') is another Jtion vV =
l(Cl /\ el) is another representation then, as J A 1(C1/\ el) =

‘of Ac extends the old one.

If }=e -> e' for some singular e', then Ac(e',e) =
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Ac’(\l/(cl_/\ e'),e) = Ac(}éi,e) = n>n,. If this result is counter-
intuitive, 1t is because Ac(\l/Gl,e) = n 21, is counterintuitive.
;

This seems to us to be a slight, but easily corrected, fault of the i

definition of Hintikka and Hilpinen.

There is an equivalent definition in terms of high probability
and large enough evidence. §uppose h is an e-sentence with
representationY X 1(01 A el), VS{e. have:

P(nse) = ?Q/D( 183 A e1)5e)

: o(l%bp(cl A ejse) (as bAoA cl,) if1#£1).

dﬁzP(Cl,e) (as e = el).

P(Y =4 1Cl,e) (as ].—;(cl A cl,l), if 1 £1Y).

Therefore Ac(h,e)

I

Ac(vq 1C1’e)

i

B( \/o!lCl,e) >1-& andn>n,

P( le(cl A el),e) >1 - gandn>ng,
(by the above).:

P(h,e) >1 -& andn>n

0
0( = 4 i
1e) = * and n > n, (by previous remarks).

it

Hempel's conditions may now be demonstrated for e-sentences.

/‘/’A

. Suppose ‘l:ha.t’h,l and h2 are e-sentences with representations

P Q{ ol ¢ 1 i
, V 1(61 P4\ hl} and Vo( 1(01 N h1)° Then h1 A h2 has a representation

\fmin(o( 12 o4 i)(cl A (h1 A h:'L))- So if Ae(h,l,e) and Ac(hz,e) then

Aoy = FRi(ey = mnl K y(gys X)) = + and n 2 mpe  Therefors
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Ac:(h,l A hz,,e).,,: Suppose that I—h‘l > hye  Then P(hz,e) > P(h,l,e).

Therefore if-Ae(h,i,,e), Ac(hg,;e),, This verifies condition CA1.

If Ac(h,e) then 0(1(3) = +, in any representation of h, and
therefore ‘- CA e->he AsC /\‘e is consistent so too therefore is

{h | Ac(h,e)}. This verifies condition CAZ2.

We are now in a position to link uﬁ these results with our
hypothesis discovery methods. There is one small point, - We will
temporarily use e' rather than e to stand for the phenomena and keep

e for the uses described above.
Only certain special e! and £ are considered.

et = {X k:"L‘Pk(ai“) | i* = 1,n] whe‘re the a,, are all different
constant terms and no o\ki" isdd .

k=1
-\ o . .
Ev( ¢ ki'?k(ai“)) =i O(ii“Pi(aj';') where no o<ii' is J&. Then
e and Cl(e) are defined as above, and the above results are available.
: n

Note that l— e = i/q}Jl (ej,Q A fi")° This e' and f satisfy the conditions

for providing a discovery problem.

The next theorem shows that if a certain mild restriction on ‘%
holds, then any;olution is acceptable. This condition is that if H is
a solution and C is in H, then for some Co in Hy, C < Coe Thus H must

not contain any completely unnecessary clause.

VH A e is consistent, n > n, and

Theorem 1 Suppose that H < H o

09

" that if C is in H there is & C, in Hj such that C < C,.  Then ac(VH,e).
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- Proof Let D be in H. We may write D = Sg D‘S U DO where
1) If B, # #, Dy is ground. ’
2) ts) DS has no occurrences of constants.
3} If t >8>0, D, #£ B
4) If s #s', there is no variable common to D_ and D_,.
5) Bach D, has exactly one variable symbol, x_» Sy (s > 0).

t .
Consequentlyg\"VD = (S\__/,l VXSDS) N Dye s VD is consistent

with e, so is some VDS(t > s > 0).

Suppose D, is consistent with e.  Then D # @ and as D subsumes

some member, Ci” say, of HO, DO < Ciqa From the consistency of BG

,) ¢ D and se Y~e => D.. - Therefore

s (33 0 0
asn x> ng; Ac(Do,e). As. ¥ D-is also dn e-sentence and +DO -> ¥D, Ac( ¥D,e).

with e, it follows that X

Suppose that \/XSD is consistent with e(s > 0). = As D < Csoo
s S ci'E_' EV(O(k . k(al,)) VA, Py (a .)» For consistency to hold,
Oﬁkika(xs) must be in D_.  Consider some arbitrary phenomenon, '

OLki°Pk(Si")° Suppose 9<ki' =X s then:

K
A
F 4

11"P (X ) - DS.

Suppose, on the other hand that X Kt ~ D(k.,,. Then, by the
consistency of Vx Dy with e, D 4 -—;Ev(o(k P (a, ")) Therefore

oL

P, (x ) is in D for some i. So:

T A
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k
A\ -
\— i=1 A ;e (%) = De

Consequen’cly, no matter what i" is,
/\
A X iePs
n
Therefore, \" Vx i'¥ g xii"Pi(X) -> VXSBS.

1 i=1

P, (x -> D_s

So by the definition of Cl(e)’ ‘\" Cl(e) -> VXSDS. We then

see that Ac( sz,Ds,e) and so Ac( VD,e).

As D was any member of H, it follows that Ac( VH,e) which

conecludes the proof.

Corollary 2 Suppose that H satisfies the following conditions, where

“3 is a lexicographic extension of —§°C:
1) Hg Hy
VH A e is consistent,

3) H is minimel wrt. ‘5 amongst those sets of clauses satisfying

conditions one and two.

If n > ny then Ac( VH,e).

y
Proof It is immediate that H satisfies all the conditions of theorem 1,
except perhaps, that if C is in H there is a CO in Ho such that C < CO.
Suppose, to the contrary, that C is in H and C _<}_ CO for every CO in H.

Then H' = H U {C} satisfies conditions one and two of the hypothesis,

but H' —§ H and H—}g H*', which contradicts condition three. Therefore
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all conditions are satisfied and the conclusion follows at once.

It follows from the work of Hintikka and Hilpinen that oy is o
calculableAfrom the number of predicate symbols, k and also & ,
Therefdre for sets of clauses satisfying the conditions of theorem 1,
there is a method of deciding acceptability. We have therefore,
for a restricted class of cases, answers to questions H1 (on when a
hypothesis is justified) and H2 (on how to tell if a hypothesis is
justified) of chapter 1 which satisfy the strong coherence condition

that generated hypotheses be acceptable. This answer to HZ2 is

evidently complete and consistent.

There are a number of insufficiencies in our analysis. Firsf
the notion of acceptance is based on just one of Hintikka's inductive
systems, One would really want to have results not only for the
;(—oontinuum but also the whole two-dimensional RA - ,2 ~continuum
(Hintikka, 1966). Negative results would hold for that part
corresponding to Carnap's ;L—continuum (Carnap 1952), since no

generalisation, containing variables, is acceptable there.

It is also natural to try to dispense with the assumption that

all the individuals are completely observed, that is that every
#

o LS, 7

iit

Both of these insufficiencies could probably be remedied with

the aid of Hilpinen's (1968) monograph. Only then could we have a

firm conclusion in the case of menadic logic. It would still remain
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to extend the results to richer languages and this in turn requires a
generalisation of the definitions of acceptance not yet attempted.
Perhaps, however, some use could be made of the work on axioms for
rules of acceptance (Kemeny 1953, Putnam 1963) but this is a mere

speculation.

Important, here, would be acceptance relative to other than
singular propositions. One would wish to know whether or not
Ac( \f.H,Th A ¢) for example. If Th contained axioms for equality,
e could contain distinctness information, of the form as # a., (when
i #£i', of course). This would remove a difficulty, alluded to

above, in the presentation of Hintikka and Hilpinen.

We turn next to arguments designed to show that although it is
necessary that explanation is Jjustified, one cannot, without some
difficulty, formulate conditions sufficient for the rational choice of
an explanation in terms of justification. These arguments are
elaborations of those advanced in chapter 2 to provide an opening for

the use of simplicity.

A reasonable-seeming Carnapian move would be to set H1 -3 H,
iff H1 has a greater probability (in some sense) than H2, given the
knowledge Th /<‘Irr and all the phenomena f and their circumstances e,
However in this case HO will have a probability of onég and sc is a
best solution. . If the notion of probability being used is reasonable

then a hypothesis H will have unit probability relative to all knowledge

etc. if and only if it follows from Th and Irr and e and f. Therefore
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all the solutions will follow frem what is given. Thus nothing new could

ever be hypothesized which is absurd.

A more symbathetic formulation would require not only that an
explanation generalise HO and be consistent with Th and Irr and
/\(ei N\ fg, but also that it be genefal as opposed to ground. In
view of previously discussed difficulties with the notion of a general
law and since in this case, we do not wish to allow ground clauses as a
degenerate case, let us specifly that Th and Irr are empty, that no

function symbols, other than constants, occur in e or f and that H is

n
general if it contains no constants. Let e® = {C}(ei A fi)o

It seems reasonable to assume that if H1 is general and E% < H

but H, 4 H,, then probability (H1,e’) < probability(Hz,e')p

In these circumstances the solutions are also maximal with respect

to <.

Let H, be obtained from H, by replacing distinct constants by

1 0
distinct variables. We may see that if H < HO and H is general, then
H< H1. As solutions are maximal with respect to < every solution
must in fact be equivalent to H,. There are therefore two possibilities:

1

either Hﬁl\'/; ﬁei N fi) is inconsistent and there is no solution or

else H1 is a solution and any other one is equivalent to it. This seems

counter-intuitive. For example, suppose that f = {Q(ai) | i=1,2n},
Ev(Q(a,,)) = P, (ay:) A Py(a,,) (i=1,n) and Ev(Q(ay, ,)) = P,(ay ) A

Pylay_,) (3=1m).
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Here, H, NZ{131(X) R ﬁz(x)) Q(x)}_.,fﬁ,l(x) 5 ﬁB(x) 5 Q(X)E}Q.

For large enough n, one would expect a guess to be made that bot@ !

P2 and P3 are ifrelevant to the truth of Q.

A reasonable Popperian move would be to set H1 —g' H2 iff H1 is
more falsifiable than H2 given Th A\ Irr and f and e. In this case it
is quite clear that there can never be a solution. If H2 is proposed

as a solution, we need merely find an H, such that \/(H1 v H2) is

1
consistent with Th A Irr A/i\ Cei/\ fi)’ and V(H‘l v HZ) is mere
falsifiable than %/H1o This can always be done, as H1 can contain
arbitrary assertions as long as it has no vocabulary in common with auny

of Hyy Th, Irr or //1(ei e fi)° We need a more sympathetic inter—

pretation.

H1 is an irredundant generalisation of H2 relative to Th iff

H, < H, (Th) and if Hy < H, and Hy < H, (Th) then Hy = H, . (This use
of the word "irredundant™ is distinct from that in chapter L.) It is
now required as an extra condition for a solution that H be an
irredundant generalisation of Hoc This will prevent the above
absurdities. It seems reasonable to assume that if H, < H, (Th) but

H, does not follow logically from H {;-(ei A fi)9 Th and Irr then H

1 ; 2° 4
Vd
is more falsifiable than H2 relative to e and f. Any solution will then
be maximally general relative to Th. In other words, the most

falsifiable hypotheses satisfy these three conditions (with _§ equal to

generalisation relative to Th)2
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1) H is an irredundant generalisation of HO’ relative to The
n
2) VI—I A Th A IrraAa :i_/-\1(ei A fi) is consistent, ;

3) H is minimal, with respect to ‘%g, amongst those sets of

clauses satisfying conditions one and twe.

Unfortunately, we do not know if there are any solutions, even in
the case where Th and Irr are empty and there are no function symbols,
other than constants, in e and f. On the other hand if we take —§ to
be the lexicographic product of the simplicity ordering, —gaﬂ (the
number of symbol occurrences) and generalisation relative to Tﬁ then
there is always a finite number of solutions, to within equivalence
relative to Th. This can be seen using a technique similar te that in

chapter 6,section 5.

It seems worthwhile spending some effort on the problem where -4 is
relative generalisation, If reasonable hypotheses could be produced with
this niceness ordering, one would have a good argument against the
necessity of an explicit syntactical simplicity ordering (Goodman)1961)o
Alternatively, one might be able to produce arguments correlating

simplicity with falsifiability in accordance with the views of Popper,

i
Finally, weé give an example of a loose connection between

confirmation theory and hypothesis discovery methods. Sometimes

arguments are produced that certain evidence confirms certain hypotheses,

against one's intuitioms. These are paradoxes of confirmation., Two

 famous ones are Goodman's (1965) and Hempel's (1945). Tt may be
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pessible to show that the same hypotheses could be discovered from the
same evidence and that this too is paradoxical. Such is the case with
Goodman's paradox, of which a brief version can easily be stated. '
Suppose many emeralds have been examined énd all of them are found to be
green. This would seem to strongly confirm the hypothesis that all
emeralds are green. A1l the emeralds must have been examined before
some time, say the year 2000, Call a thing grue if and only if it has
been examined before the year 2000, and found to be greem, or if it has
not been examined before then and is blue. BEvidently all the emeralds
examined are also grue. So Jjust as strong confirmation is provided for
the Hypothesis that all emeralds are grue. These two hypoetheses are
contradictory. Although the grue hypothesis seems absurd, the absurdity

has proved highly resistant to attempts at dissclution. Perhaps the

best proposal was given by Goodman himself when he proposed the paradox.

Let us take £ = §Green(emi) | i=1,n} and
Ev(Green(emi)) = Emerald(emi) A Examinedby(emi,ZOOO), (i=1,m).
Certainly, {{ — Emerald(x), Green(x)}} < Hyo

Now suppose Th contains the definition:

Grue(x) Esf(Examinedby(x,ZOOO) -> Green(x))

A ( = Bxaminedby(x,2000) => Blue(x)).

Then, {{=— Emerald(x), Grue(x)i} < Hy, (Th).

Simple syntactical definitions of simplicity will not distinguish
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the two hypotheses. One might hope to distinguish the Grue hypothesis
as more complex, if complexity is measured after Grue is replaced by its
definition. This will not do if Th is regarded as an unstructured set ‘
of sentences. Let Grue =/ (Green,Blue) be the form of the definition
of Grue. Suppose Th contains in addition the statement,

Bleen = A (Blue,Green). Then both Green =A(Grue,Bleen) and

Blue EA (Bleen,(}r’ue) are logical consequences of Th and so there is

complete symmetry between Grue and Green.

Tt seems therefore that Th must be given some structure and Grue be
regarded as given by a definition. Even then, the proposal to count
simplicity after the replacement of Grue by its definition seems to be an
unwarranted bias in favour of particular predicates as, say, observational
rather than theoretical. We are being lead, quite quickly, into wider issues.
Note for example that focussing only on the stage of hypothesis formation
causes distortion. There must also be a stage of forming definitions
and theory of how definitions interact with discovery and Justification,
Goodman's proposed solution consisted of proposals involving these
stages. A1l in all, the discussion of the paradox of discovery is much»the
same as that of confirmation. To put it briefly, the
confirmation paradox concerns which predicates should be projected; the

#
o 4 o o 3
discovery paradox concerns how to select predicates for projection.

There is one practical point. The *wrong™ predicates should some-
how be avoided at either the stage of definition or else that of discovery.

_ For if any definition is allowed and any of the simplest explanatory
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hypotheses, there will generally be infinitely many hypetheses still to

be eliminated at the stage of justification. For example: consider the

definition
!

Gruet(x,t) = (Bxaminedby(x,t) -> Green(x)) A

( = Examinedby(x,t) -> Blue(x)).

Now mone of the infinitely many hypotheses BEmerald(x) -» G-r’u,et(x,to)9

- where to is a constant greater than 2000 - will be gliminated,
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Two extensions to a more ‘complex ¥Kind of theory, Th

iro
-]

2.1 Sorted languages

The first extension conecerns languages with several disjoint sorits.
It is a matter of folklore that the usual unification procedure
automatically takes account of the sort restriction. Similarly the
procedure for generalising two literals works when dealing with sorts,
provided only that when matching distinct terms, the new vardiable
substituted should be of the same sort as the old ones. With this one
difference, all of the theory goes through without any trouble. Instead
of puéting the sort restrictions in the language we could let Th include
the usual sort axioms using unary predicate symbols. Ore could then
show that this leads to essentially the same results as the somewhat

neater linguistic procedure.

2.2 Algorithms for a simple kind of theorys: ground clauses

The second extension concerns algorithms for finding l.g.g's when Th
is an arbitrary consistent, finite non-empty set of ground literals. We

will give the essential theorems and algorithms for literals and clauses.

The first theorem gives the result for literals.

S

We define a function inf by

Th

If }Em.\fM then inf, {M,N} = N. Otherwise, if |7, V

Th{

then infTh{M,N} = M. Otherwise, if M and N have the same predicate

letter and sign then, infTh§

M,N} = inf{M,N}. Otherwise, inf__ {M,N} = L

ht
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(L,! is some fixed member of Th).

Theorem 1 1 L < M (Th) iff I—Th = VL or I—Th V M or for some

substitution ©, L 6 = M.

2 L "~ (Th) iff either |5, V ualh or e1se

I-Th = VM 4"VL or else L VM.

2 Every pair of literals M and N has a least generalisation

relative to Th, infTh{Ma, N i,

Proof 1 L <M (Th) iff for some O[5 L O~ K

ire |, 508 > m § (where § = fa, ()/x,,ee08 (V/x s
the X are the free variables of I, © -> M and none of the ai occur in Th
or L 6~ -> M)

iff @« R({Li | L, ¢ Thi U LoS, %o 1)

There are now three possibilities, as Th is consistent. First,

for some i, @ ¢ 0& ({Li, L 6"8})0 This is equivalent to ‘_Th—‘ VL,

Second, for some i, @ ¢ &({Li, M S 1) This is equivalent to

M, V.

Lastly, § ¢ R (GL6~O, % S 1). This is true iff Lod =M §
which is equivat‘lent to LO™ = M. This concludes the prcof of the first

part.

2 Suppose L~ M (Th). Then as L < M (Th) either 1_Th "’VL or

VM or, for some g , L&~ = M.

i
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Suppose that ]',Eh Vi, asw < L (Th) either 1—-Th«-z-VM or
*—Th V L, for some/M s M/“r = L. The second case is impossible and |

if M/\A, =L thep, as l—Th? VL,};‘:r *—Thﬂ VMQ Hence in this case !
\’Th "rvL A'\VM,

Suppose that ‘_-Th 'VM.; As M < L (Th) the possibilities are that v

lhTh ‘VL or M/M-=Lfor some/u—o Now M/“ = 1L and ’—Th VM implies
I—'Ih VL., Hencé in this case [—Eh VLA VMB

Suppose that LG~ = M. As M < L (Th) either i—'i'h_' VM or
‘}_Th:v L or for some/“, M/M = L. In the first case it follows that
Fon ™ V1, the second that {—Th YV u and in the third that L~ M.
Hence in this case l—Th V LV Yu or h_[‘h 2 VL/\" '7{\4 or L M.

This concludes the proof of the second part.

3 If ’I’Eh VM then N < M (Th) and so N = infThm,N; is a l.g.g.

of M and N relative to Th, Iir *-Th V N, the proof is similar,

Suppose that M and N have the same predicate letter and sign and
neither |z ¥ ¥ nor Fo, Y N then inf{M,N] is defined and as
inf{M,N} < M, inf{M,N} < M (Th). Similarly, inf{M,N} < N (Th).
Suppose that L < M (Th) and L < N (Th). Either l-TI'h - VL or else
there are ©, /’}_4 such that L 6~ = M and L/u = N. In the first case
L < inf{M,N} (Th). In the second, L < inf{M,N} and so L < inf{M,N} (Th).

Thus infTh{M,M is a l.g.g8. of M and N relative to Th in this case.

Suppose that M and N differ in predicate letter or sign and that

neither }_‘Th V M nor i'Th V N. Then if L < M (Th) and L < N (Th),
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the only possibility is that }-“bﬁc Then L < L1 (Th). Since
L, < Th, ‘—Th—rvil and so fﬁ < M (Th) and I_.1 < N (Th). Therefore

1
infTh{MsN} is a l.g.g. of M and N relative to Th in this, the last casé€.

]

This concludes the procf of the theorem.

Let Th be the clause {i l L ¢ Thi. It follows from the character=-
isation of relative generalisation given by theorem 3.1.3.1 that

C < D (Th), iff D is a tautology, Co € DU Th for some G or Th/Y D # @.

Let I,1 be some member of Th. Reduction will be defined relative to

this choice. A clause C is reduced relative to Th iff C = (L }oor C

1
is not a tautology, C A\ Th = @ and for any C* £ C, C < C' (Th) implies

C =CV°

A clause, B is a reduction of a clause C, relative to Th, iff when

C NTh £ @ or C is a tautology, E = {L } and, otherwise E is a reduced

1
subset of G equivalent to C.

We define a function inf fc,D}. If D is a tautology or if

Th
DN Th # @ then inf‘Th{c,Di = C. Otherwise, if C is a tautology or if

C A Th £ @ then inf{C,D} = D. Otherwise, inf,, {C,D} = inf{¢ U Th,D vV Thj.

Th

There shoulil be no confusion between the function defined here and

the function infTh defined above on sets of literals with two elements,

Notice that inf, , {L,M} ~~vinf

Th ! (L3N] (Th).

Theorem 2 1 ' The following algorithm stops. It gi.ves a clause E1

which is a reduction of C, relative to Th?
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1) Set E, to C.

2) If E, is a tautology or E, N Th # @ then set EJI to {L1§ and stops

3) Set E, to B
Lt) If E2 is empty, stop.
2) Choose a literal, L, in E2°

6) If there is a substitution, © , such that
E,0 S (B, V E, U Th) \ {L] and MO~ = M for every literal M in E,
then change E, to EZ(Y \ (E1 U Th). Otherwise remove L from E, and

add it to E1o

]_) Go to L.

2 IfC~D (Th) and C and D are reduced, then they are alphabetic

variantse

3 Every pair of clauses C and D has a l.g.g. relative to Th,

infTh{ C,D}.

Proof 1 If C is a tautology or C N Th # @ then the algorithm outputs

{1, 1 which is rgduced and equivalent, relative to Th, to C. Otherwise,

1
the proof that the algorithm works is a slight elaboration of the proof

of theorem %c3%3.1.1%,

2 Suppose that C and D are reduced and equivalent, relative to The

If C = {L,§ then as C < D (Th) either Coo S D V Th for some O~, D is a

]
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tautology or D N Th # @. 1In the first case, L, = L’l o ¢« DU Th,

1
As L1 ¢ Th and Th is consistent, ]:u,l ¢ D. The other two cases are
inconsistent with D's being reduced. Therefore the only possibility -
congistent with D's being reduced is that D = {L1§, Similarly, if

= C = L
D §L1}p i 1

is the other which proves part 2 in these cases.

}. Therefore when either one of C and D is {Lﬂ s0

Suppcse, then, that there are O ,/A such that Co €D U Th and
D € ¢ U Th, neither C nor D are tautologies and C A Th = @ and
D N Th=@ ThenCom $ThuV Du STh U C. LetC, ={LeC l
Lom e Thi and C, =0 N\ C,o Since C is reduced, C, = @ and C, = Co
Therefore as {L ¢ C | LO™ « Th } ‘_":’..C,l, co- €D. Similarly D/u €c.
Under the conditions that neither ¢ nor D are tautolegies and
CATh=DnNnTh=g@g. Cis reduced relative to Th implies C is
reduced and similarly for D. Therefore, by theorem 3.3.1.1, C and D

are alphabetic variants.

3 If D is a tautology or if DN Th # # then C < D (Th) and so C

is @ legege of C and D relative to The
When C is a tautology or if C N Th # @, the proof is similar.

In the lask case, inf{C U Th, DV Th} is certainly a lower bound
of C and D, relative to Th. Suppose that B < C (Th) and E < D (Th).

IFE<CV Thand E< D U Th then E < inf{C  Th, D U Thj. As

this is the only possible case, the proof is finished.
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It would indeed be desirable to extend these results to a Th with
general literals, However great difficulties arise. There is no
trouble as regards l.g.g's of literals, Theorem 1 is true as it stands
and the proof hardly needs any alteration. One can obtain analogues to
the first two parts of theorem 2. The trouble comes with part 3. No

l,g8.8. relative to Th can exist. Here is a counterexample.

Let Th = | Vxx' Bg(x),x'), V xx' B(£(x),x')}. There is no

logogs of Qf(a())) and Q(g(a())) relative to Th.

Let ByseeesBss0ee be an infinite sequence of distinct unary

function symbols each of which is also distinct from f and g.

Let ¢ = {Q(x)} U {P(x,g,(x)) | i=1,nl.

Now C_ gQ(f(a())} (Th)., Figure 1 gives a Gi—derivation of

In

{Q(f(x))g. (8ee chapter 3, section 1.3).
fa(x),  Plr,g,(%))s wee s Plr,e (20 §B(2(x),x)3

So(e(x)), PG, g (£(x))), oo s B(E(x),8, 4 (£(x)))}

N
~

N
N

AN
fa(r(x)) S P(£(x), &, (£(x)))§ § B(2(x),x" )}

55<f<x>z?

Figure 1
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Similarly, C i{Q(g(a()))f(Th). Suppose that D is a l.geg8e. OF
gQ(f(a())i}andiQ(g(a())ﬂ, D must contain a variant of{Q(x)}and can
contain no literal of the form Q(t) where t has an occurrence of a
function symbol. Since Cn <D (Th) there must be a Cnmderivation of
a clause subsuming D from Cno This clause must contain a literal
with predicate symbol Q. This literal mey not, therefore, contain
any function symbol. So the occurrence of x in Cn may ouly be replaced
by an occurrence of some other variable. Therefore no{P(x,gi(x))fmay

be resolved with a literal from Th.

Therefore D contains an occurrence of every 8; in Cn. As this
argument is independent of n, we have arrived at a contradiction.

ThereforeZQ(f(a())i}andjb(g(a()))}can have no l.g.g. relative tc Th.

We might hope that there is, say, an infinite set of non-equivalent,
relative to Th, generalisations, relative to Th, of C and D with the
property that if E is a generalisation, relative to Th, of C and D then
it is a generalisation, relative to Th, of some member of the set. This
would still allow some kind of computational procedure. However, one
can show that if E < C (Th) and E < D (Th) there is an E', also a
generalisation of C and D, relative to Th, such that E < E' (Th), but
E? i E (Th). Thus there are not even any minimally general general-
isations of C and D relative to Th. The technique is to choose a Cn
such that &y, does not occur in E, and to let E' = E:; V) Cn where E
standardises E apart from C . It is easy to show that E' < ¢ (Th)

. and E' < D (Th). Evidently B < E'. If E' ¢ B (Th), one finds by
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arguments, similar to those showing that C and D can have no l.g.g.
relative to Th, that g, must occur in E which is a contradiction.
One can obtain similar counterexamples by replacing gi(x) by
h(e...h(x)) where there are i occurrences of h, which avoids the use

of infinitely many function symbols.

In general, therefore, there is no solution when Th contains
general 1iterals'and ’% is ~£ cpg, since relative least general general-
isations do not always exist. It is in fact not difficult to produce an
example, using the above techniques, where, although there is a consistent

explanation,there is no best one.

One can do spectacularly better however, when -3 is *gs,.

(H1 *{E;, 'HZ iff H, has no more symbol occurrences than H2)°

Suppose, for the moment, that there are only finitely many function

and predicate symbols.

Let Xysecee be an infinite list of variables. One can find a

1list Hq,Hz,.oo. of sets of clauses such that:
1) 1If Hi has m variables, they are XysooeesX o

m

2) Given gay H there is an H, which is an alphabetic variant of H.
3) If i< j thenH, ~3_, H,.

Let Th and Irr be arbitrary, take -5 to be ﬂgs, and choose some

e and f. Then the first Hi in the list, which consistently explains
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f given e and Th, is a solution to the resulting generalisation problem.
There always 1s one, since HO is a consistent explanation of f given e ;
and The TLet this first explanation be Hii As there are finitely maﬁy
sets of clauses in the 1list with a given number of symbols, there is a-
finite set {Hi [ Hi-—§ gt Hi1and Hi is a consistent explanation of T

given e and Thi o

Every solution is a variant of some member of this set, and every
member of the set is a solution. Whether or not the set is effectively

obtainable depends, as usual, on the decidability of consistency.

It is possible in principle, therefore, to accept the non-existence
of least generalisations, if one alters ”5>° One would wish however to
use a =3 for which the solutions are easily obtainable. Certainly 'glq,

is of no use if the algorithm which searches an infinite list has to be

employed.
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2 A general algorithm using a limited consisténoy check

In chapter L the unsolvability results were caused by the o
difficulty in checking for consistency. Meltzer (1970) has suggested
that the requirements of consistency be replaced by the requirement that

a determined effort has been made, but failed, to prove that

n
VH ANTh A Irr A ./\(e. N f.)is inconsistent.
i=1"1 i

We could still add on at the end a (perhaps computationallyvery
expensive) test for consistency. If H passed this test we would have a
solution. If it did not, we could recycle, meking a more determined

effort to check consistency. This combination might be quite practical.

For our problem we decided, following Meltzeg to formalize the
'determined® test as VH A Th A/i\ (ei A fi) A Irr is l-consistent,
where l-consistent means that a binary resolution theorem prover has not
found a contradiction at level 1. The theory goes through much as

before, and theorem .1 holds when the evidence changes have been made,

This theory does not parallel the procedure of Meltzer exactly.
There are great differences in the way generalisations are found. He
abstracts individual members of HO rather than combining them to form
least generalisations. This is partly motivated by his Popperian nice=

ness relation which prefers more to less general sentences.

We hand-simulated the method, with 1 set equal to ten, for the
problem that Meltzer tried. The facts are represented using a binary

predicate symbol E, for equality, and a binary function symbol f for
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multiplication. Thus ab = cd is represented by two facts,

£, = E(f(a,b),f(c,d)) and f, = E(f(c,d),f(a,b)) (similarly for ab # cd).

!
The corresponding es are empty. Th was empty, but one took Irr to be’

the axioms for equality. It can be shown that E(t1,t2) is in the
solution H iff E(tz,t1) is (similarly for E(t1,t2)) so we present the input

and output in the ordinary notation.
The facts given were:

ee

il

e
ae:a/

(az)e = a(ae%

il
(6]

(ea)a ,
ea £ e,
aa £ a,
be = cb,
(bb)b = ¢,

(bb)e £ ¢,
(be)e # b.

The solution was:
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1. xe = X
}
2.xa £ x,

3(aa)e = a(ae) "
k(ea)a = e,

5 Xy = JX,

6. (bb)e # ¢,

7.(bc)e £ D,

8.(bb)b = c.

Thus we found the right-identity and commutative laws. When we

added.
(ab)b = a(bb)/

the solution was as above except that 3was replaced by (xy)z = x(yz),
the associative law. This is as good a result as Meltzer obtained.
Both methods obtained the right-identity and the commutative laws.

Meltzer obtained a part of the associative law, viz.:

(xx)y = w D x(xy).

If he altered his method sco that occurrences of terms were
abstracted, rather than abstracting on every occurrence at once, he.
; ,
would have obtained (xy)z = w D x(yz) = w which is equivalent to the

associative law in the presence of the axioms of equality.

Rather different laws, true only for the example groups, were

.. found by the two methods.
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What neither method does, however, is to use the equality axioms

when forming generalisations. Preliminary investigation of

generalisation relative to these axioms shows that this is not an easy’

problem,
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Lo Somé pilot experiments

o1 Description of the program !

To test out our ideas on algorithms fof forming generalisations, we
have programmed a method which works on a case of the general problem,

generated by the following assumptionse—

1) The language 1is sorted and there are no function symbols other

than constants.
2) The niceness relation, ’3 , is ‘% ope”
3) The knowledge used for generalisation, Th, is empty.

L;.) Irr A /j\_éi/\ fi) is the conjuncfion of the literals in some

Herbrand base of Irr A /:\.L(ei A f‘i).
 5) Only one predicate symbol occurs in fe.

From the discussion of the simple solvable case after corollary 2
in chapter L we see that consistency is eé.sily checked. Indeed, if
E={L | L is a conjunct of Irr A/}_(ei A fi)§ then

n
A . . .
VH AIrr ALY (e5; A fi) is consistent.iff H ¢ E.
. i
The program calculates a heuristic approximation to an
irredundant explanation, H, rather than looking for a best one. This

is to save time. The program is written in the POP-2 programming

language (Burstall, Collins and Poppiesione,_ 1971) and has been run on
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the ICL 4130 machine. At the moment running times vary between three

and fifteen minutes.

The,prograﬁ starts with H, the poteﬁtially irredundant explanation,
set eqﬁaiifo Hoo It then continuously chooses a member, D, of H and ;
member Ci of HO and replaces D by inf*{b,ci} a heuristic approximation
to the‘reduded form of infiD,Ci}° This stops when any such replacement
results in VH N Irr A/i\ei A fi) being inconsistent. Then H is

output as the result.

The flowchart of the program is given in figure 1.

Set H = Hoc
\ 4
N Choose a clause, D, in H i there is none.y | exit
4 which may be replaced. 4
¥ if there is one
Choose a clause, Ci’ in H such
that it is not kmoWwn that D < C.
and which has not been tried
before.,
A
L 4
Find D' = inf*{D,C, ].
# Y
70 | Does D' pass the consistency
iV 4
\ T test?
A Y yes
< Replace D by D'. Simplify H,.

Figure 1
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Various heuristic rules are used in making the choices mentioned in

the flow chart,.

Let Fail(D) = §Ci 1 Ci is in Ho and in the course of building up D,

an attempt to use C failedl.

Let Success(D) = {Ci | Ci is in Hb and in the course of building up

D, an attempt to use Ci succeeded} .

Tnitially, Fail(D) = @ and Success(D) = {D}, for any D in H. The
clause, D, can only be selected if Fail(D) U Success(D) # Hye The

program chooses a clause D in H with a largest Success(D) and of two

such clauses prefers the one with the smaller failure set.

A clause C, in Hy can only be chosen if it is not in Failure(D) U
Success(D). From these the program chooses a clause Ci for which there
are minimally many clauses D in H such that Ci is in Success(D). This

reflects our belief that the better-structured the problem the less likely

it is that any clause in H

0 is generalised by more than one clause in a

good explanation. Consequently we believe that the chance of failing,
and so wasting a lot of computational effort, grows with the number of
previous successes in explaining fi given &0

P

ra

Next, D" = inf{D,Ci§ is calculated. An approximation to the
reduced form of D® is found as follows., If D g C, then D" is D.

Otherwise, D™ is ordered into a list L, s0005L _s00.,L_where any two
- n °“m

distinct literals occurring in L1"°°°’Ln have different predicate
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symbol and sign pairs. Further if some predicate symbol and sign pair
occurs in D" it oécurs in L1,ooq,Lno The literal Li has no more
variables than any other literal with that predicate symbol and sign
for i={,n. For n < 1 < m, Li has less variables (not in L1,°oo,Liw1)>
than in any other of the Li,oo.,Lmo The heuristic approximation to the
reduced form of D™ is the reduced version, calculated properly, of

{Li l 1.i i < min(1l,m)}, where 1 is a program parameter, which is set as
large as possible without incoﬁveniently long runhing times. We set 1

to be 11 throughout our experiments.

The consistency test checks whether D" < E, with E as defined above.
This is a necessary and sufficient condition for the consistency of H
with Irr A /}(ei,\ fi) since the other clauses in H will either already

have been checked or else are in Hoe

Simplification is performed by continuous application of the

following operation, until this is no longer possible:

Remove from H a clause, D1 such that
Succéss(D ) & LJ Success(D,).
1 Do<H and D,#D, 2

Notice that D™ itself cannot be removed by this process. The
P

Vs

program takes advantage of this facte.

When the program terminates, and it must do so, H is reduced. For
suppose D1 and D2 are distinct clauses in H then and D1 < D2° Suppose

that D is any clause in H then. Now since the program has terminatedg
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Hy = Success(D) U Fail(D). If C ¢ Success(D) then D < C. Otherwise,
astii A Trr A M, A £.)is consistent, D 4 C. Therefore

Success(D) = {C € HO | D< ci. It follows that t
Success(D,) = {C ¢« Hy | b, < ¢} € {c < H, [‘D1 < €} = Success(D, ).

But then the simplification process would have removed D2° This
contradicts the fact that the program has terminated and establishes

the conclusion.

On the other hand, H need not be irredundant at termination since

inf* is not inf. If inf* were inf, it would be.

402 Evaluation of experimentation

It is now convenient to discuss why experimentation is helpful.
First it serves to give more complex examples than can easily be produced
by hand. Secondly, we can try to evaluate our hypothesis genergtion
methodo- Some ways of evaluation will not be considered. We pay little
attention to the efficiency of the program, since it has only been
written to provide answers in a reasonable amount of time which varied,
as stated above, between threeand fifteen minutes for the examples
described below, Neither will the behaviour of the hypothesis method
through time be considered; we have only begun to investigate the
possibilities thé%retically (see chapter 6). Finally we do not
investigate either theoretically or practically how useful the hypothesis

generation method is to the organism employing it (see chapter 1),

The method will be judged by the hypotheses it produces. But
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this is not too easy; by definition the method must produce the nicest
expianatory hypothesis possible, in the sense of «fcpgo Consequently
experiment will merely confirm theorem Uk.1. Howeﬁervwe can test
the correlation of .—%CP with other niceness relations. For
illustration we will try “5 . (see chapter 1 for a definition) and <
(this is a Popperian niceness relation, as discussed in section 1 of this

chapter),

Tt would certainly be possible to try to calculate the predictive
power of a generated hypothesis, when all cases and the correct hypothesis
are known. However one should also take into account how good the
information provided to the hypothesis generation machine is. Suppose,
at one extreme, that no information is given (where f = 3). Then one
cannot expect‘any predictive power of a generated hypothesis. At the
other extreme when all possible cases are given one would expect a
hypothesis to possess total predictive power, as a simple consequence of its

being an explanation.

More generally, one can only expect the hypothesis generated to do
well in cases similar to those it is given information about. This
would require what we do not possess: a method of giving a sense to the

word "similar®™ induced by the correct hypothesis.

A partial way around this problem would be to compare with respect
to predictive power one hypothesis generated by the generation method

with another either generated by a different method or else by humans,
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when both hypotheses are generated from the same information.  This

would require rather more than a pilot experiment.

What we shall do is award good marks according to how well the
predictions of the generated hypothesis match those of the correct oné.
If the agreement is, intuitively, rather small and we can show,
intuitively, that a "fair sample® of cases have been supplied, then we

shall award a bad mark.

One should compare our difficulties with those which arise when
evaluating Evans' Analogy program (Evans, 1968). As long as his
progfam gives the "correct" answers, it is certainly doing well. If
it gives no answer, it is certainly doing badly. But suppose it gives
the "wrong" answer. Then whether it is doing well or not seems to
depend on what its reasons for giving that answer were. Two comparisons
are in order. First consider a program which simply always selects the
first allowable answer figure. It will certainly never have any reason
for making its choice. Next consider a clever person who knows the
correct answer and deliberately tries to find good reasons for choosing
SOme Wrong answer. It is well known that most I.Q. tests can be so
treated by an intelligent person! Perhaps therefore an analogy program
should try te f;nd as large a number of answers as possible and try to

convince us that each was "correct®.

4.3 An experiment using the win predicate of noughts and crosses

The aim of the experiment is to discover a sufficient set of
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conditions for a pesition te be a win. The board is considered to be a
three by three matrix. We use a language with two sorts: numbers and
positions. There are three predicate symbols, XX, OO and Win. '
xX(i,j,p) is true iff position p has an X in square (i,j). The
predicate 00 is defined similarly. We can formulate a set

Hcerrect = {quEz,EB,Eui,offburclauses expressing sufficient conditions

for a win:

E1 = {ﬁ(iﬂ sp)s _ﬁ(i,Z,p), ﬁ(is59p)s Win(p)%}
Ez = {ECJ‘ sisP)a XY(Z,i,p)s iﬁf<39isp)s Win(P)},

td

' iﬁ(h’i D)5 _ﬁ(2szsp)s ﬁ<59339)9 Win(P)%,

=
li

Li—. {ﬁ“ 93913)5 ﬁ(zsgsp)s (3919P)97wj-n(P)§°

These state, respectively, that a row, a column, a forward diagonal

®

or a backward diagonal of X's is a sufficient cendition for a win.

Consider the position, p1() say, displayed in figure 1.

Figure 1 4

Certainly the fact, f1, to be explained is

£, = Win(p, 0)-




g

=1 Tk~

There are two possibilities for'Ev(f1)°

reasons why f

If we give the exact
" is a win then

EV'(f1) = XX(1 929P1()) A XX(292991()) A Xx(3929P1<))°

If we decide that the win depends on where the marks X and C are
then
Bv(f,) = Xx(1,2,p,()) A xx(2,2,p,())
A X%(3,2,0,(0) A 00(1,3,p,())

A 00(2,1,p,()) A 00(3,3,p,()).

We shall try both.

There are certainly others in which, for

instance we might include in Ev(f1) the literal 66(1,1,p1()) or even
66“ 929P1 ())"

The choice of Ev is not prescribed by our theory and is but one of
many omissions (see chapter 1),

Next, consider a loss, such as the pesition, pz(), displayed in
figure 2,

X X
0 0 0

i - e
g X X

Figure 2

In this case we simply include a complete description of the
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figure in Irr. So Irr will contain the conjunction:

3 “ /Q\ —_
A T11250) A £} T05,3,8,0)

>

N e 36%(29{]9132()) N _szz(Bszspz())
3

7\ 1x(1,3,,0)

N

o

00(2359P2()) A

A xx(3,1,0,0) A XX(3,3,0,()) A WEE(p,())

So given a set of won or lost positions, we have shown how f,
Ev and Irr are obtained. However the resulting problem will not
satisfy assumption 3, given in the description of the preogram, since
we have not included a complete description of every won position in

Trr,

Let E = {L | L is a conjunct of Irr A j_/Sl(ei A f‘i)§ as defined
there; let Irr'® be Irr together with a complete description of every win
and let B! = {L | L is a conjunct of Irr' A {ég(ei A fi)}° Now if
only a single position variable occurs in a clause G which contains only
positive occurrences of the Win predicate, then the reader should verify
that ¢ < E iff C < E'. Now every clause in gégHo) has this character
and so we conclg@e that we may safely use the program with Irr as defined.

This represents a useful computational saving.

The first result is in a case where Bv gave the exact reasons and

the positive wins were as displayed in table 1. We took all possible
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non-wins to form Irr. The calculation was performed by hand, since it
is easy in this case to generate all solutions, rather than Jjust one

heuristic approximation to an irredundant set of clauses. _ ¢

0 0 0 0 X 0]

X X X 0 X 0

0 X X X X 0
X X 0 0 X

0 0 X 0 X 0] 0 X 0

0 X X X

X 0 0 X

0 X 0 X
X X 0 0

Table 1
There is exactly one solution, Hsoln = iD1,D2,D3,DL‘_§ where

[w}
It

1 {ﬁ(iﬂ’P)s X_X-(i’Z’P)s ﬁ(i:Bﬂ:))’

ﬁCisi sp)3 Win(P)}/

|w}
1]

— /:A fynnng . v .
2 {XX(1 :19P)9 XX(Z::'-:P)’ XX(B,l,p),
_Xi(i,i,}_)), Win(P)%)

{-ﬁ“ 51 :P)’ X—X(2,2,p), ﬁ(393:P)3

[’
i

win(p)},
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Dl{- = gﬁ(/lsBsP)s ﬁ(zy‘?sP)s —Xi(331 sP)s

Win(p)i.
; !
Evidently & position is a win according to Hsoln iff it is
according to Hcorrect° So Hsoln has good predictive power. It is

not maximally nice with respect to either «{l, or < since the literal

ff(i,i,p) oceurring in the clauses D1 and D2 is superfluous.

The next two examples use an Ev of the second sort, where we record
all occurrences of O's and X's in each Ev(fi) (i=1,n). TFor the first
example, the win and non-win positions are displayed in tables 2 and 3

respeétively. They are from an example given in Popplestone (1970).

X X 0 X 0
X X X
X X X 0
X X X X
X X ’X X
X 0




...

R
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Table 3

The program found’a set of clauses HSoln = {D1,D2}, where

4 = {ﬁ(i,},p), ﬁ(mai,P)s -X-f(mﬂ sP))

(=4
il

XX(1,m,p), Win(p)}

{ﬁ<39dsp)s -X-E(dsd’P) 9 ﬁ(Z,g ’P)s

Il

vand D2

ﬁ(gsgsp): i—i(isisp)s ﬁ“ sisp)s Win(P)}"

The clause D, has as a consequence that any position containing a

1

column of X's or a backward diagonal of X's is a win. The clause D2

does the same for rows and the forward diagenal. In fact H < H o
soln =~ “correct

Therefore if H £ predicts that a position is a win, so will H

(-]
correc soln

However HSoln makes some wrong predictions. For example, according to

D, any position containing an X in (1,3) and in (3,1) is a win.

A

We cannot say if this is because we do not have examples of all the
"ways® in which a position can fail to be a win since we do not have a

good concept of such a "way". is not maximally nice with respect

Hsoln

_ to either —811 or < since one can remove ii(i,m,p) from D1 without




g
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affecting consistency with Irr A /Q(ei A fi).

The win and non-win positions for the second example are displayed in

tables L and 5 reépectively.

X X X X
0 X 0 X 0] X
X X X 6] X 0
X 0 0
X X X X X X
X 0 X X X 0
Table_&
X X X X
X X X
X
X X X X
X
X X X
,.,s'
Table 5

The program found a set of clauses, H = §D1§ where

soln

ng = {ﬁ(E,Z,p), ﬁ(k,k,p), X—X<1’l,k,p), bﬁ(q,n,p), Win(P)E°
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As we inadvertently did not put a O in any of the non-wins, it is
possible to find an explanation with only one clause. This invalidates

any comparison with H_ o The solution is not maximally nice with

soln

respect to either -3 or < since the clause

1t
{BE(QSnap)s Win(P)}

would do Just as well.

To sum up, generated hypotheses compare well with H“oln’ but do not

have maximal niceness with respect to either *%1' or <.

th Learning the patrilineal ancestor relationship

The binary relation, patrilineal ancestor, is recursively defined

by
Anc(x,y) £ Father(x,y) V Ez(Father(x,z) A Anc(z,y)).

We are using a language with one sort. There are three binary
predicate symbols, Father, Daughter and Anc with evident meanings. The
hypothesis generation machine is required to find sufficient conditions
for one individual to be the patrilineal ancestor of another. The

definition of Anc gives the set, Hcor = {E1,E2}, of sufficient
P
conditions where”

{Father(x 9y) » Anc (X,Y)g

B =

and E2

{Father(x,z), Kr?c-(z,y), Anc(x,y)}.
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A typical member of f has the form Anc(a,b). There are, again,
at least two ways of choosing Ev(anc(a,b)). One is to give exact
reasons. Another is to choose a reasonably small set of literals i
which establish a link between a and b, A link is a set of literals
{Lk | k=1,1} where each L, is of the form Pk(ak,bk) or Pk(bk,ak)
where a=a, bkzak+1 (1535;=1) and b1=b° In general we let
Ev(Anc(a,b)) be a few of the smallest links between a and b,

Trr is simply a conjunction of all the true literals in the

example under consideration.

In the examples, we were concerned with two families whose trees

are displayed in figures 1 and 2.

Adam

Bill

Figure 1 ;
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Isa

Manuel i

Karen

Figure 2

In order to define the Irr used in the various examples, without
repetition, we define three sets of clauses Irr1, Irr2 and IrrB, using

some auxiliary sets.

Let IPT1,A = {{Anc(a,b)} I ¢ {Adam,Reg}, b ¢ {Bill,Terry,Rod,Kaija,Viivi}}
U {{Anc(Adam,Reg)}}
U{{Anc(Rod,b)} | b ¢ {Kaija,Viivil}
IrrZ,A = {{Anc(Isa,Manuel)}, {Anc(Isa,Karen)i, {Anc(Manuel,Karen)%%J
Irr, = {{Father(Reg,b)} | b ¢ {Bill,Terry,Rod}}
b4
U {{Father(Rod,Kaija)}, {Father(Rod,Viivi)} §J
Irr, o = { { Father(Isa,Manuel)i, {Father(Manuel,Karen)%},
®
-Ir’r1 D= { {Daughter(Kaija,Rod)}, {Daughter(Viivi,Rod)}},
, B
,‘A
Irr, o = { { Daughter(Karen,Manuel)}}
»D 7




—
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Trry = Tre, v Ir’r“F 1, v {{P(a,b)} | P ¢ {Anc,Father,

Daughter}, a, b ¢ iAaam,Reg,Bill,Terry,Rod,Kaija,v11vi§9

v Irr

P(a,b) £ Irr, U Irr, U Irr, D%) ;

II'I‘2 = Ier,AU II‘I‘2 F v Ier,D U {{P(a,b)} | P ¢ gAn(;sFajl;her9

Daughter}, a,b ¢ {Isa,Manuel,Karen}, P(a,b) £

Irr2 A v I:!c'r‘2,F V Irr

9

2,D}

= {P(a,b) | P ¢ {Anc,Father,Daughteri,

5
=
|

a ¢ {Adam,Reg,Bill,Terry,Rod,Kaija,Viivi},

boe | Isa,Manuel:,Karen} }

UiP(b,a) | P« { Anc ,Father,Daughteri,
a ¢ |Isa,Mgnuel,Kareni,

b ¢ {Adam,Reg,Bill,Terry,Rod,Kaija,Viivi}1g

Tn the first example, we used an Bv of the first kind., EBv and f

are described in table 1j Irr was taken to be Ir-r1 U Ir'r'2 v Ir'r30

The program output the set of clauses Hcor’ described above. It
is possible to prove that these are optimal with respect to both “{1’

and <o
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il e
£, = Anc(Rod,Kaija) e, = Father(Rod,Kaija) o |
£, ::Anc(Reg,Tefry) e, = Father(Reg,Terry )
£y = Anc(Reg,Kaija) o5 = Anc{Reg,Rod)
/A Father(Rod,Kaija)
£, = Anc(Reg,Viivi) e) = Anc(Reg,Rod)
/\ Father(Rod,Viivi)
£y = Anc (Isa,Karen) e = Anc(Isa,Manuel)
/\ Father({Manuel,Karen)

Table 1

In the second example,

f are described in table Z;

we used an Bv of the second kind. Bv and

Irr was taken to be Irrqs




g
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£, = Anc(Rod ,Kaija) e = Daughter(Kaija,Rod) A

Father{Rod,Kaija).

il

£, = Anc(Reg,Terry) e, = Father(Reg,Terry).

£. = Anc{Reg,Kaija) e Father(Reg,Rod) A

AN

Daughter(Kaija,Rod)A
Father(Rod ,Kaija)A
Anc(Rod,Kaija) A
Anc(Reg,Rod),

£, = Anc(Adsm,Kaija) e, = Anc(Adam,Reg) A\
Anc(Reg,Kaija) N
Anc (Rod ,Kaija) A
Father (Reg ,Rod) A

Father(Rod,Kaija),

Table 2

The program outpubt a set of clauses, H = {D,] ,D } where

()
i

, = {Fatner(x,y), Anc(x,y)},

{Enc(x,y), Father(x,y), Anc(Reg,y),

o
il

Father(Reg,Rod), Father(Rod,Kaija), Anc(Rod,Kaija),

Ano(z r), nn(f Kaija), Anc(z,Kalga)}

Now H does not have the same explanatory power as ch. For
C

example H 4 {Anc(Reg,Viivi} « Anc(Reg,Rod Adrc (Rod,Viivi)
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Further H is obvicusly not optimal according to either ’gjj or <

since, for example, one could remove Father(x,y) from D, retaining

i

consistency. It is not optimal with respect to < for another important
reason: one could replace every occurrence of Kaija in D2 by one of the

variable we

It is interesting to notice that D2 is equivalent, relative to

Irr, to the clause,
D, = {Enc(x,y), Anc(y,Kaija), Ans(x,Kaija)l

.This suggests that it would be interesting to extend the program so
that it handles the simple kind of Th discussed in section 2.2 of this

chapter.

The next example uses a little less biased evidence. BEv and f are

described in table 3; Irr was taken to be :L’::-J?_,l U IerlJ Irrza




g
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£ | e
£, = Anc(Rod,Kaija) e, = Daughter(Kai ja,Rod) o
AFather(Rod,Kaija).
£, = Anc(Reg,Terry) e, = Father(Reg,Terry).
f5 = Anc(Reg,Kaija) ey = Father(Reg,Rod)
ADaughter(Kaija,Rod)
AFather(Rod,Kaija)
A Anc(Rod,Kaija) A Anc(Reg,Rod).
fh = Anc(Reg,Viivi) e, = Father(Reg,Rod) A Daughter(Viivi,Rod)
A Father (Rod,Viivi) A Anc(Rod,Viivi)
AAnc (Reg,Rod),
f‘5 = Anc(Isa,Karen) ey = Anc(Isa,Manuel)
A Anc(Manuel ;Kgren) A Father(Isa,Manuel.
A Father(Manuel,Karen)
A Daughter(Karen,Manuel)
£ = Anc (Adam,Kaija) &g = Anc (Adam,Reg) A Anc(Reg,Kaija)
A Anc(Rod,Kaija) A Father(Reg,Rod)
A Father(Rod,Kaija).
Table 3
The prograx’f output a set of clauses, H = {D1 9D2§ where
D, = {Father(x,y), Anc(x,y)},
D, = {Father(w,u), Father(u,z), Anc(u,z),

EC—(X:Y)’ KHE(.V32>3 Anc(x,z)}.
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In fact H and Hcor have the same prediotive power: in any family
tree they will both predict the patrilineal ancestors correctly given
all the information about Father. More-can be said, Suppose Th is ;
theory, expressing the tree~like structure of family trees, whose only-
predicate symbol is Father and look at the following definition obtained

by changing the proposed sufficient condition into a necessary and

sufficient one:

Anc(x,z) = Father(x,z) V¥ E]W,u,y(Father(W,u)
A Father(u,z) A Anc(u,z) A Anc(x,y)
Adne(y,z)).

Then, assuming Th, this definition is equivalent to the original

one.

However, one can easily see that H is not optimal with regard to

either -£1, or <.

In conclusion, we see that although we obtain formulae with good

predictive power, they are not, in general, optimal with regard to either

‘51, or <.. This accords with our experience in the case of O's and X's,




