
Coloured Stochastic Multilevel Multiset Rewriting

Nicolas Oury
LFCS, School of Informatics

University of Edinburgh
nicolas.oury@gmail.com

Gordon D. Plotkin
LFCS, School of Informatics

University of Edinburgh
gdp@inf.ed.ac.uk

ABSTRACT
From the phosphorylation state of a molecule to the vol-
ume of a cell, parameters are ubiquitous in systems biology.
At the same time, most models involve static or dynamic
compartments, for example to separate cells from their envi-
ronment. We introduce coloured stochastic multilevel multi-
set rewriting, an expressive formalism for modelling systems
with parameters and complex dynamic, multilevel compart-
ment structures, and an extension of both multilevel mul-
tiset rewriting and coloured Petri nets. While being very
expressive, it allows the direct and natural expression of bi-
ological ideas. We give some illustrative examples, demon-
strating the use of parameters to handle cell states, position
and volume, and variable rates. We further demonstrate
the use of rules with complex right-hand sides for reproduc-
tion. We regard these examples as paving the way for more
biologically relevant models.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
D.3.2 [Language Classifications]: Specialized application
languages; G.3 [Probability and Statistics]: Stochastic
processes

Keywords
Term rewriting, stochastic, multilevel

1. INTRODUCTION
In previous work we introduced a rule-based stochastic

formalism, stochastic multilevel multiset rewriting (SMMR)
[OP11]. This can be viewed as providing a system of terms
for Milner’s place graphs (a half of his bigraphs [Mil09,
KMT08]) and it is also very close to the Calculus of Wrapped
Compartments (CWC) of Coppo et al [CD10a, CD10b].

The terms of the rules are normal forms for the theory
of a commutative monoid, with sets of constants and unary
function symbols; this presents the formalism algebraically,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CMSB ’11, September 21-23, 2011 Paris, FR
Copyright 2011 ACM 978-1-4503-0817-5/11/09 ...$10.00.

as stochastic associative-commutative (AC) term rewriting.
As shown below, one obtains a very natural rendition of var-
ious biological situations, using constants to model species
and unary function symbols to model agents (their argu-
ments model the agents’ contents). However, as will also
be seen, there is a need for parameters (a.k.a. colours) and
that is the main concern of this paper: we present coloured
stochastic multilevel multiset rewriting (CSMMR).

SMMR includes the usual multiset rendition of chemical
reactions, such as

Glc,ATP
k−→ Glc-6-P,ADP

where Glc, for example, is a species constant (modelling
glucose), and k is a stochastic rate. SMMR also permits
hierarchical multisets, with rules such as the following for
modelling viral infection:

Virus,Cell(x)
k−→ ICell(x, gen, 80V1, 40V2)

where Cell and ICell are agent function symbols. When
applying the rule, the variable “x” is matched against the
current population of the matched cell, so that its contents
are also present in the newly infected cell.

Multisets can be at the top level or within agents such as
Cell. The levels can be continued down as far as one wishes
using agents within agents, and rules can be applied at all
levels. SMMR allows general forms of rules for transport
across agent boundaries, for agent creation, and for agent
destruction:

Transport

M,A(N, x)
k−→M ′, A(N ′, x)

Creation

M
k−→M ′, A(N ′, x)

Destruction

M,A(N, x)
k−→M ′, N ′

where M , N , etc, are multisets of species.
That said, SMMR has several limitations. It deals only

awkwardly with cell type, with cell position, or with popula-
tion splitting in cell reproduction [OP11]. It does not allow
rate functions depending, for example, on cell volume. It
further does not allow rules applicable only if some condi-
tion is satisfied, for example, a condition on cell type. (The

formalism also has no provision for complexes, other than as
atomic species; but no such provision is made here either.)

To deal with these limitations we extend SMMR, princi-
pally by allowing species and agents to be parameterised.
For example if we have two cell types “infected” and “unin-
fected” we might instead write the above rule as:

Virus,Celltype:uninf(x)
k−→ Celltype:inf(x, gen, 80V1, 40V2)

Note that parameters are written using labelled subscripts.
Here is an example where the rate of a reaction inside a

cell depends on its volume:

Cellvol:v(x,Glucose,ATP)
kv−1

−−−→
Cellvol:v(x,Gluc-6-P,ADP) (v > 0)

Note the precondition v > 0, which avoids division by zero.
One can also write natural rules for movement, such as

LIGANDx-cell:x,y-cell:y
k−→ LIGANDx-cell:x,y-cell:y+1

where space has been divided up into cells, given by x and
y coordinates.

Parameters also help with species as they can be used to
give site modifications. Here is an example taken from a
MAPK cascade:

RAFp1:true,MEKp1:x,p2:false
k−→ RAFp1:true,MEKp1:true,p2:x

Note that the use of a boolean parameter enables the con-
densation of two rules into one.

As chemical reactions correspond to P/T nets (taking
places to correspond with species, and transitions with re-
actions), parameters correspond to the colours of coloured
Petri nets [Jen92, Jen94]. Coloured Petri nets have been
used to model biological processes [Run04, TM06, LH10];
this paper can be viewed as extending the idea of colours to
all levels.

Section 2 presents an extended example modelling evo-
lutionary competition between different types of cells with
competing strategies for survival in their common environ-
ment.1 The particular model chosen is intended to illus-
trate some of the uses of parameters in coloured stochastic
multilevel multiset rewriting and to show a construct for
population-splitting. This construct could well equally have
been added to SMMR: colouring is an orthogonal matter to
population splitting.

CSMMR is presented in detail in Section 4, following a
brief section on technical preliminaries. Section 5 gives a
brief discussion of algorithmic aspects of our implementa-
tion of CSMMR. Some more extended examples, including
a simplified bacterial chemotaxis model are presented in Sec-
tion 6. Finally, in Section 7, we discuss possible further work
and make some general remarks on adding parameterisation
to rule-based systems: we regard the work presented here as
illustrative of a general methodology for such additions.

As regards comparison with other formalisms for dynamic
compartments, ours is rule-based and offers a system of
terms that is uncommitted yet, we feel, enables a direct
natural expression of cells and their sub-compartments; the
closest formalism is CWC, whose term system, although
essentially equivalent (see [OP11]), is, rather, oriented to
the expression of membrane systems. As far as we know,

1We are grateful to Peter Swain and Andrea Weiße who
suggested this idea (personal communication).

coloured Petri nets provide the only comparable formalism
with a general means of handling parameters; they are equiv-
alent to the special case of ours with species, but no agents.
They can handle static systems of cells and compartments
by using colours for the different levels; however they seem
less adapted to handle dynamically changing systems.

2. AN EXAMPLE: EVOLUTIONARY COM-
PETITION

We now sketch a CSMMR model of evolutionary compe-
tition between two cell types of competing genetic lineages.
Multilevel modelling, particularly two-level modelling, seems
the minimum needed to model evolutionary competition:
one needs different organisms, with their different genomes,
competing within a common environment.

The two cell types we consider have different strategies for
consuming the sugar glucose from the environment: “fast”
and “slow,” resulting in different energy levels, as measured
by ATP, and so different survival rates. Fast cells eat (mean-
ing consume glucose) faster than slow cells, but have to pay
a higher energetic price to start eating.

The eating strategies of our model are not biologically
relevant, although we have been inspired by the biological
literature, for example [PSB01]. Our aim here is rather to
illustrate the use of CSMMR while demonstrating the pos-
sibility of modelling evolutionary competition.

We introduce an agent Cell to represent cells. The expres-
sivity of CSMMR arises from the ability to store parameters
in each species or agent. Each Cell is parameterised by

• the Cell type : a boolean with 0 and 1, denoted by
slow and fast, representing slow- and fast-eating cells;

• the Cell state: a boolean indicating whether the cell
has been recently eating or not; it prevents the cell
restarting an eating process too quickly; and

• the Cell ATP level: a natural number giving the ATP
population of the cell.

The first two parameters are phenomenological rather than
mechanistic: the type would correspond to some genes, and
the state would correspond to the population level of cer-
tain proteins in a feedback mechanism involving these genes.
Modelling ATP as a state rather than as a species inside cells
lets us illustrate some CSMMR parameter-handling features.

While we generally take a quite abstract view of the cell,
we model the absorption of sugar in more detail; we hope
thereby to illustrate the ability of CSMMR to prototype sys-
tems, progressively supplying greater mechanistic detail. We
use the species Glc to represent glucose, and summarise the
proteins involved in the absorption of glucose by a fictitious
single generic glucose metabolic pathway enzyme GlcP.

The sugar absorption rule is

Glc,Celltype:l,state:s,ATP:a(GlcP, x)
kabs−−−→ Celltype:l,state:s,ATP:a+20(GlcP, x)

It expresses that, with the help of GlcP, cells can convert
glucose into energy.

GlcP is produced by cells when they detect Glc in the envi-
ronment. The quantity produced depends on their strategy:

• fast-eating cells produce 6 molecules of GlcP, at a cost
of 45 molecules of ATP; but

• slow-eating cells produce 2 molecules of GlcP, at a cost
of 10 molecules of ATP.

This is expressed by the following two “GlcP rules”:

Glc,Celltype:fast,state:0,ATP:a(x)
kstart−−−−→

Glc,Celltype:fast,state:1,ATP:a −· 45(6GlcP, x) (a > 45)

Glc,Celltype:slow,state:0,ATP:a(x)
kstart−−−−→

Glc,Celltype:slow,state:1,ATP:a −· 10(2GlcP, x) (a > 10)

Note the use of the preconditions to ensure that the rules
cannot be applied unless the cell has sufficient energy. They
also cannot be applied unless the state is 0; they then change
the state to 1 so that they cannot be reapplied.

After some time, cells can start eating again:

Celltype:l,state:1,ATP:a(x)
kreinit−−−−−→ Celltype:l,state:0,ATP:a(x)

This is obviously not realistic. It is a very simple abstraction
of a negative feedback loop.

Cells consumes energy and GlcP degrades:

Celltype:l,state:s,ATP:a(x)
k
e−−−−→

Celltype:l,state:s,ATP:a −· 1(x) (a ≥ 1)

Celltype:l,state:s,ATP:a(GlcP, x)
kdeg−−−→ Celltype:l,state:s,ATP:a(x)

When cells have too little energy, they die:

Celltype:l,state:s,ATP:a(x)
kdeath−−−−→ (a = 0)

When cells have stocked enough energy, they divide in
two; each of their two child cells share their parent’s energy
evenly and the remaining GlcPs randomly:

Celltype:l,state:s,ATP:a(x)
kdiv(a)−−−−→

let a1/2 = halfEnergy(a −· 100) in
let (y, z) = x in

Celltype:l,state:0,ATP:a1/2(y),

Celltype:l,state:0,ATP:a −· a1/2(z) (a ≥ 100)

This rule introduces three new constructs:

• kdiv : nat→ real is a rate function.

• let x = t in . . . is a binding construct. The variable x
is bound in . . . to an element chosen randomly from a
probability distribution, given by t.

• let (y, z) = x in . . . is a binding construct. The
contents of the variable x are split randomly between
the variables y and z of

The rate function kdiv enables the division rate of a cell to
depend on its energy level; it is chosen to be a step function,
0 below 300, 5 thereafter. The term halfEnergy(a) denotes
the distribution on natural numbers taking value b(k; a, 1/2)
at k, where b(k;n, p) is the binomial probability function,
which gives the probability of getting exactly k successes in
n trials, where each trial has probability p of success.

We have finished our model of cells, but still need to model
the environment. We use an agent Env parameterised by a
boolean state, where:

• in state 1, sugar is regularly introduced into the sys-
tem; and

• in state 0, no sugar is introduced into the system.

Envstate:1(x)
ksug−−−→ Envstate:1(50 Glc, x)

From time to time, the state of the environment changes:

Envstate:s(x)
kenv−−−→ Envstate:¬s(x)

We have chosen to give a very simple model to illustrate
the features of CSMMR. We could make the model more pre-
cise by adding more species (or even agents to represent the
nucleus or different vesicles). We could also choose to rep-
resent the spatiality of the competition, attaching the cells,
and the sugar to different locations. Section 6 shows how to
use colours to represent geometry, space and diffusion.

Figure 1 shows a sample run of a simulation of the model
described here, starting with one fast-eating cell and one
slow-eating cell. System states are modelled by multilevel
multisets, with the initial one being:

Envstate:0(Celltype:fast,state:0,ATP:100(),
Celltype:slow,state:0,ATP:100())

We used the following rates:

kabs 2.5 kstart 100
kreinit 0.03 ke− 0.17
kdeg 0.2 kdeath 1000000
ksug 0.1 kenv 0.01

The figure shows that when the environment is favourable,
with sugar abundance and a low population, the fast-eating
cells do very well. However their behaviour is too expensive
when there is sugar scarcity and a high population.

While the current model is not biologically realistic, it
does show the possibility of using CSMMR to model evolu-
tionary competition.

Figure 1: An evolutionary competition simulation

3. TECHNICAL PRELIMINARIES
We write [b1/a1, . . . , bn/an] for finite functions sending ai

to bi (for i = 1, n); we write dom(f) for the domain of
a function. We write f _g for the function with domain
dom(f)∪ dom(g), equal to g on dom(g) and to f elsewhere.

Multisets over a set X are considered to be functions from
X to the natural numbers; with this representation, multiset
union is pointwise addition, and we also use the pointwise
versions of other operations and of ≤. We write |m| for the
support of a multiset m, i.e., the set of its elements (those
a ∈ X with m(a) 6= 0). We only consider finite multisets,

i.e., those with finite support. We identify elements of X
with their corresponding singleton multisets; we sometimes
present multisets as a list, for example a1, . . . , an; and we
sum over finite multisets, writing

∑
a∈a1,...,an,P (a) f(a) for∑n

i=1 bi, where bi is f(ai) if P (ai) holds and 0, otherwise (if
omitted P (a) is taken to be the universally true predicate).

4. COLOURED STOCHASTIC MULTI-
LEVEL MULTISET REWRITING

We provide a formal definition of CSMMR and its stochas-
tic semantics. CSMMR is parameterised on the datatypes
available for parameterisation. We model these by a choice
of first-order multisorted signature Σ (the parameter signa-
ture) and interpretation A (the parameter interpretation).
By way of orientation, the interpretations of sorts corre-
spond to the colour sets of coloured Petri nets.

Any implementation of CSMMR would have to provide
a means of defining the signature and interpretation; this
is typically done via some formalism for enumeration, when
the colour sets are finite, and/or providing types for the sorts
and programs for the needed functions and relations.

A multi-sorted signature Σ consists of: a set Sort of sorts
ranged over by s; a set of function symbols ranged over by f ,
each with an arity (u, s′) where u ∈ Sort∗, s′ ∈ Sort; and a
set of relation symbols ranged over by P each with an arity
u, where u ∈ Sort∗ (we always include the equality relation
symbols). We write f : u → s and P : u to show the arity
of function and relation symbols. Constants are function
symbols of sort c : ε → s′. We assume a distinguished sort
real (to be used for rate functions).

Given such a signature, we have available standard notions
of terms t of sort s (written t : s) and first-order formulas ϕ,
where an infinite supply of (parameter) variables xs of sort
s is assumed available, for each sort s. We may call these
terms parameter terms.

An interpretation A of such a signature consists of: a
set sA for each s ∈ Sort; a function fA : uA → sA, for
each function symbol f : u → s (where (s1 . . . sn)A =def∏n
i=1(si)A); and a subset PA ⊆ uA, for each relation symbol

P : u. We assume realA ⊆ R+, the set of non-negative
reals (not insisting on equality allows computationally useful
possibilities).

Given such an interpretation A, we have available the
standard interpretation tρA ∈ sA of terms t : s (respectively,
notion of satisfaction A |=ρ ϕ), for any assignment ρ, i.e., a
finite map on parameter variables assigning elements of sA
to variables of sort s, whose domain includes the variables
occurring in t (respectively, occurring freely in ϕ). We as-
sume available a constant ca : ε → s for each s ∈ S, a ∈ sA
such that a = ca()

[]
A , and identify a and ca().

The evolutionary competition model provides a running
example. The sorts are bool, nat, and real, interpreted by
B, N, and, say, Q+, the non-negative rationals. Constants
include 0, 1, . . . and fast and slow; function symbols include
the unary kdiv and the binary +, −· ; and relation symbols
include the binary >,=. They all have evident interpreta-
tions.

The terms of our calculus need a further multiset signa-
ture for the species and agents. Given a set Lab of labels l,
a signature consists of sets Spec of species S, and Agent of
agents A, each with an arity (L, λ) where L ⊆fin Lab and
λ : L → Sort (we just write S : λ and A : λ). In the exam-

ple, the species are Glc,GlcP : [], and the agents are Cell :
[bool/type, bool/state, nat/ATP] and Env: [bool/state].

We can now define the terms of our calculus. We induc-
tively define multilevel multiset terms and atomic multilevel
multiset terms as follows, where we further assume available
an infinite set of multiset variables x:

• every finite multiset at0, . . . , atn−1 (n ≥ 0) of atomic
multilevel multiset terms is a multilevel multiset term;

• for every species S : [s1/l1, . . . , sn/ln] in Spec and pa-
rameter terms ti : si (i = 1, . . . , n), Sα is an atomic
multilevel multiset term, where α = [t1/l1, . . . , tn/ln];

• for every agent A : [s1/l1, . . . , sn/ln] in Agent, parame-
ter terms ti : si (i = 1, . . . , n), and multilevel multiset
term t, Aα(t) is an atomic multilevel multiset term,
where α = [t1/l1, . . . , tn/ln]; and

• every multiset variable x is an atomic multilevel mul-
tiset term.

Instead of (atomic) multiset multilevel term, we may say
(atomic) multiset term, (or even, when there is no confu-
sion, just (atomic) term). We write Sl1:t1,...,ln:tn instead of
S[t1/l1,...,tn/ln], and similarly for agents.

As with [OP11], the terms are normal forms for the the-
ory of a commutative monoid with sets of constants and
unary operators. There is a constant S[a1/l1,...,an/ln] for ev-
ery species S : [s1/l1, . . . , sn/ln] in Spec, and ai ∈ (si)A
(i = 1, n), and there is a unary operator A[a1/l1,...,an/ln], for
every agent A : [s1/l1, . . . , sn/ln] in Agent and ai ∈ (si)A
(i = 1, n). The correspondence with universal algebra can
be made even closer by considering parametric equational
logic, as sketched in [Plo06]; one would then have a 1-1 cor-
respondence between species and agents, and parameterised
constants and unary function symbols.

A multiset term is ground if it contains no parameter or
multiset variables; it is simple if every term it contains is
an element of some sA. Simple ground terms are used to
model populations. In the example such a term could be
tpop =def Envstate:0(tcont) where tcont is

2Glc,
Celltype:fast,state:0,ATP:60(),Celltype:fast,state:0,ATP:40(GlcP),
Celltype:slow,state:0,ATP:15()

SMMR terms are the subcase where the signature has no
sorts. Another choice for parameter arguments than by la-
bel is by position: one assigns arities S : u,A : u and writes
St1,...,tn and At1,...,tn(t). The choice has no theoretical im-
portance but labels seems more appealing in practice, see,
for example [DL03, CFS06].

Rules, ranged over by R, are pairs l, r of multiset terms,
the left- and right-hand sides, together with a stochastic rate
term, i.e., a parameter term k : real, and a condition, a
quantifier-free formula ϕ. Rules are written:

l
k−−→ r (ϕ)

If omitted, the condition is taken to be >.
We impose several constraints on allowable rules. First,

every parameter or multiset variable occurring in r, k or ϕ is
required also to occur in l; this is standard in term rewriting,
where one matches the left-hand side against the current
state, and uses the resulting match to bind the variables in
the rest of the rule.

Next come four constraints, discussed further in [OP11].
The wide subterm relation is defined to be the least reflexive
relation between multiset terms such that if t is a wide mul-
tiset subterm of t′ then it is a wide subterm of At1,...,tn(t′).

The first three constraints are that any multiset variable
occurs at most once in l, that every wide subterm of l con-
tains a multiset variable, and that any multiset variable oc-
curs at most once in r: these avoid biologically unfeasible
abilities to test for equality or emptiness, or to duplicate
populations exactly. (When writing rules, as in all our ex-
amples, we conventionally omit“top-level”multiset variables

writing l
k−→ r (ϕ) rather than l, x

k−→ r, x (ϕ).) The next is
that l has no wide subterms with occurrences of distinct
multiset variables. This avoids a matching ambiguity and
a consequent uncertainty in how to assign rates; the com-
plex right-hand sides introduced below provide an alterna-
tive way to split a match without that disadvantage.

The last constraints concern the parameters. We wish
the left-hand side parameter terms to be as general as pos-
sible, with the idea that any constraints will be picked up
by the condition. We therefore impose the constraint that
all parameter terms in l are variables, and that no param-
eter variable occurs twice in l. This constraint makes the
exposition simpler, and loses no generality.

In practice, reaction rates would be found as usual, from
a combination of biological knowledge and estimation. In
some cases, e.g., dependence on volume, the general form of
rate functions will be known. The difficulties will surely vary
greatly according to the application; as an example, [Mur02,
Chapter 11] discusses reaction-diffusion systems, with many
references to models, and [DK10] discusses parameter esti-
mation for stochastic such models.

We regard coloured rules as abbreviations for their simple
instances, which we now define. To each parameter sig-
nature, interpretation A, and multiset signature, as above,
we associate its instance parameter signature, interpreta-
tion and multiset signature. This consists of the empty pa-
rameter signature, the empty interpretation, and the mul-
tiset signature with, for every species S : [s1/l1, . . . , sn/ln]
and ai ∈ (si)A (i = 1, n), a species S[a1/l1,...,an/ln], and
with, for every agent A : [s1/l1, . . . , sn/ln] and a1, . . . , an in
(s1)A, . . . , (sn)A, an agent A[a1/l1,...,an/ln]. Multiset terms
in the instance signature are in an evident bijective cor-
respondence with simple ground terms; it is convenient to
identify them.

With that, given an assignment ρ whose domain includes
the parameter variables of a multiset term t (atomic multiset
term at) we define a corresponding multiset term tρ (respec-
tively, atomic multiset term atρ) of the instance signature
as follows:

(at0, . . . , atn−1)ρ = atρ0, . . . , at
ρ
n−1

(Sl1:t1,...,ln:tn)ρ = S[(t1)
ρ
A/l1,...,(tn)

ρ
A/ln]

(Al1:t1,...,ln:tn(t))ρ = A[(t1)
ρ
A/l1,...,(tn)

ρ
A/ln](t

ρ)

xρ = x

We can then associate to every rule R = l
k−−→ r (ϕ) a set

of rules in the instance signature by:

I(R) = {lρ kρ−−−→ rρ | dom(ρ) = PVar(l),A |=ρ ϕ}

where PVar(t) is the set of parameter variables of a multiset
term t.

We next show how to ascribe a quantitative semantics—a

stochastic matrix—to a rule. The correctness of the defi-
nition is then shown by relating this semantics to that of
all the instances of the rule. First we need to calculate the
multiset of matches of the left-hand side l against a simple
ground term t. A substitution is a finite function σ from
multiset variables to multiset terms. There are evident ac-
tions tσ, (at)σ of such a substitution on a term t and an
atomic term at, assuming its domain includes the multiset
variables of t, or at, as needed.

A match of a multiset term u against a simple ground term
t is a pair (ρ, σ) such that (uρ)σ = t, where the domains of
ρ and σ are, respectively the parameter and multiset vari-
ables of u. Matches of atomic multiset terms against atomic
simple ground multiset terms are defined similarly, and dis-
joint union is extended pairwise to matches. We now define
a finite multiset m(u; t) of such matches for multiset terms
u (and m(au; at) for atomic multiset terms au) obeying the
constraints imposed above on the left-hand side of rules:

m(at0, . . . , atm−1, x; at′0, . . . , at
′
n−1) =∑

f :[m]↪→[n]

⋃m−1
i=0· m(ati; at

′
f(i)) ·∪ ([], [

∑
j /∈f([m]) atj/x])

and:

m(Sl1:x1,...,ln:xn ; at) ={
([α−1(l1)/x1, . . . , α

−1(ln)/xn], []) (at = Sα)
0 (otherwise)

m(Al1:x1,...,ln:xn(u); at) ={
([α−1(l1)/x1, . . . , α

−1(ln)/xn], []) ·∪m(u; t) (at = Aα(t))
0 (otherwise)

using the natural extension of disjoint union of matches to
multisets of matches defined by:

m ·∪m′ =
∑

(α,σ)∈m

∑
(α′,σ′)∈m′

(α, σ) ·∪ (α′, σ′)

Continuing the example,

m(lfast, y ; tcont) = 2([60/a], σ1) + 2([40/a], σ2)

where lfast is

Glc,Celltype:fast,state:0,ATP:a(x)

the left-hand side of Rfast, the first GlcP rule (and y is taken
to be the variable conventionally omitted), and where

σ1 =def [0/x,Glc, Celltype:fast,state:0,ATP:40(GlcP),
Celltype:slow,state:0,ATP:15()/y]

σ2 =def [GlcP/x,Glc,Celltype:fast,state:0,ATP:60(),
Celltype:slow,state:0,ATP:15()/y])

Contexts C[] are multiset terms with a hole in them. In
order to avoid double counting, we need a narrower class, the
wide contexts W[]. They are defined inductively, taking []
to be a wide context, and the multiset Al1:t1,...,ln:tn(W[]), t
to be a wide context if W[] is. Every context can be written
in the form W[[], t], and a context C[] is wide if, and only
if, every multiset term t is a wide subterm of C[t].

We next need a count occt(W[], u) of the number of ways
in which a simple ground multiset term t can have the form

W[u], for a given wide context W [] and term u:

occt([], u) =

{
1 (t = u)
0 (t 6= u)

occt((Aα(W[]), v), u) ={
t(Aα(t′)) occt′(W [], u) (t = Aα(t′) + v)

0 (otherwise)

Note: there is at most one t′ such that t = Aα(t′) + v, and
t(Aα(t′)) is the number of occurrences of Aα(t′) in t. In the
example, we have occtpop(Envstate:0([]), tcont) = 1.

We can now define the stochastic matrix QR associated

to a rule R = l
k−−→ r (ϕ). This is a function from pairs of

simple ground terms to non-negative reals, where, for two
distinct such ground terms t, t′:

QR(t, t′) =
∑

t=W[u]

occt(W[], u)
∑

(ρ, σ) ∈ m(l;u)
A |=ρ ϕ, t′ = W[(rρ)σ]

kρ

with the diagonal entries being, as usual, one minus the sum
of the off-diagonal entries (one easily sees that almost all the
off-diagonal entries are 0).

The idea behind this formula is to find all the ways, with
their associated multiplicities, that a rule can send a given
ground term t to another t′, and use this information to de-
termine the total rate of the transition. Such a way is given
by a wide context W [], a ground term u, and a substitution
pair (ρ, σ) such that t = W [u], t′ = W[(rρ)σ], and A |=ρ ϕ;
and it occurs with multiplicity occt(W[], u)(m(l, u)(ρ, σ)) at
rate kρ. Note that the formula makes use of the convention
introduced above for summing over elements of a multiset.

Wide contexts are needed to avoid a possibility of double-
counting when defining stochastic rates. For example, a rule
with left-hand side S, x applies to the term S, S′. However,
absent wide contexts, that can be shown in two ways, using
either [] or [], S′, but only the first of these is wide.

The formula is the natural extension of that for SMMR,
extends the usual stochastic interpretation of chemical reac-
tions, and is similar to that used in Danos and Laneve’s κ
[DL03], another stochastic rule-based system.

Continuing the example, we find that QRfast(tpop, t
′
pop) is

2kstart, where t′pop = Envstate:0(t′cont), and t′cont is

2Glc,Celltype:fast,state:0,ATP:15(6GlcP),
Celltype:fast,state:0,ATP:40(GlcP),Celltype:slow,state:0,ATP:15()

This is because there is just one way to get from tpop to
t′pop, viz using ([60/a], σ1) and it occurs with multiplicity 2
(note that the required condition is fulfilled in this way, as
60 > 45).

We obtain a stochastic matrix for a finite set of rules R:

QR(t, t′) =def

∑
R∈R

QR(t, t′)

As detailed above every parametric rule is really an abbre-
viation for a set of non-parametric rules. So the stochastic
matrix for it, as just defined, should be the same as that
given by its instances:

Proposition 4.1. For any rule R and simple ground terms
t,t′ we have

QR(t, t′) =
∑

S ∈I(R)

QS(t, t′)

Proof. One shows by induction on u that

m(u; t)(ρ, σ) = m(uρ; t)([], σ)

if PVar(u) ⊆ dom(ρ), and the rest is a calculation.

We next describe how to simulate the CTMC given by this
stochastic rate matrix in terms of choosing and applying
rules from a finite set of rules R. The activity of a rule

R = l
k−→ r (ϕ) on a simple ground term t is the total

transition rate from t, i.e.,

Act(R, t) =
∑
t′ 6= t

QR(t, t′)

Explicitly we have:

Act(R, t) =
∑

t=W[u]

occt(W[], u)
∑

(ρ, σ) ∈ m(l;u)
A |=ρ ϕ

kρ (∗∗)

Note that Act(Rfast, tpop) is 2kstart and not 4kstart, as
there is no way to get from tpop using ([40/a], σ2), since the
rule condition is not then fulfilled.

The simulation has a current time, initialised to 0, and a
current state, a simple ground term t. It proceeds by cycling
through the following sequence, for as long as required:

• If λ =def

∑
R∈RAct(R, t) is zero, stop the simulation.

• Choose τ from the exponential distribution with rate
parameter λ, and add it to the current time.

• Choose a rule R = l
k−−→ r (ϕ) from R with probabil-

ity Act(R, t)λ−1.

• Choose a wide context W[], a u, and a (ρ, σ) such that
t = W[u], (lρ)σ = u, and A |=ρ ϕ with probability

occt(W[], u)(m(l;u)(ρ, σ))kρ

Act(R, t)

• Update t to W[(rρ)σ].

Note that in the fourth step, a way of applying a rule is
chosen with probability its fraction of the total activity of
the rule.

Normally in a simulation one graphs species populations
against time. We generalise this to observation patterns
which we take to be pairs (l, ϕ) of multiset terms and quanti-
fier-free formulas. The activity of such a pattern (l, ϕ) in a
simple ground term t is:

Act((l, ϕ), t) =def

∑
(ρ, σ) ∈ m(l; t)
A |=ρ ϕ

1

So far, the right-hand sides of rules are simple in the sense
that they only involve multiset terms. We next introduce
some complexity on the right-hand side in order to allow for
random choice of parameters and for splitting populations.

First we allow an additional signature of probabilistic func-
tion symbols p with arity (u, s′), with the restriction that s′A
be countable, to ensure a countable distribution (for sam-
pling reasons). Parameter terms are now formed using both
kinds of function symbols and the probabilistic parameter
terms are those containing a probabilistic function sym-
bol. We then assume that the interpretation A additionally

assigns to each probabilistic function symbol p with arity
(u, s′) a function pA : uA → P(sA) where, for any countable
set X, P(X) is the set of probability distributions on X. We
now have an interpretation tρA ∈ P(sA) of terms t : s.

Complex right-hand sides, rc, have the following form:

let x1 = t1, . . . , xm = tm in
let (y1, z1) = w1, . . . , (yn, zn) = wn in r

where: the parameter variables xi are all different; each xi
has the same sort as ti; the multiset variables wj , yj , zj are
all different; and r is a multiset term not containing any
probabilistic parameter terms. (The restriction on where
probabilistic terms can appear on the right-hand side loses
no generality and simplifies the exposition.) The free vari-
ables of rc are the variables of the ti, the wj , and any variable
of r which is not one of the xi, yj or zj . When m or n is
zero, one writes the evident simpler forms.

Rules with complex right-hand sides have the form:

R = l
k−−→ rc (ϕ)

where rc has the above form, neither l nor k are probabilistic,
and ϕ contains no probabilistic terms. The constraints on
rules are the same for l, k and ϕ as before; we also require
that all the free variables of rc occur in l and that no multiset
variable has two occurrences in r.

The idea of such rules is that each xi is assigned a random
element of the distribution given by ti, and that the popu-
lation assigned to wj is divided in two, with each element
being assigned to yj or zj with equal probability. (The con-
struct could be generalised to, e.g., unequal probabilities,
but we do not know any use for the greater generality.)

Rather than repeat the above theory, but for complex
right-hand sides, we simply explain how to modify the sim-
ulation algorithm, where now R is a finite set of rules of
the new form. The simulation cycle proceeds as in the first
three steps. The fifth step is replaced by this one:

• Choose ai from the probability distribution (ti)
ρ, for

i = 1,m, and choose t′j ≤ wjσ (j = 1, n) with proba-
bility

n∏
j=1

∏
at′∈|wjσ|

b(t′j(at
′);wjσ(at′), 1/2)

and update t to W [(rρ
′
)σ′] where ρ′ is

ρ_ [a1/x1, . . . , am/xm]

and σ′ is

σ_
n⋃
j=1

· [t′j/yj , (wjσ −· t′j)/zj]

The use of the binary distribution ensures that the elements
of each wjσ are assigned with equal probability to yj or zj .

5. IMPLEMENTATION
We have implemented a prototype stochastic simulator

for CSMMR with certain restrictions, explained below, and
with some inessential syntactic differences. We explain the
main implementation ideas.

Multisets of species or agents are represented by hash
tries [Bag01], as are vectors of colours.

We implement the simulation algorithm of Section 4. There
are three important steps in this algorithm (with or without
complex right-hand sides):

• the computation of the total activity of the system;

• the random drawing of a rule according to its activity;
and

• the random drawing of an instance of the rule accord-
ing to its activity.

These steps are implemented by computing the distribu-
tion of rule instances. To implement finite distributions we
use a data structure of mass-extended hash tries; it allows:

• the efficient insertion and deletion of elements;

• the efficient computation of the total mass of the dis-
tribution; and

• the efficient drawing of an element according to its
mass.

Mass-extended hash tries extend hash tries with a partial
mass at every node of the hash trie, which represents the
mass of the elements in the sub-trie rooted at that node.
While having the same efficiency as hash tries for insertion
and deletion, this also allows us to compute the total mass
of the trie in constant time, and to draw an element in log-
arithmic time. This extension of hash tries seems novel.

It is used to implement sums of distributions, following
formula (**) of Section 4 giving the activity of a rule. How-
ever, one then needs to sum kρ over all matches (ρ, σ). This
may be too expensive when applied to a non-unary left-hand
side. For example, consider a rule of the form

Al:a(x), Bm:b(y)
k(a,b)−−−−→ . . .

where A and B are different. To sum kρ over all (ρ, σ), we
need to find all instances of Al:a(x), Bm:b(y) and if there are
nA instances of Al:a(x) and nB instances of Bm:b(y), there
are nA.nB instances of the pair Al:a(x), Bm:b(y). Worse, if,
during a step, we change one of the Al:a(x) instances, we
have to recompute kρ for the nB pairs in which it occurred.
This becomes prohibitively slow for large systems.

There are, however, cases where we can use a far better
algorithm. Suppose k can be written as kA · kB , where b
does not occur in kA and a does not occur in kB . We can
write each ρ as ρA ·∪ρB , where the domains of ρA and ρB are,
respectively, {a} and {b}, and we can write each σ as σA ·∪σB
analogously: this is because, by the linearity restriction, no
variable can occur in both Al:a(x) and Bm:b(y). Then:

∑
(ρ,σ)

kρ =
∑

ρA,ρB ,σA,σB

kρAA .kρBB =

 ∑
(ρA,σA)

kρAA

 .

 ∑
(ρB ,σB)

kρBB

So we need only compute only a distribution of the instances
of Al:a(x) and a distribution of the instances of Bm:b(y),
which can be done in time O(nA+nB). Then a distribution
of the pair instances can be obtained in constant time, as

• the activity of the pair is simply the product of the
activities; and

• to draw a pair instance randomly according to its mass,
one can draw independently from the distribution of
instances of Al:a(x) and the distribution of instances
of Bm:b(y).

Further, when an instance of Al:a(x) is modified, only one
kA and the product has to be recomputed, and this can be
done in constant time.

There is a complication if we change the form of the rule
to

Al:a(x), Al:a′(y)
k−→ . . .

The distributions of Al:a(x) and Al:a′(y) will have a non-
empty intersection, if they are non-empty. So when comput-
ing activities we would over-approximate and when drawing
independently from these distributions, it is possible to draw
the same element. We handle this in step 4 of the stochastic
simulation, by testing whether the instance drawn is con-
flicting. If there is a conflict, we reject (i.e., we do not apply
the rule) and continue with the next simulation step.

The decomposition of rates into an independent product
given above can be generalised to hierarchically independent
(h.i.) rate functions. These are defined as follows:

• k is h.i. for at1, . . . , atn if it can be written as
∏n
i=1 ki

where ki is h.i. for ati;

• k is h.i. for S[t1/l1,...,tn/ln] if its variables are included
in those of t1, . . . , tn;

• k is h.i. for A[t1/l1,...,tn/ln](t) if it can be written as
k1k2 where the variables of k1 are included in those of
t1, . . . , tn, and k2 is h.i. for t; and

• k is h.i. for any multiset variable.

We can define hierarchically independent (h.i.) rule con-
ditions similarly, using conjunctions in place of products.
Our implementation only allows independent rates and con-
ditions which are conjunctions of a h.i. condition and an-
other. We use the above ideas to handle the h.i. parts; the
other part of the condition is not considered when comput-
ing activities, but only in the fourth simulation step where
instances not satisfying it are rejected, and the simulation
continues with the next step.

As explained in [DFFK07], similar ideas are used in the
κ language simulator. Indeed, again for efficiency purposes,
that simulator also decomposes instances of pattern pairs
into pairs of instances, over-approximates acitvities, and re-
jects conflicts. Our adaption to multilevel terms, coloured
systems, and independent rates and conditions is novel.

6. FURTHER EXAMPLES

6.1 Volume
We start with a very simple system illustrating the use

of colours to represent the volume of a growing cell. The
central feature of such a system is that when the volume of
the cell changes, the rates of the reactions inside it change
too. This is because the probability of two or more molecules
meeting decreases as the volume increases.

First we represent the volume of a cell as a positive real
colour attached to the cell agent: Cell : [real/vol]. We then
have to model the growth of the cell. This could be related
to various other colours, representing the state of the cell,
or to its contents. Here, for the sake of simplicity, we choose
a constant rate of growth with factor α =def 0.01:

Cellvol:v(x)
kgrowth−−−−−→ Cellvol:α×v(x)

We have assumed a function symbol × : real, real → real,
interpreted by multiplication. It is easy to modify this rule
to stop the growth at a maximum size, to slow down the
growth as the cell grows, or to model linear growth.

We introduce two cellular species A : [] and B : [] and
three rules:

• the constant creation of A’s within a cell:

Cellvol:v(x)
kA−−→ Cellvol:v(A, x)

• the interaction of two A’s to create a B, with the rate
of interaction decreasing with volume:

Cellvol:v(2A, x)
kB/v−−−→ Cellvol:v(B, x) (v > 0)

where / is interpreted by real division (except at 0).

• the degradation of B’s:

B
k
B−−−−→

Figures 2 and 3 give a simulation of this system, with the
following rates:

kgrowth 7
kA 1
kB 1
kB− 0.0001

and the following initial population:

Cellvol:1.0()

As expected, the equilibrium between A’s and B’s shifts
from a high concentration of B’s to a higher concentration
of A’s as the volume increases. Indeed, the bigger the cell,
the less likely are two A’s to meet and form a B.

Figure 2: Cell volume

6.2 Diffusion
In this section, we illustrate the use of colours to model

simple geometry and diffusion. In the example, molecules
of a species diffuse, and are activated when they reach a
position-dependent heat source.

The species is A : [pos/pos, real/mass, col/col] where pos
and col are sorts of positions and colours; we take the po-
sitions to be the first 10 natural numbers, and the colours
to be {blue, red}, corresponding to two states of activation:
blue for inactive and red for active.

We also assume that:

Figure 3: The population of B’s initially grows
faster, but as the cell grows, the population of A’s
increases.

• rN : pos → pos, a “randomNeighbour” probabilistic
function symbol used to choose the direction of diffu-
sion (we make a simple choice, taking rN(p) to be l(p)
or r(p) with equal probability, where l(p) =def p −· 1
and r is defined symmetrically); and

• δ : real → real, a mass-dependent rate function com-
puting the species diffusion rate (we again make a sim-
ple choice, taking it to be constantly 1).

The diffusion of A’s is modelled by:

Apos:p,mass:m,col:k
δ(m)−−−→ let p′ = rN(p) in Apos:p′,mass:m,col:k

To model the heat-induced activation of A’s we add:

Apos:p,mass:m,col:blue
heat(p)−−−−→ Apos:p,mass:m,col:red

where we further assume:

• heat : pos→ real, a position-dependent activation rate
function, measuring the heat at a given position. (We
take it to be 0 except at a given position p0 where it
is 100; and we take p0 = 0.)

A’s can cool down slowly:

Apos:p,mass:m,col:red
kcool−−−→ Apos:p,mass:m,col:blue

Figure 4: Activated A’s at positions 0 and 9.

Figure 4 shows a run of a simulation of this system, taking
kcool = 0.005, The figure shows the activated A’s at positions
0 and 9. Initially 300 inactive A’s are at 9, and there are
none elsewhere. We see a first wave of activation of A’s

at 0 as inactive molecules diffuse from 9 to 0, the only heat
source, where they are activated. We then see a second wave
of activated A’s at 9, as the activated A’s diffuse from 0 to
9.

This simple model has a limitation. If we were to intro-
duce a rule (*) that can be applied when two A’s meet:

Apos:p1 , Apos:p2
k−→ . . . (p1 = p2)

we would have to use the non-hierarchical condition p1 = p2.
As explained in Section 5, this would be quadratic in the
number of molecules. That could be improved by represent-
ing each position p by an agent Pos : [pos/pos] containing all
the species in that position. However one would then need
a non-hierarchical condition for the diffusion rule:

Pospos:p1(A, x),Pospos:p2(y)
k′−→

Pospos:p1(x),Pospos:p2(A, y) (|p1 − p2| = 1)

and this rule is quadratic in the number of positions. This
is an improvement as the number of positions is typically
lower than the number of molecules. In Section 7, we sketch
a possible more efficient solution to this problem.

6.3 A toy chemotaxis model
Our final example is more substantial; it is a simple ver-

sion of bacterial chemotaxis, inspired by [KLH09]. Chemo-
taxis allows bacteria to direct their movement in response
to certain chemicals in the environment. For example, while
it is beneficial for a bacterium to move towards glucose, it
may be too small to sense the environmental glucose gradi-
ent. To solve this problem, some bacteria use a system of
biased random movement, alternating between two phases:

• straight motion; and

• random change of direction

with the first phase lasting longer if glucose concentration
increases. See [WA04] for a more complete description.

Our model is simplified in multiple ways:

• there are just two chemotactic proteins;

• there are two flagella (E. Coli has five to eight); and

• bacteria only move along a line, either left or right.

We use an agent Bact : [real/pos, sign/dir] to model bac-
teria positioned along the real line with direction +1 (facing
right) or −1 (facing left).

Our model bacteria have two flagellal motors, each ei-
ther turning clockwise (CW) or counterclockwise(CCW).
We model motors by a species Motor : [rot/dir], where each
motor can vary between CW and CCW:

Motordir:d
kdir−−−→ Motordir:op(d)

with the evident interpretation of op : dir→ dir.
The motors determine the direction of the motion of the

bacterium. First, if both are turning counterclockwise, then
the bacterium moves forwards:

Bactpos:p,dir:d(2Motordir:CCW, x)
kstep−−−→ Bactpos:p+δd,dir:d(2Motordir:CCW, x)

This rule uses a step size δ =def 0.02. It also uses the fact
that the direction of the bacterium is represented by either

+1 or −1. Next, if either motor is turning clockwise, the
bacterium changes direction:

Bactpos:p,dir:d(Motordir:CW, x)
kturn−−−−→ Bactpos:p,dir:op(d)(Motordir:CW, x)

The bacterium can sense food in the environment, using
a probe, the Tar complex. This is modelled by a species
Tar : [bool/active]. A Tar complex can either be active (1)
or inactive (0). The level of active Tar complexes is used as
a proxy for the quality of the environment: the better the
environment, the smaller the number of active Tar’s. This
allows the bacterium to capture the gradient of the sugar
along the direction of its movement. In more detail, sugar
absorption is modelled by the following rule:

Bactpos:p,dir:d(Taractive:1, x)
gluc(p)−−−−→ Bactpos:p,dir:d(Taractive:1,Glc, x)

where sugar is modelled by the species Glc : [], and we
assume a function symbol gluc : pos → real, associating to
each position, the abundance of glucose at this point of the
environment. We chose the following interpretation of gluc:

glucA(x) =
10

1 + 2|x− 5|
This function is maximal at x = 5.

When there is sugar inside the bacterium, two species,
Che+ : [] and Che− : [], are produced. They are abstract
representations of, respectively, the chemotactic excitation
network and the inhibitory feedback loop:

Glc
k
GlcChe+−−−−−−→ Che+,Glc Glc

k
GlcChe−−−−−−−−→ Che−,Glc

Che+ makes the motors more likely to turn CCW, which,
in turn, induces longer straight motions:

Motordir:CW,Che+ k+−−→ Motordir:CCW,Che+

Che− inhibits the sensing activity of Tar:

Taractive:1,Che−
k−−−→ Taractive:0,Che−

Che+, Che− and Glc degrade, while inactivated Tar com-
plexes get reactivated:

Che+
k
Che+−−−−→ Che−

k
Che−−−−−→

Glc
kGlc−−−→ Taractive:0

kTar−−−→ Taractive:1

We ran a simulation for a bacterium starting at position
7 and direction +1, with the following rates:

kdir 3 kChe+ 7
kGlcChe+ 15 kChe− 1.5
kGlcChe− 10 kGlc 3

k− 0.1 kstep 5

k+ 5 kturn 3
kTar 30

and with the following initial population:

Bact(16Taractive:1, 2Motordir:CCW)

Figure 5 shows bacterial position as a function of simula-
tion time: note that the bacterium tends to stay quite close
to the position maximising sugar level.

This model is too simple to draw any biological conclu-
sion. However it does illustrate how CSMMR can be used to

Figure 5: Bacterial position. Food is maximal at 5
(marked by a line)

straightforwardly model complex cellular behaviour. Having
a one-dimensional chemotactic model, one would next seek
a model that works in two or three dimensions; this may
require a more biologically realistic guidance system.

7. DISCUSSION AND CONCLUSION
The immediate need for the development of coloured stochas-

tic multilevel multiset rewriting is its application to a vari-
ety of realistic biological examples. It would also be inter-
esting to compare our system to other general multilevel
modelling systems such as Simmune [MXA06]. Such appli-
cations would provide a test of the formalism’s usefulness
and, doubtless, lead to improvements.

Syntactic aids for writing rules, such as abbreviations in-
volving labels, would increase the formalism’s usability (cf.
Danos and Laneve’s κ [DL03]). A graphical presentation of
rule systems is also needed; in that connection a suitable no-
tion of multilevel Petri net would be useful, even if only for
two-level systems, where agents do not occur inside others in
populations or rules. Finally, when there is a need for modu-
larisation for large-scale model development, one might wish
for a language along the lines of, say, LBS [PP10].

We hope that the orthogonality of the various components
of CSMMR will aid its learnability. Starting from experience
with the usual stochastic reaction systems, one could inde-
pendently learn the use of parameters (including rate func-
tions and conditions), and agents (to model compartments);
following that, complex right-hand sides should prove natu-
ral. Further, there are standard rule patterns for common
needs, such as signalling, movement, replication and so on,
illustrated in the examples given above.

The formalism could be made more powerful. One could
introduce complex left-hand sides to guide matching algo-
rithms. Instead of the rule (*) of Section 6.2 one might
write:

p : pos[Apos:p, Apos:p] −→ . . .

which would result in a linear search over all positions, rather
than the above quadratic searches.

One could also weaken the hierarchical independence con-
dition on rates and preconditions to one where the rate corre-
sponding to a subterm can depend not only on the subterm’s
parameters, but also on the parameters of all its ancestors
in the term. This would allow one to model, for example,
more complex dependencies between the inside of a cell and
the state of its environment, while retaining a reasonably

efficient implementation.
Parameterisation increases expressiveness: a single rule

can have infinitely many instances. The finite case is where
all the sA, (s 6= real), are finite and real does not appear in
the arity of any species or agent. A finite set of rules can
then have at most mn instances, where m is the maximum
size of any sA, (s 6= real) and n is the number of parameter
variables on the left-hand side of any rule. A natural suc-
cinctness question is whether this bound is necessary, com-
paring rule systems up to stochastic matrix isomorphism;
this is open even in the stochastic coloured Petri net case,
by which we mean the one where there are no agents, and
the right-hand sides of rules are not complex.

While this paper has only concerned modelling certain
CTMC’s, their analysis is evidently also of central impor-
tance (see [HR10] for background). Even coloured stochastic
Petri nets have been little studied, and colour aggregation
or symmetry methods suggest themselves [Buc07, GD97].
As regards multilevel aspects, the difficulty is that not only
is the state space infinite, but the number of dimensions of
the multisets involved may have no upper bound (a similar
situation arises with κ); particular cases, such as two-level
systems may be more tractable.

Parameterisation is not only applicable to SMMR: one
can consider adding it to any rule-based formalism in which
one can identify parameterisable operations. In particular,
it should be straightforward to give a coloured version of bi-
graphs. Guided by the equivalence of SMMR with (stochas-
tic) place graphs shown in [OP11], one would add a sort
signature assigning arities (L, λ) to controls and decorating
nodes with L-labelled tuples of parameter terms whose sorts
are given by the sort of the control labelling the node.

It ought also to be straightforward to give a parameterised
version of κ. In this regard, a coloured version of a combi-
nation of κ and multilevel mulisets could be very attractive.

Acknowledgments
Our work was supported by a joint BBSRC/EPSRC Grant,
BB/D019621/1, and by a Royal Society-Wolfson Award.

8. REFERENCES
[Bag01] P. Bagwell, Ideal hash trees, Technical report,

School of Computer and Communication Sciences,
Swiss Institute of Technology Lausanne, 2001.

[Buc07] P. Buchholz, Iteration at Different Levels:
Multi-Level Methods for Structured Markov Chains,
Web Inf. Retrieval and Linear Alg. Algorithms,
Dagstuhl Seminar Proceedings, 7071, IBFI, 2007.

[CFS06] L. Calzone, F. Fages & S. Soliman, BIOCHAM,
Bioinformatics, 22(14), 1805–1807, 2006.

[GD97] G. Chiola, C. Dutheillet et al, A symbolic
reachability graph for coloured Petri nets, Theor.
Comput. Sci., 176(1–2), 39–65, 1997.

[CD10a] M. Coppo, F. Damiani, et al, Stochastic calculus
of wrapped compartments, Proc. 8th. QAPL, EPTCS,
28, 82–98, 2010.

[CD10b] M. Coppo, F. Damiani, et al, Hybrid calculus of
wrapped compartments, Proc. 4th. MeCBIC, EPTCS,
40, 102–120, 2010.

[DL03] V. Danos & C. Laneve, Core formal molecular
biology, Proc. 12th. ESOP, LNCS, 2618, 302–318,
Springer, 2003.

[DFFK07] V. Danos, J. Feret, et al, Scalable simulation of
cellular signaling networks, Proc. 5th. APLAS, LNCS,
4807, 139–157, 2007.

[DK10] M. A. Dewar, V. Kadirkamanathan, et al,
Parameter estimation and inference for stochastic
reaction-diffusion systems: application to
morphogenesis in D. melanogaster, BMC Systems
Biology, 4(2), 2010.

[HR10] M. Heiner, C. Rohr, et al, A comparative study of
stochastic analysis techniques, Proc. 8th. CMSB,
96-106, ACM, 2010.

[Jen92] K. Jensen, Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use. Vol. 1, Basic
Concepts, Springer Verlag, 1992.

[Jen94] K. Jensen, An introduction to the theoretical
aspects of coloured Petri nets, LNCS, 803, 230–272,
1994.

[KLH09] H. Kugler, A. Larjo, & D. Harel, Biocharts: a
visual formalism for complex biological systems, J. R.
Soc. Interface, 2009.

[KMT08] J. Krivine, R. Milner & A. Troina, Stochastic
bigraphs, ENTCS, 218, 73–96, 2008.

[LH10] F. Liu & M. Heiner, Colored Petri nets to model
and simulate biological systems, Proc. BioPPN, 70–84,
2010.

[Mil09] R. Milner, The Space and Motion of
Communicating Agents, CUP, 2009.

[MXA06] M. Meier-Schellersheim, et al, Key role of local
regulation in chemosensing revealed by a new
molecular interaction-based modeling method, PLoS
Comput Biol., 2(7), e82, 2006.

[OP11] N. Oury & G. D. Plotkin, Multi-level modelling via
stochastic multi-level multiset rewriting, MSCS,
Special issue on DCM 2010, to appear.

[Mur02] J. D. Murray, Mathematical Biology I. An
Introduction, Springer, 2002.

[PP10] M. Pedersen & G. D. Plotkin, A language for
biochemical systems: design and formal specification,
T. Comp. Sys. Biology, 12, 77–145, LNCS, 5945, 2010.

[PSB01] T. Pfeiffer, et al, Cooperation and competition in
the evolution of ATP-producing pathways, Science,
292(5516), 504–507, 2001.

[Plo06] G. D. Plotkin, Some varieties of equational logic,
Algebra, Meaning, and Computation, LNCS, 4060,
150–156, 2006.

[Run04] T. Runge, Application of coloured Petri nets in
systems biology, Proc. 5th. CPN, 77–95, 2004.

[TM06] C. Taubner, et al, Modelling and simulation of the
TLR4 pathway with coloured Petri nets, Proc. 28th.
Conf. Eng. in Med. and Bio. Soc., 2009–2012, 2006.

[WA04] G. Wadhams & J. Armitage, Making sense of it
all: bacterial chemotaxis, Nat. Rev. Mol. Cell Biol.,
5(12), 1024–37, 2004.

	Introduction
	An Example: Evolutionary Competition
	Technical Preliminaries
	Coloured Stochastic Multi- level Multiset Rewriting
	Implementation
	Further Examples
	Volume
	Diffusion
	A toy chemotaxis model

	Discussion and Conclusion
	References

