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Abstract. We begin to develop a unified account of modularity for com-
putational effects. We use the notion of enriched Lawvere theory, to-
gether with its relationship with strong monads, to reformulate Moggi’s
paradigm for modelling computational effects; we emphasise the impor-
tance here of the operations that induce computational effects. Effects
qua theories are then combined by appropriate bifunctors (on the cate-
gory of theories). We give a theory of the commutative combination of
effects, which in particular yields Moggi’s side-effects monad transformer
(an application is the combination of side-effects with nondeterminism).
And we give a theory for the sum of computational effects, which in par-
ticular yields Moggi’s exceptions monad transformer (an application is
the combination of exceptions with other effects).

1 Introduction

We seek a unified account of modularity for computational effects. More pre-
cisely, we seek a mathematical theory that supports the combining of computa-
tional effects such as nondeterminism, probabilistic nondeterminism, side-effects,
exceptions, interactive input/output, and continuations. Ideally, we should like
to develop mathematical operations, together with associated relevant theory,
that, given any pair of the above effects, yields their combination. There is more
than one such operation as, for example, the combination of state and nonde-
terminism is of a different nature to the combination of state and exceptions,
and further, as one is sometimes interested in different ways to combine even
the same pair of effects. So we seek to find and develop what we expect will be
a small number of computationally and mathematically natural such combining
operations. This paper is devoted to two such ways of combining effects: that of
combining them commutatively, as we shall see holds for combining state with
all effects we know other than continuations and exceptions; and that of taking
their sum, as we shall see holds for combining exceptions with all effects other
than continuations.
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In order to give such operations, we first need a unified way to model the
various computational effects individually. In this, we start by following Euge-
nio Moggi, who, in [17,19], gave a unified category theoretic account of com-
putational effects, which he called notions of computation. He modelled each
effect by means of a strong monad T on a base category C with finite products.
The monads corresponding to the effects listed above are given by a powerdo-
main [20], a probabilistic powerdomain [11, 12], and the monads (S x —)°, —+E,
TX = pY.(OxY +Y! 4+ X), and R respectively [17-19], assuming C has
appropriate additional structure; the set S of states is typically analysed as V1o¢
where V' is a set of values and Loc is a set of locations. Moggi’s unified approach
has proved useful, especially in functional programming [2].

Strong monads in hand, we first seek a binary operation that, to each pair
of strong monads (T,T"), yields a new strong monad T'® T”, such that, in the
case where 7" = (S x —)*, the monad T'®T" is T(S x —)°, which computational
experience tells us is the natural combination of state with all effects we know
other than continuations and exceptions. So we ask: can we give a mathematical
theory yielding such an operation on a pair of strong monads? Modulo a few side
conditions, the answer is yes, but we must make fundamental use of the corre-
spondence between strong monads and a generalised notion of Lawvere theory
in order to provide it [25]. That correspondence is computationally natural and
is already implicit in our previous work on computational effects [22-24]. We are
unaware of any direct justification for the existence of T ® T".

Recently, we have followed an algebraic programme that shifts focus away
from monads to the study of natural operations that yield the required effects [22,
23], with the monads then corresponding to natural theories for these opera-
tions [24]. For instance, rather than emphasise the side-effects monad (S x —),
one emphasises the operations lookup and update associated with state, and
the equations that relate them [24]. In the case where S = V¢, [ookup can be
considered as a Loc-indexed family of V-ary operations, and update as a Locx V-
indexed family; the idea is that lookup;(z) proceeds with z, if the contents of [
is v and update . (y) proceeds with y, having updated [ with v.

Again, rather than emphasise the powerdomain P, one emphasises the non-
deterministic operation V with its equations for associativity, symmetry, and
idempotence [7,21]. This change in emphasis, supported by the correspondence
between strong monads and enriched Lawvere theories in [25] (and see the ex-
pository [29]), is computationally natural for all the examples of computational
effects listed above except for continuations [24]; in that case one can still make
a formal change in emphasis, but it seems computationally unnatural, and we
believe continuations should be treated separately.

Having reformulated our account of computational effects in terms of en-
riched Lawvere theories, we can reformulate our question to read: is there a
mathematical theory yielding an operation that to each pair (L, L) of enriched
Lawvere theories, gives a new enriched Lawvere theory L ® L', such that, if L’ is
the enriched Lawvere theory associated with side-effects, the new enriched Law-
vere theory corresponds to T(S x —)°, where L corresponds to 77 The answer



is yes, it is remarkably natural, and, in various guises, forms of it have existed
since the 1960’s [4,15], and is known as the tensor product of theories. It sim-
ply amounts to taking the operations of both theories and demanding that they
commute with each other, while retaining the equations of both: for instance, in
the case where S = V1°¢ combining state with nondeterminism, if there were
three values, one would have the equation

lookupy(z1 V y1, 22 V Yo, x3 V y3) = lookup;(x1,x2,23) V lookup;(y1, y2,Ys3)

In a functional language with references and nondeterminism this would induce
the program equivalence:

let  be ly in (M or N) = (let = be ly in M) or (let = be ly in N)

where ! M is the dereferencing operator and M or N is non-deterministic choice.
There is a similar commutation equation for update and V, with a correspond-
ing induced program equivalence. We prove, using the first main result of [24],
that the monad corresponding to this enriched Lawvere theory is indeed given
by T(S x —)°. Recent references for mathematical theory that supports this
construction are [8-10], for which this is a leading example.

Having studied the commutative combination of effects, we turn to their sum.
The natural combination of side-effects with exceptions is not their commuta-
tive combination. Equivalently, it is not given by applying the side-effects monad
transformer to the exceptions monad. Exceptions combines with all other com-
putational effects we know (other than continuations) by taking the sum of the
two theories: one has the operations for exceptions together with all operations
for the other effect subject to all its equations, with no further equations. We
shall show that, taking one theory to be that for exceptions, the sum of theo-
ries agrees with Moggi’s exceptions monad transformer, taking a monad T to
T(—+E).

Of course, one typically combines more than two effects, so the operations we
define may be used several times. For instance, to combine partiality, side-effects
and nondeterminism, one can first combine partiality and semilattices by sum,
then combine the result with state by commutativity; similarly for partiality,
side-effects and interactive input/output.

The work most closely related to ours is that of Moggi and his collaborators
on monad transformers. Moggi and Cenciarelli defined a monad transformer to
be a function from the set of strong monads on a category C' with finite products
to itself [2,3]. The monad transformer for side-effects takes a monad T to the
monad T'(S x —)%, assuming C is cartesian closed. To model the combination
of nondeterminism with side-effects, one would apply the side-effects monad
transformer to a powerdomain P, yielding the monad P(Sx —)%. So the resulting
monad agrees with ours, as it must, but we have an associated mathematical
theory: the question we pose could equally be posed to ask how one might derive
the side-effects monad transformer from the side-effects monad gua monad, but
the work on monad transformers to date has not answered that. Moreover, our
work involves no asymmetry: there seems no a priori reason why the combination



of state with nondeterminism should be achieved by applying the side-effects
monad transformer to the nondeterminism monad rather than vice-versa. And
in the case of exceptions, the side-effects monad transformer does not even give
the required result for the usual interpretation of the combination.

Other than the work on monad transformers, the other main attempt we
know to account for the combination of state with other computational effects
has been the development of dyads [26-28] which amount to a decomposition
of the side-effects monad into strictly more primitive structure. Dyads come
equipped with a notion of Kleisli category, in which one may model the com-
putational A-calculus, and have been integrated with Freyd-structure, which
models a delicate feature of contexts arising with state or exceptions, where the
order of evaluation is crucial. The relationship between the two notions remains
to be investigated.

The paper is organised as follows. Throughout the paper, in each section,
we first investigate the unenriched case, which largely amounts to the situa-
tion where computational effects are modelled in Set, then we explain the more
general situation that includes base categories such as wCpo, the category of
primary interest in denotational semantics (its objects are w-cpos, partial orders
with least upper bounds of increasing w-chains, and its morphisms are continu-
ous functions, i.e., maps of partial orders that preserve the least upper bounds).
In Section 2, we describe the relationship between monads and Lawvere theo-
ries, and explain how the latter appear in our leading examples. In Section 3,
we explore the commutative combination of Lawvere theories. In Section 4, we
show that the commutative combination of state with any other Lawvere theory
gives the outcome we seek. And in Section 5, we develop a theory for the sum of
Lawvere theories and explain how this gives rise to the exceptions monad trans-
former. We end with an appendix the fundamental 2-categorical theory that
underlies our main results.

A clear omission from this paper is the study of distributivity: this seems
to be the main other way in which computational effects combine. One has
distributivity of one set of operations over the other in combining nondetermin-
ism with probabilistic nondeterminism [16], and one has distributivity of each
set of operations over the other combining internal and external nondetermin-
ism [6]. Another important question concerns the combination of effects with
local state [24] (this paper only concerns global state). In [24] local state is spec-
ified using an additional operation block together with additional equations. But
it is unclear yet how best to integrate it with enriched Lawvere theories, let alone
consider combinations with other effects.

2 Monads and Lawvere theories

For simplicity of exposition, we start by restricting our attention to the base
category Set. The side-effects monad is then the monad (S x —)° for a set
of states S. We impose the restriction that S is a countable set, and in case
S = V©o¢ restrict V to be countable and Loc to be finite (when dealing with



local state with its need for unboundedly many locations, we would use a presheaf
semantics rather than allowing Loc to be infinite).

The side-effects monad is then of countable rank, which means that, in a
precise sense, it is of bounded size [13]: a precise definition of the notion of
countable rank is complicated, so we simply remark that all monads we mention
in this paper except that for continuations are of countable rank. The category of
monads with countable rank is equivalent to the category of countable Lawvere
theories as we shall outline. So, in principle, the side-effects monad can equally
be seen as a countable Lawvere theory, and that is a computationally natural
way in which to see it, as we shall explain.

Let Ny denote a skeleton of the category of countable sets and all functions
between them. So N; has an object for each natural number n and an object
for Ny. Up to equivalence, N; is the free category with countable coproducts
on 1. So, in referring to Xy, we implicitly make a choice of the structure of its
countable coproducts.

Definition 1. A countable Lawvere theory consists of a small category L with
countable products and a strict countable-product preserving identity-on-objects
functor I : 7P — L.

Definition 2. A model of a countable Lawvere theory L in any category C' with
countable products is a countable-product preserving functor M : L — C.

For any countable Lawvere theory L and any category with countable products
C, we thus have the category Mod(L,C) of models of L in C, with maps given
by all natural transformations: the naturality condition implies that the maps
respect countable product structure. There is a canonical forgetful functor U :
Mod(L,C) — C, and, when C' = Set, this forgetful functor has a left adjoint,
exhibiting Mod(L, Set) as equivalent to the category Tp-Alg for the induced
monad 17, on Set.

Conversely, given a monad T with countable rank on Set, the category
KI(T)y? determined by restricting KI(T) to the objects of ®; is a countable
Lawvere theory L7, and the functor from T-Alg to Mod(L,Set) induced by
the restriction is an equivalence of categories.

Theorem 1. The construction sending a countable Lawvere theory L to Ty, to-
gether with that sending a monad T with countable rank to L induce an equiv-
alence of categories between the category of countable Lawvere theories and the
category of monads with countable rank on Set. Moreover, the comparison func-
tor exhibits the category Mod(L, Set) as equivalent to the category Tp,-Alg.

So, in principle, the side-effects monad can be described as a countable Lawvere
theory. The usual way in which to define countable Lawvere theories is by means
of sketches, with the Lawvere theory given freely on the sketch. To give a sketch
amounts to giving operations and equations, here the operations being allowed
to be of countable arity: Barr and Wells’ book [1] treats sketches in loving detail.
A sketch, and hence the countable Lawvere theory, corresponding to the side-
effects monad is essentially given in [24] and is easy to describe as follows:



Example 1. The countable Lawvere theory Lg for side-effects (when S = V1o¢)
is the free countable Lawvere theory generated by operations lookup : V. — Loc
and update : 1 — Loc x V subject to the seven natural equations listed in [24],
four of them specifying interaction equations for lookup and update and three
of them specifying commutation equations. Note the use of the targets Loc and
Loc x V to handle indexing at the Lawvere theory level.

The following result is a restatement of the first main result of [24]. It is
fundamental for the proof of the main result of this paper. Observe that it refers
to target categories other than Set.

Proposition 1. For any category C' with countable products and countable co-
products, the canonical comparison functor from Mod(Lg,C) to T-Alg is an
equivalence of categories, where T is the monad on C defined by TX = (XgX)%.

We shall now consider how examples other than side-effects appear as count-
able Lawvere theories.

Ezxample 2. Ignoring partiality, the countable Lawvere theory Lp corresponding
to a powerdomain is the countable Lawvere theory freely generated by a binary
operation V : 2 — 1 subject to equations for associativity, commutativity and
idempotence, i.e., the countable Lawvere theory for a semilattice.

Ezample 3. The countable Lawvere theory Lj,o for interactive input/output is
the free countable Lawvere theory generated by operations read : I — 1 and
write : 1 — O, where [ is a countable set of inputs and O of outputs. So,
interactive input/output is more directly modelled by the countable Lawvere
theory than by the corresponding monad TX = uY.(O x Y + YT + X).

Example 4. The countable Lawvere theory Lg for exceptions is the free count-
able Lawvere theory generated by the operation raise : 0 — FE, where E is a
countable set of exceptions..

Details of the examples of exceptions and interactive input/output, and in less
detail probabilistic nondeterminism, can be readily understood from [24].

Of course, Set is not the category of primary interest in denotational seman-
tics. One is more interested in wCpo, and variants, in order to model recursion.
The relationship between countable Lawvere theories and countable monads ex-
tends without fuss to one between countable enriched Lawvere theories and
countable strong monads on such categories. The least obvious point to note
here is that the notion of countable product of a single generator does not gen-
eralise most naturally to a notion of countable product but rather to a notion
of countable cotensor.

The notion of cotensor is the most natural enrichment of the notion of a
power-object. Given an object A of a category C and given a set X, the power
AX satisfies the defining condition that there is a bijection of sets

C(B, A%) = (B, A)*



natural in B. Enriching this, given an object A of a V-category C' and given an
object X of V, the cotensor AX satisfies the defining condition that there is an
isomorphism in V

C(B,AX) =~ C(B, A)X

V-natural in B. For instance, taking V to be Poset, this allows us not only to
consider objects such as A x A in a locally ordered category, but also to consider
objects such as A<. This possibility allows us, in describing theories, to consider
a greater range of arities and to incorporate inequations in the context of an
elegant, coherent body of mathematics. In general, we still have all countable
products of objects in an countable Lawvere V-theory, but we also have a little
more.

Given a category V that is locally countably presentable as a cartesian closed
category, for instance wCpo, one defines Vi, to be a skeleton of the full sub-
V-category of V' determined by the countably presentable objects of V. It is
equivalent to the free V-category with countable tensors on 1 [13,25].

Definition 3. A countable Lawvere V-theory is a small V-category L with
countable cotensors together with a strict countable-cotensor preserving identity-
on-objects V -functor I : VNOlp — L. A model of L in a V-category C with
countable cotensors is a countable-cotensor preserving V -functor M : L — C.

The constructions of Ty, from L and of Ly from T are routine generalisations
of those in the unenriched setting, and the central results for the unenriched
setting generalise routinely too. To give a V-enriched V-monad is equivalent to
giving a strong monad on V, so in order to make the comparison with Moggi’s
definition a little more direct, we express the main abstract result in terms of
strong monads.

Theorem 2. IfV is locally countably presentable as a cartesian closed category,
the constructions of Ty from L and of Ly from T induce an equivalence of
categories between the category of countable Lawvere V -theories on V and the
category of strong monads on V' with countable rank. Moreover, the comparison
V-functor exhibits the V-category Mod(L,V) as equivalent to the V -category
TL-AZQ.

For an example of a countable Lawvere V-theory that does not arise freely
from an unenriched countable Lawvere theory, let V' be the wCpo, and consider
a countable Lawvere theory for partiality.

Ezample 5. The countable Lawvere wCpo-theory L for partiality is the theory
freely generated by a nullary operation L: 0 — 1 subject to the condition that
there is an inequality




where the unlabelled map is the unique map determined because 0 is the initial
object of Vi, and therefore the terminal object of Vi¥. A model of L, in wCpo
is exactly an w-cpo with least element.

We have already introduced a countable Lawvere theory Lp corresponding to a
powerdomain: it is the countable Lawvere theory for a semilattice. We overload
notation a little here by also using the notation Lp to denote the countable
Lawvere wCpo-theory for a semilattice: the generators and equations are the
same, but the wCpo-theory has more objects as there are countably presentable
w-cpos other than flat ones, and these additional objects generate additional
maps. But the countable Lawvere wCpo-theory for a semilattice is still just
the free countable Lawvere wC'po-theory on the countable Lawvere theory for a
semilattice.

This definition allows us to make immediate reference to the sum of effects
that we shall define later. Using the terminology we shall define, we can therefore
describe the countable Lawvere wC'po-theory for nondeterminism as follows:

Example 6. The countable Lawvere wCpo-theory Ly for nondeterminism is given
by the sum of the countable Lawvere wC'po-theories Lp for a semilattice and L |
for partiality.

The combination of partiality with other effects is typically given by sum. But
that is not always the case: the combination with side-effects is given by taking
the commutative combination, which we define in the next section.

Another non-trivial example of a computationally natural countable Lawvere
wCpo-theory is given by probabilistic nondeterminism [5,11,12]. More detail
appears in [24], albeit in the mathematical terms of [14].

3 The commutative combination of effects

In this section, we define the commutative combination L ® L’ of countable
Lawvere theories L and L’ and develop mathematical theory in support of the
definition of this tensor product. We move immediately to the central definition
of the section, for base category Set.

The category ¥y not only has countable coproducts, but also has finite prod-
ucts, which we denote by A x A’. The object A x A’ may also be seen as the
coproduct of A copies of A’, so, given an arbitrary map f’ : A’ — B’ in a
countable Lawvere theory, it is immediately clear what we mean by the mor-
phism A x f': Ax A’ — A x B’. We define f x A’ by conjugation, and, in the
following, we suppress the canonical isomorphisms.

Definition 4. Given countable Lawvere theories L and L', the countable Law-
vere theory L ® L’ is defined to be the countable Lawvere theory generated by
the disjoint union of all operations of L and all operations of L' subject to all
equations of L, all equations of L', and commutativity of all operations of L with
respect to all operations of L', i.e., given f: A — B in L and f' : A’ — B’



in L', we demand commutativity of the diagram

A !

Ax 4 2 A p

Fx A FxB
B x A’ Bx B

Bx f'

We shall systematically investigate the commutative combination of state with
other effects in the next section. In the previous section, we made use of an
enriched commutative operation generalising ® when we combined side-effects
with partiality. We shall spell out the enriched version of ® below. But first we
develop the abstract theory in the unenriched case.

Proposition 2. The construction @ extends canonically to a symmetric monoidal
structure on the category of countable Lawvere theories.

A proof for this proposition is elementary. The result gives some indication of
the definiteness of the operation sending (L, L") to L ® L', but not much: there
are typically many symmetric monoidal structures on categories, such as finite
product or finite coproduct, typically with many others too. But what is much
less common is a closedness condition. Categories typically have few if any closed
structures on them. Moreover, the analysis of a closed structure corresponding
to ® is essential to the proof of our main theorem about the combination of state
with other effects. But to have a closed structure, we would require that, for any
category C' with countable products, the category Mod(R}”,C') is isomorphic to
C, as that is required to give the isomorphism C! = C that must hold in any
closed structure; but we do not have that condition here because, in fact, the
category Mod(R(¥, C) is equivalent but not isomorphic to C. But we do have a
pseudo-closed structure, a definition of which is in Appendix A, together with
the relevant, delicate 2-categorical analysis.

Theorem 3. The construction L® L' on countable Lawvere theories extends to
a coherent pseudo-monoidal pseudo-closed structure on the 2-category of small
categories with countable products, and, in particular, for any small category
C with countable products, there is a coherent equivalence of categories between
Mod(L® L',C) and Mod(L, Mod(L',C)).

Ezxample 7. Letting Lg be the countable Lawvere theory for side-effects, if C' has
countable products and countable coproducts, we have seen that Mod(Lg,C)
is equivalent to the category T-Alg for the monad TX = (¥sX)° on C. For
any countable Lawvere theory L, the category Mod(L, Set) is always complete
and cocomplete, so has countable products and countable coproducts. So, by the
theorem, Mod(Ls ® L, Set) is equivalent to T-Alg for TX = (¥sX)* taken as
a monad on Mod(L, Set).



The analysis of this section extends readily to the enriched setting as follows.
The V-category Vi, not only has countable tensors but also has finite products,
just as the ordinary category N; not only has countable coproducts but also
has finite products. Our analysis of A x f’ in the unenriched setting extends
routinely to the enriched setting, except here, of course, we must express the
analysis in terms of the object L(A’, B) of V rather than in terms of an arrow
f': A" — B’. The key fact is that the cotensor (A*)Y is canonically isomorphic
to the cotensors ACX x V) and (AY)¥. Consistently with this, we must express
the commutativity condition of the theorem in terms of homobjects of V' rather
than in terms of arrows like f’.

Definition 5. Let V' be locally countably presentable as a cartesian closed cat-
egory. Given countable Lawvere V -theories L and L', the countable Lawvere V -
theory L ® L' is defined to be the countable Lawvere V -theory generated by the
disjoint union of L(A, B) and L' (A, B) for each (A, B), subject to all equations of
L, all equations of L', and, suppressing canonical isomorphisms, commutativity

of
L(A,B) x L'(A', B

L(AxB',Bx B)x L'(Ax A', A x B')

comp

LAx A, Bx A)x L'(Bx A'",Bx B’) » L(Ax A',B x B)
comp
Theorem 4. Let V' be locally countably presentable as a cartesian closed cate-
gory. Then the construction L ® L’ on countable Lawvere V -theories is symmet-
ric monoidal and extends to a coherent pseudo-monoidal pseudo-closed structure
on the 2-category of small V -categories with countable cotensors, and, for any

small V -category C' with countable cotensors, there is a coherent equivalence of
V -categories between Mod(L ® L', C) and Mod(L, Mod(L',C)).

4 The commutative combination of state with other
effects

Here, we study the commutative combination of side-effects with other compu-
tational effects in more detail. Our central result is as follows:

Theorem 5. Let Lg denote the countable Lawvere theory for side-effects (where
S = VEo¢) and let L denote any countable Lawvere theory. Then the monad
TreeL s isomorphic to (S X T —)%.

Proof. We have seen in preceding sections that Mod(Lg, Mod(L, Set)) is equiv-
alent to T-Alg, where T is the monad on Mod(L, Set) given by TX = (XgX)%.
The category Mod(L, Set) is equivalent to T7,-Alg. So we denote the canonical
adjunction by Fr, 4 Ur : Mod(L,Set) — Set. Right adjoints preserve prod-
ucts, left adjoints preserve coproducts, and a coproduct Xy X in Set is given



by Y x X. So the monad 77, g1, which, by our main theorem, is the monad
determined by the composite forgetful functor from T-Alg to Set, must be given
by TreerX = Ur(XsFrX)® =Tr(S x X)¥ as required.

The theorem generalises readily to the enriched setting, taking S to be any
countably presentable object of V.

Theorem 6. Let V' be locally countably presentable as a cartesian closed cate-
gory, and let S be a countably presentable object of V. Let Lg denote the count-
able Lawvere V -theory for side-effects, and let L denote any countable Lawvere
V-theory. Then the monad Tr g1 is isomorphic to (S x Tr,—)5.

Proof. The proof is essentially the same as for the unenriched case. One must
observe that the proof of the first main theorem in [24] extends routinely to
enrichment in a category that is locally countably presentable as a cartesian
closed category, taking Loc =1 and V = §.

This result shows that, under the hypotheses of the theorem, our theory
of the commutative combination of computational effects agrees with Moggi’s
definition of the side-effects monad transformer. In particular, this accounts for
the interaction between side-effects and nondeterminism, and in doing so, the
theory yields not just an object of values for the combination but a description
of natural operations and the way in which they interact with each other, and
it follows immediately from the definition of ® that one does not lose any of
the equations for either nondeterminism or state with which one began. It is
also interesting to note that the side-effects theory for S = V1°¢ is the Loc-fold
tensor product of the side-effects theory for S = V.

5 The sum of effects

Finally, we turn to the sum of effects, our leading example being given by the
combination of exceptions with all other computational effects we have con-
sidered, such as side-effects, nondeterminism, and interactive input/output. A
succession of results support the construction of the sum of theories.

Theorem 7. The category of countable Lawvere theories is cocomplete.

This may be proved using the equivalence between countable Lawvere theories
and monads on Set of countable rank, together with the analysis of [14]. We
therefore know that the sum of countable Lawvere theories exists.

Theorem 8. Given a set E, if Ly denotes the countable Lawvere theory for E
nullary operations, and if L is any countable Lawvere theory, 11, +1, is given by
TL(— + E)

Proof. The category Tr(— + E)-Alg is isomorphic to T} -Alg, where T} is the
monad on (—+ E)-Alg determined by lifting 77,, using the canonical distributive
law of —+ F over T7,. By direct calculation, one can see that the latter category is
in turn isomorphic to (Tr,+(—+E)-Alg: a T} -algebra consists of a set X together
with F elements of X and a Tp-structure on X, i.e., a (T, + (— + F)-algebra.



This result explains how the exceptions monad transformer, sending a monad
T to the composite T'(— + F), arises: one simply takes the disjoint union of the
two sets of operations and retains the equations for 7. And this explanation
brings with it our usual theory of coproducts, such as its associativity and com-
mutativity, and its interaction with other operations.

The elegant 2-category theory underlying the commutative combination of
effects does not seem relevant here, but we still do have a closedness result as
follows:

Definition 6. Given a countable Lawvere theory L and a category C with count-
able products, denote by Mod*(L,C') the identity-on-objects/fully faithful factori-
sation of the forgetful functor U : Mod(L,C) — C.

So the objects of Mod*(L,C) are the models of L in C' and the maps are just
maps in C. We have the following theorem:

Theorem 9. There is a natural equivalence between Mod*(L + L', C) and
Mod*(L, Mod*(L',C)).

A simple proof is given by heavy use of the correspondence between countable
Lawvere theories and monads on Set with countable rank, with the knowledge
that a T + T’-algebra consists of a set X together with both a T-structure and
a T"'-structure on it.

As in previous sections, the analysis of this section all enriches without fuss,
with the sum again being the correct operation in the enriched setting.
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A Pseudo-commutativity and pseudo-closedness of C P

The simplest way we know to explain the extent to which we have a natural closed
structure on the category of small categories with countable products is in terms of



2-monads on Cat as developed in [8, 10], cf also [9]. The 2-monad of interest to us is the
2-monad T¢p, for which the 2-category of algebras, pseudo-maps, and 2-cells is the 2-
category of small categories with countable products, functors that preserve countable
products in the usual sense, and natural transformations.

Definition 7. A symmetric pseudo-commutativity for a 2-monad T on Cat consists
of a family of invertible natural transformations

t* Tt
TAXTB — T(AxTB) —— T?(A x B)

3 ‘U YA,B HAxB

T(TA x B) T T?(A x B) T(A x B)

HAXB
natural in A and B and subject to coherence with respect to the symmetry of Cat and
one coherence axiom with respect to each of the strength, unit, and multiplication of T .

The monad T, has a unique symmetric pseudo-commutativity. The first main defini-
tion of [10] gives a notion of pseudo-closed structure for a 2-category: it is almost as
strong as closed structure, but one needs to relax the definition of closed structure just
a little in order to account for the distinctions between preservation and strict preser-
vation of structure such as countable product structure: the reason, in our setting,
that we do not quite have a closed structure is that, given a category C' with count-
able products, the category Mod(R]?, C') is equivalent but not isomorphic to C. We do
not spell out the detailed definition of pseudo-closed 2-category here. The main result
of [10] (see [8] for a formulation directed more towards a computer science audience)
is as follows:

Theorem 10. If T is a symmetric pseudo-commutative accessible 2-monad on Cat,
the 2-category of T-algebras and pseudo-maps of T-algebras has a pseudo-monoidal
pseudo-closed structure induced by the pseudo-commutative structure of T, coherently
with respect to the closed structure of Cat.

Corollary 1. The 2-category of small categories with countable products, countable
product preserving functors, and natural transformations is pseudo-monoidal pseudo-
closed, coherently with respect to the closed structure of Cat.

The heart of this result as it applies to us is that the construction that sends a pair
of small categories C' and D with countable products to the category C'P(C, D) of
countable product preserving functors from C to D is a well behaved construction.
Moreover, for any small categories C and C” with countable products, there is a small
category C' ® C’ with countable products together with a well behaved equivalence of
categories between CP(C, FP(C, D)) and CP(C ® C’, D) natural in D. The theorem
only determines the construction C' ® C’ up to coherent equivalence of categories, but,
when restricted to countable Lawvere theories, it agrees up to equivalence with the
construction we gave at the start of the section. Thus we may conclude the following:

Theorem 11. The construction L ® L' on countable Lawvere theories extends to a
coherent pseudo-monoidal pseudo-closed structure on the 2-category of small categories
with countable products, and, for any small category C' with countable products, there is
a coherent equivalence of categories between Mod(L® L', C) and Mod(L, Mod(L',C)).



