
Combining effects: sum and tensor

Martin Hyland,1 Gordon Plotkin2 and John Power2 ?

1 Dept. of Mathematics, University of Cambridge, Cambridge CB3 0WB, England.
email: M.Hyland@dpmms.cam.ac.uk

2 Laboratory for the Foundations of Computer Science, School of Informatics,
University of Edinburgh, King’s Buildings, Edinburgh EH9 3JZ, Scotland.

email: gdp@inf.ed.ac.uk, ajp@inf.ed.ac.uk

Abstract. We seek a unified account of modularity for computational
effects. We begin by reformulating Moggi’s monadic paradigm for mod-
elling computational effects using the notion of enriched Lawvere theory,
together with its relationship with strong monads; this emphasises the
importance of the operations that produce the effects. Effects qua the-
ories are then combined by appropriate bifunctors on the category of
theories. We give a theory for the sum of computational effects, which
in particular yields Moggi’s exceptions monad transformer and an inter-
active input/output monad transformer. We further give a theory of the
commutative combination of effects, their tensor, which yields Moggi’s
side-effects monad transformer. Finally we give a theory of operation
transformers, for redefining operations when adding new effects; we de-
rive explicit forms for the operation transformers associated to the above
monad transformers.

1 Introduction

We seek a unified account of modularity for computational effects. More pre-
cisely, we seek a mathematical theory that supports the combining of computa-
tional effects such as exceptions, side-effects, interactive I/O (i.e., input/output),
probabilistic nondeterminism, and nondeterminism. Ideally, we should like to de-
velop natural mathematical operations for the combination of effects, together
with associated relevant theory. There is more than one such operation: for ex-
ample, as we shall see, the combination of side-effects and nondeterminism is of
a different nature to the combination of I/O and non-determinism, and, again,
one is sometimes interested in different ways to combine even the same pair of ef-
fects, for example, side-effects and exceptions. This paper is devoted to two such
ways of combining effects: their sum, which, as we shall see, may be employed
for combining both exceptions and interactive I/O with other effects; and their
commutative combination, their tensor, which, as we shall see, may be employed
for combining side-effects with other effects.

? This work has been done with the support of EPSRC grants GR/M56333 and
GR/S86372/01

In order to give such operations, we first need a unified way to model the
various computational effects individually. In this we start by following Eugenio
Moggi, who, in [39,41], gave a unified category-theoretic account of computa-
tional effects, which he called notions of computation. He modelled each effect by
means of a strong monad T on a base category C with finite products. In the case
C = Set, the monads corresponding to the effects listed above are: TE = −+E,
TS = (S × −)S , TI/O, where TI/O(X) = µY. (Y I + (O × X) + X) [39,40,41],
the distributions with countable support monad Dω, and the non-empty finite
powerset monad F+. Here E is a countable set of exceptions, S is a set of states,
typically analysed as V L where V is a countable set of values and L is a fi-
nite set of locations, I is a countable set of inputs, and O is a countable set of
outputs. Corresponding monads exist for a general category C, provided it has
appropriate additional structure. Moggi’s unified approach has proved useful,
particularly in functional programming [7,8].

Strong monads in hand, we seek certain binary operations on them. We seek
an operation ◦ on strong monads such that:

TE ◦ T = TTE = T (−+ E)

the computationally natural combination of exceptions with I/O and both forms
of nondeterminism, and the usual computationally natural combination with
side-effects. We also seek an operation ⊗ on strong monads such that:

TS ⊗ T = T (S ×−)S

the computationally natural combination of side-effects with I/O and both forms
of nondeterminism; it is also a possible, if less natural, combination with excep-
tions which we discuss further below. Finally, we seek an operation ∗ on strong
monads such that:

(TI/O ∗ T)X ∼= µY.T (Y I + (O × Y) + X)

the computationally natural combination of interactive I/O with the above ef-
fects other than state.

So we ask: can we give a mathematical theory yielding such binary operations
on strong monads? Modulo a few side conditions, the answer is positive, and, in
order to do so, we make fundamental use of the correspondence between monads
and Lawvere theories, which are invariant forms of equational theories [34]. The
base category used in denotational semantics is not Set but, rather, an order-
theoretic one, such as ω-Cpo; the objects of this latter category are the ω-
cpos, i.e., partial orders with least upper bounds of increasing ω-chains, and the
morphisms are the continuous functions, i.e., maps of partial orders that preserve
the least upper bounds. So we work with enriched Lawvere theories, supported
by the correspondence between them and strong monads in [49] (and see the
expository [53]).

Here, we are following an algebraic programme that shifts focus away from
monads to the study of natural programming operations that yield the required

effects, with the monads given by free algebras for natural theories for the
operations [47] (and see too [44,45]). For instance, rather than emphasise the
side-effects monad (S × −)S , we emphasise the operations lookup and update
associated with side-effects, and the equations relating them. In the case where
S = V L, the operation lookup can be considered as an L-indexed family of V -ary
operations, and update can be considered as an L× V -indexed family; the idea
is that lookupl(x) proceeds with xv if the contents of l is v and update〈l,v〉(y)
proceeds with y, having updated l with v. The equations describe the interac-
tions between the lookup and update operations on the same or different loca-
tions. Again, rather than emphasise the powerdomain for nondeterminism, we
emphasise the operation of nondeterministic choice ∨ with its equations for as-
sociativity, symmetry, and idempotence [18,43]. This change in emphasis is com-
putationally natural for all the examples of computational effects listed above.
Not all computationally natural operations arise in this way though, only the al-
gebraic ones, defined below; an important example of a non-algebraic operation
is the handle operation, for dealing with raised exceptions. Algebraic operations
are in bijective correspondence with generic effects, also defined below; some-
times one, sometimes the other, is the more natural in programming languages.
In [40] Moggi defined a wider class of operations than ours, including both our
algebraic operations and our generic effects, but imposing a weaker naturality
condition than we do. However, it is by virtue of restricting to the smaller class
of algebraic operations that we are able to find a mathematical theory.

Having reformulated our account of computational effects in terms of enriched
Lawvere theories, we can reformulate our questions in terms of corresponding
operations on theories. We may ask if there is a mathematical theory yielding an
operation L′ ◦ L on enriched Lawvere theories L′ and L such that, for example,
in the case of Set, if L′ is the Lawvere theory LE associated with exceptions,
then L′ ◦ L corresponds to T (− + E), where L corresponds to T , and similarly
for our other two anticipated operations L′ ⊗ L and L′ ∗ L. The answers to
these reformulated questions are remarkably natural, and, in various guises, have
existed since the discovery of the notion of Lawvere theory in the 1960’s [13,54].
In the first and third cases, the required operation on Lawvere theories is just
their sum, so L′ ◦ L = L′ ∗ L = L′ + L. Here one has the operations for each
of the two theories, subject to the equations for each of the two theories, but
with no equations relating them. And in the second case, the required operation
L′ ⊗L is the tensor or Kronecker product of theories, which amounts to taking
the operations of both theories and demanding that they commute with each
other, while retaining the equations of both. For instance, combining side-effects
with nondeterminism, and assuming there are three values, one would have the
commutation equation:

lookupl(x1 ∨ y1, x2 ∨ y2, x3 ∨ y3) = lookupl(x1, x2, x3) ∨ lookupl(y1, y2, y3)

In a functional language with references and nondeterminism this would induce
the program equivalence:

let x be !y in (M or N) ≡ (let x be !y in M) or (let x be !y in N)

where !M is the dereferencing operator and M orN is non-deterministic choice;
the semantics of !M is given by the generic effect corresponding to lookup. There
is a similar commutation equation for update and ∨, with a corresponding in-
duced program equivalence. References for mathematical theory that supports
the tensor product are [19,20,21], for which this is a leading example.

The published work most closely related to ours is that of Moggi and Cencia-
relli on monad transformers. They defined a monad transformer to be a function
F : |Mon(C)| → |Mon(C)| from the set of strong monads on a category C with
finite products to itself [40,9,7]. For example, their monad transformer for side-
effects takes a monad T to the monad T (S×−)S , assuming C is cartesian closed,
and S is an object of C. Our view of monad transformers is as specialisations
of our binary operations for combining effects. Moggi and Cenciarelli’s monad
transformers agree with ours, as they must; the difference is that we have an as-
sociated mathematical theory, including a computationally natural explanation
in terms of the equations governing the interaction between the two effects.

The question we pose could equally be posed by asking how one might derive
the side-effects monad transformer from the side-effects monad qua monad, but
the work on monad transformers to date has not answered that. Moreover, our
work involves no asymmetry: there seems no a priori reason why the combination
of side-effects with nondeterminism should be achieved by applying a side-effects
monad transformer to the nondeterminism monad rather than vice-versa. And,
as is well known, in the case of exceptions the side-effects monad transformer
does not give the required result for the usual interpretation of the combination.
Rather than the standard (S × (−+ E))S it gives ((S ×−) + E)S .

Possible uses of the latter combination are for non-recoverable errors and,
more speculatively, for language features for undoing partially-completed trans-
actions, e.g., rollback in database languages. In regard to the latter it is worth
noting that the combination supports a non-standard exception-handling mech-
anism, that, when an exception is raised, restores the state to what it was when
the handler was defined, and then executes the handler. This combination of
state and exceptions has been termed ‘transitional’ in [11], and ‘snapback’ in [4].
In practice, monads for various kinds of exceptions, and even states, would be
combined; some sample calculations are given in Section 7.

There is also relevant previous unpublished work by Paul Levy. He observed
that the sum of any monad T with that for exceptions −+E is given by T (−+E).
He also defined a universal notion of commutative combination of monads and
showed that T (S×−)S is the commutative combination of T and (S×−)S with
that definition. When the monads have rank, this definition agrees with ours,
but the universal construction seems unlikely to exist for all pairs of monads.

As is well known [5] the composition of monads is also a monad if there is a
distributive law between them. This idea has been used to explain several of the
monad transformers that arise in computation, such as the exceptions monad
transformer [29,23]. However there are several not so explicable, such as the
state and resumptions monad transformers. The work on dyads [50,51,52] yields

a generalisation of distributive laws that covers the state monad transformer but
not the resumptions one.

As discussed in [40,9], for a theory of modularity, having shown how to com-
bine effects one needs to know how to redefine operations, lifting them from
the old effects to the combinations with the new ones. Such redefinitions are
commonly given on a case-by-case basis, see [7] for a systematic treatment of
redefinitions in this way. Here, by restricting to algebraic operations we present
a theory prescribing the needed liftings. We define a notion of operation trans-
former which, by standard universal algebra, is equivalent to that of a monad
map. Since we have such maps canonically associated with the + and ⊗ con-
structions, we can derive operation transformers for them and so also for their
associated monad transformers. We note that in [40] Moggi shows how to re-
define members of a certain class of (his) operations; these include our generic
effects but not our algebraic operations.

The paper is organised as follows. We generally first investigate the unen-
riched case, which largely amounts to the situation where computational effects
are modelled in Set. We then explain the more general enriched situation that
includes base categories such as ω-Cpo. This allows us to deal with nontermina-
tion, i.e., partiality. In Section 2, we describe the relationship between monads
and Lawvere theories, and explain how the latter appear in our leading examples.
In Section 3, we develop a theory for the sum of Lawvere theories and explain
how this gives rise to the exceptions and interactive I/O monad transformers.
In fact they are both examples of a more general sum, of a monad with a free
monad; the corresponding monad transformer appears in a slightly different form
in [9], under the name of the generalised resumptions monad transformer. In Sec-
tion 4, we explore the tensor product of Lawvere theories and in Section 5, we
show that the commutative combination of side-effects with any other Lawvere
theory yields the side-effects monad transformer; we also consider some other ex-
amples, including the ‘complexity’ monad transformer from [9] and the analysis
of parallel computation in [18]. In Section 6 we consider operation transform-
ers and, so far as we can, give explicit definitions of them for the various monad
transformers previously considered. In Section 7, we propose a canonical formula
for combining the main computational effects we treat in the paper, and discuss
several other issues concerning the combination of effects by sum and tensor.
Finally, in Appendix A, we outline the fundamental 2-categorical theory that
underlies our main results.

A word on explicit definitions is appropriate here. Where possible we give
explicit definitions of monad and operation transformers. We do not claim that
these formulae are particularly new, though they may sometimes be more general
than have appeared previously. The point is rather that they arise canonically
from our general understanding of monad transformers as specialisations of nat-
ural binary constructions on Lawvere theories, namely sum and tensor, and from
operation transformers via their relation to monad maps. On a slightly different
note, we use standard mathematical notation for these explicit definitions; this
can be contrasted with Moggi who prefers to use a suitable type theory to aid

comprehensibility; again functional programmers prefer to give corresponding
definitions in a functional programming language, typically Haskell.

A clear omission from this paper is the study of distributivity: this seems
to be how various forms of nondeterminism combine. For example, the distribu-
tivity of probabilistic choice over ordinary choice when combining probabilistic
nondeterminism with nondeterminism is discussed in [57,37,58], and the dis-
tributivity of each of internal and external nondeterminism over each other is
discussed in [17]. Another important question concerns the combination of ef-
fects with local state [47]: this paper only concerns global state. In [47] local
state is specified using an additional operation block together with additional
equations, and is modelled using a presheaf category, thereby avoiding any need
for models with infinitely many locations. But it is unclear yet how best to inte-
grate this work with enriched Lawvere theories, let alone consider combinations
with other effects. Finally, we have not considered the relationship of all these
effects with that of continuations; this will be substantially different as, unlike
all the other cases, the continuations monad does not have a rank. One can still
treat the continuations monad algebraically but that means introducing opera-
tions of unbounded rank, which does not make computational sense to us. We
therefore believe continuations should be treated separately. In this connection
it is worth noting that, were it not for the desire to include continuations in the
treatment of monad transformers, Moggi and Cenciarelli might have taken them
to be functors F :Mon(C) → Mon(C) equipped with with a natural transforma-
tion I → F , rather than mere functions; the natural transformation would be
used to extend (algebraic) operations, as explained in Section 6 below.

2 Monads and Lawvere theories

For simplicity of exposition, we start by restricting our attention to the base
category Set. All our monads on Set are of countable rank, which means that,
in a precise sense, they are of bounded size [26,3]. The category of monads
with countable rank is equivalent to the category of countable Lawvere theories,
which we now define. All our mathematics generalises to arbitrary rank, but, as
all our examples are of countable rank, which includes finite rank, we restrict
our exposition to that case.

Let ℵ1 denote a skeleton of the category of countable sets and all functions
between them. So ℵ1 has an object for each natural number n and an object
for ℵ0. Up to equivalence, ℵ1 is the free category with countable coproducts
on 1. So, in referring to ℵ1, we implicitly make a choice of the structure of its
countable coproducts.

Definition 1. A countable Lawvere theory consists of a small category L with
countable products and a strict countable-product preserving identity-on-objects
functor I : ℵop

1 −→ L. A map of countable Lawvere theories from L to L′ is a
strict countable-product preserving functor from L to L′ that commutes with I
and I ′.

We sometimes refer to morphisms of a Lawvere theory as operations.

Definition 2. A model of a countable Lawvere theory L in any category C with
countable products is a countable-product preserving functor M :L −→ C.

Note that, following Lawvere [33], and see [5], we ask here for ordinary preser-
vation of countable products. Every such model is equivalent to one in which
powers of of 1 are strictly preserved. However, the conventional non-strict ver-
sion is more convenient in practice: for example, for any model M :L −→ C of
L and countable product-preserving functor U :C −→ D, the composite UM is
then also a model of L; it also fits well with a 2-categorical treatment [48].

For any countable Lawvere theory L and any category with countable prod-
ucts C, we thus have the category Mod(L,C) of models of L in C; the maps
are given by all natural transformations: the naturality condition implies that
they respect countable product structure. There is a canonical forgetful functor
UL : Mod(L,C) −→ C. If it has a left adjoint FL, this forgetful functor ex-
hibits Mod(L,C) as coherently equivalent to the category TL-Alg for the monad
TL = ULFL thereby induced by L on C. If C is locally countably presentable [3],
then: the required left adjoint FL exists; UL, and so also TL, have countable
rank; and Mod(L,C) is locally countably presentable.

For a converse in the case that C = Set, given a monad T with countable
rank on Set, the category Kl(T)opℵ1

determined by restricting Kl(T), the Kleisli
category of T to the objects of ℵ1 is a countable Lawvere theory LT , and the
functor from T -Alg to Mod(LT ,Set) induced by the restriction is an equivalence
of categories. An enriched, thereby more general, version of the following result
appears in [49].

Theorem 1. The construction sending a countable Lawvere theory L to TL to-
gether with that sending a monad T with countable rank to LT induce an equiv-
alence of categories between the category of countable Lawvere theories and the
category of monads with countable rank on Set. Moreover, the comparison func-
tor exhibits an equivalence between the categories Mod(L,Set) and TL-Alg.

The usual way in which to obtain Lawvere theories is by means of sketches,
with the Lawvere theory given freely on the sketch: Barr and Wells’ book [6]
treats sketches in loving detail. To give a sketch amounts to giving operations
and equations; for countable Lawvere theories one allows the operations to be
of countable arity.

We now consider our main examples from the point of view of countable
Lawvere theories. Given a category C with a terminal object and a set X, we
write X for the X-fold copower of 1, i.e.,

∐
X 1.

Example 1. Exceptions The countable Lawvere theory LE for exceptions is the
free countable Lawvere theory generated by an operation raise : 0 −→ E, where
E is a countable set of exceptions. In terms of operations and equations this
corresponds to an E-indexed family of nullary operations with no equations. In
terms of models M of LE one has:

M(raise) :1 = M(1)0 −→ M(1)E

which corresponds to an evident map E −→ M(1), again showing how codomains
of operations correspond to parameterisation.

Note our use here of the countable set E for the codomain of the operation
of the Lawvere theory; strictly speaking we should instead have used the corre-
sponding object of ℵ1. It is, however, conceptually convenient to allow ourselves
such minor liberties.

The monad induced by LE is TE = −+ E, the exceptions monad mentioned
above. More generally, if C is any category with countable sums and a terminal
object then the monad induced by LE on C is −+ E.

Given a category C and a set X, we write (X × −) for the X-fold copower∐
X −, and (−)X for the X-fold power

∏
X −.

Example 2. Side-Effects The countable Lawvere theory LS for side-effects,
where S = V L, with V countable and L finite, is the free countable Lawvere
theory generated by the operations lookup : V −→ L and update : 1 −→ L × V
subject to the seven natural equations listed in [47], four of them specifying
interaction equations for lookup and update and three of them specifying com-
mutation equations. Note, as in the case of exceptions, the use of codomains,
here L and L × V , to handle indexing at the Lawvere theory level. It is shown
in [47] that this Lawvere theory induces the side-effects monad mentioned above.
More generally, if C is any category with countable powers and copowers then,
slightly generalising the result in [47], the monad induced by LS on C again has
the form (S ×−)S .

For the next example, we first need some discussion of free and initial al-
gebras and free monads. Given any endofunctor Σ on a category C, we write
(µy.Σy, αΣ) for the initial Σ-algebra if it exists. If C has binary sums, the free
Σ-algebra on an object x can be identified with (µy. (Σy+x), α(Σ−+x)), and the
one exists if and only the other does. These free algebras exist if, for example,
C is locally countably presentable and Σ has countable rank.

Next, if the forgetful functor from Σ-alg to C has a left adjoint, we say that
the resulting monad is the free monad on Σ and write it as Σ∗. If Σ∗ exists, the
category Σ∗-Alg for Σ∗ qua monad is isomorphic to the category Σ-alg for the
endofunctor Σ.

We see from the above that, if C has binary sums, then Σ∗ can be identified
with µy. (Σy + −) and the one exists if and only if the other does. We further
see that if C is locally countably presentable and Σ has countable rank, then
Σ∗ exists and has countable rank [25].

Example 3. Interactive I/O The countable Lawvere theory LI/O for inter-
active I/O is the free countable Lawvere theory generated by the operations
read :I −→ 1 and write : 1 −→ O, where I is a countable set of inputs and O of
outputs. In terms of operations and equations this corresponds to an operation
of arity I together with an O-indexed family of unary operations, with no equa-
tions. The monad TI/O for interactive I/O corresponding to this Lawvere theory

is the free monad on ΣI/O where ΣI/O(Y) = Y I + (O × Y) is the signature
functor determined by the two operations. By the above remarks, we have:

TI/O(X) = µY. (Y I + (O × Y) + X)

These are also the forms of ΣI/O and TI/O in the more general situation where
the monad is that induced by LI/O on a locally countably presentable category
C.

Exceptions and interactive I/O exemplify a general pattern of ‘absolutely
free’ theories. Consider the free countable Lawvere theory L on the operations
opλ : Iλ → Oλ, for λ ∈ Λ, where the Iλ and the Oλ are countable sets. Define
the corresponding signature functor to be the ‘polynomial’ functor:

Σ(Y) =
∑
λ∈Λ

Oλ × Y Iλ

Then the monad corresponding to L is Σ∗, the free monad on Σ, and, as we see
from the above, it can be given explicitly by:

T (X) = µY. (
∑
λ∈Λ

Oλ × Y Iλ + X)

The signature functor for exceptions is, evidently, ΣE(Y) = E and we have
already given that for interactive I/O. As before, these are also the forms of Σ
and T in the more general situation where the monad is that induced by L on a
locally countably presentable category C. We remark that polynomial functors
of the above kind appear in the context of categorical models of dependent type
theory, where the existence of Σ∗ corresponds to the existence of W-types [38,14].

Example 4. Nondeterminism The countable Lawvere theory LN for (binary)
nondeterminism is the countable Lawvere theory freely generated by a binary
operation ∨ : 2 −→ 1 subject to equations for associativity, commutativity and
idempotence, i.e., the countable Lawvere theory for a semilattice; the corre-
sponding monad on Set is the finite non-empty subset monad, F+.

Example 5. Probabilistic Nondeterminism The countable Lawvere theory
LPf

for finite probabilistic nondeterminism is that freely generated by [0, 1]-
many binary operations +p : 2 −→ 1, for p ∈ [0, 1], subject to the equations for
associativity, commutativity and idempotence given in [16]. The induced monad
on Set is the distributions with finite support monad, Df .

There is also a countable Lawvere theory LPω
for countable probabilistic

nondeterminism. This is the theory of superconvex spaces [32]; it has operations∑
p of countably infinite arity, indexed by sequences p ∈ [0, 1]ω whose sum is 1,

and subject to the two elegant equations:

1.
∑

n≥0 δm
n xn = xm

2.
∑

n≥0 pn

∑
m≥0 qnmxm =

∑
m≥0(

∑
n≥0 pnqnm)xm

using an evident notation, and where δm
n is the Kronecker delta function. The

induced monad on Set is the distributions with countable support monad, Dω.
Superconvex spaces have, admittedly, a rather profligate collection of op-

erations. However one can economise: they can all be defined in terms of one
such operation, for example that where pn = 2−(n+1); it seems not to be known
whether there is an elegant equational axiomatisation in terms of this operation
alone: an elegant non-equational axiomatisation has been given in [10]. There is
an evident variation of convex spaces which uses instead finite sequences of reals
in [0, 1], subject to the analogous axioms; this yields an alternative and elegant
presentation of the theory for finite probabilistic nondeterminism.

Of course Set is not the category of primary interest in denotational seman-
tics. One is more interested in ω-Cpo, and variants, in order to model recursion.
As we now outline, the relationship between countable Lawvere theories and
monads with countable rank generalises without fuss to one between count-
able enriched Lawvere theories and strong monads with countable rank on such
categories. We enrich with respect to a category V that is locally countably
presentable as a cartesian closed category: ω-Cpo is one such. It is worth ob-
serving that the category of directed complete partial orders (dcpos), a standard
alternative to ω-Cpo in the literature, is not locally presentable.

The least obvious point to note when enriching Lawvere theories is that
the notion of countable product of a single generator does not generalise most
naturally to a notion of countable product but rather to a notion of countable
cotensor [26]. The notion of cotensor is the most natural enrichment of the
notion of a power-object. Given an object x of a category C and given a set A,
the A-fold power xA satisfies the defining condition that there is a bijection of
sets:

C(y, xA) ∼= C(y, x)A

natural in y. Enriching this, given an object x of a V-category C and given an
object a of V, the cotensor xa satisfies the defining condition that there is an
isomorphism in V :

C(y, xa) ∼= C(y, x)a

V-natural in y. When C = V, xa is the exponential. We say that the cotensor
xa is countable if a is countably presentable. When V is Set, the countably
presentable objects are exactly the countable sets. These objects are harder to
characterise in the case of ω-Cpo, but it can be shown that they include all the
ω-continuous ω-cpos.

These cotensors are used to enable enriched Lawvere theories to have as
arities objects of V other than discrete ones, meaning those of the form X. As an
example, taking V to be Poset, this allows us not only to consider objects such
as x2 (= x2 = x× x) in a locally ordered category, but also to consider objects
such as x≤, where ≤ is Sierpinski space, the two-point partial order ⊥ ≤ >. This
possibility allows us, in describing Poset-theories, to incorporate inequations.
For, suppose one wishes to say that f ≤ g for two morphisms f, g :x → y; this
is accomplished by introducing a third morphism h : x → y≤ and asserting the

equations f = y⊥oh and g = y>oh, where ⊥ and > are the two evident maps
from 1 to ≤.

There is an evident dual notion of tensor a ⊗ x generalising the notion of
copower. It satisfies the defining condition that there is an isomorphism in V :

C(a⊗ x, y) ∼= C(x, y)a

V-natural in y; this will prove useful below. When V = Set, A⊗ x is the A-fold
copower of x, i.e., A× x. When C = V, a⊗ x is the product of a and x.

If C is a locally countably presentable as a V-category [27] (e.g., when C = V)
then it has both tensors and cotensors, the V-functor a⊗− has countable rank,
since it is a colimit, and so does (−)a if a is countably presentable.

We can now proceed to the definition of countable Lawvere V-theories. Define
Vℵ1 to be a skeleton of the full sub-V-category of V determined by the countably
presentable objects of V. It is equivalent to the free V-category with countable
tensors on 1 [26,49], so as before we assume a choice of this structure.

Definition 3. A countable Lawvere V-theory is a small V-category L with count-
able cotensors together with a strict countable-cotensor preserving identity-on-
objects V-functor I :V op

ℵ1
−→ L. A map of countable Lawvere V-theories from L

to L′ is a strict countable-cotensor preserving V-functor from L to L′ that com-
mutes with I and I ′. A model of L in a V-category C with countable cotensors
is a countable-cotensor preserving V-functor M :L −→ C.

Routinely generalising the unenriched case, for any countable Lawvere V-
theory L and any V-category with countable cotensors C, we have a V-category
of models of L in C, Mod(L,C); the homobjects are given by homobjects of
all V-natural transformations [26], and the V-naturality condition implies they
respect countable cotensors. There is a canonical forgetful V-functor UL from
Mod(L,C) to C. If it has a left V-adjoint FL, this forgetful V-functor exhibits
Mod(L,C) as coherently equivalent to the V-category TL-Alg for the V-monad
TL = ULFL thereby induced by L on C. If C is locally countably presentable as
a V-category, then: the required left V-adjoint FL exists; UL, and so also TL, have
countable rank; and Mod(L,C) is locally countably presentable as a V-category.

For a converse in the case that C = V, given a V-monad T with countable
rank on V, the V-category Kl(T)opℵ1

determined by restricting Kl(T) to the objects
of Vℵ1 is a countable Lawvere V-theory LT , and the V-functor from T -Alg to
Mod(LT ,Set) induced by the restriction is an equivalence of V-categories.

To give a V-enriched V-monad is equivalent to giving a strong monad on
V [31]. So, in order to make the comparison with Moggi’s definition a little more
direct, we express the main abstract result of [49] in terms of strong monads.

Theorem 2. If V is locally countably presentable as a cartesian closed category,
the constructions of TL from L and of LT from T induce an equivalence of
categories between the category of countable Lawvere V-theories on V and the
category of strong monads on V with countable rank. Moreover, the comparison
V-functor exhibits an equivalence between the V-categories Mod(L, V) and TL-
Alg.

A common and important way to generate countable Lawvere V-theories is
by taking the free countable Lawvere V-theory on an unenriched countable Law-
vere theory. Given an unenriched countable Lawvere theory L, the free countable
Lawvere V-theory on L is generated by the operations and equations of L. Note
that it will typically have more objects as there may be countably presentable
objects other than the discrete ones; these additional objects may, in turn, gen-
erate additional maps.

Write LV for the free V-theory on L. Then the category Mod(L, V) is isomor-
phic to the underlying ordinary category of the V-category Mod(LV , V). And
the ordinary monad T0 generated by the forgetful functor from Mod(L, V) to
V is the underlying ordinary monad of the V-monad generated by the forgetful
V-functor from Mod(LV , V) to V .

So the passage from L to LV is simple, and we typically overload notation
a little by dropping the subscript on LV , thus using the notation L for both an
ordinary Lawvere theory and the free V-theory on it. It can additionally happen,
as in the case V = ω-Cpo, that a functor has at most one enrichment to a V-
functor, making V-enrichment a property rather than extra structure. In that
case one can also gloss over the difference between the enriched and the ordinary
monads.

Before passing to examples with V = ω-Cpo we first present some remarks
on initial and free objects and monads in an enriched context. Given any V-
endofunctor Σ on a V-category C, let (µy.Σy, αΣ) denote the initial Σ-algebra
if it exists. If C has V-cotensors, the initial Σ-algebra is the same as the initial
algebra of Σ0, the underlying ordinary functor of Σ, with one existing if and
only if the other does; more generally, the underlying category Σ-alg0 of the
V-category Σ-alg is isomorphic to Σ0-alg and the forgetful V-functor from Σ-alg
to C has a left V-adjoint if and only if the forgetful functor from Σ0-alg to C0 has
an ordinary left adjoint, and these adjoints necessarily agree with each other.

Next, if C has binary sums, the free Σ-algebra on an object x can be given in
terms of initial algebras as (µy. (Σy+x), α(Σ−+x)), with one existing if and only
the other does. These free algebras exist if, for example, C is locally countably
presentable as a V-category, e.g., when C = V and Σ has countable rank.

If the forgetful functor from Σ-alg to C has a left V-adjoint, we say that the
resulting V-monad is the free V-monad on Σ and write it as Σ∗. If Σ∗ exists,
then its underlying monad is the free monad on Σ0, and the V-category Σ∗-Alg
for Σ∗ qua V-monad is isomorphic to the V-category Σ-alg for Σ.

We see from the above that when C has binary sums, Σ∗ is µy. (Σy + −)
with one existing if and only if the other does. We also then see that the monad
Σ∗ exists when C is locally countably presentable as a V-category, e.g., when
C = V and Σ has countable rank.

We conclude this section by looking at some computationally relevant exam-
ples of enriched theories in the case V = ω-Cpo. The first example of a countable
Lawvere ω-Cpo-theory does not arise freely from an unenriched countable Law-
vere theory.

Example 6. Nontermination The countable Lawvere ω-Cpo-theory LΩ for
nontermination is the theory freely generated by a nullary operation Ω :0 −→ 1
subject to the condition that there is an inequality:

1 > 0
@
@
@
id

≥
@
@
@R ∨

Ω

1

where the unlabelled map is the unique map determined because 0 is the initial
object of Vℵ1 and therefore the terminal object of V op

ℵ1
. The models of LΩ in

ω-Cpo are the ω-cpos with a least element. The corresponding strong monad
TΩ is the lifting construction (−)⊥ which adds a new least element. It is worth
noting that there is at most one morphism from LΩ to any other countable
ω-Cpo-theory L; this reflects the fact that a least element is unique, if it exists.

Adding a nontermination effect allows us to model recursion in the con-
text of ω-Cpo; if we then also want to model other effects we have to combine
them with nontermination: simply adapting to ω-Cpo by switching to Lω-Cpo
from L does not suffice. (See [44] for sufficient conditions for the use of ω-Cpo-
enriched categories and monads to model a call-by-value language with effects
and recursion.) We will therefore study the combination of our example effects
with nontermination. This is accomplished by combining the relevant Lω-Cpo
with LΩ , either by sum or by tensor, but one must be careful in the case of
probabilistic nondeterminism: see the discussion below.

There is, perhaps, something rather ad hoc about the present treatment of
recursion: one simply plucks ω-Cpo ‘out of the air’ and then adds a nontermi-
nation effect. One wonders if recursion itself can in some sense be thought of as
an effect; if not, a more satisfactory treatment of the combination of effects with
recursion could perhaps be obtained in the context of axiomatic or synthetic
domain theory [12].

We now look again at the examples considered above in the case of Set. For
exceptions, interactive I/O and side-effects this is matter of generalising from
countable sets to countably presented ω-cpos.

Example 7. Absolutely Free Theories Consider the free countable Lawvere
ω-Cpo-theory L on operations opλ :Iλ → Oλ for λ ∈ Λ where the Iλ and the Oλ

are countably presentable ω-cpos. The signature functor Σ :ω-Cpo → ω-Cpo is
defined similarly to before, by:

Σ(Q) =
∑
λ∈Λ

Oλ ×QIλ

where we mean the usual products and powers in ω-Cpo. The monad induced
by L is again Σ∗, the free ω-Cpo-monad on Σ; it can be given explicitly, again

similarly to before, by:

T (P) = µQ. (
∑
λ∈Λ

Oλ ×QIλ + P)

As before too, all this generalises to a locally countably presentable ω-Cpo-
category C, where Σ and T have the same form as above, but replacing products
and powers by tensors and cotensors, and where T is now the monad on C
induced by L. The exceptions and interactive I/O signature functors, ΣE and
ΣI/O, and monads, TE and TI/O, are again special cases.

Example 8. Side-Effects We can generalise the set V of values, but not the
finite set L of locations, to be any countably presentable ω-cpo. Then we take
the countable Lawvere ω-Cpo-theory LS to be freely given by the diagrams
in [47], but allowing this more general kind of state. Further generalising the
result given there, we obtain that, if C is any ω-Cpo-category with tensors and
cotensors of countably presentable ω-cpos, then the ω-Cpo-monad induced on
C by LS is (S ⊗−)S .

In the cases where the countably presentable ω-cpos are discrete, the Lawvere
ω-Cpo-theories are the free countable Lawvere ω-Cpo-theories on the corre-
sponding countable Lawvere theories.

Example 9. Nondeterminism The countable Lawvere ω-Cpo-theory LN for
binary nondeterminism is again that of a semilattice, and so it is the ω-Cpo-
theory freely generated by the corresponding countable Lawvere theory. The
induced strong monad TN is the (convex) powerdomain monad [42,18], taking
that on ω-Cpo to be synonymous with the free ω-Cpo-semilattice monad.

There are two more powerdomains: the upper or Smyth one and the lower
or Hoare one. As essentially mentioned in [18] these can also be described by
ω-Cpo-theories. The upper one is given by adding the inequation:

x ∨ y ≤ y

and the lower one by the opposite inequation:

x ∨ y ≥ y

One can give explicit descriptions of these powerdomains, if necessary making
further restrictions on the class of partial orders under consideration; see [15] for
a recent treatment in the context of the category of dcpos.

Example 10. Probabilistic Nondeterminism A computationally natural pre-
sentation of a countable Lawvere ω-Cpo-theory for probabilistic nondetermin-
ism combined with nontermination [16,22,24,47] can be obtained by taking the
axioms for LPf

and LΩ together with an infinitary axiom relating the least ele-
ment with probabilistic choice. This axiom says that any element x is equal to
the limit of the increasing sequence:

Ω, x +1/2 Ω, x +1/2 (x +1/2 Ω), . . .

It can be stated within the framework of Lawvere ω-Cpo-theories by making
use of the countably presentable ω-cpo:

0 ≤ 1 ≤ . . . ≤ n ≤ . . . ≤ ω

which can be thought of as the ‘standard ω-chain.’
This interaction between probabilistic choice and nontermination is unpleas-

ant. Fortunately, however, there is a natural and elegant alternative presentation
of the theory, consisting of the axioms of LPω together with that of LΩ . There is
then no need for any additional axiom on the interaction of probabilistic choice
and nontermination.

We should comment that the standard theory of probabilistic powerdomains
was not developed in the category of ω-cpos, but rather in that of dcpos. The
initial definition was in terms of valuations and was shown to be equivalent to an
algebraic one on the subclass of the continuous dcpos. Given that background,
it seems reasonable to transplant the algebraic treatment of probabilistic non-
determinism to ω-Cpo to the present context.

Finally we remark that although our examples mainly concern Set and
ω-Cpo, everything can be done more generally. For everything other than par-
tiality one can replace Set by any category V that is locally countably pre-
sentable as a cartesian closed category, interpreting the theories of the various
effects in our examples as countable Lawvere V-theories. To include partiality
and to have the least upper bounds needed for recursion one can take V to be
locally countably presentable as a cartesian closed ω-Cpo-category [27].

3 The sum of effects

Our leading examples of the sum of effects are given by the combination of
exceptions with all the other computational effects we consider: side-effects, in-
teractive I/O and nondeterminism, and by the combination of interactive I/O
with all other effects we consider except for side-effects. A succession of results
support the construction of the sum of theories.

Theorem 3. The category of countable Lawvere theories is cocomplete.

This may be proved using the equivalence between countable Lawvere theories
and monads on Set of countable rank, together with the analysis of [28]. The
construction of the sum is complicated, especially when attempted in terms of
monads: a general construction involves a transfinite induction, with inductive
steps being given by a complicated coequaliser [25]. But all our examples of
Lawvere theories are given freely on equational theories. And in those terms, the
sum is easy to describe: one takes the operation symbols of both equational the-
ories, renamed, if necessary, to avoid confusion, and takes the axioms of both.
The complication arises in passing from the induced equational theory to the
Lawvere theory freely generated by it, as, in doing so, one may apply the opera-
tions of one theory to the operations of the other, hence the generally transfinite
induction.

Even in terms of equational theories, care is required. For instance, given
Lawvere theories L and L′, there are always maps of Lawvere theories given by
coprojections L −→ L + L′ and L′ −→ L + L′. But these coprojection functors
need not be faithful. For instance, L might be the trivially collapsing theory,
i.e., its equations may force L to be equivalent to 1. In that case, L + L′ is also
equivalent to 1, so the coprojection from L′ is trivial.

From Theorem 3 we know the sum exists, and, when starting with equational
theories, we know how to describe it. But for the purposes of calculation, it is
still convenient to have a more explicit construction of the sum qua monad. And,
under a condition that includes the examples of exceptions and interactive I/O,
we can provide that. The key point is that, in both of these cases, the monads
are generated by operations subject to no equations. So they may be described
as the free monads on endofunctors Σ with countable rank, namely the signature
functors ΣE and ΣI/O. We will give characterisations of the sum of a general
monad and a free one. It turns out that we can work much more generally than
on Set. For simplicity of exposition, we shall start with a category C and assert
conditions on it as convenient.

It is worth remarking that using these ideas one already has an explicit
characterisation of sum in the case where both monads are free. It is straight-
forward to show, e.g., by considering the categories of algebras, that the sum
of Σ1

∗ and Σ2
∗ is (Σ1 + Σ2)∗, where we now mean the pointwise sum of func-

tors; this is subject to the proviso that C has binary sums and that (Σ1 + Σ2)∗

exists, which it does when C is locally countably presentable and the Σi have
countable rank. As an example, the sum of the exceptions and I/O monads is
µY. (E + Y I + O × Y +−).

We now turn to our more general case, the explicit characterisation of the
sum of a monad and a free monad. Given an endofunctor H : C → C and a
monad T : C → C, a distributive law of H over T is a natural transformation
λ :HT → TH subject to commutativity of the evident two diagrams expressing
coherence of λ with respect to the monad structure of T ; this is a slight variation
on the usual notion of a distributive law of a monad over a monad as in [5].

Proposition 1. For any endofunctor Σ and monad (T, µ, η) over a category C,
the natural transformation:

λ =
ΣTT

Σµ
> ΣT

ηΣT
> TΣT

is a distributive law of ΣT over T .

Corollary 1. The monad T lifts to a monad T ′ on ΣT -alg given by:

T ′((x, α)) = (Tx,ΣTTx
λx−→ TΣTx

Tα−→ Tx)

We denote by (Σ +T)-Alg the category for which an object consists of an object
x of C together with two structures on it: a T -structure β :Tx → x, for T as a
monad, and a Σ-structure γ :Σx → x, for Σ as a functor, and with maps being
those maps in C that preserve the two structures. The reason for this notation

is that (Σ + T)-Alg is the category of algebras for the monad Σ∗ + T if that
sum exists. There is a canonical functor \ : T ′-Alg −→ (Σ + T)-Alg that sends
((x, α :ΣTx → x), β :Tx → x) to (x, α ·Σηx :Σx → x, β :Tx → x).

Lemma 1. The functor \ :T ′-Alg −→ (Σ + T)-Alg is an isomorphism of cate-
gories.

Proof. The inverse of \ sends the object (x, β :Tx → x, γ :Σx → x) to the object
((x, γ ·Σβ :ΣTx → x), β). Funtoriality and the proof that this is an inverse are
mundane.

Theorem 4. Given an endofunctor Σ : C −→ C and a monad T : C −→ C, if
the free monads Σ∗ and (ΣT)∗ exist then the sum of monads Σ∗ + T exists in
the category of monads over C and is given by a canonical monad structure on
the composite T (ΣT)∗.

Proof. If (ΣT)∗ exists, the category ΣT -alg for the endofunctor ΣT is isomor-
phic to the category (ΣT)∗-Alg for (ΣT)∗ qua monad. So T ′ is a lifting of T to
the category of algebras for the monad (ΣT)∗. So we have a distributive law of
(ΣT)∗ over T , yielding a monad structure on T (ΣT)∗, with T (ΣT)∗-Alg isomor-
phic to T ′-Alg [5]. If Σ∗ also exists, (Σ + T)-Alg is, by construction, isomorphic
to (Σ∗ + T)-Alg, yielding the result.

Note that this result is general and does not refer to local countable presentabil-
ity. However if C is locally countably presentable and both Σ and T have count-
able rank then T (ΣT)∗ has countable rank and so it is also the sum in the
category of monads over C of countable rank.

We remark that one can work much more generally still: the characterisation
of the sum in Theorem 4 can be made within an arbitrary 2-category with a few
limits. In that sense, Theorem 4 is inherently a category-theoretic result, not
relying on any substantial fact about Cat. The proof at the 2-categorical level
is a straightforward application of Street’s formal theory of monads [56].

In [9], Cenciarelli and Moggi introduce a generalised resumptions monad
transformer, sending T to µz.T (Σz+x). Their resumptions monad is the special
case where Σ is the identity. This amounts to adding the theory Ld of a unary
operator d : 1 → 1 with no equations to LT ; one can think of the operation d
as ‘suspending’ or ‘delaying’ computation. It is straightforward to show, using
Proposition 5.3 of [55], that µz.T (Σz + x) exists if and only if (ΣT)∗x does,
and that T (ΣT)∗x and µz.T (Σz + x) are then isomorphic. So our T (ΣT)∗

is simply another form of the generalised resumptions monad transformer; the
point here, as elsewhere, is that we have derived it as part of a general theory of
combinations of monads. We can summarise this discussion with the following
corollary of Theorem 4:

Corollary 2. Given an endofunctor Σ :C −→ C and a monad T :C −→ C, if
Σ∗ and µz.T (Σz+x) exist, then the sum of monads Σ∗+T exists in the category
of monads on C and is given by a canonical monad structure on µz.T (Σz +−).

In giving this result, we have used a distributive law of ΣT over T . But if we
restrict our attention to a monad T and a free monad on an endofunctor Σ where,
for definiteness, T and Σ have countable rank on a locally countably presentable
category, we can provide a more direct proof of this result, not referring to
a distributive law. The category of monads with countable rank on a locally
countably presentable category C is monadic over the category of endofunctors
with countable rank on C (see [28]). The construction µz.T (Σz + x) extends to
an endofunctor on the category of monads with rank that lifts an endofunctor on
the category of endofunctors with rank. That fact, together with a Bekič-style
result and use of Beck’s monadicity theorem [5], yields a direct proof that the
construction µz.T (Σz + x) agrees with Σ∗ + T .

Theorem 4 yields a characterisation of the monads generated by the sum of
the exceptions Lawvere theory with any other Lawvere theory, and also by the
sum of the interactive I/O Lawvere theory with any other Lawvere theory. In
the case of exceptions, one can give a simpler proof, essentially by observing that
the endofunctor is the constant at E and by routinely using that fact to simplify
the above argument. In direct terms, the argument is as follows:

Corollary 3. Given a category C with binary sums, an object E of C, and a
monad T on C, the sum of the monads (−+E) and T exists and is given by the
monad T (−+ E).

Proof. (Direct proof) The category T (−+E)-Alg is isomorphic to T ′-Alg, where
T ′ is the monad on (− + E)-Alg determined by lifting T , using the canonical
distributive law of −+ E over T . By direct calculation, the latter category is in
turn isomorphic to ((−+E)+T)-Alg: a T ′-algebra consists of an object x together
with a morphism E → x and a T -structure on x, that is, a ((−+E)+T)-algebra.

This result explains how the exceptions monad transformer, sending a monad
TL to the composite TL(− + E), arises: one takes the disjoint union of the two
sets of operations and retains the equations for TL. And this explanation brings
with it the theory of coproducts, such as their associativity and commutativity,
and their interaction with other operations.

For interactive I/O, the above argument seems as simple as is likely to be
found. It duly induces an interactive I/O monad transformer that sends a monad
T on a locally countably presentable category C to the monad T + TI/O given
as T (µy. ((Ty)I +(O×Ty)+−)); the other form of this monad discussed above
is µz.T (zI + (O × z) +−).

While we have shown that there is a canonical monad structure on T (ΣT)∗,
we have not given it explicitly. However explicit formulae can be extracted from
the proof, and we now give them. First we need some notation. Suppose we are
given an endofunctor F :C −→ C, and that the forgetful functor from F -alg to C
has a left adjoint, so that the free monad F ∗ on F exists. Then we write ηF for the
unit of the adjunction, αF x for the free algebra map, αF x :FF ∗x → F ∗x, and,
for any F -algebra a = (y, β) and f :x → y, we write IF,x,a(f) : (F ∗x, αF x) → a
for the unique morphism of F -algebras such that f = IF,x,a(f)oηF x. Sometimes,

as here, it is convenient to use applicative rather than subscript notation with
natural transformations.

Proceeding to the calculation, it will be convenient to write H for ΣT . The
unit is:

I
ηH

> H∗ ηH∗

> TH∗

where η is the unit of T . For the multiplication, we first give the distributive
law:

λ∗ :H∗T → TH∗

whose existence is shown in the proof of Theorem 4. It is:

λ∗x = IH,Tx,a(f)

where f = T (ηHx), a = (TH∗, β) and β :H(TH∗)x → TH∗x is the composition:

H(TH∗)x
λH∗x

> THH∗x
T (αHx)

> TH∗x

where µ is the multiplication of T . With this, the multiplication of TH∗ is:

TH∗TH∗ Tλ∗H∗
> TTH∗H∗ µµH

> TH∗

where µH is the multiplication of H∗. The extension of a morphism x → TH∗y
along the unit of TH∗ can, as usual, be defined from the monad structure. It
can also be defined more directly via an intermediate morphism H∗x → TH∗y
defined much like λ∗ was, using the properties of the free H-algebra on x.

To complete our analysis of the sum of Lawvere theories, we give a closedness
result. At present, we do not have a substantial relevant application of this result,
but it does bear comparison with a result in [20] that has proved to be of some
value, so we mention it:

Definition 4. Given a countable Lawvere theory L and a category C with count-
able products, denote by Mod∗(L,C) the identity-on-objects/fully faithful factori-
sation of the forgetful functor UL :Mod(L,C) −→ C.

So the objects of Mod∗(L,C) are the models of L in C and the maps are just
maps in C. We have the following theorem:

Theorem 5. There is a coherent natural equivalence between Mod∗(L + L′, C)
and Mod∗(L,Mod∗(L′, C)).

A simple proof follows directly from the fact that a (T + T ′)-algebra consists of
a set x together with both a T -structure and a T ′-structure on it.

The formal work in this section enriches without fuss. In particular, the sum
is again the correct operation in the enriched setting. And our notation, calcula-
tions and formulae lift routinely. The only point that does not enrich routinely
is the informal discussion about equational theories: as best we know, there
is currently no enriched notion of equational theory corresponding to enriched
Lawvere theories. However, that part of the above discussion could be phrased

in terms of sketches, for which an enriched account does exist or at least can
readily be gleaned from the literature [30].

Spelling out the situation, we have, first, that it is straightforward to calculate
sums of free V-monads. They are given by the formula:

Σ∗
1 + Σ∗

2 = (Σ1 + Σ2)∗

Next, we have the following series of results:

Theorem 6. The category of countable Lawvere V-theories is cocomplete.

Theorem 7. Given a V-endofunctor Σ :C −→ C and a V-monad T :C −→ C,
if the free V-monads Σ∗ and (ΣT)∗ exist then the sum of V-monads Σ∗ + T
exists in the category of V-monads over C and is given by a canonical V-monad
structure on the composite T (ΣT)∗.

The above explicit calculation of the canonical monad structure applies verba-
tim to the enriched situation, using the usual conventions of enriched category
theory [26].

Corollary 4. Given a V-endofunctor Σ :C −→ C and a V-monad T :C −→ C,
if Σ∗ and µz.T (Σz +−) exist, then the sum of V-monads Σ∗ + T exists in the
category of V-monads on C and is given by a canonical V-monad structure on
µz.T (Σz +−).

Corollary 5. Given a V-category C with binary sums, an object E of C, and a
V-monad T on C, the sum of the V-monads (−+ E) and T exists and is given
by the V-monad T (−+ E).

We now specialise to the case where C = V = ω-Cpo. There are no interactions
between nontermination and raising an exception, or inputting or outputting a
value, so they can all be combined by sum. All these possibilities, and more, are
covered by the general form of absolutely free ω-Cpo-theories discussed above.
So with:

Σ(Q) =
∑
λ∈Λ

Oλ ×QIλ

Theorem 7 tells us that the sum of Σ∗ and TΩ can be given in the form:

(µQ.
∑
λ∈Λ

Oλ ×QIλ

⊥ +−)⊥

and Corollary 4 tells us that it can alternatively be given in the form:

µQ. (
∑
λ∈Λ

Oλ ×QIλ +−)⊥

So, for example, the combination of all three of exceptions, interactive I/O and
nontermination can be written as (µQ.E+QI

⊥+(O×Q⊥)+−)⊥ or, alternatively,
as µQ. (E + QI + (O ×Q) +−)⊥.

4 The commutative combination of effects

In this section, we consider the tensor product L ⊗ L′ of countable Lawvere
theories L and L′ [13,54]. We move immediately to the central definition of the
section, for base category Set.

The category ℵ1 not only has countable coproducts, but also has finite prod-
ucts, which we denote by a × a′. The object a × a′ may also be seen as the
coproduct of a copies of a′, so, given an arbitrary map f ′ :a′ −→ b′ in a count-
able Lawvere theory, it is immediately clear what we mean by the morphism
a× f ′ :a× a′ −→ a× b′. We define f × a′ by conjugation, and, in the following,
we suppress the canonical isomorphisms.

Definition 5. Given countable Lawvere theories L and L′, the countable Law-
vere theory L ⊗ L′, called the tensor product of L and L′, is defined by the
universal property of having maps of countable Lawvere theories from L and L′

to L ⊗ L′, with commutativity of all operations of L with respect to all oper-
ations of L′, i.e., given f : a −→ b in L and f ′ : a′ −→ b′ in L′, we demand
commutativity of the diagram:

a× a′
a× f ′

> a× b′

f × a′

∨ ∨

f × b′

b× a′

b× f ′
> b× b′

The tensor product always exists because it is defined by operations and equa-
tions, or equivalently by a sketch [5,6]. Its existence also follows by appeal to
Appendix A. In terms of equational theories, the tensor product is also easy
to describe: one takes the operation symbols and equations of each of the two
theories, again renaming the operation symbols if necessary to avoid confusion,
and adds equations expressing that each operation of one theory commutes with
each operation of the other. For example if f is a binary operation symbol of
one theory and g is a ternary one of the other, one adds the equation:

f(g(x11, x12, x13), g(x21, x22, x23)) = g(f(x11, x21), f(x12, x22), f(x13, x23))

The equational form of the commutative combination can be useful as a basis
for the calculation of specific examples.

As usual, we first develop the abstract theory in the unenriched case follow-
ing [13,54], giving the enriched version afterwards.

Proposition 2. There is a canonical extension of the tensor product ⊗ to a
symmetric monoidal structure on the category of countable Lawvere theories.

A proof for this proposition is elementary. The unit for the tensor product is
the initial Lawvere theory, i.e, the theory generated by no operations and no

equations. This is the initial object of the category of Lawvere theories, so is
also the unit for the sum. It induces the identity monad.

The result gives some indication of the definiteness of the tensor product, but
not much: there are typically many symmetric monoidal structures on categories,
such as finite product or finite coproduct, and usually many others satisfying no
particular universal property. But what is much less common, and is central to
the proof of our main theorem about the combination of side-effects with other
effects, and indeed is central to the understanding of what commutativity means,
is a characterisation of L⊗ L′ in terms of the categories of models of L and L′.
Relevant, delicate 2-categorical analysis supporting this is in Appendix A; here,
we simply state the characterisation in its own terms, the result following from
Theorem 16.

Theorem 8. For any category C with countable products, there is a coherent
equivalence of categories between Mod(L⊗ L′, C) and Mod(L,Mod(L′, C)).

The analysis of this section extends readily to the enriched setting. The V-
category Vℵ1 not only has countable tensors but also has finite products, just as
the ordinary category ℵ1 not only has countable coproducts but also has finite
products. Our analysis of a×f ′ in the unenriched setting extends routinely to the
enriched setting, except here, of course, we must express the analysis in terms of
the object L(a′, b′) of V rather than in terms of an arrow f ′ :a′ −→ b′. The key
fact is that the cotensor (ax)y is canonically isomorphic to the cotensors a(x×y)

and (ay)x. Consistently with this, we must express the commutativity condition
of the theorem in terms of homobjects of V rather than in terms of arrows like
f ′.
Definition 6. Given countable Lawvere V-theories L and L′, the countable Law-
vere V-theory L⊗L′, which we call the tensor product of L and L′, is defined by
the universal property of having maps of countable Lawvere V-theories from L
and L′ to L⊗L′, subject, suppressing canonical isomorphisms, to commutativity
of:

L(a, b)× L′(a′, b′) > L(a× b′, b× b′)× L′(a× a′, a× b′)

∨ ∨

comp

L(a× a′, b× a′)× L′(b× a′, b× b′)
comp

> L(a× a′, b× b′)

Once again, the tensor product exists because it is determined by the free theory
on an enriched sketch [30]. But it may equally, indeed more elegantly, be proved
to exist by appeal to an enriched version of Appendix A, from which the following
result also follows:

Theorem 9. The construction L ⊗ L′ is symmetric monoidal on the category
of countable Lawvere V-theories. Further, for any V-category C with countable
cotensors, there is a coherent equivalence of V-categories between Mod(L⊗L′, C)
and Mod(L,Mod(L′, C)).

5 Calculating the tensor product, in particular of
side-effects with other effects

Here, we calculate certain tensor products in more detail, particularly that for
side-effects with other computational effects. Our central result shows that, un-
der appropriate hypotheses, our theory of the tensor product of computational
effects agrees with Moggi’s definition of the side-effects monad transformer. It is
as follows:

Theorem 10. Let LS be the countable Lawvere theory for side-effects, let L
be any countable Lawvere theory, and let C be a locally countably presentable
category. Then the induced V-monad TLS⊗L on C is isomorphic to TL(S⊗−)S.

Proof. By Theorem 9, the category Mod(LS ⊗ L,C) is coherently equivalent to
to the category Mod(LS ,Mod(L,C)). Since C is locally countably presentable,
there is an adjunction FL a UL :Mod(L,C) → C with TL = ULFL, and, further,
the category Mod(L,C) is complete and cocomplete, and so has countable prod-
ucts and coproducts. Therefore, by [47], the monad induced by LS on Mod(L,C)
is (S ×−)S .

Right adjoints preserve products and left adjoints preserve coproducts. So
TLS⊗L, which is the monad given by the composite forgetful functor from the
category Mod(LS ,Mod(L, C)) to C, must be given by:

TLS⊗L = UL(S × FL−)S ∼= (ULFL(S ×−))S ∼= TL(S ×−)S

as required.

We do not require rank, in particular countability, for the result. We could
define a notion of theory that does not involve a rank, retain a correspondence
with strong monads, and make the commutative combination of the theorem,
but the general theory becomes more complicated because, as remarked in the
introduction, tensor products of such theories seem not always to exist.

Corollary 6. The side-effects theory for S = V L is the L-fold tensor product
of the side-effects theory for S = V (i.e., the case where L = 1).

Proof. By the theorem, the tensor product of two side-effects theories, one for
S and the other for S′, is the side-effects theory for S × S′. Now use induction
and the finiteness of L.

Explicit formulae follow for the monad structure of TL(S × −)S . Let η and
µ be the unit and multiplication of TL. Then the unit of TL(S × −)S at x is
Curry(η(S×x)), where Curry is the transpose function, and the monad multipli-
cation at x is:

TL(S × (TL(S × x)S))S
TL(evalσ)S

> (TLTL(S × x))S
µS

S×x
> TL(S × x)S

where eval is the evaluation function, and σ is the symmetry of product.

The theorem generalises readily to the enriched setting. Generalising Exam-
ple 8 from ω-Cpo-enrichment to V-enrichment, we allow the ω-cpo of values to
be instead any countably presentable object of V, but again retain the finite set
of locations. The countable Lawvere V-theory LS is again freely given by the
diagrams in [47], but allowing the more general kind of state. And, once more
generalising [47], we obtain that, if C is any V-category with tensors and coten-
sors of countably presentable objects, then the V-monad induced on C by LS is
(S ⊗−)S .

Theorem 11. Let LS be the countable Lawvere V-theory for side-effects, let L be
any countable Lawvere V-theory, and let C be locally countably presentable as a
V-category. Then the induced V-monad TLS⊗L on C is isomorphic to TL(S⊗−)S.

Proof. The proof agrees verbatim with that of Theorem 10, subject to systematic
reference to enrichment.

The analogous formulae for the monad structure hold in the enriched case; note
too that the explicit description of the V-monad for the tensor agrees with that
in the unenriched case.

As an immediate application of the theorem, we see that the ω-Cpo-monad
induced by the commutative combination of the ω-Cpo-theories for side-effects
and nontermination is ((S⊗−)⊥)S . The conditions for the tensor product amount
here to saying that the operations for state commute with Ω, that is, they are
strict. For example, we have the equation:

update〈l,v〉(Ω) = Ω

which reflects the computational idea that we do not wish to distinguish between
nontermination and an updating operation immediately followed by nontermi-
nation. This contrasts with, for example, the combination of interactive I/O and
nontermination where one does not wish to impose strictness.

By analysis of the structure of our argument for the commutative combina-
tion of side-effects with other effects, we can generalise a little. It follows from
Theorem 9 that, if C is locally countably as a V-category, then the V-category
Mod(L′ ⊗L,C) is coherently equivalent to the V-category Mod(L′,Mod(L,C)).
And we know that the V-monad TL′⊗L is given by the left adjoint to the for-
getful V-functor from Mod(L′ ⊗L, C) to C. But Mod(L,C) is locally countably
presentable as a V-category since C is. So the forgetful V-functor:

UL′ :Mod(L′,Mod(L,C)) −→ Mod(L,C)

has a left V-adjoint FL′ . Combining these observations, it follows that TL′⊗L

is given by the composite ULTL′FL, where TL′ = UL′FL′ is the V-monad on
Mod(L,C) induced by L′. The proof of our characterisation of the commutative
combination of side-effects with other effects simply amounted to describing
TL′ , then using the preservation properties of left and right adjoints in order to
calculate the V-monad ULTL′FL.

Using this technique, we now analyse the combination of nondeterminism
and nontermination. Here V = ω-Cpo, L′ = LN and L = LΩ .

Proposition 3. 1. The unit map ηTN
is strict at ω-cpos with a least element.

2. The monad TN cuts down to a functor on Mod(LΩ , ω-Cpo), taken as the
category of ω-cpos with a least element and strict ω-continuous maps.

Proof. 1. For the first claim, let P be an ω-cpo with a least element. We know
that for any ω-continuous map f :P → TN (P) there is a unique ω-continuous
homomorphism f :TN (P) → TN (P) that makes the following diagram com-
mute:

P

ηN

∨

@
@
@ f

@
@
@R

TN (P)
f

> TN (P)

(we are omitting object subscripts on unit maps for the sake of notational
clarity). Moreover, this assignment of homomorphisms to continuous func-
tions is itself continuous. Now consider the constant map k : P → TN (P)
sending every element of P to ηN (⊥); one easily sees that k is the constant
map sending every element of TN (P) to ηN (⊥). But then, since ηN is mono-
tonic one has that k ≤ ηN , and so k ≤ ηN = idTN (P), which proves that
ηN (⊥) =⊥, as required.

2. For the second claim, we first let P be an ω-cpo with a least element, to show
that TN (P) is in Mod(LN ,Mod(LΩ , ω-Cpo)). We know from the first part
that TN (P) has a least element; we also have to show that the semilattice
operation ∪ is a morphism in Mod(LΩ , ω-Cpo)) which, since it is certainly
continuous, amounts to showing that ⊥ ∪ ⊥=⊥, which follows from idem-
potence. Next, we have to show that TN preserves morphisms. So let Q be
another ω-cpo with a least element, and consider a strict ω-continuous map
f : P → Q. Then as TN (f) = ηNf and the unit map is strict, so is TN (f),
concluding the proof.

It follows directly from this proposition that TN cuts down to the monad
TC considered more generally above, inheriting its monadic structure from TN .
We therefore calculate that the commutative combination of TN and TΩ is
UΩTCFΩ = TNUΩFΩ = TNTΩ , with the first equality arising from the fact
that TC lifts TN from ω-Cpo to Mod(LΩ , ω-Cpo). It is worth recollecting that
such liftings correspond to distributive laws, here one of TΩ over TN , with the
resulting monad being again TNTΩ .

The case of the combination of nondeterminism and nontermination is odd.
The extra conditions imposed by the tensor product amount to saying that the
two operations commute, i.e., that the following equation holds:

Ω ∨Ω = Ω

However this is an instance of idempotency and so the sum and tensor product
coincide in this case. There is an argument for regarding the combination as a

tensor product since we use the theory of tensors to give an explicit form for the
combination.

The combination of probabilistic nondeterminism and nontermination is en-
tirely analogous to that of nondeterminism and nontermination, provided one
uses the theory of countable probabilistic nondeterminism. So the analogue of
Proposition 3 holds, with the analogous proof, and one can view the combi-
nation as a tensor product of the two theories, with the induced monad being
given by the composition of that for probabilistic nondeterminism with that for
nontermination.

Finally, we should mention here an argument for treating the combination of
nondeterminism and nontermination as a sum rather than a tensor. It is natural
to give the semantics of deadlock as the empty set, as in, e.g., [35,1,2], and so to
consider a variant LZ of LN which is the theory of a commutative semilattice
with a zero. But then one would not consider the tensor product of this with
LΩ as that would identify (the constants for) nontermination and deadlock.
So one must take the combination to be the sum.However one then finds that
the induced monad is not isomorphic to either composition of TΩ and TZ , the
monad on ω-Cpo induced by LZ . This leaves the analogy with LN somewhat
imperfect, and so we choose not to prefer either of the two ways of regarding the
combination of LN and LΩ .

Having considered the combination of exceptions and interactive I/O with
nontermination in Section 3, we have now considered all combinations of the
individual effects under discussion in this paper with nontermination. It is then
interesting to consider combinations of pairs of effects with nontermination, since
that is what we require when combining nontermination effects under the addi-
tional requirement of being able to model recursion.

For exceptions, we can combine the above results on the combination of a sin-
gle effect with nontermination by application of Corollary 5. For example, com-
bining exceptions with side-effects and nontermination, we wish the operations
associated with side-effects and nontermination to commute, but no others. We
therefore want the ω-Cpo-monad induced by the ω-Cpo-theory LE +(LS⊗LΩ),
and that is ((S ⊗ (−+ E))⊥)S .

For side-effects, we can instead combine the above results on the combination
of a single effect with nontermination by application of Theorem 11. For example,
combining side-effects with interactive I/O and nontermination one wants the
ω-Cpo-monad induced by LS⊗ (LI/O +LΩ). We already know that the ω-Cpo-
monad induced by LI/O +LΩ is µR. (RI +(O⊗R)+−)⊥; so the ω-Cpo-monad
we seek is (µR.(RI + (O ⊗R) + (S ×−))⊥)S .

For interactive I/O, we can combine the above results on the combination of
a single effect with nontermination by application of Theorem 7 or Corollary 4.
For example, for the combination of interactive I/O with nondeterminism and
nontermination we want the monad on ω-Cpo induced by LI/O + (LN ⊗ LΩ).
By Corollary 4 this is µQ. TN ((QI +(O×Q)+−)⊥). If we take the value of this
monad at the initial (empty) ω-cpo, we get a solution to the following recursive

domain equation:
P ∼= TN ((P I + (O × P))⊥)

This is a variation on the various domains of processes used in the denotational
semantics of Milner’s CCS and its variants, see again [35,1,2]. The difference lies
in the exact nature of the interactive I/O monad chosen (see Section 7 below for
a general such monad) and the use of the theory of semilattices with a zero to
model deadlock.

Finally, we present two more examples of the commutative combination of
effects. First we consider the treatment of resumptions as used for the semantics
of parallel imperative programming languages. As mentioned above, Cenciarelli
and Moggi’s resumptions monad is µz.T (z + x) in a category C with binary
sums. Using Corollary 4 this gives the usual notion of resumptions in ω-Cpo
taking T to be TNTΩ(S × −)S and x = 1. In terms of ω-Cpo-theories this
is the monad induced by Ld + (LS ⊗ (LN ⊗ LΩ)) where we recall that Ld is
the theory of a unary operator with no equations, regarded as the operation
of suspending computation. Note that in this theory d does not commute with
nondeterminism. If we wanted d to commute with nondeterminism, but not
with state or nontermination, we would naturally be led to consider the theory
LHP = (Ld +(LS⊗LΩ))⊗LN instead. We now show that the work of Hennessy
and Plotkin [18] can be considered in terms of the latter theory.

They work with an algebra of resumptions in the category ND⊥ of ω-Cpo-
semilattices with a least element, which is Mod(LNLΩ , ω-Cpo); the algebra is
given by:

R′ = µB. (S ⊗ (B⊥ + I))S

where I is the tensor unit of ND⊥, and (−)⊥ is the comonad of the adjunction:

F a U :ND⊥ → ND

where ND is the category of ω-Cpo-semilattices. This is not in the form we
want; we instead switch to the category ND and consider the algebra:

R = µA. ((S ⊗ (A + I))⊥)S

where now (−)⊥ is the monad UF and I is the tensor unit of ND. One can show
that R ∼= UR′ and for the semantic analysis of [18] one can switch to R.

This is now in the required form and the corresponding resumptions monad
on ND is µA.T (A + −) where T = ((S ⊗ −)⊥)S . By Theorem 11, the latter is
the ω-Cpo-monad on ND induced by LS ⊗ LΩ , and, further, by the discussion
on absolutely free ω-Cpo-theories, the ω-Cpo-monad induced by Ld is the free
ω-Cpo-monad on the identity signature ω-Cpo-functor. So by Corollary 4, the
ω-Cpo-monad on ND induced by the theory Ld +(LS⊗LΩ) is the resumptions
monad µA.T (A +−) just described.

It then follows that, by the above analysis of the tensor product of theories,
the monad THP on ω-Cpo induced by LHP is given by UN (µA.T (A + −))FN .

We could thus view [18] as indeed implicitly working with the theory LHP as,
qua ω-cpo:

R = UN (µA.T (A + I)) ∼= UN (µA.T (A + FN (1))) ∼= THP (1)

Another, perhaps more natural, possibility, would be to recast [18] in terms
of an ND-theory of the form Ld + (LS ⊗LΩ). However ND is locally countably
presentable as a symmetric monoidal category rather than as a cartesian closed
one, and cartesian closure is the prevailing assumption of this paper. All the
theory of this paper generalises to such symmetric monoidal closed categories
except, perhaps, that associated with the state monad. That, prima facie, ex-
plicitly depends on cartesian closure as the axioms in [47] make explicit use of
diagonals on arities. We nonetheless expect a suitable generalisation to be found,
but, for the moment, the situation remains unclear.

For our last example of the commutative combination of effects, let M be a
monoid in V and consider the combination of any computational effect, given
by L or equivalently TL, with the complexity monad M ⊗−. We have assumed
throughout the paper that V is cartesian closed, so M ⊗ − is just M × −, but
our argument here is more general, so we indicate that by our notation. There
is a canonical distributive law of the monad M ⊗− over TL, obtained using the
strength t :M ⊗ TL− −→ TL(M ⊗−) of TL. So TL(M ⊗−) acquires a canonical
monad structure.

Theorem 12. Let L be any countable Lawvere V-theory, let M be a monoid in
V, and let LM be the Lawvere V-theory induced by the monad M ⊗ −. Then
TL(M ⊗−) is the V-monad induced by LM ⊗ L.

Proof. To give a model of L in (M ⊗ −)-Alg is equivalent to giving a model
m : L −→ V of L in V, together with an M -action α : M ⊗ m(1) −→ m(1)
on m(1), such that the corresponding map ᾱ : m(1) −→ m(1)M is a map of
models. This in turn is equivalent to giving a TL-algebra (x, β) and an M -action
α : M ⊗ x −→ x on x such that ᾱ : x −→ xM is a map of TL-algebras. But
that in turn is equivalent to giving a TL(M ⊗ −)-algebra by generalities about
distributive laws of monads [5]. These equivalences are all functorial, yielding an
isomorphism from TLM⊗L-Alg to TL(M ⊗−)-Alg and hence an isomorphism of
monads between TLM⊗L and TL(M ⊗−).

This result does not make substantial use of size conditions on either V or L
and can be generalised readily to an arbitrary strong monad.

Corollary 7. The tensor product of M ⊗− and M ′ ⊗− is (M ⊗M ′)⊗−.

6 Operation transformers

We now consider a theory of operation transformers, specifically algebraic oper-
ation transformers. Algebraic operations were studied in [45,46] in an enriched
setting, with V complete, cocomplete and symmetric monoidal closed; here we

restrict our attention to the case where V is locally countably presentable as a
cartesian closed category. Let T be a strong monad on V . Then an operation of
sort (a, b) on T is a transformation of the form:

αx : (Tx)a −→ (Tx)b

where a and b are objects of V ; it is algebraic if it is a V-natural transformation
with respect to x as an object of Kl(T). For example, the nonempty finite power-
set monad F+ supports the binary choice algebraic operation:

∨X : (F+X)2 −→ F+X

where ∨X(u, v) = u ∪ v. Other Set-based examples of algebraic operations de-
tailed in [46] are a binary probabilistic choice operation +r for every real number
r in the interval [0, 1] on the monad of finite distributions, a raise operation of
sort (0, E) on the monad for exceptions, read and write operations of sorts (I, 1)
and (1, O) respectively on the monad TI/O for interactive I/O, and lookup and
update operations of sorts (V,L) and (1, L× V) respectively, on the monad for
side-effects. As mentioned in the introduction, the operation handle, for handling
exceptions, is not an algebraic operation. It can be considered as an operation
of sort (1 + E, 1), being defined as the composition

(TX)1+E −→ (X × (TX)E) + (E × (TX)E)
[ηT π0,eval]−→ TX

However it is only natural with respect to Set, not Kl(−+ E).
The main result of [45,46] asserted that the enriched Yoneda embedding

induces a bijection between maps b −→ a in Kl(T), i.e., maps b −→ Ta in V ,
and algebraic operations αx : (Tx)a −→ (Tx)b. The correspondence is as follows:
given a map f :b −→ a in Kl(T), the corresponding algebraic operation is:

(Tx)a ∼= (a ⇒ x)
f ⇒ x

> (b ⇒ x) ∼= (Tx)b

where x ⇒ y is the Kleisli exponential; and given an algebraic operation αx, the
corresponding map in Kl(T) is:

1
pηaq

> (Ta)a
αa

> (Ta)b

The map in Kl(T) is called the generic effect corresponding to α, and, in the case
of infinitary operations such as lookup and update, the generic effect typically
appears more directly in a programming language than does the corresponding
algebraic operation [46].

In all our examples, the objects a and b lie in the full sub-V-category of V
given by Vℵ1 . Recall that the Lawvere V-theory LT induced by a strong monad T
is precisely the restriction of Kl(T)op to the objects of Vℵ1 . So we can reformulate
a mild restriction of the main result of [45,46] to read:

Theorem 13. Given a strong monad T with countable rank on V, the enriched
Yoneda embedding induces a bijection between maps a −→ b in LT and algebraic
operations:

αx : (Tx)a −→ (Tx)b

This result yields the liftings we seek: given countable Lawvere V-theories L and
L′, we have coprojections inl : L −→ L + L′ and inr : L′ −→ L + L′. So, by
two applications of the theorem and one application of the coprojection, each
algebraic operation on TL is sent to an algebraic operation on TL+L′ ; ditto for
L′. There are also canonical maps L −→ L ⊗ L′ and L′ −→ L ⊗ L′, yielding
liftings of algebraic operations on TL and TL′ to algebraic operations on TL⊗L′

in just the same way.
To give the coprojection inl : L −→ L + L′ is equivalent to giving a corre-

sponding coprojection inl :TL −→ TL + TL′ , and applying the functor inl to an
arrow a −→ b in L is equivalent to composing the corresponding monad map inl
with a −→ b seen as a generic effect b −→ TLa. Ditto for inr and for replacing
+ by ⊗.

Motivated by these remarks, we make a definition of operation transformer
that has the spirit of the idea of monad transformer but for algebraic operations
rather than monads. Given a strong monad T on V, define the V-category Op(T)
to have the same objects as V, with Op(T)(a, b) defined, using the bijection
of [46], to make an arrow of Op(T) an algebraic operation:

αx : (Tx)a −→ (Tx)b

So, Op(T) is isomorphic to Kl(T)op [46], and so there is a canonical V-functor
JT : V op −→ Op(T). Moreover, when T has countable rank, the restriction of
Op(T) to the objects of Vℵ1 is, by the theorem, isomorphic to LT : size issues do
not play a major role here.

Definition 7. Given strong monads T and T ′, an operation transformer from
Op(T) to Op(T ′) is a V-functor op : Op(T) −→ Op(T ′) commuting with the
canonical V-functors JT and JT ′ .

It follows from the definitions that, for every strong monad T , the V-category
Op(T) has V-cotensors and every operation transformer preserves them.

Proposition 4. To give an operation transformer from Op(T) to Op(T ′) is
equivalent to giving a map of strong monads from T to T ′. If T and T ′ have
countable rank, to give an operation transformer is further equivalent to giving
a map of Lawvere V-theories from LT to LT ′ .

Suppose that we have an operation transformer from Op(T) to Op(T ′), with
corresponding map of monads τ : T → T ′, that α is an algebraic operation of
sort (a, b), and that α′ is the result of applying the operation transformer to α.
Then α′ is a lifting of α in the sense that the following diagram commutes for

all objects x:

(Tx)a
αx

> (Tx)b

(τx)a

∨ ∨
(τx)b

(T ′x)a

α′x

> (T ′x)b

To see this, suppose α corresponds to the generic effect ᾱ :b −→ Ta. Then α
is given by the composite:

b× (Tx)a
ᾱ× (Tx)a

> Ta× (Tx)a > Tx

and α′ is given by the composite:

b× (T ′x)a
ᾱ× (T ′x)a

> Ta× (T ′x)a
τa × (T ′x)a

> T ′a× (T ′x)a > T ′x

The dinaturality of evaluation then yields the commutativity of the diagram.

For explicit constructions of operation transformers, first consider sum. Let C
be locally countably presentable as a V-category. Then, given a V-endofunctor Σ
and a V-monad (T, µ, η) on C, and assuming Σ∗ and (ΣT)∗ exist, we have shown
that Σ∗ + T exists and is given by a canonical V-monad structure on T (ΣT)∗.
It is routine to verify that the coprojections Σ∗ −→ Σ∗ + T and T −→ Σ∗ + T
are given by the V-monad maps:

Σ∗
(ΣηT)∗

> H∗ ηT H∗

> TH∗

and:

TηH∗ :T −→ TH∗

where, as before, we now find it convenient to write H for ΣT . So, the liftings
of generic effects b −→ Σ∗a and b −→ Ta are given by composition with these
V-monad maps. The transformer Op(T) −→ Op(TH∗) can be described directly
as follows: the lifting of an algebraic operation:

αx : (Tx)a −→ (Tx)b

is:
αH∗x : (TH∗x)a −→ (TH∗x)b

And a partial description of the transformer Op(Σ∗) −→ Op(TH∗) is given as
follows. By the enriched Yoneda lemma, to give a map b −→ Σa is equivalent to
giving a V-natural transformation:

βx :xa −→ (Σx)b

natural in x as an object of V . But a map b −→ Σa gives rise, by composition
with the unit Σa −→ Σ∗a to a generic effect b −→ Σ∗a and hence to an algebraic
operation:

β∗x : (Σ∗x)a −→ (Σ∗x)b

on Σ∗. So every V-natural transformation β as above gives rise to an algebraic
operation β∗, to which one may apply the operation transformer. It follows by
routine calculation that the lifting of β∗ is:

(TH∗x)a
βTH∗x

> (HH∗x)b
(αHx)b

> (H∗x)b
(ηT H∗x)b

> (TH∗x)b

We now consider various examples for C = Set; corresponding examples with
nontermination for C = ω-Cpo are readily available.

Example 11. Exceptions For modelling exceptions, Σ is the constant at E, and
so Σ∗ = (ΣT)∗ = − + E. and the canonical − + E → T (− + E) is η(− + E).
The operation raise, of sort (0, E), is pinrq at X; it arises from the identity
map E → Σ0 and its lifting is pηX+E inrq at X. The operation handle is not an
algebraic operation, so our theory does not include it.

Example 12. Interactive I/O The monad for interactive I/O is given by:

TI/OX = µY. (Y I + (O × Y) + X)

which is Σ∗, where Σ = ΣI/O. The generic effects for interactive input and
output, read :1 −→ TI/O(I) and write :O −→ TI/O(1), then arise from the maps
inr pidq : 1 → ΣI and inl(id, t) : O → Σ1 respectively; they are (ηΣΣI)inr pidq
and (ηΣΣ1)inl(id, t).

The liftings of these generic effects are:

read ′ :1 −→ T (µY. ((TY)I + (O × TY) + I))

and:
write ′ :O −→ T (µY. ((TY)I + (O × TY) + 1))

where read ′ = η(ΣT)∗(ηΣΣTI)inr pηIq and write ′ = η(ΣT)∗(ηΣΣT1)inl(id, η1t).
In turn, read and write themselves are liftings of generic effects read and write
for the input monad and the output monad respectively.

We do not know any more direct expression of the corresponding algebraic op-
erations than using the formula given above for obtaining them from the generic
effects. The generic effects appear more typically in programming languages [46],
although one does see them in process languages such as Milner’s CCS [36].

Example 13. Side-Effects For the tensor product of LS with any countable
Lawvere theory L, the theory maps L −→ L⊗LS and L −→ L⊗LS correspond
to the evident monad maps:

TL −→ TL(S ×−)S

and:
ηL(S ×−)S : (S ×−)S −→ TL(S ×−)S

As it is the generic effects for side-effects rather than the corresponding alge-
braic operations that typically appear directly in programming languages [46],
we just consider them. The generic effect corresponding to the algebraic opera-
tion lookup is:

deref :L −→ (S × V)S

defined on Set by:
deref (l)(s) = (s, s(l))

Its lifting by composition with the ηL(S ×−)S is the generic effect:

deref ′ :L −→ T (S × V)S

defined by:
deref ′(l)(s) = ηT (s, s(l))

The situation for the generic effect assign :L× V −→ (S × 1)S corresponding to
the algebraic operation update is similar.

Liftings of operations on TL are simply characterised. Suppose that α is such
an operation, say of sort (A,B). Then its lifting to an operation on TL(S ×−)S

is:

(TL(S ×X)S)A∼=(TL(S ×X)A)S
(αS×X)S

> (TL(S ×X)S)B ∼=(TL(S ×X)B)S

7 Discussion

In this paper we have shown how to combine different effects in terms of natural
operations on Lawvere theories rather than on the corresponding monads. That
has allowed us to give an account of two standard ways to combine effects:
taking their sum, and taking their commutative combination, or tensor product.
We then derived explicit forms for some corresponding combinations of monads.
Sum and tensor account for most of the examples in which effects are combined
in practice; we have yet to consider distributive combinations, local state and
continuations. We have also given canonical ways to lift algebraic operations
when adding effects; we have yet to consider other operations such as handle.

Of course, one may combine more than two effects, so the operations we define
may be used several times. This leads us to propose a formula for combining
exceptions, side-effects, interactive I/O and (binary) nondeterminism:

LE + (LS ⊗ (LI/O + LN))

where we have used the standard combinations, as described above, of exceptions,
state, and side-effects with other effects. In terms of monads this is :

TX = (µY.F(Y I + (O × Y) + (S × (X + E))))S

We also propose similar formulae replacing LN by LPω , or other forms of non-
determinism, and also for combinations of just some of these effects; the latter
amounts to replacing the Lawvere theories for the effects not combined by the
trivial (initial) Lawvere theory. These formulae yield exactly those interactions
between operations given when considering binary combinations above, and so:

1. The equations for each effect are retained in the theory for the combination,
and no more are added.

2. The equations for the binary interactions we have considered above are re-
tained in the combination, and no more are added.

3. There are no ternary, or higher, interactions.

We do not have any independent justification of these formulae; perhaps a theory
of observation of computational effects would help. The formulae proposed do
however coincide with all the cases we are aware of in the literature.

Observe that the formula is, in a sense, linear, having the form:

FE(FS(FI/O(LN)))

where each F is derived from + or ⊗ applied to a particular Lawvere theory. This
explains why monad transformers have appeared in functional programming [7]:
one has a monad transformer for each effect and method of its combination, and,
modulo our correspondence with Lawvere theories, those monad transformers
are precisely the F ’s. This paper yields the additional point that they arise
from general binary operations on Lawvere theories; indeed for state there are
two relevant operations and two possible monad transformers. It is less clear
whether nondeterminism is as simple because of the symmetry involved in the
combination of internal and external nondeterminism [17].

The above discussion does not, of course, take recursion and nontermination
into account. Here one would start with nontermination, and then add the other
effects:

LE + (LS ⊗ (LI/O + (LN ⊗ LΩ)))

where we are now working in ω-Cpo.
The linearity of these formulae is all the more remarkable if one considers the

whole range of possibilities for combining several theories by sum and tensor.
We can illustrate these best by an example. Consider four theories arranged in
a square:

L1 L2

L3 L4

We can combine these into one theory, with the operations of one Li commuting
with those of another if and only if they are adjacent in the square. The resulting

theory is the colimit of the diagram:

L1 > L1 ⊗ L2 < L2

∨ ∨
L1 ⊗ L3 L2 ⊗ L4

∧ ∧

L3 > L3 ⊗ L4 < L4

This idea is general, applying to any irreflexive graph of theories; let us call
such combinations of theories ‘graphical combinations.’ One can show that any
‘polynomial combination’ of theories, built up out of + and ⊗, is equivalent
to such a graphical combination; the present example is a case in point: the
corresponding polynomial combination is (L1 + L4)⊗ (L2 + L3). One may then
ask whether the converse is true: are all graphical combinations polynomial?

To answer such questions, we consider formal polynomials and graphs. For-
mal polynomials are built out of variables using + and ⊗, obtaining, for example,
x⊗ (y + z) and (x⊗ y)+ (x⊗ z). Given such a polynomial and a list of variables
x1, . . . , xn including all those occurring in the polynomial, we obtain a functor
Setn → Set in an evident way. One can then also ask when two such formal
polynomials are equivalent, meaning that the corresponding functors are natu-
rally isomorphic; this does not depend on the choice of the list of variables, and
we will generally suppress mention of the choice.

The two example polynomials just given are not so equivalent; to see this
note that the initial theory is an identity (up to isomorphism) for both + and
⊗, and so, taking y and z to be the initial theory, if the two were equivalent so
would be x and x + x. On the other hand, there are some evident equivalences
based on the commutativity and associativity natural isomorphisms for + and
⊗; let us call these ‘simple’ equivalences.

Formal graphs are finite undirected irreflexive graphs whose nodes are la-
belled by variables. They denote functors of theories in a way that will be evident
from the above discussion of graphical colimits of theories (we again understand
a given list of variables here). Formalising remarks made above, one can asso-
ciate a formal graph with every formal polynomial in such a way that the two
denote naturally isomorphic functors:

– to every variable one associates the graph with one node, labelled by that
variable

– to every polynomial of the form p + q one associates the disjoint sum of the
graphs associated to p and q

– to every polynomial of the form p⊗q one associates the graph obtained from
the disjoint sum of the graphs associated to p and q by adding edges between
every node in the first graph and every node in the second one

Note that the graph so associated to a polynomial, other than a variable, is
either disconnected or else has a disconnected complement.

Proposition 5. Two polynomials are simply equivalent if and only if their as-
sociated graphs are isomorphic.

Proof. (Sketch) Necessity is obvious; sufficiency follows from the fact that a
graph and its complement cannot both be disconnected.

Theorem 14. The functors associated to two formal graphs are naturally iso-
morphic if and only if the two graphs are isomorphic.

Proof. We again just give a sketch of the proof. The implication from right to
left is clear. In the other direction, let xi be the variables occurring in the two
graphs, for i = 1, n. Consider the two theories L and L′ obtained from the formal
graphs by taking xi to be Li where, as an equational theory, Li is given by two
unary function symbols f and g subject to the equation fpi(x) = gpi(x), where
pi is the ith prime number. Then, as L and L′ are isomorphic, so are the two
semigroups L(1, 1) and L′(1, 1). Note that these semigroups are both generated
by copies of f and g, there being one copy for each node of the graph in question.

As the equations are length-preserving, the semigroup isomorphism must
map generators to generators; furthermore, the prime numbers associated to
corresponding generators via the above equations must be the same. Thus the
isomorphism determines a bijection between the nodes of the two graphs that
respects the variables labelling them. This bijection also respects the graph struc-
ture, as that yields commutations in the two theories, and hence the two semi-
groups and such commutations are also preserved by the semigroup isomorphism.

Note that the proof only makes use of the object part of the two functors.
So we also have that two formal graphs are isomorphic if and only if the object
parts of their associated functors are isomorphic.

We now in a position to answer the two questions formulated above. First,
not all graphical combinations are equivalent to polynomial ones: for a coun-
terexample one may take take any nontrivial graph such that neither it nor its
complement is disconnected; the simplest example is the four-node graph:

x1 x2 x3 x4

Second, we can characterise polynomial equivalence:

Corollary 8. Two polynomials are equivalent if and only if they are simply
equivalent.

The graphical method is convenient for calculating combinations of theories,
and we now present two examples concerning state and exceptions. First, suppose
we wish to combine the usual exceptions theory LE with the state theory LS

and a theory LEu
for non-recoverable errors. One would wish only the last two

to commute, giving the graph:

LE LS LEu

Following the above translation of polynomials into graphs ‘backward,’ one notes
that this is a disjoint combination of the subgraph with the theory LE and
the subgraph with the theories LS and LEu

, which latter are connected. The
corresponding polynomial combination of theories is therefore:

LE + (LS ⊗ LEu
)

Passing to monads, and making use of monad transformers, the corresponding
monad can be written as:

FE(FS(TEu))

Using previous results, one can then calculate an explicit form for this monad:

((S × (−+ E)) + Eu)S

Suppose now we wish instead to have a theory LE for standard exceptions, a
theory LEr

for exceptions for rollback, as discussed in Section 1, and two theories
for state: LS for ordinary state, not subject to rollback, and LSr

for state subject
to rollback. One would then naturally have the two state theories commute and
also the rollback state and exception theories commute. This gives the graph:

LE LEr

LS LSr

which yields the polynomial combination:

LE + (LSr ⊗ (LEr + LS))

The corresponding monad is FE(FSr (FEr (TS))), with the explicit form:

(S × ((Sr × (−+ E)) + Er))S×Sr

The reader may enjoy the exercise of adding in unrecoverable errors.
The advantage of the graphical method is that one has only to consider

the pairwise relationships; everything else then follows, including which monad
transformers are to be applied, if any. We hasten to add that this last exam-
ple is hardly realistic; for example, for database languages one needs to model
databases, which would involve a less naive form of state, and one further needs
to bring in additional structure to enable the modelling of parallelism.

All the binary combinations of effects we have considered in this paper have
already appeared in the literature. In principle there could be other computa-
tionally interesting combinations, even just using the sum and the commutative
combination of theories. However, as far as we can tell, there is not much of in-
terest is to be found in this way, although it is certainly good to try. For example,
let us consider the four theories, LE , LS , LI/O and LN , working in Set. Taking

symmetry into account, there are twenty such combinations of these, of which
so far we have only considered seven, namely the six given in the above formula
and the transactional combination LE ⊗LS . However, apart from a known gen-
eralisation of the interactive I/O theory, and a possible non-interactive form of
input/output, none of the other thirteen possibilities seems to yield anything
new of computational interest.

Let us look first at the situation ‘along the diagonal,’ beginning with the sum
of theories. For exceptions we have that LE + LE′ is isomorphic to LE+E′ , so
we obtain nothing new there. For state, we have not studied the sum LS + LS′ ,
but neither are we aware of any natural computational interpretation of this
theory: what could it mean to have two disjoint sets of states where assignment
(or update) in one did not commute with assignment (or update) in the other?
We also do not know an explicit form for the induced monad.

For interactive I/O we obtain a known generalisation of what we have been
considering. Take LI , the ‘input’ theory, to be the absolutely free theory of an
operator read :I → 1 and take LO, the ‘output’ theory, to be the absolutely free
theory of an operator write : 1 → O; evidently LI/O is the same as LI + LO.
Then a general form of theory, closed under sums, is given by:∑

i=1,m

LIi +
∑

j=1,n

LOj

This is the absolutely free theory on operators read :Ii → 1 and writej : 1 → O,
and it can be used to model m input channels and n output channels. The
induced monad is given explicitly by:

T (X) = µY. (
∑

i=1,m

Y Ii +
∑

j=1,n

(Oj × Y) + X)

Everything we said above concerning the simpler case of LI/O and its com-
binations generalises naturally to this more general theory. However, nothing
essentially new is thereby learnt, although, certainly, the applications are wider;
it was therefore convenient for us to phrase our discussions above in terms of
the special case.

Finally, turning to nondeterminism, while we have not previously considered
the sum LN +LN , neither do we know a computational interpretation; the closest
we are aware of is the combination of internal and external nondeterminism, as
considered in, e.g., [17]; but there one naturally imposes additional distributivity
equations, as mentioned above.

Let us now consider the commutative combination of theories along the di-
agonal. For exceptions we have that LE ⊗LE′ is the theory of a single constant
with no equations, other than in the trivial case where one of E or E′ is empty.
For state we have that LS ⊗ LS′ is LS×S′ which again yields nothing new. For
I/O while we have not previously considered LI/O⊗LI′/O′ neither can we think
of a natural computational interpretation of it, nor of an explicit form for the
induced monad. There could be some interest in combinations like LI ⊗ LO in
which input and output commute; they may be of use in modelling some kind of

non-interactive I/O or stream-based computation. One can at any rate obtain
an explicit form for the induced monad: the monad induced by LO is O∗ × −
where O∗ is the free monoid on O; so, by Theorem 12, that induced by LI ⊗LO

is TI(O∗ × −). Finally, one can show that LN ⊗ LN is LN , obtaining nothing
new.

Of the remaining five ‘off-diagonal’ combinations, all are new but none seems
to have any computational interest, except perhaps for LI/O ⊗ LN in which
nondeterminism commutes with interactive I/O. This suggests some sort of trace
model of communicating processes, analogous to the model of [18] for parallel
imperative programs. However, if one tried, for example, to model concurrency
in the style of Milner [36] one would fail as his parallel operator is sensitive to
the order of communication and choice. It seems reasonable to judge this last
case as unclear.

As we have seen, in every case of extending effects considered in this paper we
obtained a morphism of theories (equivalently of monads); it is these morphisms
which yield the natural transformations associated to the monad transformers.
Further, according to Proposition 4, operation transformers are equivalent to
such morphisms. However, taking the case of Set for simplicity, it follows that
the equations holding for an effect are included in those holding for the exten-
sion (modulo the theory morphism). But this is odd as, if anything, one would
expect a decrease in the equations holding as there is an increase in the available
contexts for discriminating computations: the extension will have more opera-
tions available for constructing such contexts. It would be interesting to have an
independent justification of the conservation of equations; perhaps this could be
accomplished through a theory of the observation of effects.

Acknowledgements

We should like to acknowledge useful conversations with Paul Levy and helpful
comments from the referees.

References

1. S. Abramsky, Experiments, Powerdomains and Fully Abstract Models for Applica-
tive Multiprogramming, Proc. FCT (ed. M. Karpinski), LNCS Vol. 158, pp. 1–13,
1983.

2. S. Abramsky, A Domain Equation for Bisimulation, Inf. and Comput., Vol. 92,
No. 2, pp. 161–218, 1991.

3. J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London
Mathematical Society Lecture Note Series, Vol. 189, Cambridge University Press,
1994.

4. M. S. Ager, O. Danvy and J. Midtgaard, A Functional Correspondence between
Monadic Evaluators and Abstract Machines for Languages with Computational
Effects, BRICS Technical Report, RS-03-35, Department of Computer Science,
Aarhus University, 2003, available at http://www.brics.dk/RS/03/Abs/BRICS-
RS-03-Abs/BRICS-RS-03-Abs.html.

http://www.brics.dk/RS/03/Abs/BRICS-RS-03-Abs/BRICS-RS-03-Abs.html
http://www.brics.dk/RS/03/Abs/BRICS-RS-03-Abs/BRICS-RS-03-Abs.html

5. M. Barr and C. Wells, Toposes, Triples and Theories, Springer-Verlag, 1985.
6. M. Barr and C. Wells, Category Theory for Computing Science, Prentice-Hall,

1990.
7. N. Benton, J. Hughes, and E. Moggi, Monads and Effects, in APPSEM ’00 Summer

School, 2000 (eds. G. Barthe, P. Dybjer, L. Pinto and J. Saraiva), LNCS Vol. 2395,
pp. 42–122, Berlin: Springer Verlag, 2000.

8. R. Bird, Introduction to Functional Programming Using Haskell, Prentice Hall,
1998.

9. P. Cenciarelli and E. Moggi, A Syntactic Approach to Modularity in Denotational
Semantics, Proc. 5th. Biennial Meeting on Category Theory and Computer Science,
CWI Technical report, 1993.

10. M. Escardó and A. Simpson, A Universal Characterization of the Closed Euclidean
Interval (Extended Abstract), Proc. LICS ’01, pp. 115–125, IEEE Press, 2001.

11. A. Filinski, Representing Layered Monads, Proc. 26th. POPL, pp. 175–188, ACM
Press, 1999.

12. M. P. Fiore, A. Jung, E. Moggi, P. O’Hearn, J. Riecke, G. Rosolini and I. Stark,
Domains and Denotational Semantics: History, Accomplishments and Open Prob-
lems, in Bulletin of EATCS, No. 59, pp. 227–256, 1996.

13. P. J. Freyd, Algebra-Valued Functors in General and Tensor Products in Particular,
Colloq. Math. Wroclaw, Vol. 14, pp. 89–106, 1966.

14. N. Gambino and M. Hyland, Wellfounded Trees and Dependent Polynomial Func-
tors, in Proc. TYPES 2003 (eds. S. Berardi, M. Coppo and F. Damiani), LNCS
Vol. 3085, pp. 210–225, Berlin: Springer Verlag, 2004.

15. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott,
Continuous Lattices and Domains, Encyclopedia of Mathematics, Vol. 93, Cam-
bridge: Cambridge University Press, 2003.

16. R. Heckmann, Probabilistic Domains, Proc. CAAP ’94, LNCS, Vol. 136, pp. 21-56,
Springer-Verlag, 1994.

17. M. C. B. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.
18. M. C. B. Hennessy and G. D. Plotkin, Full Abstraction for a Simple Parallel

Programming Language, Proc. MFCS ’79 (ed. J. Bečvář), LNCS, Vol. 74, pp.
108-120, Springer-Verlag, 1979.

19. J. M. E. Hyland and A. J. Power, Pseudo-Commutative Monads, Proc. MFPS
XVII, ENTCS Vol. 45, Elsevier, 2001.

20. J. M. E. Hyland and A. J. Power, Two-Dimensional Linear Algebra, Proc. CMCS
2001, ENTCS Vol. 47, Elsevier, 2001.

21. J. M. E. Hyland and A. J. Power, Pseudo-Commutative Monads and Pseudo-
Closed 2-Categories, J. Pure Appl. Algebra, Vol. 175, Nos. 1–3, pp. 141–185, 2002.

22. C. Jones, Probabilistic Non-Determinism, Ph.D. Thesis, University of Edinburgh,
Report ECS-LFCS-90-105, 1990.

23. M. Jones and L. Duponcheel, Composing Monads, Technical Report
YALEU/DCS/RR-1004, Yale University, Dept. Comp. Sci., 1993.

24. C. Jones and G. D. Plotkin, A Probabilistic Powerdomain of Evaluations, Proc.
LICS ’89, pp. 186–195, IEEE Press, 1989.

25. G. M. Kelly, A Unified Treatment of Transfinite Constructions for Free Algebras,
Free Monoids, Colimits, Associated Sheaves, and so on, Bull. Austral. Math. Soc.,
Vol. 22, pp. 1–83, 1980.

26. G. M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University
Press, 1982.

27. G. M. Kelly, Structures Defined by Finite Limits in the Enriched Context I, Cahiers
de Topologie et Géométrie Différentielle, Vol. 23, No. 1, pp. 3–42, 1982.

28. G. M. Kelly and A. J. Power, Adjunctions whose Counits are Coequalizers, and
Presentations of Finitary Enriched Monads, J. Pure Appl. Algebra, Vol. 89, pp.
163–179, 1993.

29. D. J. King and P. Wadler, Combining Monads, Proc. 1992 Glasgow Workshop on
Functional Programming (eds. J. Launchbury and P. M. Samson), pp. 134–143,
Workshops in Computing, Berlin: Springer-Verlag, 1992.

30. Y. Kinoshita, A. J. Power, and M. Takeyama, Sketches, J. Pure Appl. Algebra,
Vol. 143, pp. 275–291, 1999.

31. A. Kock, Monads on Symmetric Monoidal Closed Categories, Arch. Math., Vol.
21, pp. 1–10, 1970.

32. H. König, Theory and Applications of Superconvex Spaces, Aspects of Positivity
in Functional Analysis, pp. 79–118, North-Holland Math. Stud., Vol. 122, Ams-
terdam: North-Holland, 1986.

33. F. W. Lawvere, Functorial Semantics of Algebraic Theories and Some Algebraic
Problems in the context of Functorial Semantics of Algebraic Theories, Ph.D.
thesis, Columbia University, 1963, and in Reports of the Midwest Category Seminar
II, 41–61, 1968, and reprinted in Theory and Applications of Categories, No. 5, pp.
1–121, 2004.

34. E. G. Manes, Algebraic Theories, Graduate Texts in Mathematics, Vol. 26,
Springer-Verlag, 1976.

35. G. Milne and R. Milner, Concurrent Processes and Their Syntax, JACM, Vol. 26,
No. 2, pp. 302–321, 1979.

36. R. Milner, Communication and Concurrency, New York: Prentice Hall, 1989.
37. M. W. Mislove, Nondeterminism and Probabilistic Choice: Obeying the Laws,

Proc. CONCUR 2000 (ed. C. Palamidessi), LNCS, Vol. 1877, pp. 350–364,
Springer-Verlag, 2000.

38. I. Moerdijk and E. Palmgren, Wellfounded Trees in Categories, in Ann. Pure Appl.
Logic, Vol. 104, Nos. 1–3, pp. 189–218, 2000.

39. E. Moggi, Computational Lambda-Calculus and Monads, Proc. LICS ’89, pp.
14–23, IEEE Press, 1989.

40. E. Moggi, An Abstract View of Programming Languages, University of Edinburgh,
Report ECS-LFCS-90-113, 1989.

41. E. Moggi, Notions of Computation and Monads, Inf. and Comp., Vol. 93, No. 1,
pp. 55–92, 1991.

42. G. D. Plotkin, A Powerdomain Construction, SIAM J. Comput., Vol. 5, No. 3,
pp. 452–487, 1976.

43. G. D. Plotkin, Domains, 1983, available at http://homepages.inf.ed.ac.uk/gdp/
publications.

44. G. D. Plotkin and A. J. Power, Adequacy for Algebraic Effects, Proc. FOSSACS
2001 (eds. F. Honsell and M. Miculan), LNCS, Vol. 2030, pp. 1–24, Springer-Verlag,
2001.

45. G. D. Plotkin and A. J. Power, Semantics for Algebraic Operations (extended
abstract), Proc. MFPS XVII (eds. S. Brookes and M. Mislove), ENTCS, Vol. 45,
Elsevier, 2001.

46. G. D. Plotkin and A. J. Power, Algebraic Operations and Generic Effects, Applied
Categorical Structures, Vol. 11, No. 1, pp. 69–94, 2003.

47. G. D. Plotkin and A. J. Power, Notions of Computation Determine Monads, Proc.
FOSSACS ’02, (eds. M. Nielsen and U. Engberg), LNCS, Vol. 2303, pp. 342–356,
Springer-Verlag, 2002.

48. A. J. Power, Why Tricategories? Inf. and Comp., Vol. 120, No. 2, pp. 251–262,
1995.

http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
http://homepages.inf.ed.ac.uk/gdp/publications/
http://homepages.inf.ed.ac.uk/gdp/publications/

49. A. J. Power, Enriched Lawvere Theories, Theory and Applications of Categories,
Vol. 6, pp. 83–93, 2000.

50. A. J. Power, Modularity in Denotational Semantics, Proc. MFPS XIII, ENTCS,
Vol. 6 (eds. S. Brookes and M. Mislove), Elsevier, 1997.

51. A. J. Power and E. P. Robinson, Modularity and Dyads, Proc. MFPS XV (eds.
S. Brookes, A. Jung, M. Mislove and A. Scedrov), ENTCS Vol. 20, Elsevier, 1999.

52. A. J. Power and G. Rosolini, A Modular Approach to Denotational Semantics,
Proc. ICALP 98, LNCS 1443, pp. 351–362, 1998.

53. E. Robinson, Variations on Algebra: Monadicity and Generalisations of Equational
Theories, in A Festschrift for Professor Rod Burstall, TACS, Vol. 13, Nos. 3,4 &
5, pp. 308–326, 2002.

54. H. Schubert, Categories, Springer-Verlag, 1972.
55. A. Simpson and G. D. Plotkin, Complete Axioms for Categorical Fixed-Point

Operators, Proc. 15th. Symp. on Logic in Computer Science, pp. 30–41, IEEE
Computer Society Press, 2000.

56. R. Street, The Formal Theory of Monads, J. Pure Appl. Algebra, Vol. 2, pp.
149–168, 1972.

57. R. Tix, Continuous D-cones: Convexity and Powerdomain Constructions, Ph.D.
thesis, Technische Universitat Darmstadt, Aachen: Shaker Verlag, Aachen, 1999.

58. R. Tix, K. Keimel and G. Plotkin, Semantic Domains for Combining Probability
and Non-Determinism, Electronic Notes in Theoretical Computer Science, Vol.
129, pp. 1–104, Amsterdam: Elsevier, 2005.

A Pseudo-commutativity and pseudo-closedness

The simplest way we know to explain the extent to which we have a natural closed
structure on the category of small categories with countable products is in terms of
2-monads on Cat as developed in [19,21], cf also [20]. The 2-monad of interest to us is
the 2-monad Tcp for which the 2-category of algebras, pseudo-maps, and 2-cells is the 2-
category of small categories with countable products, functors that preserve countable
products in the usual sense, and natural transformations.

Definition 8. A symmetric pseudo-commutativity for a 2-monad T on Cat consists
of a family of invertible natural transformations:

TA× TB
t∗

> T (A× TB)
Tt

> T 2(A×B)

t

∨

⇓ γA,B

∨

µA×B

T (TA×B)
Tt∗

> T 2(A×B)
µA×B

> T (A×B)

natural in A and B and subject to coherence with respect to the symmetry of Cat and
one coherence axiom with respect to each of the strength, unit, and multiplication of T .

The monad Tcp has a unique symmetric pseudo-commutativity. The first main defini-
tion of [21] gives a notion of pseudo-closed structure for a 2-category: it is almost as
strong as closed structure, but one needs to relax the definition of closed structure just

a little in order to account for the distinctions between preservation and strict preser-
vation of structure such as countable product structure: the reason, in our setting,
that we do not quite have a closed structure is that, given a category C with count-
able products, the category Mod(ℵop

1 , C) is equivalent but not isomorphic to C. We do
not spell out the detailed definition of pseudo-closed 2-category here. The main result
of [21] (see [19] for a formulation directed more towards a computer science audience)
is as follows:

Theorem 15. If T is a symmetric pseudo-commutative accessible 2-monad on Cat,
the 2-category of T -algebras and pseudo-maps of T -algebras has a pseudo-monoidal
pseudo-closed structure induced by the pseudo-commutative structure of T , coherently
with respect to the closed structure of Cat.

Corollary 9. The 2-category of small categories with countable products, countable
product preserving functors, and natural transformations is pseudo-monoidal pseudo-
closed, coherently with respect to the closed structure of Cat.

The heart of this result as it applies to us is that the construction that sends a pair
of small categories C and D with countable products to the category CP (C, D) of
countable product preserving functors from C to D is a well behaved construction.
Moreover, for any small categories C and C′ with countable products, there is a small
category C ⊗ C′ with countable products together with a well behaved equivalence of
categories between CP (C, CP (C, D)) and CP (C ⊗ C′, D) natural in D. The theorem
only determines the construction C ⊗C′ up to coherent equivalence of categories, but,
when restricted to countable Lawvere theories, it agrees up to equivalence with the
construction we gave in the paper. Thus we may conclude the following:

Theorem 16. The construction L ⊗ L′ on countable Lawvere theories extends to a
coherent pseudo-monoidal pseudo-closed structure on the 2-category of small categories
with countable products, and, for any small category C with countable products, there is
a coherent equivalence of categories between Mod(L⊗L′, C) and Mod(L, Mod(L′, C)).

Upon inspection of the proof one can see that the smallness assumption on the
category C is not needed.

	Combining effects: sum and tensor

