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Abstract

This paper introduces the theory of a particular kind of computation domains
called concrete domains. The purpose of this theory is to find a satisfactory
framework for the notions of coroutine computation and sequentiality of eval-
uation.

Diagrams are emphasized because I believe
that an important part of learning lattice theory

is the acquisition of skill in drawing diagrams.
George Grätzer



1 Domains of computation

In general, we follow Scott’s approach [Sco70]. To every syntactic object one
associates a semantic object which is found in an appropriate semantic domain.
For technical details, we follow [Mil73] and [Plo78] rather than Scott.

Definition 1.1 A partial order is a pair < D;≤> where D is a non-empty
set and ≤ is a binary relation satisfying:

i) ∀x ∈ D x ≤ x (reflexivity)

ii) ∀x, y ∈ D x ≤ y, y ≤ x ⇒ x = y (antisymmetry)

iii) ∀x, y, z ∈ D x ≤ y, y ≤ z ⇒ x ≤ z (transitivity)

One writes x < y when x ≤ y and x 6= y. Two elements x and y are comparable
when either x ≤ y or y ≤ x. When this is not the case, the elements x and y
are incomparable and this relation is written x ‖ y. A partial order in which
any two elements are comparable is a chain.

Usual terms: In a partial order < D;≤>, let H be a subset of D and x an
element of H. The element x is an upper bound of H iff ∀y ∈ H y ≤ x. It is a
lower bound of H iff ∀y ∈ H x ≤ y. It is a least upper bound (lub) of H iff it
is an upper bound of H and

∀z upper bound of H x ≤ z

It is a greatest lower bound (glb) of H iff it is a lower bound of H and

∀z lower bound of H z ≤ x

When x is a lub (resp. glb) of H, one writes x =
⋃

H (resp. x =
⋂

H).
If H = {a, b}, these notations are shortened to x = a ∨ b and x = a ∧ b
respectively.

Two elements x and y in D are compatible if {x, y} has an upper bound.
This relation is noted x ↑ y, and its complement, the incompatibility relation,
is written x#y.

An element x in H is a maximum iff x =
⋃

H. It is a minimum iff x =
⋂

H.

Definition 1.2 In a partial order < D;≤> a subset X of D is directed iff
X is non-empty and

∀x1, x2 ∈ X ∃x3 ∈ X : x1 ≤ x3, x2 ≤ x3
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Remark: By definition the set which is the support of a chain is a fortiori
directed.

Definition 1.3 A partial order < D;≤> is complete iff

i) D has a minimum element ⊥

ii) Any directed subset X of D has a least upper bound

Definition 1.4 A partial order < D;≤> is conditionally complete iff any
subset X of D that has an upper bound has a least upper bound.

Remarks:

i) Since D is non-empty, the empty set ∅ has an upper bound. Hence if
< D;≤> is conditionally complete, D must have a minimum element
⊥ =

⋃

∅

ii) The terminology used here, although standard, may not be ideal since a
partial order may be complete without being conditionally complete.

Proposition 1.1 A complete partial order < D;≤> is conditionally complete
iff every pair of compatible elements < x, y > has a least upper bound x ∨ y.

Proof: Consider a complete partial order < D;≤> in which every pair of
compatible elements has a least upper bound and let X be a bounded subset
of D. If X = ∅ then

⋃

X = ⊥. If X is reduced to a single element x, this x is
the least upper bound of X. If X contains exactly two elements x and y, and
has an upper bound, then x and y are compatible and

⋃

X = x ∨ y.
Consider now a finite subset X of D that has an upper bound, with |X| ≥ 2

and X = X ′∪̇{x}. Since X has an upper bound, so does X ′ which has, by
induction hypothesis, a least upper bound

⋃

X ′. As any upper bound of X
must dominate both

⋃

X ′ and x, these elements must be compatible and hence
⋃

X =
⋃

X ′ ∨ x. Now if X is infinite, let Y be the set of least upper bounds
of its finite subsets. The set Y is directed, so it has a least upper bound

⋃

Y .
For any x in X, x ≤

⋃

Y since {x} is a finite subset for which
⋃

Y is an upper
bound. Since any upper bound of X must at least dominate

⋃

Y we obtain
⋃

X =
⋃

Y

The converse is trivial. 2
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Proposition 1.2 In a conditionally complete partial order < D;≤>, any
non-empty subset X of D has a greatest lower bound

⋂

X.

Proof: Let Y be the set of elements in D dominated by X. Since X is non-
empty, some x in X dominates Y . Thus Y has a lub

⋃

Y . For any x in X it
is the case that ∀y ∈ Y y ≤ x hence also

⋃

Y ≤ x. So
⋃

Y is a lower bound of
X, and

⋃

Y =
⋂

X. 2

Definition 1.5 In a partial order < D;≤> a subset X of D is consistent iff
any two elements in X are compatible.

Definition 1.6 A partial order < D;≤> is coherent iff any consistent subset
X of D has least upper bound.

Remarks:

1. A subset that has an upper bound is consistent. Hence if a partial order
is coherent it is a fortiori conditionally complete.

2. The empty set ∅ is consistent. Hence it has a least upper bound ⊥. A
directed set is consistent. Hence if a partial order is coherent it is a
fortiori complete.

Proposition 1.3 A complete partial order < D;≤> is coherent iff any con-
sistent triple < x, y, z > has a least upper bound.

Proof: Any consistent X that has at most 3 elements obviously has a least
upper bound. Now consider a consistent finite subset X = {x1, x2, . . . , xn}
of D such that |X| = n ≥ 3. Assume, by induction hypothesis, that any
consistent subset Y such that 1 ≤ |Y | < n has a lub. Now the set {x1 ∨
x2, x2 ∨ x3, . . . , xn−2 ∨ xn−1, xn} contains at most n − 1 elements. Any two
elements in it are compatible, because

i) if both are of the form xi∨xi+1, they are dominated by
⋃

{x1, x2, . . . , xn−1},
which exists by induction hypothesis.

ii) xi∨xi+1 and xn are compatible since the triple {xi, xi+1, xn} is consistent
and thus admits a lub.

Consequently, using again the induction hypothesis, the set X has a lub. If
now X is infinite, the set Y of the lubs of the finite subsets of X is a directed
set and we have

⋃

X =
⋃

Y . 2
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Definition 1.7 In a partial order < D;≤>, an element x is isolated (or
compact) iff in any directed set with a lub that dominates x one can find an
element y that dominates x. In symbols:

∀X ⊂ D, X directed x ≤
⋃

X ⇒ ∃y ∈ X x ≤ y

Notation: The set of isolated elements less than x is noted A(x). An element
in A(x) is called an approximant of x. The set of all isolated elements in
< D;≤> is written A(D).
Remark: An element x is isolated iff x ∈ A(x). Hence A(D) =

⋃

x∈DA(x)

Proposition 1.4 In a conditionally complete partial order < D;≤>

i) If two isolated elements a and b are compatible then a ∨ b is isolated.

ii) For any x, the set A(x) is directed.

Proof:

i) Since a and b are compatible, their lub a∨b exists. Consider now a directed
set S such that a ∨ b ≤

⋃

S. Since a and b are isolated, from a ≤
⋃

S
and b ≤

⋃

S we deduce that there are two elements a′ and b′ in S with
a ≤ a′ and b ≤ b′. Since S is directed, there is a c in S with a′ ≤ c and
b′ ≤ c hence a ≤ c and b ≤ c and thus a ∨ b ≤ c. Hence a ∨ b is isolated.

ii) If a and b are two approximants of x, the element a ∨ b is isolated by i)
and dominated by x, thus it is also an approximant of x. Hence A(x) is
directed. 2

Definition 1.8 A partial order < D;≤> is algebraic iff for any x in D the
set A(x) is directed and

x =
⋃

A(x)

If additionally A(D) is denumerable, < D;≤> is ω–algebraic.

Definition 1.9 We will call computation domain a coherent and ω–algebraic
partial order.

Notation From now on we abandon the precise notation < D;≤>. We merely
use the same letter for the set and the partial order, unless more precision
becomes necessary.

Lemma 1.1 In a computation domain x ≤ y ⇔ A(x) ⊂ A(y).
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Proof: From left to right the implication is immediate. Conversely, since
A(x) and A(y) are directed they have lubs that verify

⋃

A(x) ≤
⋃

A(y) and
by algebraicity we deduce

⋃

A(x) = x ≤ y =
⋃

A(y). 2

Corollary 1.1 In a computation domain, if x is isolated and x < y then there
is an approximant z of y with x < z ≤ y.

Proof: Let t be an element of the necessarily non empty set A(y)\A(x). Since
x and t are both approximants of y, so is x ∨ t. Taking z = x ∨ t, we have
x < z ≤ y. 2

Corollary 1.2 If an element y in a computation domain is not isolated,
then one can find an infinite strictly increasing chain of isolated elements
{⊥, x1, x2, . . . , xn, . . .} approximating y, i.e. with

⊥ < x1 < x2 < · · · < xn < · · · < y

Proof: The minimum element ⊥ is isolated and we have ⊥ < y. Now assume
that we have a chain {⊥, x1, x2, . . . , xn−1} of n isolated elements such that

⊥ < x1 < x2 < · · · < xn−1 < y

Since xn−1 is isolated, one can find by the previous Corollary an isolated
element xn with xn−1 < xn ≤ y. But since y is not isolated, certainly xn < y
and the chain has been extended to contain n + 1 elements. 2

Proposition 1.5 The cartesian product of a countable number of computation
domains is a computation domain.

Proof: Let α be an ordinal, 1 ≤ α ≤ ω and {< Di;≤i >}i<α a fam-
ily of computation domains. An element x in D =

∏

i<α Di is a vector
< x0, x1, . . . , xi, . . . >. The set D inherits the relation ≤ defined compo-
nentwise:

∀x, y ∈ D x ≤ y ⇐⇒ ∀i < α xi ≤ yi

Two elements in D are compatible iff they are compatible componentwise.
Indeed, if x and y are compatible, there exists z with x ≤ z and y ≤ z
hence ∀i xi ≤i zi and ∀i yi ≤i zi, so x and y are compatible componentwise.
Conversely, if ∀i ∃zi xi ≤i zi, yi ≤i zi, the vector z =< z0, z1, . . . , zi, . . . >
dominates x and y which are thus compatible. Similarly, if x ↑ y we have
x ∨ y =< x0 ∨ y0, . . . , xi ∨ yi, . . . >. A subset X of D is consistent iff it is
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Figure 1: The domain T

consistent componentwise. Hence if each of the partial orders < Di;≤i > is
coherent, so is < D;≤>.

Let us prove now that < D;≤> is ω-algebraic. Consider the subset of D
defined by

I =
⋃

i<α

{x|xi ∈ A(Di) and ∀j < α, j 6= i, xj = ⊥Dj}

The elements of I are vectors all components of which are the minimum
element in the relevant domain, except possibly for the i-th component which
is an isolated element in Di. Any element in I is isolated in D. Indeed, let X
be a directed subset of D with x ≤

⋃

X. Since the i-th component of X is a
directed set and xi is isolated in Di, there exists zi in Xi with xi ≤ zi. As well
for any j with j < α, j 6= i we have xj = ⊥Dj ≤j zj so we obtain x ≤ z.

Consider now an arbitrary element x in D. The set Yx defined by Yx =
{y | y ∈ I, y ≤ x} has a least upper bound

⋃

Yx since it is consistent. Of
course

⋃

Yx ≤ x. But since each of the < Di;≤i > is ω-algebraic we have also

(
⋃

Yx)i =
⋃

(yi|y ∈ Yx) ≥
⋃

A(xi) = xi

thus
⋃

Yx = x. Let Zx be the directed set obtain by adding to Yx the least
upper bounds of its finite subsets. We still have

⋃

Zx = x. Hence if x is
isolated, there exists an element z in Zx with x ≤ z. But z must be less
than x, so z = x. An element in D is isolated iff it is the least upper bound
of finitely many elements of I. Hence D contains at most denumerably many
isolated elements. Futhermore, Zx is directed and x =

⋃

Zx, so that the
domain is ω-algebraic. We have shown that D is coherent and ω-algebraic, so
it is a computation domain.2
Example: Let T =< {⊥, 0, 1};≤> be the three element computation domain
where 0 ‖ 1. The cartesian product of denumerably many copies of T is the
computation domain Tω. This domain is discussed in detail by Plotkin [Plo78]
who shows that it is a universal domain in a precise mathematical sense.
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Definition 1.10 Let < D;≤> and < D′;≤′> be two complete partial orders.
A function f from D to D′ is continuous iff

∀X ⊂ D, Xdirected f(
⋃

X) =
′

⋃

{f(x)|x ∈ X}(1)

This definition is not very convenient to use. In a computation domain, we
will use the following characterization:

Lemma 1.2 Consider two computation domains < D;≤> and < D′;≤′>.
A function f from D to D′ is continuous iff

{

i) f is monotonic, i.e.∀x, y ∈ D x ≤ y ⇒ f(x) ≤ f(y)
ii) ∀e ∈ A(f(x))∃d ∈ A(x) such that e ≤′ f(d)

(2)

Proof:

a) We show first that (1) implies (2). Consider a function f verifying (1)
and two elements x and y in D with x ≤ y. The set {x, y} is directed
since y = x ∨ y. Therefore f(y) = f(x) ∨′ f(y). Hence f(x) and f(y)
are comparable and f(x) ≤′ f(y). Thus f is monotonic. The image of
a directed set by a monotonic function is a directed set f(X) and in
particular, since for any x the set A(x) is directed, the set f(A(x)) is
directed. Let e be an arbitrary approximant of f(x). We have

e ≤′ f(x) = f(
⋃

A(x)) =
′

⋃

f(A(x))

Since e is isolated and f(A(x)) is directed, there exists an element d in
A(x) with e ≤ f(d).

b) We show now that (2) implies (1). Let X be a directed subset of D and f a
function from D to D′ verifying (2). Since f is monotonic, the set f(X)
is directed and

⋃′ f(X) ≤′ f(
⋃

X). To prove the converse inequality
f(

⋃

X) ≤′
⋃′ f(X) consider an arbitrary approximant e of f(

⋃

X). By
(2) one can find d in A(

⋃

X) with e ≤′ f(d). Since d is isolated and X
is directed, from d ≤

⋃

X one deduces that there is an element x in X
such that d ≤ x. We have f(x) ≤′

⋃′ f(X) and, since f is monotonic,
f(d) ≤′ f(x) so

∀e ∈ A(f(
⋃

X)) e ≤′
′

⋃

f(X)

and consequently A(f(
⋃

X)) ⊂ A(
⋃′ f(X)). By Lemma 1.1 f(

⋃

X) ≤′
⋃′ f(X) and finally f(

⋃

X) =
⋃′ f(X).2
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Proposition 1.6 Consider the computation domains D1, D2, and D. A func-
tion f from D1×D2 to D is continuous iff the functions f1 = λy.f(x1, y) and
f2 = λy.f(y, x2) are continuous for any x1 in D1 and any x2 in D2.

Proof: First, if f is continuous, so are the functions in the familyf1 and f2.
Let us show this for family f1. Consider a directed subset S1 of D2, and the
subset S of D1 ×D2 defined by S = {< x1, y > |y ∈ S1}. Now

f1(
⋃

2

S1) = f(x1,
⋃

2

S1) = f(
⋃

S) =
⋃

f(S) =
⋃

f(x1, S1) =
⋃

2

f1(S1)

Assume now conversely that the families of functions f1 and f2 are continuous.
Then f is monotonic. Indeed, if < x1, y1 >≤< x2, y2 > then f(x1, y1) ≤
f(x2, y1) ≤ f(x2, y2). Consider now a directed subset S of D1×D2, and let S1
and S2 be its projections on D1 and D2. Take T = {< x, y > |x ∈ S1, y ∈ S2}.
Because the families f1 and f2 are continuous we can write:

f(
⋃

X) = f(
⋃

S1,
⋃

S2) =
⋃

f(S1,
⋃

S2) =
⋃

f(S1, S2) =
⋃

f(T )

Since S is directed and f is monotonic, we now that f(S) is directed. Further-
more, S is included in T , so

⋃

f(S) ≤
⋃

f(T ). Take now an arbitrary element
< x, y > in T . There are certainly two elements < x, y1 > and < x1, y > in S
because S1 and S2 are projections of S. Since S is directed, there is < x2, y2 >
in S that dominates both, thus < x, y >≤< x2, y2 >. As f is monotonic, we
obtain

⋃

f(T ) ≤
⋃

f(S). We conclude f(
⋃

S) =
⋃

f(T ) =
⋃

f(S), thus f is
continuous.2

The result above generalizes trivially to functions with more than two
arguments.

In a computation domain D, two elements x and y always have a greatest
lower bound x ∧ y (Proposition 1.2) and one can define a function ∧ from D2

to D by ∧ = λxy. x ∧ y.

Proposition 1.7 If D is a computation domain ∧ is a continuous function
from D2 to D.

Proof: By the previous result, it is sufficient to prove that the functions
∧1 = λy.x∧ y and ∧2 = λy.y ∧x are continuous. Since ∧ is commutative, it is
in fact sufficient to prove that ∧1 is continuous. We use the characterization
of Lemma 1.2.

i) ∧1 is monotonic: y1 ≤ y2 ⇒ x ∧ y1 ≤ x ∧ y2
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ii) Le e be an approximant of x ∧ y. The element e is an approximant of x
and y. So, taking this e in A(y) we have e ≤ x ∧ e = ∧1(e). 2

Theorem 1.1 (Knaster-Tarski) If D is a computation domain, any conti-
nous function f from D to D has a least fixed point Y f and

Y f =
⋃

{fn(⊥)|n ≥ 0}

Proof: Take S = {fn(⊥)|n ≥ 0}. The set S is not empty because it contains
⊥ = f0(⊥). Since f is monotonic, it is trivial to show by induction that

∀n ≥ 0 fn(⊥) ≤ fn+1(⊥)

hence S is a chain. Thus S has a least upper bound
⋃

S. Consider Y f =
⋃

S.
Since f is continuous and S is directed:

f(Y f) = f(
⋃

S) =
⋃

f(S) =
⋃

{fn(⊥)|n ≥ 1}

But since ⊥ is the minimum element of D
⋃

{fn(⊥)|n ≥ 1} =
⋃

[

{fn(⊥)|n ≥ 1}
⋃

{⊥}
]

=
⋃

S = Y f

Thus Y f = f(Y f) which shows that Y f is a fixed point of f . Consider now
any fixed point x of f . We have f0(⊥) = ⊥ ≤ x and if fn(⊥) ≤ x, because f
is monotonic fn+1(⊥) = f(fn(⊥)) ≤ f(x) = x. Therefore S is dominated by
x, and so is its lub Y f . Hence Y f is the least fixed point of f .2
Notation: If D and E are computation domains, we will note [D → E] the set
of continuous functions from D to E. This space inherits an ordering relation
defined by extensionality:

∀f, g ∈ [D → E] f ≤ g ⇐⇒ ∀x ∈ D f(x) ≤E g(x)

The constant function λx.⊥E is the minimum element in [D → E]. The
following result is fundamental.

Theorem 1.2 If D and E are computation domains, the set [D → E] together
with its natural ordering is a computation domain.

Proof:
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a) Let F be a consistent subset of [D → E]. For any x in D the set {f(x)|f ∈
F} is consistent and thus admits a lub gx. Let us show that the function
λx.gx is continuous. Let X be a directed subset of D with lub z

gz =
⋃

E

{f(z)|f ∈ F}

Since all functions in F are continuous,

gz =
⋃

E{f(x)|x ∈ X, f ∈ F}
=

⋃

E{gx|x ∈ X}

hence λx.gx is the least upper bound of F in [D → E]. Thus [D → E]
is coherent.

b) We must show now that [D → E] is ω-algebraic. Consider the family of
functions indexed over A(D)×A(E) defined by:

ϕd,e(x) =

{

e if d ≤ x
⊥E otherwise

(d ∈ A(D), e ∈ A(E))

1. The functions in this family, called step functions, are continuous
Indeed:

i) ϕd,e is monotonic (obvious)
ii) Let a be an approximant of ϕd,e(x). If ϕd,e(x) = ⊥E , then

a = ⊥E ≤ ϕd,e(⊥D) with ⊥D ∈ A(x)

If ϕd,e(x) = e, then d ≤ x thus d ∈ A(x) since d is isolated.
But then a ≤ ϕd,e(d) = e with d ∈ A(x).

2. The step functions are isolated elements of [D → E]. Let F be
a directed subset of [D → E] such that ϕd,e ≤

⋃

F . The result
obtained in part a) allows one to write:

e = ϕd,e(d) ≤ (
⋃

F )(d) =
⋃

{f(d)|f ∈ F}

but e is isolated and {f(d)|f ∈ F} is a directed set. Thus there
exists a function g in F with e = ϕd,e(d) ≤ g(d). But now if x ≥ d
then ϕd,e(x) = e ≤ g(d) ≤ g(x), and otherwise ϕd,e(x) = ⊥E ≤ g(x)
so that ϕd,e ≤ g.
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3. Any continuous function in [D → E] is the least upper bound of the
step functions under it. Define S(f) = {ϕd,e|ϕd,e ≤ f}. Remark
that ϕd,e ∈ S(f) ⇐⇒ e ∈ A(f(d)). This obvious from left to right
because ϕd,e(d) = e and from right to left by monotonicity of f .
Using now the continuity of f

∀xf(x) = f(
⋃

A(x)) =
⋃

d∈A(x) f(d)
=

⋃

d∈A(x),e∈A(f(d)) e
=

⋃

d∈A(x),e∈A(f(d)) ϕd,e(x)
=

⋃

e∈A(f(d)) ϕd,e(x)

So ∀x f(x) = (
⋃

S(f))(x), thus f =
⋃

S(f)
4. The isolated elements of [D → E] are exactly the finite unions of

step functions. Consider an isolated element f in [D → E], and the
set S′(f) obtained in closing S(f) by finite unions. The set S′(f)
is directed and we have f =

⋃

S(f) =
⋃

S′(f). Since f is isolated,
there exists in S′(f) an element g such that f ≤ g. But since g is
a finite union of elements of S(f) we also have g ≤ f . Thus f = g
showing that f is a finite union of step functions.

5. [D → E] is ω-algebraic. For all f we have f =
⋃

S(f) =
⋃

S′(f).
Thus [D → E] is algebraic. As D and E have at most denumerably
many isolated elements, there exists only denumerably many step
functions, hence only denumerably many isolated elements in [D →
E].

We have proved that when D and E are computation domains, [D → E]
is coherent and ω-algebraic, hence also a computation domain.2

The theorem above allows one, starting from computation domains, to
construct a hierarchy of computation domains such as [D → E], [D → [D →
E]], [[D → E] → [D → E]] etc.

2 Concrete domains of computation

In this section, we try to translate into mathematical form a number of ideas
that come from earlier research. It is difficult to figure out what is critical to
the well-functioning of a complex operational mechanism. In contrast, we have
more experience in finding the general conditions under which a mathematical
result is valid 1.

1A similar approach is followed by J-J. Lévy in his Ph. D. Thesis [Lev78]
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The central result of this work is the Representation Theorem that, in a
sense indicates that we have been successful in our endeavor. Starting from
the general idea of a computation domain, we justify progressively the need
to restrict this notion until we reach the definition of a concrete computation
domain and study its properties.

2.1 Initial motivations

In the model theory of programming languages as developed starting with the
work of Scott [Sco70, Sco76], there is no distinction between data and func-
tions. A single mathematical structure, the computation domain is defined and
all objects with which one computes are found in appropriate computation do-
mains. This is not surprising because the main objective of this theory was,
at least initially, to develop a functional model of the λ-calculus of Church,
language where these distinctions don’t exist. Indeed certain programming
languages such as ISWIM [Lan76], GEDANKEN [Rey72], ML [GRW78], etc.
exhibit similar characteristics. However, most programming languages make
a very clear distinction between data and procedures. Is it possible to redis-
cover this distinction in the models of programming languages, i.e. through
the study of their denotational semantics? Is it possible to analyze more pre-
cisely the structure of computation domains so as to separate, for example,
the domains whose structure is sufficiently simple that they don’t need to be
understood as function spaces?
Examples:

We call ⊥ the single element computation domain, 0 the computation do-
main with two elements, T =< {⊥, 0, 1};≤> the three element domain in
which 0 and 1 are incomparable. These three spaces, as well as their carte-
sian products in a finite number of copies are clearly data spaces rather than
functional spaces.

The examples above might lead one to partition computation domains into
two classes, according to their being finite or infinite. Such a categorization is
much too rough for two reasons:

i) We will be unable to give a representation as a data structure for certain
finite domains.

ii) On the other hand, certain infinite domains must clearly be categorized
as data spaces. For example, this will be the case for N⊥ and N , defined
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from the set N of natural numbers by:










N⊥ =< {⊥} ∪N ;≤> with ∀x, y ∈ N x 6= y =⇒ x ‖ y
N =< N ∪ {∞};≤> where ≤ is the natural order on N

completed by ∀x ∈ N, x < ∞

We are going to characterize axiomatically a certain class of computation
domains. In this endeavour, we shall follow two fundamental principles:

1. (M. Smyth) All axioms that we postulate specify a property of the iso-
lated elements in a computation domain. Other elements are constructed
from the stock of isolated elements by a limit mechanism; their proper-
ties will therefore be deduced from the properties of isolated elements.

2. The class of computation domains that we are trying to define must
be closed by certain elementary constructions, such as finite or infinite
cartesian products, or taking upper sections (cf. section 1.2). However,
it doesn’t need to be closed by exponentiation, i.e. when constructing
function spaces.

2.2 The isolated elements axiom

Isolated elements in a computation domain are meant to stand for finite
amounts of information. When dealing with data, we would like to be able to
reason by induction on these elements. This implies that the set of isolated
elements should be well founded with respect to the relation ≤ , i.e. that there
should be no infinite chain {x1, x2, . . . , xn, . . .} with

{x1 > x2 > · · · > xn > · · ·}

In this way, an isolated element cannot be decomposed indefinitely. We want
also to express the intuitive idea that an isolated element can be built using
only a finite number of components. This leads to considering property I:

Property I
Between any two distinct comparable isolated elements, any chain of iso-
lated elements is finite.

Proposition 2.1 Let < D;≤> be a computation domain satisfying property
I. Consider an arbitrary element x in D and an isolated element y. If x is
dominated by y, then x is isolated.

13



Proof: If x is not isolated, then by Corollary 1.2 there is an infinite chain of
isolated elements {⊥, x1, x2, . . . , xn, . . .} with

⊥ < x1 < x2 < . . . < xn < . . . < x

If y is isolated and x ≤ y, then necessarily x < y. Hence the chain

{⊥, x1, x2, . . . , xn, . . . , y}

is an infinite increasing chain of isolated elements between ⊥ and y. The
existence of this chain contradicts property I, so x is isolated.2

Corollary 2.1 In a computation domain, Property I is equivalent to I1:

Property I1
Between any two distinct comparable isolated elements, any chain is finite.

Proof: Property I1 implies obviously Property I. Conversely, if x and y are
isolated and x ≤ y, then by the previous result, any element z such that
x ≤ z ≤ y is isolated. Since any chain between x and y contains only isolated
elements, it is finite. 2

Definition 2.1 In a conditionally complete partial order < D;≤>, an ideal
is a non empty subset J of D such that:

i) ∀x ∈ J, ∀y ∈ D y ≤ x =⇒ y ∈ J (i.e. J is downward closed)

ii) ∀x, y ∈ J x ↑ y =⇒ x ∨ y ∈ J

Corollary 2.2 In a computation domain, property I is equivalent to property
I2:

Property I2 The set of isolated elements is a well founded ideal.

Proof: If a computation domain D verifies property I, then the set of its
isolated elements is an ideal by Proposition 1.4 and Proposition 2.1. Since
I implies I1, there is no infinite decreasing chain in A(D). Hence property I
implies property I2.

Conversely, assume D has property I2. Consider an arbitray x less than
some isolated element y in D. There is no infinite decreasing chain between x
and y since A(D) is well-founded. If there were an infinite increasing chain

{x, z1, z2, . . . , zn, . . . , y} with x < z1 < z2 < · · · < zn < · · · < y

14



one would have
⋃

zi = z ≤ y. Now z is not isolated and z < y, which
contradicts the hypothesis that A(D) is an ideal.

Consider now any chain C between x and y. Since C does not contain
infinite decreasing chains, C is an ordinal. If C is infinite, then it contains the
smallest limit ordinal ω. But ω contains an infinite increasing chain, which
cannot be the case for C. Hence C is a finite chain, and we conclude that
property I2 implies property I.2
Examples: Domain D1 =< N ∪{∞,>};≤> with the natural ordering on N
and ∀x ∈ N x < ∞ and ∞ < > does not satisfy property I2 because A(D1) is
not an ideal (> is isolated, but∞ is not). Domain D2 =< Z∪{−∞, +∞};≤>
with the natural ordering on Z and ∀x ∈ Z −∞ < x < +∞ does not verify
I2 because A(D2) is not well founded. However, all finite domains, as well as
N⊥ and N have property I.

Definition 2.2 Consider a partial order < D;≤> and two elements x and y
in D. We say that y covers x iff:

i) x < y

ii) ∀z x ≤ z ≤ y =⇒ x = z or y = z

One may also say that y is just above x. This relation is noted x −< y. Its
reflexive closure is written x =< y

Proposition 2.2 Consider a computation domain < D;≤> with property I.
If x and y are isolated elements in D, then we have x ≤ y iff:

• Either x = y

• Or there exists a finite sequence {z0, z1, . . . , zn} of elements in A(D)
with z0 = x, zn = y and zi −< zi+1 for 0 ≤ i < n.

Proof: First, if such a sequence exists, then by transitivity x ≤ y. Conversely,
assume x < y. Let H be the set of chains with elements inA(D) with minimum
x and maximum y. The set H is not empty because it contains in particular the
chain {x, y}, and we can order it by inclusion. In the partial order < H;⊂>
there cannot be an infinite increasing chain because < D;≤> has property I.
Let C = {z0, z1, . . . , zn} be a maximal element in < H;⊂>; we will call such
a chain a maximal chain between x and y. Without loss of generality we may
assume z0 < z1 < · · · < zn.

15



⊥
⊥•

O
⊥•

•>

T
⊥•
�
�
�
�
�
�

1•

A
A
A
A
A
A

0•

O2

⊥
•�
�
�
�
�
�< >,⊥ >
•A
A
A
A
A
A
•

A
A
A
A
A
A
•

< ⊥,> >
�
�
�
�
�
�

< >,> >

O × T
⊥
•

•
< >,⊥ >
�
�
�
�
�
�
•< >, 1 >

A
A
A
A
A
AA

A
A
A
A
A
•< >, 0 >

�
�
�
�
�
� •

< ⊥, 1 >�
�
�

�
�
�

•
< ⊥, 0 >@

@
@
@
@
@

Figure 2: Sample finite domains

N⊥

⊥•
HH

HH
HH

HH
HH•

0

Q
Q

Q
Q

Q
QQ

•
1

@
@

@
@@

•
2

A
A
A
AA
•
3

�
�
�
��
•
n. . . . . .

�
�
��

��
��
�

N

• 0

• 1

• 2

• 3

• n
...

...

...
• +∞

Figure 3: Sample infinite domains

Now we must have zi −< zi+1 (0 ≤ i < n), because otherwise one could
extend C with an isolated element z such that zi < z < zi+1 contradicting
maximality of C in < H;⊂>. Similarly, it must be the case that z0 = x and
zn = y.2

From now on we will find it useful to represent configurations of elements
belonging to a partial order, or partial orders themselves, by graphs called
Hasse diagrams. The nodes in a diagram associated to < D;≤> denote
elements in D and two nodes a and b are connected by an edge going upwards
iff a −< b in D. Simple conventions will be used to represent infinite domains.
As an example, Figures 2 and 3 show a number of partial orders that we have
already mentioned.

Before proceeding with the study of computation domains that satisfy
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property I, we notice that only trivial function spaces have this property.

Lemma 2.1 If D and E are computation domains, if D is infinite and E has
at least two elements, then [D → E] does not satisfy property I.

Proof: Observe first that if D has infinitely many elements, then it has in-
finitely many isolated elements by Corollary 1.2. As well, if E has at least two
elements, then there is an isolated element e in E with ⊥E 6= e. Consider now
the infinite partial order < A(D);≤D >. By Koenig’s lemma:

a) Either there exists an infinite increasing chain of elements in A(D),

b) Or there is an element d in A(D), and an infinite set {di}i∈N of elements
in A(D) with

{

∀i ∈ N d < di
∀i, j ∈ N di ‖ dj if i 6= j

Case a. Consider an infinite increasing chain {d1, d2, . . . , dn, . . .} in A(D), i.e.
such that d1 < d2 < · · · < dn < · · ·. and the sequence of step functions ϕdi,e.
This infinite sequence of isolated elements in [D → E] is decreasing

ϕd1,e > ϕd2,e > ϕd3,e > · · · > ϕdn,e > · · ·

thus A([D → E]) is not well-founded and [D → E] does not have property I2.
Case b. In that case we have ∀i ∈ N ϕdi,e < ϕd,e since d < di. The set Φ of
functions {ϕdi,e}i∈N has an upper bound. Since [D → E] is a computation
domain, it has a least upper bound φ. Naturally we have φ ≤ ϕd,e. But since
∀i ∈ N ϕdi,e(d) = ⊥E necessarily φ(d) = ⊥e. But ϕd,e(d) = e 6= ⊥E , so
φ < ϕd,e(d).

Let us show now that φ is not isolated in [D → E]. If φ were isolated,
there would exist a finite subset J of N with φ =

⋃

j∈J ϕdj ,e. Take an integer
k not in J . Since ϕdk,e(dk) = e and ϕdk,e ≤ φ we have e ≤ φ(dk). But by
hypothesis

∀j ∈ J dj ‖ dk

so that ϕdj ,e(dk) = ⊥E and also φ(dk) = ⊥E . Since e is different of ⊥E , we
have a contradiction. So φ is not isolated in [D → E]. Then A([D → E ]) is
not an ideal.

We have shown in both cases that [D → E] does not satisfy I.2
Remark: This lemma distinguishes sharply between domains that appear to
be very similar. For example, the domain [N⊥ → O] does not have property
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I. In contrast Oω, the cartesian product of denumerably many copies of O,
satisfies property I. This is because Oω is only isomorphic to the set of strict
functions in [N⊥ → O], i.e. the functions f such that f(⊥) = ⊥O. To be very
precise, the non-strict function λx.>O in [N⊥ → O] is isolated and it does not
correspond to any element in Oω. But this function dominates the non-strict
function ψ defined by:

ψ(x) =

{

>O if x 6= ⊥N⊥
⊥O if x = ⊥N⊥

which is not isolated in [N⊥ → O] .

Definition 2.3 Consider a partial order < D;≤> with a minimum element
⊥. An atom is an element of D that covers ⊥, and we say that D is atomic
iff any element distinct from ⊥ dominates an atom.

In symbols:
∀x 6= ⊥∃y ⊥ −< y ≤ x

Proposition 2.3 A computation domain that verifies property I is atomic.

Proof: Consider first an isolated element x with x 6= ⊥. By Proposition
2.2 there exists a finite sequence {z0, z1, . . . , zn} of elements in A(D) with
⊥ = z0 −< z1 −< · · · −< zn = x. Hence z1 is an atom and ⊥ −< z1 ≤ x.

If now x is not isolated, let e be an element in A(D) which is distinct from
⊥. Such an element must exist, otherwise A(x) = {⊥} = A(⊥) and thus, by
Lemma 1.1, x = ⊥. Now we have just shown that there exists an element y
with ⊥ −< y ≤ e. By transitivity, we obtain ⊥ −< y ≤ x.2

Property I and its Corollary, atomicity, are interesting properties for a
computation domain, and they seem to capture a certain intuition about data
domains. We will see now that these properties are not preserved under a
fundamental operation on computation domains.

Definition 2.4 Consider a partial order < D;≤> and two elements x and y
in D with x ≤ y. The interval [x, y] is the set {z|x ≤ z ≤ y} and the upper
section of x, noted [x) is the set {z|x ≤ z}. Of course, intervals and upper
sections inherit the partial order ≤. 2

Proposition 2.4 Intervals and upper sections of a computation domain are
computation domains.

2We also call [x, y] and [x) the partial orders thus defined
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Proof: As reasoning proceeds identically in both cases, we will only prove
the result for upper sections. Consider an arbitrary upper section [x) in a
computation domain < D;≤>. Any non empty consistent subset of [x) is a
consistent subset of D and therefore has a least upper bound in D. This least
upper bound is necessarily in [x).

Furthermore, the empty set also admits a least upper bound in [x). So
< [x);≤> is a coherent partial order. Let us show now that is is also ω-
algebraic. Let {di}i∈I be an enumeration of A(D). For any i in I define

ci =

{

x ∨ di if x ↑ di
x otherwise

Of course, each element ci defined in this way belongs to [x) and we will
show that {ci}i∈I = A([x)).

First, the element x is minimum in [x), so it is isolated in < [x);≤>.
Consider now an element ci different of x, and a directed subset X of [x) such
that ci ≤

⋃

X. Since ci = x∨di, we have also di ≤
⋃

X. Since di is isolated in
D, and X is directed, we have di ≤ y for some y in X. Since y is in [x), thus
larger than x we have ci = x ∨ di ≤ x ∨ y = y which proves that ci is isolated
in [x). Thus {ci}i∈I ⊂ A([x)).

Consider now an arbitrary element of [x). Since D is algebraic

y =
⋃

{di|i ∈ I, di ≤ y}

Since y dominates x, we have also y ∨ x = y =
⋃

{di ∨ x|i ∈ I, di ≤ y}. But
di ≤ y iff di ∨ x ≤ y

y =
⋃

{ci|i ∈ I, ci ≤ y}
The equality above proves that < [x);≤> is algebraic. Furthermore, the set
{ci|i ∈ I, ci ≤ y} is directed, so if y is isolated in < [x);≤>, for some j in I
y = cj . It follows that A([x)) = {ci}i∈I so A([x)) is denumerable.

The partial order < [x);≤> is coherent and ω-algebraic, so it is a compu-
tation domain. 2

The counterexample on Figure 4(a) shows that if a computation domain
has property I, it is not necessarily the case for its upper sections. In that
domain, we have a chain {⊥, x1, x2, . . . , xn, . . .} where

⊥ −< x1 −< x2 −< x3 · · · −< xn −< · · ·

with limit x. Additionally atom a1 is assumed to be compatible with x, and
incomparable with each of the xi (thus x). Let us now assume also:

∀j ≥ 1, ∀k ≥ j xk ‖ aj and ∃aj+1 with xj −< aj+1 < xj ∨ aj
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Figure 4: Property I is not valid in upper sections

and ∀j ≥ 1 x ∨ aj > x ∨ aj+1. The partial order defined in this fashion is a
computation domain satisfying property I. In [x) the sequence {x ∨ aj}j≥1 is
an infinitely decreasing chain of isolated elements of < [x);≤> between x and
y. (Similarly, one can construct an example exhibiting an infinite increasing
chain of isolated elements of < [x);≤> between x and y, see Figure 4(b)).

As we indicated in the introduction to this section, we consider it desirable
for the notion of data domain to be preserved under upper sections and inter-
vals. This means that we have to consider a stronger property than property
I.

3 The covering relation

We have seen that the isolated elements of < [x);≤> are, but for x itself,
of the form x ∨ d with d isolated, compatible and incomparable with x. The
following property postulates a similar characterization of the atoms in an
upper section.

Property C

If x and y are two compatible isolated elements

x ∧ y −< x =⇒ y −< x ∨ y
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Figure 5: Investigating Property C

Remarks:

i) If x and y are comparable and verify x ∧ y −< x, one cannot have x ≤ y
otherwise x ∧ y = x −< x which is impossible. Hence y ≤ x and x ∧ y =
y −< x. In that case, property C holds trivially.

ii) While property I did not exclude any finite domain, this is not the case
for property C. This is not too surprising, as it already happens for
some axioms of computation domains. For example, the partial order
on Figure 5(a) is not conditionally complete, the partial order on Figure
5(b) is not consistent. The partial orders on Figure 5(c) and 5(d) do not
satisfy Property C.

In the diagram on Figure 5(b), coherence forces one to add a maximum
element g, yielding the domain of Figure 5(e).

In the domain of Figure 5(c), elements a and c are compatible and ⊥ =
a ∧ c −< a and ⊥ −< c as well. So by property C, one should have
a −< a ∨ c and c −< a ∨ c. If we add an element e = a ∨ c that covers
a and c and is covered by g, we obtain again the domain of Figure
5(e) that satisfies C. Finally, in the domain of Figure 5(d), we have
⊥ = a ∧ f −< f but a ∨ f = g does not cover a. If we add an element c
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so that ⊥ −< c −< f and b = a ∨ c with b −< g, we obtain the domain
of Figure 5(f) that has property C.

iii) Property C concerns only pairs of compatible elements. This property
can only constrain the structure of sub-lattices in a computation do-
main. In lattice theory, this property is known as the lower covering
condition[Bir67]. Although a computation domain is not a lattice, the
forthcoming developments are largely inspired by the study of this con-
dition in lattice theory.

We begin by showing, in several steps, that if the set of isolated elements
in a computation domain has property I and C, then the whole domain has
property C.

Proposition 3.1 Let D =< D;≤> be a computation domain with properties
I and C. We have ∀x, y ∈ D x −< y ⇒ ∃z ∈ A(y) x ∧ z −< z and y = x ∨ z.

Proof:

x ∧ z
•L
L
L
L
L

•x ppppppppp�
��

��p p p p p •ppppppppp
y

��
��
�•zL
L
L
L
L

If x −< y, a fortiori x < y. Consider an element d of A(y) \A(x), which must
exist by Lemma 1.1. Since d is not an approximant of x we have x ∧ d 6= d.
As D has property I, we deduce:

i) x ∧ d ∈ A(D) because d ∈ A(D).

ii) ∃z ∈ A(y) x ∧ d −< z ≤ d by Proposition 2.2.

This element z is not dominated by x, otherwise it would also be dominated
by x ∧ d. Hence x ∧ z = x ∧ d. Since x and d are compatible, so are x and z
and by Property C, x −< x ∨ z.

Since x and z are both less than y, we obtain: x −< x∨ z ≤ y. But x −< y
so y = x ∨ z, which proves the result. 2
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Proposition 3.2 In a computation domain having Property I, Property C is
equivalent ot Property ̂C:

Property ̂C

If x and y are any two compatible elements

x ∧ y −< x =⇒ y −< x ∨ y

Proof: Property ̂C trivially implies property C. The converse is shown in two
steps.

1. Assume first that x is isolated and y is arbitrary, with x ↑ y and x∧y −<
x. As we have already observed, only the case where x ‖ y is interesting.
By Property I3, if x is isolated, so is x∧y. Assume now that there exists
a v such that y < v < x ∨ y. Property C excludes this possibility when
y is isolated. Since y < v, there exists an approximant v1 of v which is
not an approximant of y. Since x covers x ∧ y, x cannot dominate v,
because we would then have y = x ∧ y −< x = x ∨ y.

x ∧ y
•��

���
B
B
B
B
B
B
B
B
B
B
B
B
B

•t′ �
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��
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•y ��
��
��

���
•
v

•
v′

•x

•x ∨ y

•x ∨ t′

Therefore, there is an approximant v2 of v which is not an approximant
of x. Since x∨y is isolated by Property I3, we can construct the isolated
element v′ = v1 ∨ v2 ∨ (x ∧ y). This element verifies:

v′ ∈ A(v) v′ /∈ A(y) v′ /∈ A(x) x ∧ y ≤ v′
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Note also that v′ doesn’t dominate x, otherwise v would, which would
contradict v < x ∨ y. Since v′ is dominated by x ∨ y we have now

v′ ≤ x ∨ y = x ∨ (
⋃

A(y)) =
⋃

z∈A(y)

(x ∨ z)

Since v′ is isolated and the set {x ∨ z|z ∈ A(y)} is directed, there exists
an approximant t of y such that v′ ≤ x ∨ t. Now take t′ = t ∨ (x ∧ y):

v′ ∨ (x ∧ y) = v′ ≤ x ∨ (t ∨ (x ∧ y)) = x ∨ t′

The element t′ cannot dominate x, otherwise we would have x ∨ t′ = t′

thus v′ ≤ t′, which is impossible because v′ is not an approximant of y.
So t′ ∧ x = x ∧ y and by Property C t′ −< x ∨ t′. Take then w = v′ ∧ t′.
We have t′ ≤ w ≤ x∨t′ so that either w = t′ or w = x∨t′. The first case,
w = t′ is impossible because it implies v′ ≤ t′, hence v′ ∈ A(y). The case
w = x ∨ t′ is also impossible, because w = v′ ∨ t′ is an approximant of v
that cannot dominate x without contradicting v < x ∨ v. The existence
of v leads to a a contradiction in all cases. So necessarily y −< x ∨ y.

2. Assume now x to be an arbitrary element in the domain. By Proposition
3.1, if x∧y −< x, one can find an approximant z of x with (x∧y)∧z −< z
and x = (x ∧ y) ∨ z. From the first inequality we deduce y > z. But
x ∧ y ≤ y implies also (x ∧ y) ∧ z ≤ y ∧ z. Thus (x ∧ y) ∧ z ≤ y ∧ z < z
and (x ∧ y) ∧ z = y ∧ z. Since y and z are compatible because y and
x are, we can apply the result of part 1 and deduce y −< y ∨ z. Since
x = (x ∧ y) ∨ z we have now

x ∨ y = (x ∧ y) ∨ z ∨ y = y ∨ z

and thus also y −< x ∨ y. 2

Corollary 3.1 In a computation domain D satisfying I and C, any upper
section (and any interval) is atomic.

Proof: Here again, we give only the proof for an upper section [x). Let y be
an element such that x < y. By Lemma 1.1, we can find an approximant z of
y which is not an approximant of x and therefore x∧ z < z. Since z and x∧ z
are isolated, there is a t in A(D) with x ∧ z = x ∧ t −< t ≤ z. Since x ↑ z
implies x ↑ t, we obtain using property ̂C x −< x ∨ t ≤ x ∨ z ≤ y. 2
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Proposition 3.3 In a computation domain satisfying I, Property C is equiv-
alent to Property C1:

Property C1

If x and y are two distinct compatible elements

∃z z −< x, z −< y =⇒ x −< x ∨ y, y −< x ∨ y

Proof:

1. ̂C implies C1 Indeed, if x and y are distinct, element z is their glb and
Property ̂C implies immediately x −< x ∨ y and y −< x ∨ y.

2. C1 implies ̂C Consider two compatible isolated elements x and y such
that x ∧ y −< y. We will prove by induction that y −< x ∨ y using
Proposition 2.2.
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• Base cases. If y = x ∧ y then immediately y −< x ∨ y = x. If y
covers x ∧ y then C1 gives y −< x ∨ y.

• Inductive step. Assume that C is valid when there exists a maximal
chain with at most n element between x∧y and y and consider two
isolated elements x and y such that there is a sequence of n + 1
elements {d0, d1, . . . , dn} with x ∧ y = d0 −< d1 −< d2 −< · · · −<
dn = y. By property C1 we have d1 −< d1 ∨ x. Since x < y,
d1 ∨ x is not less than y, so d1 = (d1 ∨ x) ∧ y. Using the induction
hypothesis, we obtain y −< (d1 ∨ x)∨ y. Since d1 is less than y, we
deduce y −< x ∨ y. 2
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Definition 3.1 A partial order satisfies the Jordan-Dedekind condition if,
between any two comparable elements, all maximal chains are finite and have
the same length.

Theorem 3.1 If D is a computation domain satisfying I and C, then A(D)
satisfies the Jordan-Dedekind condition.

Proof: The proof follows closely the proof of Theorem 14, in chapter 2 of
[Bir67]. We show by induction that if between any two comparable elements
a and b of A(D) there is a maximal chain of length n, then all maximal chains
have length n. Assume a ≤ b. If a = b then all maximal chains between a and
b have length 0. If a −< b, there doesn’t exist a c with a < c < b, so {a, b} is
the only maximal chain between a and b.

Assume now the property valid when there exists, between two comparable
elements, a chain with length less than n + 1(n ≥ 1) and take two isolated
elements a and b with a maximal chain of length n + 1 between them:

a = x0 −< x1 −< x2 −< x3 · · · −< xn −< xn+1 = b

Since D has property I, all maximal chains between a and b are finite
and built up with elements of A(D). Take any maximal chain {y0, y1, . . . , yl}
between a and b. Two cases are possible:

• Case 1. x1 = y1. By induction hypothesis, all maximal chains between
x1 and b have length n, so l = n + 1.

• Case 2. x1 6= y1. Since x1 and y1 are dominated by b, we have x1 ↑ y1
and, by C1: x1 −< x1 ∨ y1 and y1 −< x1 ∨ y1. By induction hypothesis,
all maximal chains between x1 and b have length n, so in particular
those that have x1 ∨ y1 as their first element. Hence all maximal chains
between x1 ∨ y1 and b have length n1. Take such a chain {z0 = x1 ∨
y1, z1, . . . , zn−1 = b}. The chain {y1, z0, . . . , zn−1} is a maximal chain
between y1 and b. Using again the induction hypothesis, we obtain
that all maximal chains between y1 and b have length n so in particular
{y1, y2, . . . , yl}. Again l = n + 1. 2

The Theorem above allows one to define an absolute notion of height for
isolated elements.

Definition 3.2 In a partial order < D;≤> with a minimum element ⊥, a
height function is a function h from D to N such that:
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i) h(⊥) = 0

ii) x −< y ⇐⇒ x ≤ y and h(y) = 1 + h(x)

Corollary 3.2 In a computation domain satisfying I and C, the function h
from A(D) to N that associates to any isolated x the common length of all
maximal chains between ⊥ and x is a height function.

Proof: By definition h(⊥) = 0. Assume now x −< y. Any maximal
chain {⊥, x1, . . . , xh(x)} from ⊥ to x can be extended to a maximal chain
{⊥, x1, . . . , xh(x), y} hence h(y) = 1 + h(x). Conversely, assume x ≤ y and
h(y) = 1 + h(x). All maximal chains from x to y must have length 1, hence
x −< y. 2

Recall the computation domain N < N ∪{∞};≤> where ≤ is the natural
ordering on N and∞ is a maximum element. The height function h fromA(D)
to N may be extended to an element of [D → N ] because it is monotonic. Then
we will have h(x) = ∞ iff x is not isolated, by Corollary 1.2. This property
legitimates calling finite the elements of A(D) and infinite the elements of D
that are not isolated.
Remark: Properties C and I do not exclude the possibility that a finite
element might dominate an infinite number of finite elements, as illustrated
by the counter example of Figure 6.

To prove the fundamental inequality of the next Theorem 3.2, we need the
following technical result:

Lemma 3.1 In a partial order with Property C1 we have

∀x, y, z x −< y, z ↑ y =⇒ x ∨ z =< y ∨ z

N⊥

⊥•
HH

HH
HH

HH
HH•�
��

��
��

���

0

Q
Q

Q
Q

Q
QQ

•�
�
�
�
�
��

1

@
@

@
@@

•�
�
�
��

2

A
A
A
AA
•�
�
�
��

3

�
�
�
��
•@

@
@
@@

n. . . . . .

�
�
��

��
��
�

•>

Figure 6: > dominates infinitely many elements
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Proof:

•
x

•
z
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Since y and z are compatible, a fortiori x and z are. Let us examine the
possibilities for x ∨ z.

1. x ∨ z = x i.e z ≤ x ≤ y. Then x ∨ z = x −< y = y ∨ z

2. x ∨ z = y i.e. z ≤ y so x ∨ z = y = y ∨ z

3. x∨ z ‖ y. Then by property C x∨ z −< (x∨ z)∨ y = (x∨ y)∨ z = y ∨ z.

4. x∨z ≥ y. Then x∨z ≥ y∨z. But from x ≤ y we also deduce x∨z ≤ y∨z,
so x ∨ z = y ∨ z.2

Theorem 3.2 Let D be a computation domain with properties I and C, and
consider two compatible finite elements a and b in D. The following inequality
holds:

h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b)

Proof: If a and b are comparable, assume for example a ≤ b. Since a ∧ b = a
and a∨ b = b, we have trivially h(a)+h(b) = h(a∧ b)+h(a∨ b). Suppose now
that a ‖ b and consider a maximal chain {x0, x1, . . . , xn} with

a ∧ b = x0 −< x1 −< x2 · · · −< xn = b

All elements in this chain are compatible with a and by the previous Lemma:

∀j 0 ≤ j ≤ n− 1 xj ∨ a =< xj+1 ∨ a

Hence, since h is a height function

∀j 0 ≤ j ≤ n− 1 h(xj+1 ∨ a)− h(xj ∨ a) ≤ 1

Summing these inequalities
∑

0≤j≤n−1

[h(xj+1 ∨ a)− h(xj ∨ a)] ≤ n = h(b)− h(a ∧ b)

So reducing the left hand side we obtain h(b∨ a)− h(a) ≤ h(b)− h(a∧ b) and
hence h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b). 2
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Lemma 3.2 Let D be a computation domain with properties I and C, and
consider two arbitrary elements a and b in D with a ≤ b. If there exists a
maximal chain with finite length n between a and b, then all chains in [a, b]
are finite and have a length less than n.

Proof: As in the proof of Theorem 3.1, we reason by induction on n. If n = 0
or n = 1 we have respectively a = b or a −< b, and the result is immediate.
Assume now that the result is true provided there exists a maximal chain
between two elements with length less than n + 1. Consider two elements a
and b for which there exists a maximal chain of length n + 1:

a = x0 −< x1 −< x2 · · · −< xn −< xn+1

Take Y = {yi}i∈I to be an arbitrary chain in [a, b]. Choose in Y an arbitrary
element y distinct of a. Two cases may occur:

1. x1 ≤ y All chains from y to b are finite and include at most n elements
by induction hypothesis, thus the set Z = {yi|i ∈ I, y ≤ yi} has at most
n + 1 elements.

2. x1 ‖ y Then y −< x1 ∨ y by Property C1 and x1 6= x1 ∨ y. By induction
hypothesis, all chains between x1 ∨ y and b are finite and include at
most n elements. Thus, there exists a chain with at most n+1 elements
between y and b, and by induction hypothesis the set Z defined above
has at most n + 1 elements. Since y was arbitrary different of a, the set
{yi 6= a}i∈I has at most n+1 elements, so Y has at most n+2 elements,
and the chain Y has at most length n + 1. 2

We are now ready to prove the final result of this section.

Theorem 3.3 Any upper section [x) and any interval [x, y] in a computation
domain satisfying I and C is a computation domain satisfying these properties.

Proof: We prove the result only for an upper section [x). We have seen that
[x) is a computation domain in Proposition 3.3. Its isolated elements are of
the form x∨ d with d ∈ A(D) and x ↑ d. Take an element d in A(D) which is
not less than x. Since x ∧ d and d are isolated, there exists a maximal chain

x ∧ d = z0 −< z1 −< · · · −< zn = d

By Lemma 3.1, we have zj ∨ x =< zj+1 ∨ x (0 ≤ j ≤ n− 1). So

x =< z1 ∨ x =< z2 ∨ x =< · · · =< zn ∨ x = d ∨ x
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Hence there exists a finite maximal chain from x to x∨d and, by the previous
lemma, all chains from x to x ∨ d are finite. Hence [x) has property I. Since
D has property C1, the upper section [x) has property C. 2

Definition 3.3 We say that y is finite relative to x if y is isolated in [x).
This relation is written x ≺ y.

Corollary 3.3 In a computation domain satisfying I and C, if y is finite
relative to x then all maximal chains from x to y are finite and have the same
length.

Proof: Simply use Theorem 3.1 in [x).2
Remarks: Standard texts about lattice theory provide alternate equivalents
to property C, which is frequently called the lower covering condition. In
[Bir67], a lattice that satisfies this condition and in which all chains are finite is
called semi-modular. In [Mae72] the term symmetric lattice is used. Elements
that cover the minimum element are also called points and the interest in semi-
modular lattices comes from geometry. A lattice is called geometric if first it
is semi-modular and second any element is the least upper bound of a set of
points. The computation domains that we consider do not have this property
which is replaced by algebraicity.

4 The incompatibility relation

Properties C and I concern only the structure of the sublattices in a com-
putation domain. We must now examine more carefully the incompatibility
relation. This study will lead us to postulate a new property concerning this
relation.

Proposition 4.1 If S is a consistent subset in a computation domain and
all elements in S are compatible with a given element x, then

⋃

S and x are
compatible.

Proof: The set T = S ∪ {x} is consistent and admits a least upper bound
⋃

T . Since S is consistent and included in T ,
⋃

S ≤
⋃

T . Hence
⋃

S and x
are both less than

⋃

T , thus they are compatible.2

Corollary 4.1 If a and x are two arbitrary elements in a computation do-
main, there exists a maximum element x/a less or equal to x and compatible
with a. The element a∨ (x/a) is called the pseudo least upper bound of a and
x, and noted a∨x.
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Proof: Let S be the set of elements less than x compatible with a. By the
previous proposition,

⋃

S is compatible with a and the result is proved using
x/a =

⋃

S. 2

Proposition 4.2 For any element a in a computation domain, the functions
λx.x/a and λx.a∨x are continuous.

Proof: We use the characterization of Lemma 1.2. First both functions are
monotonic:

{

x ≤ x′ =⇒ x/a ≤ x′/a
x ≤ x′ =⇒ a∨x = a ∨ x/a ≤ a ∨ x′/a = a∨x′

Consider now an approximant e of x/a. Since e is compatible with a we have
e = e/a so the function λx.x/a is continuous. Consider now an approximant e
of a∨x. Since e is isolated and e ≤ a∨ x/a =

⋃

z∈A(x/a)(a∨ z), there exists an
approximant d of x/a such that e ≤ a ∨ d. But when a and d are compatible,
a∨d = a ∨ d, hence we obtain e ≤ a∨d. Therefore the function λx.a∨x is
continuous. 2
Remark: The function λxλy.x∨y is not monotonic in its first argument. For
example in domain T we have ⊥∨1 = 1 and 0∨1 = 0.

In a computation domain satisfying I and C, we can give a more precise
characterization of the incompatibility relation.

Definition 4.1 An interval [a,b] is called prime when a −< b.

Proposition 4.3 In a partial order D, the intervals are ordered by the relation
≤ defined by:

[a, b] ≤ [c, d] ⇐⇒ a = b ∧ c and d = b ∨ c

The resulting partial order is noted I(D).

Proof:

• Reflexivity If [a, b] is an interval, then a ≤ b so a = b ∧ a and b = b ∨ a.
So [a, b] ≤ [a, b].

• Antisymmetry If [a, b] ≤ [c, d] then also a ≤ c and b ≤ d. So from [a, b] ≤
[c, d] ≤ [a, b] we deduce a ≤ c ≤ a and b ≤ d ≤ b. By antisymmetry in
D we obtain a = c and b = d.
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• Transitivity Consider three intervals [a, b], [c, d], [e, f ] and assume [a, b] ≤
[c, d] ≤ [e, f ]. Using the definition we write

{

a = b ∧ c, c = d ∧ e hence a = b ∧ d ∧ e
d = b ∨ c, f = d ∨ e hence f = b ∨ c ∨ e

Now b ≤ d and c ≤ e yield a = b ∧ e and f = b ∨ e, i.e. [a, b] ≤ [e, f ]. 2

Proposition 4.4 Let D be a computation domain satisfying I and C. Two
elements x and y in D are incompatible iff there are two prime intervals [x1, x′1]
and [y1, y′1] included respectively in [x ∧ y, x] and [x ∧ y, y], and two prime
intervals [u, a] and [u, b] with:

[x1, x′1] ≤ [u, a] [y1, y′1] ≤ [u, b] x ∧ y ≺ u a#b

Proof: The situation described in the statement of the proposition is sum-
marized in the figure below:
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Consider two incompatible elements x and y and let us reason in the compu-
tation domain [x ∧ y). Since A(y) is a directed set, hence consistent, there
exists necessarily an element y0 in A(y) that is incompatible with x. Take
y1 = y0/x. Since y1 is less than y0 which is isolated in [x ∧ y), it is also iso-
lated by Property I. Take for y′1 any element such that y1 −< y′1 ≤ y. Such an
element must exist because y1 is compatible with x thus different of y, which
is not, by hypothesis. By definition of y1 we must have y′1#x. We notice then
that x ∧ y′1 = x ∧ y and perform the construction again, finding x1 and x′1
isolated such that:

x1 ↑ y′1 x1 −< x′1#y′1

Now we take u = x1 ∨ y1, a = x′1 ∨ y1 , and b = x1 ∨ y′1. Since x1 and y1 are
isolated in [x ∧ y), so is u. Since x′1 and y′1 dominate respectively x1 and y1,
we can write:

a = x′1 ∨ (x1 ∨ y1) = x′1 ∨ u
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and
b = (x1 ∨ y1) ∨ y′1 = u ∨ y′1

Finally u dominates neither x′1 nor y′1 because x′1#y′1. Thus u ∧ x′1 = x1 and
u∧y′1 = y1. Using Property C, we conclude u −< x′1∨u = a and u −< y′1∨u = b
and, since x′1 and y′1 are incompatible, a#b.

The proposition is proved from left to right. Conversely, assume that we
have two prime intervals [x1, x′1] and [y1, y′1] included respectively in [x ∧ y, x]
and [x ∧ y, y], and two prime intervals [u, a] and [u, b] with:

[x1, x′1] ≤ [u, a] [y1, y′1] ≤ [u, b] a#b

Elements a and b are incompatible and b = u∨y′1. Since a and u are compatible,
then a and y′1 must be incompatible. But a = x′1 ∨ u and u ↑ y′1. So finally
x′1#y′1, and consequently x#y. 2

We introduce now a new property, Property Q, that restricts the way in
which incompatibilities may appear.

Property Q

If x and y are two incompatible isolated elements

x ∧ y −< x =⇒ ∃!t t#x, x ∧ y −< t ≤ y

Very simple finite computation domains fail to have Property Q.
For example the domains whose diagrams are represented on Figure 7 do

not satisfy Q. For the first one, we observe that a and b are incompatible, with
a ∧ b = ⊥ and ⊥ −< b. But c is the only element in [⊥, a] that covers ⊥, and
it is compatible with d. So there exists no element t such that a ∧ b −< t ≤ a
and t#b. In the second case, the domain of Figure 7 (b), it is unicity that is
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Figure 7: (a) and (b) fail to have Property Q
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not satisfied. Indeed, elements a and d are incompatible, and ⊥ = a∧ d −< a.
But both b and c cover ⊥, are less than d and are incompatible with a.

These examples suggest that Property Q may be considered as the con-
junction of two simpler properties.
Notation: Let x be an arbitrary element in a computation domain D. We
will note Px the set {z|x −< z} of atoms of [x). On Px we can define the
relation Rx by

aRxb ⇐⇒ a#b or a = b

Relation Rx is of course reflexive and symmetric.

Proposition 4.5 In a computation domain D, Property Q is equivalent to
the conjunction of the following properties QE and QU:

Property QE (Existence of a minimal incompatible element)

∀x, y ∈ A(D) x#y, x ∧ y −< x =⇒ ∃t#x, x ∧ y −< t ≤ y

Property QU (Uniqueness)

∀x ∈ A(D) Rx is an equivalence relation on Px

Proof:

i) Q implies QE and QU. It is immediate that Q implies QE, which is weaker.
But we already know thatRx is reflexive and symmetric, so we need only
to show that Q implies that Rx is transitive. Consider three elements
a, b, and c of Px with aRxb and bRxc. If a = b or b = c we have
immediately aRxc. Suppose now a#b and b#c. We need to show that
either a = c or a#c. Assume we had a ↑ c. From b#a and b#c we
deduce b#a ∨ c. There can be only one element t such that b#t ≤ a ∨ c
by Property Q. But both a and c satisfy this condition. Hence a = c.

ii) Assume now QE and QU. Consider two isolated elements x and y with
x#y and x ∧ y −< x. By QE there exists an element t with x#t and
x ∧ y −< t ≤ y. Let now t′ be an arbitrary element such that x#t′ and
x∧y −< t′ ≤ y. In Px∧y we have xRx∧yt and xRx∧yt′. Thus, since Rx∧y
is an equivalence relation tRx∧yt′. But t and t′ are compatible, because
both are less than y. So t = t′. Hence QE and QU imply Q. 2

Definition 4.2 Two prime intervals [x, x′] and [y, y′] are equipollent when
x = y and x′Rxy′.
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We call IP (X) the set of prime intervals in a partial order X. The previous
result shows that if D has Property Q, equipollence is an equivalence relation
on IP (A(D)).

Following what we did for Property C, we will show that it is sufficient to
postulate property Q on the isolated elements in a computation domain for it
to be valid in the whole domain.

Proposition 4.6 In a computation domain satisfying I and C, consider two
arbitrary elements x and y such that x#y and x ∧ y −< x. There exists an
approximant e of x with

e#y, e ∧ y −< e and e ∨ (x ∧ y) = x

Proof:
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If x is incompatible with y, there exists an approximant d of x incompatible
with y since A(x) is a consistent subset, using Proposition 4.1. Since d is
therefore not comparable with y, we have necessarily d ∧ y < d. We can
then find, by Corollary 3.1 an element e with d ∧ y −< e ≤ d. Since e
covers d ∧ y and is not less than y we have also e ∧ y = d ∧ y. By Property
̂C we obtain x ∧ y −< (x ∧ y) ∨ e. Since e is an approximant of x, the
element (x ∧ y) ∨ e is less than x. As x covers x ∧ y by hypothesis, we obtain
(x ∧ y) ∨ e = x. Finally, elements e and y are incompatible, otherwise we
would have x = e ∨ (x ∧ y) ≤ e ∨ y so x and y would be incompatible, which
contradicts the hypothesis. 2

Lemma 4.1 In a computation domain satisfying properties I and C, Property
QE is equivalent to Property ̂QE:

Property ̂QE

∀x, y x#y, x ∧ y −< x =⇒ ∃t#x, x ∧ y −< t ≤ y
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Proof: Property ̂QE trivially implies Property QE. The converse is proved in
two steps.

1. Assume first that x is isolated and y is an arbitrary element with x#y
and x∧y −< x. As we have remarked before, there exists an approximant
d of y which is incompatible with x. Since both d and x∧y are less than
y, define e by e = d ∨ (x ∧ y). The element e is isolated because both d
and x∧ y are, and incompatible with x because d is. Hence x∧ y = x∧ e
and we can use property QE. There exists t with x#t and x∧e −< t ≤ e,
and we deduce immediately x#t and x ∧ y −< t ≤ y.
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2. Consider now an arbitrary x. By Proposition 4.6, there exists an isolated
element e with e#y, e ∧ y −< e, and e ∨ (x ∧ y) = x.
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So we can use the result of the first case and find an element t with e#t
and e∧ y −< t ≤ y. We notice now first that t and x∧ y are compatible
(both are less than y) and second that t is not less than x∧ y (because t
is incompatible with e); so we deduce t∧ (x∧ y) = e∧ y. Using property
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̂C:
x ∧ y −< (x ∧ y) ∨ t = u

The element u is incompatible with e thus with x and we have as re-
quested x ∧ y −< u ≤ y. 2

Proposition 4.7 In a computation domain with properties I and C, let a, x,
and y be three elements satisfying

(G1) a −< x, a −< y, x#y

Then there are three elements α, ξ, and η approximants (resp.) of a, x, and
y in the configuration correponding to (G1), as well as:

x = ξ ∨ a and y = η ∨ a

Proof:
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Applying twice Proposition 4.6, we can find x1 and y1, approximants of x
and y (resp.) with

{

x1#y, x1 ∧ y −< x1, x1 ∨ a = x
y1#x, y1 ∧ x −< y1, y1 ∨ a = y

Now take α = (x1 ∧ y) ∨ (y1 ∧ x). The element α is an approximant of a
and it dominates neither x1 nor y1. So:

{

α ∧ x1 = x1 ∧ y −< x1
α ∧ y1 = x ∧ y1 −< y1
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By property C we obtain
{

α −< α ∨ x1 = ξ
α −< α ∨ y1 = η

and since ξ and η are necessarily incomparable with a:
{

x = ξ ∨ a
y = η ∨ a

If ξ and η were compatible, the set {ξ, η, a} would be consistent, admitting
thus a lub that would dominate ξ∨a and η∨a. But this is impossible because
x and y are incompatible by hypothesis. So we have:

α −< ξ, α −< η, ξ#η

2

Proposition 4.8 In a computation domain with properties I and C, let a, x,
y, and z be four elements satisfying

(G2) a −< x, a −< y, x#y, y#z, x 6= z

Then there are four elements α, ξ, η, and ζ approximants (resp.) of a, x, y,
and z satisfying (G2) as well as:

x = ξ ∨ a y = η ∨ a z = ζ ∨ a

Proof: First we apply the previous result to the three elements a, x, and y.
We can find α1, ξ1, and η1 approximants of a, x, and y with:

{

α1 −< ξ1, α1 −< η1, ξ1#η1
x = ξ1 ∨ a, y = η1 ∨ a

Consider now [α1). By Proposition 3.1, we can find an element ζ such that
α1 ≺ ζ with

{

ζ ∧ a = α −< ζ
z = ζ ∨ a

Since α1 is isolated, so is ζ as well as the elements ξ and η defined by
{

ξ = ξ1 ∨ α
η = η1 ∨ α
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(Since ξ1 and η1 are compatible with a, they are a fortiori compatible with
α). Since ξ1 and η1 cannot be less than a hence than α

{

ξ1 ∧ α = α1 −< ξ1
η1 ∧ α = α1 −< η1

and by property C:
{

α −< ξ
α −< η

We also have α −< ζ. Let us show the remaining properties. First, ξ#η since
ξ1#η1. Next we have:











x = a ∨ ξ1 = a ∨ ξ1 ∨ α = a ∨ ξ
y = a ∨ η1 = a ∨ η1 ∨ α = a ∨ η
z = a ∨ ζ

If η and ζ were compatible the set {a, η, ζ} would be consistent, which con-
tradicts the fact that x and y are incompatible. So we have also η#ζ. Last,
since x 6= z, we have trivially ξ 6= ζ. 2
Remark: In the previous propositions, as well as in several propositions in
this section, we use freely coherence, which sometimes leads to shorter proofs.
However this property is not necessary for the results to hold.

Lemma 4.2 In a computation domain satisfying properties I and C, Property
QU is equivalent to Property ̂QU:

Property ̂QU

In IP (D), equipollence is an equivalence relation.

Proof: Property ̂QU implies trivially property QU which is weaker. The
converse is a corollary of the previous result. Let [a, x], [a, y], and [a, z] be
three intervals with [a, x]R[a, y] and [a, y]R[a, z]. As in Proposition 4.5, the
only non-trivial case is when x ↑ z with x#y, y#z, and x 6= z. By Proposition
4.6, we can then find approximants α,ξ,η,ζ for a,x,y,z with:

α −< ξ α −< η α −< ζ ξ#η η#ζ ξ 6= ζ

as well as x = a∨ξ and z = a∨ζ. So if x and z are compatible, so are ξ and ζ.
But property QU excludes this possibility. So x and z must be incompatible
and the equipollence relation is an equivalence on prime intervals. 2
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Corollary 4.2 In a domain satisfying I and C, property Q is equivalent to
property ̂Q:

Property ̂Q

If x and y are two incompatible elements

x ∧ y −< x =⇒ ∃!t t#x, x ∧ y −< t ≤ y

Proof: It is easy to show, as in Proposition 4.5, that ̂Q is equivalent to the
conjunction of ̂QE and ̂QU. 2

Corollary 4.3 In a domain D satisfying properties I, C, and Q, an upper
section also satisfies these properties.

Proof: Consider an arbitrary upper section [a). As a computation domain,
[a) has properties I and C. If x and y are two elements of [a), then x ∧ y also
belongs to [a). So if D satisfies property ̂Q , so does [a). 2
Notation: If [a, b] and [c, d] are equipollent prime intervals, we write now
[a, b] ' [c, d].

Definition 4.3 In a partial order D, two intervals are transposed iff they are
comparable as elements of I(D).

We call T the transposition relation. This relation is obviously reflexive and
symmetric.

Lemma 4.3 In a computation domain satisfying I, C, and Q, equipollence
and transposition commute on IP (D), i.e. ' ◦T = T ◦ '.

Proof: Consider prime intervals [a, a′], [a, a′′], and [b, b′] such that [a, a′] '
[a, a′′] and [a, a′′]T [b, b′]. We must show that there exists a prime interval [b, b′′]
such that [a, a′]T [b, b′′] and [b, b′′] ' [b, b′]. If a′ = a′′ then [a, a′]T [b, b′] and we
can take [b, b′′] = [b, b′]. Thus, assume a′#a′′. If [a, a′′] = [b, b′], we can take
[b, b′′] = [a, a′]. Two cases are still possible:

Case 1: [a, a′′] < b, b′]
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In this case, a′ is necessarily compatible with b. Assume indeed a′#b.
By property Q, there exists an element t with a′#t and a −< t ≤ b.
Therefore [a, a′′] ' [a, a′] ' [a, t]. By Q again [a, a′′] = [a, t]. Now

• either a′′#t, but this is impossible because both a′ and t are less
than b′

• or a′′ = t, but this is also impossible because a′′ ∧ b = a 6= a′′ so a′′

is not less than b while t is less than b.

So we can take b′′ = a′∨b. Since a′∧b = a −< a′, by property C b −< b′′.
Finally, elements b′′ and b cannot be compatible, because otherwise a′

and a′′ would be compatible, which contradicts the hypothesis. We have
[a, a′]T [b, b′′] and [b, b′′] ' [b, b′], which concludes this case.

Case 2: [a, a′′] > [b, b′]

•
b

• b′
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��
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•a′′

��
��

��

@
@
@
•a′

In this case, a′ and b′ are necessarily incompatible. Indeed, if a′ and b′

were compatible, the element a′∨b′ = a′∨a∨b′ = a∨a′′ would exist, which
contradicts a′#a′′. From a′#b′ we deduce by Q, since a′ ∧ b′ = b −< b′,
that there exists an element b′′ with b′′#b′ and b −< b′ ≤ a′. This
element b′′ is not less than a, otherwise a′′ would dominate b′ and b′′, so
b′′ ∨ a = a′ and b′′ ∧ a = b. So [a, a′]T [b, b′′] and [b, b′′] ' [b, b′], which
concludes this case and the proof of the Lemma. 2

Definition 4.4 The projectivity relation is the transitive closure of transpo-
sition.
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This relation is an equivalence relation written ∼. If intervals [a, b] and [c, d]
satisfy [a, b] ∼ [c, d], they are called projective intervals. We will only consider
this relation for prime intervals.

Theorem 4.1 On the prime intervals of a partial order satisfying I, C, and
Q, equipollence and projectivity are commuting equivalence relations, i.e:

' ◦ ∼=∼ ◦ '

Proof: By the previous lemma we know that ' ◦T = T ◦ '. Let us show by
induction that for any n, n positive, we have:

' ◦T n = T n◦ '

The case were n = 1 is immediate and

' ◦T n+1 = (' ◦T n) ◦ T
= (T n◦ ') ◦ T by induction hypothesis
= T n ◦ (' ◦T ) by associativity
= T n ◦ (T ◦ ')
= T n+1◦ ' by associativity again

As [a, b] ' ◦ ∼ [c, d] iff there is an integer n such that [a, b] ' ◦T n[c, d], we
have then also [a, b]T n◦ ' [c, d] hence [a, b] ∼ ◦ ' [c, d]. 2

The product of the equivalence relations ' and ∼ is again an equivalence
relation that we will write ≈. Since the relation ≈ extends ', we will say from
now on that the prime intervals [a, b] and [c, d] are equipollent iff [a, b] ≈ [c, d].

Before studying further equipollence and projectivity, we try to give an
intuitive feeling for the meaning of these relations.
Example 1: Consider the domain O3 whose diagram is shown on Figure 8.
Since this domain is a lattice, it cannot be used to illustrate equipollence.
However, there are three equivalence classes for the projectivity relation ∼.

1. [(⊥,⊥,⊥), (>,⊥,⊥)] ∼ [(⊥,>,⊥), (>,>,⊥)] ∼ [(⊥,>,>), (>,>,>)] ∼ [(⊥,⊥,>), (>,⊥,>)]
2. [(⊥,⊥,⊥), (⊥,>,⊥)] ∼ [(>,⊥,⊥), (>,>,⊥)] ∼ [(>,⊥,>), (>,>,>)] ∼ [(⊥,⊥,>), (⊥,>,>)]
3. [(⊥,⊥,⊥), (⊥,⊥,>)] ∼ [(>,⊥,⊥), (>,⊥,>)] ∼ [(>,>,⊥), (>,>,>)] ∼ [(⊥,>,⊥), (⊥,>,>)]

Example 2: Consider the domain O × T whose diagram is shown on Figure
9. Here, there are three equivalence classes for the projectivity relation ∼.
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Figure 8: Domain O3

1. [(⊥,⊥), (0,⊥)] ∼ [(⊥,>), (0,>)]
2. [(⊥,⊥), (1,⊥)] ∼ [(⊥,>), (1,>)]
3. [(0,⊥), (0,>)] ∼ [(⊥,⊥), (⊥,>)] ∼ [(1,⊥), (1,>)]

The union of classes 1 and 2 is an equivalence class for the equipollence re-
lation, while class 3 is a second one. The fact the O contains two incompatible
atoms results in the first equipollence class containing exactly two projectivity
classes. The fact that we have a cartesian product of two domains can be seen
in the presence of two equipollence classes. With the help of these two equiva-
lence relations, we are able to analyze the structure of a computation domain.
Naturally, the Representation Theorem will be based on these relations, that
we study now in greater depth.
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Figure 9: Domain O × T
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Figure 10: The diamond domain

5 The projectivity relation

If two prime intervals are projective, we would like them to represent the same
elementary information increment, possibly taking place in two distinct global
states. We shall call now an elementary decision, or more briefly a decision,
an equivalence class of projective prime intervals. However, such an interpre-
tation of projectivity faces an inconsistency that can only be eliminated by
postulating an additional property.

Consider the partial order on Figure 10. It is trivial to verify that this
partial order is a computation domain satisfying I,C, and Q. Since we have
also

[⊥, a] ≤ [b,>] ≥ [⊥, c] ≤ [a,>] ≥ [⊥, b] ≤ [c,>]

all prime intervals in this lattice belong to one and the same projectivity
class. It is difficult to accept that a single elementary decision may allow the
construction of four different elements. More specifically, two precise facts run
counter to our interpretation:

i) All prime intervals of the form [⊥, x] are projective, and should constitute
the same elementary decision,

ii) To go from ⊥ to b, for example, the “decision” is the same one as to go
from b to >.

The lattice of Figure 10 plays an important role in lattice theory so one
might try simply to exclude such a configuration with five elements from a
computation domain. We will see that if a computation domain is a lattice,
this idea is valid. But as there are incompatible elements, the situation is more
intricate. Consider for example the domain of Figure 11, which is represented
by a Hasse diagram “seen from above”.
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Figure 11: Diamond is not a sublattice

Arrows point upwards in the partial order. A sublattice of this domain
must be a sublattice of one of the intervals [⊥, a′], [⊥, b′], [⊥, c′], or [⊥, d′]
because elements a′, b′, c′, and d′ are maximal and incompatible. But it is
clear that none of these intervals contains a sublattice that is isomomorphic
to the five element lattice of Figure 10. However, phenomena that we have
considered above as inconsistent with our intuition still occur: in the interval
[a, a′] all prime intervals are projective. In a similar fashion, the 25 element
domain of Figure 12 shows that two distinct prime intervals may be simul-
taneously projective and equipollent: [a, a1] ∼ [a, a2] and a1#a2. But in our
understanding, two distinct equipollent prime intervals should correspond to
two contradictory elementary information increases.

The examples above, due to Gordon Plotkin, point to a new property, that
we call property R.

Property R

If [a, x] and [a, y] are two projective prime intervals with isolated
endpoints, then x = y
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Figure 12: Another counterexample

This property can be stated in the following way: if a is an isolated element,
then two distinct elementary increases from a are two distinct decisions.

Before examining the many consequences of property R, we show as is now
customary that the property is valid for two arbitrary prime intervals.

Proposition 5.1 Consider two prime intervals with isolated endpoints [a, a′]
and [b, b′], in a computation domain satisfying I and C. If there exists a prime
interval [c, c′] such that

[a, a′] ≤ [c, c′] ≥ [b, b′]

then there exists a prime interval [d, d′] with isolated endpoints such that

[a, a′] ≤ [d, d′] ≥ [b, b′]

Proof: By hypothesis, c′ = a∨c hence c′ = a∨ (
⋃

A(c)) and c′ =
⋃

z∈A(c)(a
′∨

z). The set {a′ ∨ z|z ∈ A(c)} is directed and it dominates b′. So there exists
an isolated element e with b′ ≤ a′ ∨ e, e ∈ A(c). Take d = e ∨ a ∨ b. The
element d is an approximant of c that dominates a and b. So d dominates
neither a′ nor b′ and, by property C, d −< d ∨ a′ and d −< d ∨ b′. So since
b′ ≤ a′ ∨ e ≤ a′ ∨ e∨a∨ b = a′ ∨ d we have d −< d∨ b′ ≤ d∨a′. Elements d∨ b′

and d ∨ a′ are thus equal to the same element d′ and

[a, a′] ≤ [d, d′] ≥ [b, b′]

2

Proposition 5.2 In a computation domain satisfying I and C, property R is
equivalent to property ̂R:
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Property ̂R

If [a, x] and [a, y] are two projective prime intervals then x = y

Proof: Property ̂R implies trivially property R. Conversely, consider two
arbitrary projective prime intervals [a, x] and [a, y]. There exists a sequence
{[xi, x′i]}0≤i≤n with [x0, x′0] = [a, x] and [xn, x′n] = [a, y] such that

[x0, x′0]T [x1, x′1] · · · T [xn, x′n]

By Lemma 3.1, we can find intervals with isolated endpoints [zi, z′i] ≤ [xi, x′i]
(0 ≤ i ≤ n). If we take now [ti, t′i] = [xi ∨ xi+1, x′i ∨ x′i+1] (0 ≤ i ≤ n − 1) we
have

[zi, z′i] ≤ [ti, t′i] ≥ [zi+1, z′i+1] (0 ≤ i ≤ n− 1)

By the previous proposition, there are prime intervals with isolated endpoints
[ui, u′i] (0 ≤ i ≤ n− 1) such that

[zi, z′i] ≤ [ui, u′i] ≥ [zi+1, z′i+1] (0 ≤ i ≤ n− 1)

As a consequence, [z0, z′0] and [zn, z′n] are projective in A(D). From [z0, z′0] ≤
[a, x] and [zn, z′n] ≤ [a, y] we deduce that z0 and zn are both less than a and
we can take z = z0 ∨ zn. This element z cannot dominate z′0 nor z′n since it is
an approximant of a that does not dominate them. Hence

{

z ∧ z′0 = z0
z ∧ z′n = zn

therefore
{

z −< z ∨ z′0 = z′

z −< z ∨ z′n = z′′

which shows that [z0, z′0] ≤ [z, z′] and [zn, z′n] ≤ [z, z′′]. Since z is isolated and
[z, z′] ∼ [z, z′′], we can use property R and deduce z′ = z′′. Since we have also
[z, z′] ≤ [a, x] and [z, z′′] ≤ [a, y] we conclude x = y. 2

Corollary 5.1 In a domain satisfying I,C, Q , and R, any upper section (and
any interval) satisfyies these properties.

Proof: Consider an upper section [b). If the prime intervals [a, x] and [a, y]
are projective in [b), they are also projective in the whole domain. Hence
x = y, so the upper section [b) has property R. We know from before that it
has properties I,C, and Q. 2
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Proposition 5.3 In a computation domain D satisfying I,C, and R consider
two compatible elements x and y. If [a, a′] is a prime interval such that

a ≤ x ∧ y and a′ ≤ x ∨ y

Then either a′ ≤ x or a′ ≤ y.

Proof: Notice first that in the case where x and y are comparable, say x ≤ y,
we have immediately a′ ≤ y = x ∨ y so that the proposition holds trivially.
Suppose now x ‖ y. We can also assume a′ 6≤ x ∧ y otherwise the proposition
is again immediate. Consider first the case where x and y are finite relative
to x ∧ y.

Case 1. x ∧ y ≺ x, x ∧ y ≺ y The proof is by induction on the sum δ(x, y) of
the lengths of the maximal chains from x ∧ y to x and from x ∧ y to y.

i) Base case Since x ‖ y the first case to consider is when δ(x, y) = 2, i.e.
x∧y −< x and x∧y −< y. From a′ ‖ x∧y we deduce a = a′∧x∧y,
and by property C, which we can use because a′ ↑ x∧ y we obtain:
x ∧ y −< a′′ ≤ x ∨ y with a′′ = a′ ∨ (x ∧ y). Now either a′′ = x
and then a′ ≤ x, or a′′ 6= x and then, by Property C, we have
x −< a′′ ∨x ≤ x∨ y. But we have also x −< x∨ y so a′′ ∨x = x∨ y.
From [x ∧ y, a′′] ≤ [x, x ∨ y] ≥ x ∧ y, y] we deduce by property R
that a′′ = y.
As a result, we have indeed when δ(x, y) = 2 either a′ ≤ x or a′ ≤ y.

ii) Induction step Assume now δ(x, y) = n, n ≥ 2. Since x and y are
incomparable we have x∧ y < x and x∧ y < y. By atomicity, there
are two elements x1 and y1 with x∧y −< x1 ≤ x and x∧y −< y1 ≤ y.
Take now z = x1 ∨ y1, x′1 = x ∨ y1 = x ∨ z, y′1 = y ∨ x1 = y ∨ z.
Elements x′1, y′1, and z do exist because x and y are compatible.
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Two cases are now possible:

Case 1.1 a′ ≤ z: Then the result of the base case may be used to
deduce that either a′ ≤ x1 or a′ ≤ y1, thus either a′ ≤ x or
a′ ≤ y.

Case 1.2 a′ 6≤ z: Then a = a′ ∧ z. Since a′ and z are both less
than x ∨ y they are comaptible and we can use property C.
With a′′ = z ∨ a′ we have z −< a′′ ≤ x ∨ y. But x′1 ∨ y′1 =
x∨ z ∨ y ∨ z = x∨ y and since z is less than x′1 and y′1 we have
also z ≤ x′1 ∧ y′1. To be in a position to apply the induction
hypothesis to the interval [z, a′′] and elements x′1 and y′1, we
need only verify that δ(x′1, y

′
1) < δ(x, y). Now δ(x′1, y

′
1) is less

than the sum of the lengths of maximal chains from z to x′1
and from z to y′1. So δ(x′1, y

′
1) ≤ n− 2. Applying the induction

hypothesis yields that either a′′ ≤ x′1 or a′′ ≤ y′1. Assume
without loss of generality that a′′ ≤ x′1. Since a′ ≤ a′′ we have
also a′ ≤ x′1. But δ(x, z) ≤ n − 1. We can use the induction
hypothesis again for the interval [a, a′] and the elements x and
z, to conclude that either a′ ≤ z or a′ ≤ x. We have assumed
that a′ 6≤ z. So a′ ≤ x.

Case 2. Assume now x and y are arbitrary and take again a′′ = a′ ∨ (x ∧
y). Since the upper section [x ∧ y) is a computation domain, there are
approximants x′ and y′ of x and y in this domain such that the atom a′′

is dominated by x′ ∨ y′. Then a ≤ x ∧ y ≤ x′ ∧ y′ and a′ ≤ x′ ∨ y′ with
x′ ∧ y′ ≺ x′ and x′ ∧ y′ ≺ y′. Using the result of the first case, we deduce
that either a′ ≤ x′ or a′ ≤ y′, so that again a′ ≤ x or a′ ≤ y.2

Corollary 5.2 In a computation domain satisfying properties I, C and R, no
sublattice is isomorphic to the sublattice of figure 10.

Proof: Let x and y be two arbitrary compatible, incomparable elements. Take
any z such that x ∧ y < z < x ∨ y. By atomicity, there is an element t with
x∧ y −< t ≤ z. By the previous result, either t ≤ x or t ≤ y. In the first case,
x ∧ y < x ∧ z and in the second case x ∧ y < y ∧ z. 2

To prove the converse, we need a very useful result that limits the cases
that we need to consider when two intervals are projective. This result is
obtained in two steps.
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Proposition 5.4 In a computation domain satisfying I, C, and R, consider
three prime intervals [a, a′], [b, b′], and [c, c′] such that [a, a′] ≥ [b, b′] ≤ [c, c′].
If a and c are compatible, then we have also [a, a′] ≤ [a ∨ c, a′ ∨ c′] ≥ [c, c′].

Proof:
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By definition of the relation≤ for intervals we have a′ = a∨b′ and c′ = b′∨c.
Since a and c are compatible, the triple {a, b′, c} is consistent. It has a lub
d′ = a ∨ b′ ∨ c. But

{

d′ = a ∨ c ∨ b′ = (a ∨ c) ∨ (c ∨ b′) = (a ∨ c) ∨ c′

d′ = a ∨ c ∨ b′ = (a ∨ c) ∨ (a ∨ b′) = (a ∨ c) ∨ a′

Take d = a ∨ c. Since b′ is not less than a nor c, by the previous proposition
b′ is not less than a∨ c. Thus d′ is different from d, so d −< d′ by property C.
Since d′ dominates a′ and c′, d′ = a′ ∨ c′. Since we have [a, a′] ≤ [d, d′] ≥ [c, c′]
the result follows. 2

Definition 5.1 We call concrete domain a domain of computation satis-
fying properties I, C, Q, and R.

Lemma 5.1 In a concrete domain, two distinct prime intervals [a, a′] and
[b, b′] are projective iff there exists an alternating sequence of prime intervals
{[x0, x′0], [x1, x′1], . . . , [xn, x′n]} i.e. [a, a′] = [x0, x′0], [b, b′] = [xn, x′n],

and either

{

[a, a′] < [x1, x′1] > [x2, x′2] < [x3, x′3] · · · [xn, x′n]
[a, a′] > [x1, x′1] < [x2, x′2] > [x3, x′3] · · · [xn, x′n]

satisfying additionally condition Z:

∀i ∈ [0, n− 2] [xi, x′i] > [xi+1, x′i+1] < [xi+2, x′i+2] ⇒ xi#xi+2
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Proof: The proof proceeds by induction on the length of the sequence of
transpositions that are needed to go from [a, a′] to [b, b′]. If [a, a′]T [b, b′] the
result is immediate. Assume now the property to be true for two projective
prime intervals for which there is a sequence of transpositions of length at most
n−1, and suppose [a, a′]T [x1, x′1] · · · [xn−1, x′n−1]T [b, b′]. By induction hypoth-
esis there is an alternating sequence {[y1, y′1], . . . , [ye, y′e]} between [x1, x′1] and
[b, b′]. Thus two cases are possible:

Case 1: [x1, x′1] < [y1, y′1] > [y2, y′2] < · · · [b, b′]

Case 1.1:[a, a′] ≤ [x1, x′1]. Then we have also [a, a′] ≤ [y1, y′1] by transi-
tivity and so [a, a′] < [y1, y′1] > [y2, y′2] < · · · [b, b′]

Case 1.2: [a, a′] > [x1, x′1]. Then if a#y1 the sequence

{[a, a′], [x1, x′1], [y1, y′1], . . . , [b, b
′]}

satisfies condition Z. Otherwise, by the previous result, we have:

[a, a′] < [a ∨ y1, a′ ∨ y′1] > [y1, y′1]

and the sequence {[a, a′], [a ∨ y1, a′ ∨ y′1], [y2, y′2] < . . . [b, b′]} is an
alternating sequence. If y3 exists, we know that y1#y3 so a fortiori
a ∨ y1#y3 and the sequence satisfies Z.

Case 2: [x1, x′1] > [y1, y′1] < [y2, y′2] > · · · [b, b′]

Case 2.1: [a, a′] < [x1, x′1]. Then {[a, a′], [x1, x′1], [y1, y′1], . . . , [b, b
′]} is

an acceptable alternating sequence.
Case 2.2: [a, a′] ≥ [x1, x′1]. Then by transitivity [a, a′] > [y1, y′1] and

the sequence {[a, a′], [y1, y′1], . . . , [b, b
′]} is an alternating sequence.

Since we had x1#y2, certainly a#y2 and the sequence satisfies Z.
2

Corollary 5.3 If a concrete domain is a lattice, two prime intervals [a, a′]
and [b, b′] are projective iff there exists a prime interval [c, c′] such that

[a, a′] ≤ [c, c′] ≥ [b, b′]

Proof: Since two elements cannot be incompatible, the only alternating se-
quences of prime intervals between two distinct prime intervals [a, a′] and [b, b′]
are of the form:

1. [a, a′] < [b, b′]
2. [a, a′] > [b, b′]
3. [a, a′] < [c, c′] > [b, b′]
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Collecting these three cases with the case where [a, a′] and [b, b′] are identical,
we obtain [a, a′] ≤ [c, c′] ≥ [b, b′]. The converse is immediate. 2

Theorem 5.1 If a computation domain is a lattice satisfying I and C, the
property R is equivalent to property RT :

Property RT

No sublattice is isomorphic to the lattice of Figure 10.

Proof: We already know by Corollary 5.2 that R implies RT . Assume now
that RT holds and consider two projective prime intervals [a, x] and [a, y]. By
Corollary 5.2, there exists a prime interval [c, c′] such that

[a, x] ≤ [c, c′] ≥ [a, y]

We will reason by induction on δ(a, c), the length of the maximal chains from
a to c to prove that such a configuration implies x = y when a ≺ c, and then
by continuity to prove the result in general.

Case δ(a, c) = 0. Then a = c and c′ = x∨c = x∨a = x as well as c′ = y∨c =
y ∨ a = y so x = y.

Case δ(a, c) = 1. Then δ(a, c′) = 2. Since c∨ x 6= c and c∨ y 6= c, necessarily
c 6= x and c 6= y. It is not possible to have c′ = x ∨ y because the
sublattice including a, x, c, y, c ∨ y would be isomorphic to the lattice of
figure foo. Hence x∨ y < c′, which implies δ(a, x∨ y) ≤ 1. Consequently
x and y are comparable. As both cover a they must be equal.

Case δ(a, c) = n > 1. Then there exists an element d with a −< d ≤ c so
δ(d, c) = n − 1. Since a = x ∧ c = x ∧ d and a = y ∧ c = y ∧ d, using
property C we deduce d −< d∨ x and d −< d∨ y. We have immediately

[d, d ∨ x] ≤ [c, c′] ≥ [d, d ∨ y]

By induction hypothesis the d ∨ x = d ∨ y. But then, if x and y were
distinct, the lattice including a, x, y, d, c ∨ x would be isomorphic to the
lattice of Figure 10. So we must have x = y.

We conclude the proof using Proposition 5.1. If [a, x] ≤ [c, c′] ≥ [a, y] there
exists a prime interval [γ, γ′] with a ≺ γ and [a, x] ≤ [γ, γ′] ≥ [a, y]. Hence
here again x = y. 2
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An interesting consequence of property RT is that it excludes a domain
like the one on Figure 6. More precisely:

Proposition 5.5 In a concrete domain, an interval [x, y] of height n contains
at most n elements covering x.

Proof: We reason again by induction on the height of the interval [x, y]. The
result is immediate when x = y and x −< y. If all maximal chains from x to y
have length 2, then consider two elements a and b covering x and less than y.
If they are distinct, we have y = a ∨ b by property C. Property RT excludes
the possibility of a third element c less than y covering x.

Now in the general case, assume all maximal chains from x to y have length
n, with n > 2. Consider an arbitrary element t such that x −< t ≤ y. The
interval [t, y] is of height n− 1 and by induction hypothesis there are at most
n− 1 elements covering t in that interval.
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By property RT , the mapping that associates to any element of [x, y] cov-
ering x the element x∨ t is an injection. So there are at most n−1 elements of
[x, y] covering x and distinct from t. If we now count t, the result is established.
2

Corollary 5.4 In a concrete domain, if x ≺ y the interval [x, y] contains only
finitely many elements.

Proof: We reason again by induction on the height δ(x, y) of the interval
[x, y]. If δ(x, y) = 0 or δ(x, y) = 1 the result is immediate. Suppose now
δ(x, y) = n > 1. Then for any a covering x in [x, y] there are, by induction
hypothesis, finitely many elements in [a, y]. Since the number of elements
covering x in [x, y] is finite, there are finitely many elements in [x, y]. 2

Corollary 5.5 In a concrete domain, a finite element dominates only finitely
many elements.
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Remark: We are not too concerned with the independence of the various
axioms that we postulate for computation domains, nor of the properties that
we have studied so far. But one may notice here that properties C and RT
imply respectively conditional completeness and coherence, which in a way is
another argument in favor of these axioms. Since coherence has been studied
relatively little in the literature, we prove that it is not independent of I,C, Q
and RT .

Proposition 5.6 If an algebraic partial order is conditionally complete, and
it satisfies properties I,C,Q, and RT , then it is coherent.

Proof: By proposition 1.2, we need only to show that any pairwise consistent
triple a, b, c has a least upper bound. We reason by induction on δ(a∧b∧c, a).

a) Base cases: If δ(a ∧ b ∧ c, a) = 0, then a,b, and c are less than b ∨ c. If
δ(a ∧ b ∧ c, a) = 1, then suppose a were incompatible with b ∨ c.
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By property Q, since a ∧ b ∧ c = a ∧ (b ∨ c) there exists a t such that

a ∧ b ∧ c −< t ≤ b ∨ c and a#t

But by proposition 5.2 (whose proof doesn’t rely on coherence!) that
can be applied since a ∧ b ∧ c ≤ b ∧ c, either t ≤ b or t ≤ c. But then, in
either case the set {a, b, c} cannot be pairwise consistent. If for example
t is less than b, then b cannot be compatible with a. So a ↑ (b ∨ c) and
by conditional completeness a ∨ (b ∨ c) exists.

b) Induction step: Assume the property holds when δ(a ∧ b ∧ c, a) < n ≥ 1
and assume δ(a ∧ b ∧ c, a) = n. consider a maximal chain

a ∧ b ∧ c = x0 −< x1 −< x2 −< · · · −< xn−1 −< xn = a

from a ∧ b ∧ c to a. Since the triple {a, b, c} is pairwise consistent, so is
the triple {xn−1, b, c}. By induction hypothesis, it admits a least upper
bound xn−1 ∨ b ∨ c. We can use the argument of the base case to the
triple {a, xn−1 ∨ b, xn−1 ∨ c}. Finally, a ∨ xn−1 ∨ b ∨ c = a ∨ b ∨ c.
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c) Continuity argument: If a is not finite relatively to a ∧ b ∧ c, consider an
arbitrary α approximant of a. The triple {a, b, c} is pairwise consistent,
so is the triple {α, b, c}, thus α ∨ (b ∨ c) exists. In the upper section
[a ∧ b ∧ c) we have:

⋃

α∈A(a)

(α ∨ (b ∨ c)) =





⋃

α∈A(a)

α



 ∨ (b ∨ c)

By algebraicity we have
⋃

α∈A(a) α = a and consequently a∨b∨c exists.2

We return to our central concern, the study of the consequences of property
R.

Lemma 5.2 Consider two compatible elements x and y in a concrete domain.
If [x, x′] is a prime interval included in [x, x ∨ y], then there exists a prime
interval [u, u′] included in [x ∧ y, y] which is projective with it.

Proof: Remark first that y cannot be less than x because then we would have
x∨y = x and the prime interval [x, x′] could not be included in [x, x∨y]. Now
we reason by induction on the length δ(x ∧ y, y) of the maximal chains from
x ∧ y to y.

a) Base case:δ(x∧y, y) = 1, i.e. x∧y −< y. By property C we have x −< x∨y.
Since we have also x −< x′ ≤ x ∨ y we deduce x′ = x ∨ y. The intervals
[x ∧ y, y] and [x, x′] are transposed.

b) Induction step: Assume δ(x∧y, y) = n > 1. Consider an arbitrary element
v covered by y. By Lemma 3.1 we have v ∨ x =< v ∨ x′. We examine
both cases in turn:

Case 1: v ∨ x = v ∨ x′. We can apply the induction hypothesis because
x∧ v = x∧ y so δ(x∧ v, v) = δ(x∧ y, v) = n− 1. Thus there exists
an interval [u, u′] included in [x ∧ y, v] – thus a fortiori in [x ∧ y, y]
– projective with [x, x′].

Case 2: v ∨ x −< v ∨ x′. Note that this case implies that y is not less
than v ∨ x: we would then have v ∨ x ∨ y = x ∨ y = v ∨ x and

v ∨ x −< v ∨ x′ ≤ x ∨ y = v ∨ x

which is impossible. Thus (v∨x)∧y = v and we can use property C
and deduce v∨x −< (v∨x)∨y = x∨y. But v∨x −< v∨x′ ≤ x∨y
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hence v ∨ x′ = x ∨ y = (v ∨ x) ∨ y which means that the following
holds:

[x, x′] ≤ [v ∨ x, v ∨ x′] ≥ [v, y]

This concludes the proof when δ(x ∧ y, y) is finite.
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c) Continuity argument: If now y is not finite relative to x ∧ y, there exists
nevertheless an element d ∈ A(y) with x ∧ y ≺ d and x −< x′ ≤ x ∨ d
and we can apply the previous results to the elements x,x′, and d. 2

Remark:

1. This proof doesn’t use property R. It is included in this Section because
we need the Lemma here.

2. In fact, we can prove with a minor adjustment of the induction argument
that there exists a prime interval [t, t′] and [x, x′] ≤ [t, t′] ≥ [u, u′].

Corollary 5.6 In a concrete domain, if [x, x′] is a prime interval included in
in the interval [⊥, a ∨ b], there exists a prime interval projective with it either
in [⊥, a] or in [⊥, b].

Proof: Using Lemma 3.1 we obtain a ∨ x =< a ∨ x′ and b ∨ x =< b ∨ x′.

Case 1: a ∨ x −< a ∨ x′ and b ∨ x −< b ∨ x′. Then we have

[a ∨ x, a ∨ x′] ≥ [x, x′] ≤ [b ∨ x, b ∨ x′]

thus by Proposition 5.3, since (a ∨ x) ↑ (b ∨ x)

[a ∨ x, a ∨ x′] ≤ [a ∨ b ∨ x, a ∨ b ∨ x′] ≥ [b ∨ x, b ∨ x′]

But there is a contradiction since a ∨ b = a ∨ b ∨ x = a ∨ b ∨ x′, making
it impossible for the interval [a∨ b∨ x, a∨ b∨ x′] to be prime. This case
cannot happen.
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Case 2: a ∨ x = a ∨ x′ (the case b ∨ x = b ∨ x′ is handled symmetrically).
Then the prime interval [x, x′] is included in [x, x ∨ a]. By the previous
Lemma, there exists a prime interval [u, u′] included in [x ∧ a, a] (hence
a fortiori in [⊥, a]) with [x, x′] ∼ [u, u′]. 2

Lemma 5.3 Consider two projective prime intervals [x, x′] and [z, z′] in a
concrete domain. If there exists a prime interval [y, y′] projective with [x, x′]
in [⊥, x], then there exists a prime interval projective with [z, z′] in [⊥, z].

Proof: The proof proceeds by induction on the length Z of the alternating
sequence of transposed prime intervals between [x, x′] and [z, z′]. If Z = 0 the
intervals [x, x′] and [z, z′] are identical, so the result is immediate. Assume
now Z = n, n > 0. Two cases are possible, depending on the form of the
alternating sequence.

Case 1: [x, x′] < [x1, x′1] > · · · [z, z′]. In that case the interval [y, y′] is also
included in [⊥, x1]. By induction hypothesis, there exists a prime interval
[t, t′] in [⊥, z] with [t, t′] ∼ [y, y′] because the alternating sequence from
[x1, x′1] to [z, z′] is of length n− 1.

Case 2: [x, x′] > [x1, x′1] < · · · [z, z′]. Since x1 and y are compatible, we
deduce by Lemma 3.1 x1 ∨ y =< x1 ∨ y′, thus two cases are possible.

Case 2.1: x1 ∨ y −< x1 ∨ y′
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Since x1 and y are both less than x, so is x1 ∨ y. Therefore x′1 is not less
than x1 ∨ y, because otherwise x′1 would be less than x and x −< x′ =
x′1 ∨ x would be impossible. So x1 = (x1 ∨ y) ∧ x′1 and by property C:

x1 ∨ y −< (x1 ∨ y) ∨ x′1 = x′1 ∨ y

Hence we have [x1∨y, x1∨y′] ∼ [y, y′] ∼ [x, x′] ∼ [x1, x′1] ∼ [x1∨y, x′1∨y].
By property ̂R we conclude x1 ∨ y′ = x′1 ∨ y. But then x′1 ≤ x1 ∨ y′ ≤ x,
which we have seen is impossible. There is a contradiction, so this case
cannot happen.
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Case 2.2: x1 ∨ y = x1 ∨ y′. Then we can use Lemma 5.1. There is a
prime interval [u, u′] projective with [y, y′] in [x1 ∧ y, x1]. By transi-
tivity [u, u′] ∼ [x1, x′1]. Using the induction hypothesis, we deduce that
there exists a prime interval [t, t′] in [⊥, z] with [u, u′] ∼ [t, t′] and thus
[y, y′] ∼ [t, t′]. 2

Theorem 5.2 In a concrete domain, if [x, x′] is a prime interval, then the
interval [⊥, x] contains no equipollent prime interval.

Proof:

A. We prove first that there cannot be a prime interval [y, y′] in [⊥, x] with
[x, x′] ∼ [y, y′]. The proof is by induction on h(x) the height of x. If
h(x) = 0 the result is immediate. If h(x) = n > 0, assume some [y, y′]
included [⊥, x] verified [y, y′] ∼ [x, x′]. By the previous lemma, there
exists [t, t′] ∼ [y, y′] with [t, t′] included in [⊥, y]. But h(y) < h(x) so
by induction hypothesis this is impossible. Hence the property is proved
for any finite x. If now h(x) is infinite, there exists by Proposition 3.1
a prime interval with finite endpoints [η, η′] with [η, η′] ≤ [y, y′]. In the
upper section [η′) there exists a finite [ξ, ξ′] with [ξ, ξ′] ≤ [x, x′]. The
prime intervals [ξ, ξ′] and [η, η′] are now projective intervals with finite
endpoints and the reasoning above applies.

B. We prove now that there can’t be a prime interval equipollent to [x, x′]
in [⊥, x]. Assume such an interval [y, y′] would exist,i.e. [y, y′] ≈ [x, x′].
By definition ≈=' ◦ ∼=∼ ◦ '. Hence [y, y′] ∼ ◦ ' [x, x′], which
means that there is a prime interval [x, x′′] with [y, y′] ∼ [x, x′′]. This is
impossible by the result of part A. 2

In the five sections above, we have defined the essential properties that
a computation domain should satisfy to be considered plausibly a data do-
main rather than a functional domain. The mathematical consequences of
these properties are consistent with our intuition. But it remains to show
that these properties are sufficient to characterize truly a notion of concrete
computation domain. This is the role of the forthcoming sections that develop
a representation theory for concrete domains.

6 The information matrix

To start with, we expose the essential facts on which the representation of
concrete domains will be based.
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Definition 6.1 An equivalence class of equipollent prime intervals will be
called a cell.

Notation: Let [x, x′] be a prime interval. We denote d[x, x′] the equivalence
class of [x, x′] under projectivity (the decision associated to [x, x′]) and c[x, x′]
the cell associated with [x, x′], i.e. its equivalence class under equipollence.

Definition 6.2 If [x, x′] is a prime interval and a dominates x′, we say that
a occupies cell c[x, x′] and contains decision d[x, x′]. We note:

Γ(a) = {c[x, x′] |x −< x′ and x′ ≤ a}
∆(a) = {d[x, x′] |x −< x′ and x′ ≤ a}

Proposition 6.1 For any a:

Γ(a) = {c[x, x′] |x −< x′ and x′ ∈ A(a)}
∆(a) = {d[x, x′] |x −< x′ and x′ ∈ A(a)}

Proof: This result is a simple application of Proposition 3.1. For any prime
interval [y, y′] with y′ ≤ a, there is a prime interval [x, x′] with finite endpoints
such that [x, x′] ≤ [y, y′], hence

c[x, x′] = c[y, y′]
d[x, x′] = d[y, y′]

Since y′ ≤ a, a fortiori x′ ≤ a. As x′ is finite, it is an approximant of a. 2

Proposition 6.2 Consider a consistent subset X in a concrete domain. We
have the following equalities:

{

Γ(
⋃

X) =
⋃

x∈X Γ(x)
∆(

⋃

X) =
⋃

x∈X ∆(x)

Proof: First, by coherence, if X is consistent it has a least upper bound
⋃

X.
Now by definition of Γ and ∆:

{

x ≤ y ⇒ Γ(x) ⊂ Γ(y)
x ≤ y ⇒ ∆(x) ⊂ ∆(y)

So immediately:
{

⋃

x∈X Γ(x) ⊂ Γ(
⋃

X))
⋃

x∈X ∆(x) ⊂ ∆(
⋃

X))

We prove now the converse inequalities by induction on the cardinal of X
when X is finite and then by continuity.
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a) Base Cases: If |X| = 0 then
⋃

X = ⊥ and Γ(⊥) = ∆(⊥) = ∅. If |X| = 1
then X = {x} and

⋃

X = x. So obviously Γ(x) ⊃ Γ(
⋃

X) and ∆(x) ⊃
∆(

⋃

X).

b) Induction step: let X = {x1, x2, . . . , xn−1, xn}(n > 1). If X is consistent,
so is X ′ = {x1, x2, . . . , xn−1}. By induction hypothesis:

{

⋃

x∈X′ Γ(x) ⊃ Γ(
⋃

X ′))
⋃

x∈X′ ∆(x) ⊃ ∆(
⋃

X ′))

Since
⋃

X = (
⋃

X ′) ∨ xn, so by Corollary 5.6, any prime interval [x, x′]
included in [⊥,

⋃

X] is projective with a prime interval included either
in [⊥,

⋃

X ′] or in [⊥, xn]. Hence
{

Γ(
⋃

X) ⊂ Γ(
⋃

X ′) ∪ Γ(xn)
∆(

⋃

X) ⊂ ∆(
⋃

X ′) ∪∆(xn)

Using the induction hypothesis we obtain:
{

Γ(
⋃

X) ⊂
⋃

x∈X Γ(x)
∆(

⋃

X) ⊂
⋃

x∈X ∆(x)

c) Continuity argument: consider an arbitrary prime interval [x, x′] with fi-
nite endpoints included in [⊥,

⋃

X]. Since x′ is finite less than
⋃

X and
the set obtained by adding to X the least upper bounds of its finite
subsets is directed, we can find a finite subset Y of X whose least upper
bound dominates x′. Thus by the previous result:

{

c[x, x′] ∈
⋃

y∈Y Γ(y)
d[x, x′] ∈

⋃

y∈Y ∆(y)

so we deduce
{

Γ(
⋃

X) ⊂
⋃

x∈X Γ(x)
∆(

⋃

X) ⊂
⋃

x∈X ∆(x)

2
In a concrete domain, we have a property that is far stronger than the

Jordan-Dedekind condition.

Lemma 6.1 Consider an arbitrary element x in a concrete domain and a
maximal chain {⊥ = x0, x1, . . . , xn, . . .} between ⊥ and x. We have the equal-
ities:

Γ(x) = {c[xi, xi+1]|i ≥ 0}
∆(x) = {d[xi, xi+1]|i ≥ 0}
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Proof: the equalities are proved by induction on h(x).

a) Base Cases: if h(x) = 0 then x = ⊥ and Γ(⊥) = ∆(⊥) = ∅. If h(x)=1,
then x is an atom and the property is obvious again.

b) Induction step: assume now h(x) = n > 1. Take an arbitrary prime
interval [y, y′] in [⊥, x]. Since y′ and xn−1 are compatible, by Lemma
3.1 we have xn−1 ∨ y =< xn−1 ∨ y′ and two cases have to be considered:

Case 1: xn−1∨y = xn−1∨y′. In that case, by Lemma 5.1 there exists a
prime interval [z, z′] in [⊥, xn−1] projective with [y, y′]. Since xn−1
is of height n−1, we can use the induction hypothesis. Hence there
exists an interval [xk, xk+1] with k ≤ n − 2 and [z, z′] ∼ [xk, xk+1]
i.e. d[z, z′] = d[xk, xk+1] and therefore

d[y, y′] ∈ {d[xi, xi+1]|i ≥ 0}
c[y, y′] ∈ {c[xi, xi+1]|i ≥ 0}

Case 2: xn−1 ∨ y −< xn−1 ∨ y′. In that case the prime interval [xn−1 ∨
y, xn−1∨y′] is included in the prime interval [xn−1, x] which implies

xn−1 = xn−1 ∨ y
x = xn−1 ∨ y′

so [y, y′] ≤ [xn−1, x] and here again

d[y, y′] ∈ {d[xi, xi+1]|i ≥ 0}
c[y, y′] ∈ {c[xi, xi+1]|i ≥ 0}

c) Continuity argument: If x is not finite, we know nevertheless by
proposition 6.1 that

Γ(x) = {c[y, y′]|[y, y′] prime and y, y′ ∈ A(x)}
∆(x) = {d[y, y′]|[y, y′] prime and y, y′ ∈ A(x)}

Consider then a prime interval [y, y′] with finite endpoints. The
maximal chain from ⊥ to x is a directed set so there is a finite
element xn in the chain such that y′ ≤ xn. Using the result of the
finite case, we can find an interval [xi, xi+1](i ≤ n − 1) projective
with [y, y′]. 2

Corollary 6.1 For any x in a concrete domain h(x) = |Γ(x)| = |∆(x)|.
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Proof: Assume first x is finite. By the previous lemma, we know that |Γ(x)| ≤
h(x) and |∆(x)| ≤ h(x). But by Theorem 5.1 a maximal chain cannot contain
two equipollent prime intervals. So h(x) ≤ |Γ(x)| and h(x) ≤ |∆(x)|. Now if
x is infinite, using Theorem 5.1 we have |Γ(x)| = ∞ and |∆(x)| = ∞. 2

We prove now a technical result that is much stronger than Proposition
5.4.

Proposition 6.3 Consider two projective prime intervals [a, a′] and [b, b′] in
a concrete domain. If a and b are compatible we have also:

[a, a′] ≤ [c, c′] ≥ [b, b′]

with c = a ∨ b and c′ = a′ ∨ b = a ∨ b′

Proof: First a′ and a∨b are compatible. Indeed if we had a′#a∨b, there would
exist an element t such that a −< t ≤ a ∨ b and t#a′. By Lemma 5.1 there
would exist an interval [u, u′] in [⊥, b] with [u, u′] ∼ [a, t] thus [u, u′] ≈ [a, a′].
But since [a, a′] ∼ [b, b′] we deduce [u, u′] ≈ [b, b′], which is impossible by
Theorem 5.1. Symmetrically we can show b′ ↑ c = a ∨ b. The same reasoning
also shows that a′ and b′ are not less than c. By Property C we deduce

c −< (a ∨ b) ∨ a′ = a′ ∨ b
c −< (a ∨ b) ∨ b′ = a ∨ b′

But the prime intervals [a ∨ b, a′ ∨ b] and [a ∨ b, a ∨ b′] are projective. So by
property R we obtain a′ ∨ b = a ∨ b′. 2

Corollary 6.2 If [x, x′] and [y, y′] are two equipollent prime intervals included
in the same interval [⊥, z] then they are projective.

Proof: From [x, x′] ≈ [y, y′] we deduce that there exists a a prime interval
[y, y′′] such that [x, x′] ∼ [y, y′′] ≈ [y, y′]. But x and y are compatible, so by
the previous result [x, x′] ≤ [x ∨ y, x′ ∨ y] ≥ [y, y′′]. As x′ ∨ y is less than z,
so is y′′. Since y′ is also dominated by z we must have y′ = y′′ and therefore
[x, x′] ∼ [y, y′]. 2

Theorem 6.1 In a concrete domain

x ≤ y ⇔ ∆(x) ⊂ ∆(y)

Proof: By definition of ∆ we have x ≤ y ⇒ ∆(x) ⊂ ∆(y), so we need only
to prove the converse implication. We reason by induction on the height of x.
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a) Base Case: If h(x) = 0 then x = ⊥ and for any y we have x ≤ y.

b) Induction step: Assume we have ∆(x) ⊂ ∆(y) ⇒ x ≤ y when the height
of x is less than n, and assume h(x) = n. Consider an arbitrary maximal
chain ⊥ = x0 −< x1 −< · · · −< xn−1 −< xn = x from ⊥ to x, and assume
∆(x) ⊂ ∆(y). Since xn−1 ≤ x, we have ∆(xn−1) ⊂ ∆(x) ⊂ ∆(y). As
h(xn−1) = n−1 we can use the induction hypothesis to deduce xn−1 ≤ y.
Now d[xn−1, xn] belongs to ∆(x) thus to ∆(y) so there exists a prime
interval [z, z′] in [⊥, y] with [xn−1, xn] ∼ [z, z′]. Both elements xn−1 and
z are less than y so we can use Proposition 6.3:

[xn−1, xn] ≤ [xn−1 ∨ z, t] ≥ [z, z′]

t = xn−1 ∨ z′ = xn ∨ z

But since both xn−1 and z′ are less than y so is t, therefore xn is less
than y. As xn = x we obtain x ≤ y.

c) Continuity argument: From ∆(x) ⊂ ∆(y) we deduce

∀a ∈ A(x) ∆(a) ⊂ ∆(y)

thus by the result of the finite case ∀a ∈ A(x) a ≤ y. By algebraicity
x =

⋃

a∈A(x) a and therefore x ≤ y. 2

Definition 6.3 A prime interval is called minimal if it is minimal for the
relation ≤ between intervals.

Definition 6.4 An element x is join–irreducible iff

i) x 6= ⊥

ii) x = a ∨ b ⇒ x = a or x = b

Proposition 6.4 In a concrete domain, for any prime interval [x, x′] there
exists a prime interval [y, y′] less than [x, x′] where y′ is join–irreducible.

Proof: By Proposition 3.1 it is sufficient to examine the case where [x, x′] has
finite endpoints. We reason by induction on h(x′).

a) Base Case: h(x′) = 1. The element x′ is an atom thus necessarily join–
irreducible. The result is immediate.
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b) Induction step: Assume h(x′) = n, n > 1. If x′ is join–irreducible, the
property is proved immediately. Otherwise x′ = a ∨ b together with
a < x′ and b < x′. By Corollary 5.6 there exists a prime interval [u, u′]
included either in [⊥, a] or in [⊥, b] such that [u, u′] ∼ [x, x′]. Since both
u and x are both less than x′, by Proposition 6.3:

[u, u′] ≤ [x ∨ u, x ∨ u′] ≥ [x, x′]

Since x ∨ u′ ≤ x′ necessarily x ∨ u′ = x′ and thus x ∨ u = x so
[u, u′] ≤ [x, x′]. But since u′ is either less than a or less than b we
have in fact [u, u′] < [x, x′], which implies h(u) < h(x′) and we can ap-
ply the induction hypothesis to the prime interval [u, u′]. There exists
a prime interval [y, y′] with y′ join-irreducible and [y, y′] ≤ [u, u′] and a
fortiori [y, y′] ≤ [x, x′]. 2

Corollary 6.3 In a concrete domain, a prime interval [x, x′] is minimal iff
x′ is join–irreducible.

Proof: Assume first that x′ is join–irreducible and consider a prime interval
[y, y′] such that [y, y′] ≤ [x, x′]. By definition of ≤ we have x′ = x ∨ y′. Since
x′ is join–irreducible and x 6= x′ we must have y′ = x′. Thus y = y′ ∧ x =
x′ ∧ x = x, and [y, y′] = [x, x′]. So [x, x′] is minimal.

Conversely, assume that [x, x′] is minimal. By the previous propostion
there exists [y, y′] with y′ join–irreducible and [y, y′] ≤ [x, x′]. By minimality
[y, y′] = [x, x′] so y′ = x′ which proves that x′ is join–irreducible. 2

Proposition 6.5 In a concrete domain, if the prime interval [x, x′] is mini-
mal, then any prime interval [x, x′′] such that [x, x′′] ' [x, x′] is also minimal.

Proof: Consider an arbitrary prime interval [y, y′′] such that

[y, y′′] ≤ [x, x′′] ' [x, x′]

Since ≤ ◦ ' = ' ◦ ≤ there exists a y′ such that

[y, y′′] ' [y, y′] ≤ [x, x′]

Since [x, x′] is minimal [y, y′] = [x, x′] so y = x. Hence x∧y′′ = x which implies
x ≤ y′′. Since x′′ = x ∨ y′′ we have x′′ = y′′ and therefore [y, y′′] = [x, x′′],
which proves that [x, x′′] is minimal. 2
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Definition 6.5 In a concrete domain, consider a decision δ and a set of deci-
sions ∆. We say that ∆ enables δ iff there is a minimal prime interval [x, x′]
such that:

{

d[x, x′] = δ
∆(x) = ∆

By the previous proposition, if ∆ enables δ it also enables all decisions
equipollent to δ so we can say that ∆ enables cell γ iff there exists a minimal
prime interval [x, x′] such that:

{

c[x, x′] = γ
∆(x) = ∆

Remarks:

1. If the interval [x, x′] is minimal, elements x and x′ are finite. There-
fore, since |∆(x)| = h(x), a cell is always enabled by a finite number of
decisions.

2. In general, within a given equivalence class of projective prime intervals,
there are several distinct minimal intervals. Therefore, several distinct
sets of decisions may enable a given cell. The case where any cell γ is
enabled by a single set of decisions ∆ is a very important special case
that we will consider in section 10.

We are now ready to build a whole class of concrete domains, using the
notions introduced in this section.

Definition 6.6 An information matrix is a quadruple M =< Γ, V,V, E >
where

1. Γ is a countable set. Its elements will be called cells.

2. V is a countable set.

3. V is a function from Γ to P(V ) that maps any cell c in Γ to the subset
V(c) of possible values at c. We simply say that V(c) is the type of c.
We call decision a pair < c, v > where c is a cell and v is a possible value
at c, i.e. c ∈ Γ and v ∈ V(c). We note ∆M the set of decisions defined
by Γ,V , and V, and F(∆M ) the set of finite subsets of ∆M .
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4. the enabling function E maps Γ to P(F(∆M ))−∅. If a finite set of deci-
sions {d1, d2, . . . , dn} belongs to E(c) we say that {d1, d2, . . . , dn} enables
cell c.

Notations: Let M =< Γ, V,V, E > be an information matrix with set of
decision ∆M . If d =< c, v > (c ∈ Γ, v ∈ V(c)) is a decision, we say that this
decision concerns cell c; if {d1, d2, . . . , dn} is a set of decisions in E(c), we say
that this set enables cell c and decision d. This relation is written:

d1, d2, . . . , dn ` d

If the empty set enables a cell (resp. a decision) we say that this cell (resp.
this decision) is initial.

Definition 6.7 Consider an information matrix M and a decision d in M .
A finite sequence of decisions d0, d1, d2, . . . , dn−1, dn = d is a proof of d iff for
any j with 0 ≤ j ≤ n there is a subset {dj1 , dj2 , . . . , djk} of {d0, . . . , dj−1} that
enables dj, i.e. dj1 , dj2 , . . . , djk ` dj.

Definition 6.8 In an information matrix, a subset of decisions X is con-
nected by another subset Y iff any decision in X has a proof included in Y .
A subset X that is connected by itself is called connected.

Remarks: If X is connected by Y we have X ⊂ Y . If X is connected by Y ,
em a fortiori X is connected by any superset of Y . If two sets of decisions
are connected, so is their set union. A proof is of course connected. From
these last two remarks, we deduce that any finite subset X of a connected set
may be included in a finite connected subset: simply include a proof of each
element of X.

Definition 6.9 In an information matrix M a configuration is a connected
set of decisions in which no two distinct decisions concern the same cell.

Let ΣM be the set of configurations of an information matrix M . Any con-
figuration σ is a subset of ∆M by definition, so ΣM is naturally ordered by
inclusion.
Example: Consider the matrix M1 =< Γ1, V1,V1, E1 > defined by

1. Γ1 = {c1, c2, c3}

2. V1 = {>}
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Figure 13: ΣM1

3. V1 = λc.{>}

4. E1(c1) = E1(c2) = {∅} E1(c3) = {{c1}, {c2}}

Since V1 contains a single value, the set of decisions is isomorphic to Γ1 and
the set of configurations ΣM1 comprises the following seven configurations:

σ1 = ∅ σ2 = {c1} σ3 = {c2} σ4 = {c1, c2}

σ5 = {c1, c3} σ6 = {c2, c3} σ7 = {c1, c2, c3}

The diagram of the partial order < ΣM1 ;⊂> is shown on Figure 13.
We have used extensively Hasse diagrams to represent partial orders; in the

same manner it is useful to represent in a synthetic manner an information
matrix. Such a graphical representation is only feasible when all cells may
only contain a single value > (i.e. V = λc.{>}). In that case Γ and ∆M are
isomorphic and E maps Γ to P(F(Γ)) so that we can use a representation
by “and-or” graphs that is familiar in computer science. Each cell in M is
represented by a node in the graph and if we have c1, c2, . . . , cn−1 ` cn the
graph of M has n− 1 edges ci → cn and they are drawn connected by an arc
(for “and”). For example matrix M1 that we have just seen is represented
here:

c1
�
�
��

@
@
@I

c2

c3

Matrix M2 =< Γ1, V1,V1, E2 > where E2(c1) = E2(c2) = {∅} and E2(c3) =
{{c1, c2}} is represented by
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Simple conventions allow representing infinite matrices in this manner (cf.
Figure 14).

Lemma 6.2 In the partial order < ΣM ;⊂> of the configurations of an infor-
mation matrix M ordered by set inclusion, two configurations σ1 and σ2 are
compatible iff the set σ1∪σ2 is a configuration. Furthermore σ1∨σ2 = σ1∪σ2.

Proof: First if σ1 ∪σ2 is a configuration, since σ1 ⊂ σ1 ∪σ2 and σ2 ⊂ σ1 ∪σ2,
we have σ1 ↑ σ2. Assume conversely σ1 ↑ σ2, i.e. that there is a configuration
σ with σ1 ⊂ σ and σ2 ⊂ σ and consider the set of decisions σ1 ∪ σ2. We
remarked earlier that since σ1 and σ2 are connected, so is their union. If in
σ1 ∪ σ2 two distinct decisions concerned the same cell, then this would also
be the case in σ that includes σ1 ∪ σ2. But this is impossible because σ is a
configuration. Thus σ1 ∪ σ2 is a configuration.

Since any configuration dominating σ1 and σ2 must contain (hence domi-
nate) σ1 ∪ σ2 we have σ1 ∨ σ2 = σ1 ∪ σ2. 2
Remark: However, the set intersection of two configurations is not necessarily
a configuration because it may not be connected. For example in the matrix
M1 considered earlier, we have σ5 ∩ σ6 = {c3} and {c3} is not connected. In
fact σ5 ∧ σ6 = σ1 = ∅ 6= σ5 ∩ σ6.

Lemma 6.3 In the partial order < ΣM ;⊂> configuration σ2 covers configu-
ration σ1 iff there exists a decision d such that σ2 = σ1∪̇ d.

Proof: Assume first that σ1 and σ2 are two configurations such that σ2 =
σ1∪̇ d. Then σ1 ⊂ σ2 and σ1 6= σ2. Let σ be an arbitrary configuration in
[σ1, σ2], i.e σ1 ⊂ σ ⊂ σ2. Since σ1 and σ2 differ only by the element d, either
σ doesn’t contain d and σ1 = σ or σ contains d and σ = σ2. Thus we have
indeed σ1 −< σ2.

Conversely assume σ1 −< σ2. Let d be an arbitrary decision in σ2 not in
σ1. Such a decision exists since σ1 and σ2 are distinct. Since σ2 is connected,
there is a proof of d in σ2:

d0, d1, d2, . . . , dn−1, dn = d
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Figure 14: Example information matrices
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Consider the first decision dj in this proof that does not belong to σ1. The
set σ1∪̇ {dj} is connected since dj has a proof entirely contained in it. Now
σ⊂σ1∪̇ {dj} ⊂ σ2 and σ1 6= σ1∪̇ {dj}. So since σ2 covers σ1 we must have
σ1∪̇ {dj} = σ2. 2

Theorem 6.2 For any information matrix M the partial order < ΣM ;⊂> is
a concrete domain.

Proof:

Part 1: < ΣM ;⊂> is a computation domain.

1. < ΣM ;⊂> is coherent. Let X be a consistent set of configurations
and consider the set of decisions obtained in taking all decisions of
all elements of X. This set σ is connected because it is a union
of connected sets. Suppose two decisions in σ would concern the
same cell. These two decisions could not be included in the same
element of X, because X contains only configurations. But they
cannot come from two distinct elements x1 and x2 of X, otherwise
x1 ∪ x2 would not be a configuration, contradicting the hypothesis
x1 ↑ x2 by Lemma 6.2. Thus σ is a configuration. It is the smallest
configuration that dominates all elements of X, so σ =

⋃

X.
2. < ΣM ;⊂> is ω–algebraic. Let us show that the finite configura-

tions are exactly the isolated elements in < ΣM ;⊂>.

First we show that finite configurations are isolated. Let X be a
directed set of configurations and τ a finite set of decisions such that
τ ⊂

⋃

X. We reason by induction on the size (cardinal) of τ . In the
base case, if |τ | = 0 then τ = ∅ and for any x in X, τ ⊂ x. If now
|τ | = n(n > 0) then choose an arbitrary decision d in τ and take
τ = τ ′∪̇{d}. Since |τ ′| < n by the induction hypothesis there exists
x1 in X such that τ ′ ⊂ x1. Now there must exists a configuration x2
in X that contains decision d, otherwise it wouldn’t be a decision of
⋃

X, which would contradict τ ⊂
⋃

X. Since X is directed, there
is x in X with x1 ⊂ x and x2 ⊂ x, so τ ⊂ x.

Consider now an arbitrary configuration x. If a is a finite subset of
x, we have seen that a may be included in a finite connected subset
a of x, which is then a configuration. As X is the union of all its
finite parts, we have x = ∪{a|a ∈ F(x)}. On the right hand side of
this equation is a directed set of configurations, so we have also:

x =
⋃

{a|a ∈ F(x)}

70



So if x is isolated, there exists a finite subset a of x with x ⊂ a and
therefore, since a ⊂ x, a = x, proving that x is a finite configuration.

We have proved that the finite elements of < ΣM ;⊂> are exactly
the finite configurations. As there are only denumerably many finite
subsets in a denumerable set, we conclude that < ΣM ;⊂> is ω–
algebraic. This terminates the first part.

Part 2: < ΣM ;⊂> is a concrete domain. We check in turn that < ΣM ;⊂>
has properties I,C, Q, and R.

1. Property I. The set of finite configurations is trivially an ideal of
< ΣM ;⊂>. As there are only finitely many subsets of a finite set,
a fortiori there are only finitely many configurations included in a
finite configuration. So the ideal is well founded.

2. Property C. Let σ1 and σ2 be two compatible finite configurations
such that σ1∧σ2 −< σ1. By Lemma 6.3 we have σ1 = σ1∧σ2 ∪̇ {d}.
By Lemma 6.2, if σ1 ↑ σ2 then σ1 ∨ σ2 = σ1 ∪ σ2, so:

σ1 ∨ σ2 = σ1 ∧ σ2 ∪ {d} ∪ σ2 = σ2 ∪ {d}

If element d belonged to σ2, we would have σ1∨σ2 = σ2 thus σ1 ⊂ σ2
and σ1 ∧ σ2 = σ1 which contradicts the hypothesis. Therefore:

σ1 ∨ σ2 = σ2∪̇{d}

and by Lemma 3.2 again σ2 −< σ1 ∨ σ2.

3. Property Q. If two configurations σ1 and σ2 are incompatible, the
set σ1 ∪ σ2 is not a configuration by Lemma 6.2. Since σ1 ∪ σ2
is connected, there must exist two distinct decisions d1 and d2,
with d1 ∈ σ1 and d2 ∈ σ2 concerning the same cell. Consider two
incompatible and finite configurations σ1 and σ2 with σ1∧σ2 −< σ1.
Let d1 =< c, x > and d2 =< c, y > (x 6= y). Since σ1 ∧ σ2 is less
than σ1 and σ2, it cannot contain a decision concerning cell c. Thus
σ1 = σ1 ∧ σ2 ∪̇ {d1}. The decision d1 has a proof {d′0, d′1, . . . , d′n =
d1}. Without loss of generality we can assume this proof has no
earlier occurrence of d1, i.e. the elements d′i (0 ≤ i ≤ n− 1) are all
in σ1 ∧ σ2. Since d1 and d2 concern the same cell, we have:

d′0, d
′
1, . . . , d

′
n−1 ` d2
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hence the set τ = σ1 ∧ σ2 ∪̇ {d2} is connected, and since d2 is
the only decision concerning c, it is a configuration. We have now
σ1 ∧σ2 −< τ ⊂ σ2 and σ1#τ , so Property QE is satisfied. Consider
now three configurations σ1, σ2, and σ3 covering σ i.e.

σ1 = σ ∪̇ {d1} σ2 = σ ∪̇ {d2} σ3 = σ ∪̇ {d3}

If σ1Rσσ2 and σ2Rσσ3 we must have d1 =< c, v1 >, d2 =< c, v2 >,
and d3 =< c, v3 >. If v3 = v1 then σ1 = σ3 and if v3 6= v1 then
σ1#σ3. So property QU is satisfied as well.

4. Property R. We will prove that if two prime intervals [σ1, σ′1] and
[σ2, σ′2] there exists a decision d with σ′1 = σ1 ∪̇ {d} and σ′2 =
σ2 ∪̇ {d}. In fact, since projectivity is the transitive closure of trans-
position, it is sufficient to prove this property when [σ1, σ′1]T [σ2, σ′2].
If [σ1, σ′1] ≤ [σ2, σ′2] we have seen in part 2 of this proof that
σ′2 = σ′1∨σ2 = σ2 ∪̇ {d}. If [σ1, σ′1] ≥ [σ2, σ′2] assume σ′2 = σ2 ∪̇ {d′}
and σ′1 = σ1 ∪̇ {d}. By definition, σ′1 = σ′2 ∨ σ1 = (σ2 ∪̇ {d′}) ∪ σ1.
But we know that σ2 ⊂ σ1, so σ′1 = σ1 ∪̇ {d′} = σ1 ∪̇ {d}. Hence
d = d′ and σ′2 = σ2 ∪̇ {d}.
Now if [σ, σ′] and [σ, σ′′] are projective, we must have σ′ = σ ∪̇ {d}
and σ′′ = σ ∪̇ {d}, hence σ = σ′ which proves property R. 2

Remark: In < ΣM ;⊂>, the height h(σ) of a configuration σ is simply |σ| if
σ is finite, and infinite otherwise. From the set theoretic equality:

|A|+ |B| = |A ∩B|+ |A ∪B|

we deduce, since σ1 ∧ σ2 ⊂ σ1 ∩ σ2:

h(σ1) + h(σ2) ≥ h(σ1 ∧ σ2) + h(σ1 ∨ σ2)

an inequality that we have already proved. It is clear here that there will be
a strict inequality whenever σ1 ∧ σ2 6= σ1 ∩ σ2.

7 The representation Theorem

The theorem that we are going to prove now is a representation theorem that
plays a role similar to the two classical representation theorems of Lattice
Theory([Bir67]):
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1. every boolean lattice is isomorphic to a field of sets

2. every distributive lattice is isomorphic to a ring of sets

Here, given an arbitrary concrete domain, we will construct an information
matrix whose space of configurations, which is a concrete domain by the result
of the previous section, is isomorphic to the concrete domain that we started
with.

Theorem 7.1 Every concrete domain is isomorphic to the set of configura-
tions of an information matrix.

Proof: Consider an arbitrary concrete domain D.
Part 1: Construction of the information matrix.
We build an information matrix M =< Γ, V,V, E > in the manner that is
implicit in our terminology.

i) Γ is the set of cells (equivalence classes under equipollence) of D (cf. Def-
inition 6.1). Since the cardinality of this set is less than the cardinality
of the set of isolated elements in D, the set Γ is countable.

ii) V is the set of decisions of D (equivalence classes under projectivity),
which is countable for the same reason.

iii) If c is a cell in D, it is the union of equivalence classes under projectivity,
so we take V(c) to be the set of projectivity classes in c. Thus if c1 and
c2 are two distinct cells in D, the sets V(c1) and V(c2) are disjoint sets.
Therefore the set ∆M of decisions of M is isomorphic to V . In other
words, all cells in M have a distinct type.

iv) Function E is the function that maps any cell c to the set of finite parts
of ∆M (i.e. of V ) that enable c (cf. Definition 6.5).

The set of configurations of the matrix M built in this manner is a concrete
domain by Theorem 6.2.
Part 2: The injection φ from D to < ΣM ;⊂>.
Any element x in D defines the set ∆(x) of the decisions that it contains
(cf. Definition 6.2). The set ∆(x) is a subset of V in one-one correspondence
with a subset φ(x) of ∆M . We prove by induction on h(x) that φ(x) is a
configuration of M .

a) Base case: If h(x) = 0 then x = ⊥ and ∆(x) = φ(x) = ∅. The empty set
is a configuration.
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b) Induction step: Assume h(x) = n (n > 0). Two cases are to be considered:

Case 1: x is not join–irreducible. Then x = a∨ b with a < x and b < x,
thus h(a) < n and h(b) < n. By induction hypothesis φ(a) and
φ(b) are configurations. Since ∆(x) = ∆(a) ∪∆(b) by Proposition
6.2, we have also φ(x) = φ(a) ∪ φ(b). Thus φ(x) is a connected
set of decisions. By Corollary 5.2, if two prime intervals dominated
respectively by a and b are equipollent they are projective, therefore
φ(a)∪φ(b) does not contain two distinct decisions in ∆M concerning
the same cell. Hence φ(x) is a configuration of M .

Case 2: x is join–irreducible. If the element x is join–irreducible it has
a (unique) predecessor x̄ and h(x̄) = n−1. By induction hypothesis
φ(x̄) is a configuration. By definition, in D the set ∆(x̄) enables
cell [x̄, x], so the set φ(x̄) ∪ d[x̄, x] is connected in M . Furthermore
it is a configuration by Theorem 5.1. Since x̄ is a predecessor of x,
we have φ(x) = φ(x̄) ∪ d[x̄, x] so φ(x) is a configuration.

c) Continuity argument: If x is infinite ∆(x) =
⋃

ξ∈A(x) ∆(ξ) by Proposition
6.2. Thus φ(x) =

⋃

ξ∈A(x) φ(ξ). Since for any finite ξ the set φ(ξ) is
a configuration, the set φ(x) is connected. By Corollary 6.2 we obtain
that φ(x) is a configuration.

Now x ≤ y implies ∆(x) ⊂ ∆(y), i.e. φ(x) ⊂ φ(y). Function φ is monotonic.
By Theorem 6.1, if φ(x) = φ(y) we have x = y. Hence φ is a monotonic
injection.

Part 3: Function φ is onto.
Since ΣM is a concrete domain, we reason naturally by induction on the size
of an element σ in ΣM , i.e. on |σ|.

a) Base case: If |σ| = 0 then σ is the empty configuration. It is the case that
φ(⊥D) is the empty configuration.

b) Induction step: Assume that any configuration in ΣM of cardinality less
than n(n > 0) is the image by φ of some element in D anc consider a
configuration σ with |σ| = n. Two cases are to be considered:

Case 1: σ is not join–irreducible in ΣM . Then σ = σ1 ∨ σ2, with |σ1| < n
and |σ2| < n. By induction hypothesis, there are two elements x1 and
x2 in D with σ1 = φ(x1) and σ2 = φ(x2). The elements x1 and x2
are compatible, because otherwise, by Proposition 4.4 we could find two
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equipollent non projective prime intervals [ξ1, ξ′1] and [ξ2, xi′2] in [⊥, x1]
and [⊥, x2] respectively. But then σ would contain two distinct decisions
d[ξ1, ξ′1] and d[ξ2, xi′2] concerning the same cell, which is impossible. So
the element x1 ∨ x2 exists in D and φ(x1 ∨ x2) = φ(x1) ∪ φ(x2) =
φ(x1) ∨ φ(x2) = σ.

Case 2: σ is join–irreducible in ΣM . Let σ̄ be the unique predecessor of σ.
Since |σ̄| = |σ| − 1 there exists an element x̄ in D such that φ(x̄) = σ̄
by induction hypothesis. Since σ covers σ̄, there is a decision d with
σ = σ̄ ∪̇ d and d has a proof π∪̇d with π ⊂ σ̄. Given the way we have
constructed E , there exists therefore in D a minimal prime interval [ξ, ξ′]
with d[ξ, ξ′] = d and ∆(ξ) ⊂ π.

Since ∆(ξ) ⊂ σ̄ = ∆(x̄) we conclude ξ ≤ x̄ by Theorem 6.1. Since σ̄ ∪̇ d
is a configuration, there is no prime interval in ∆(x̄) in the equipollence
class of [ξ, ξ′]. Hence ξ′ is compatible with x̄ and is not less than x̄. Take
now x = x̄ ∨ ξ′. Then ∆(x) = ∆(x̄) ∪∆(ξ′) and

∆(x) = ∆(x̄) ∪ π ∪ d = ∆(x̄)∪̇d = σ̄∪̇d = σ

and consequently φ(x) = σ.

c) Continuity argument: Assume now that σ is an infinite configuration.
Since ΣM is algebraic, we have σ =

⋃

{τ |τ ∈ A(σ)}. Any configuration in
A(σ) is finite, so it is the image of some ξ in D. The inverse image ofA(σ)
by φ is a directed set. Let now x be defined by x =

⋃

{ξ|φ(ξ) ∈ A(σ)}.
By Proposition 6.2 we obtain ∆(x) =

⋃

{τ |τ ∈ A(σ)} and therefore
φ(x) = σ.

Theorem 6.1 can now be rewritten in the following manner:

x ≤ y ⇐⇒ φ(x) ⊂ φ(y)

which concludes the proof of the isomorphism between D and < ΣM ;⊂>.2
Examples: We show now on a few simple examples how one obtains an
information matrix that represents a concrete domain.
Example 1: The diagram of Figure 15 (a) has three equivalence classes of
prime intervals for equipollence, so we build three cells. The join–irreducible
elements are underlined: a, a′, c, c′. Since ∆(⊥) = {∅}, cells A and B (corre-
sponding to equipollence classes {[⊥, a], [c, b], [c′, b′]} and {[⊥, c], [a, b], [a′, b′]}
respectively) are initial. The domain is a lattice, so each cell can only have one
possible value (no incompatibility may arise). Finally cell C, which represents
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Figure 15: Example 1

equipollence class {[a, a′], [b, b′], [c, c′]} is enabled either by ∆(a) or by ∆(c).
In other words, C is enabled by any decision on A or on B.

It is easy to verify that the set of configurations of the information matrix
on Figure 15 (b) is isomorphic to the partial order on Figure 15 (a) with for
example the following correspondence:

domain element Configuration
⊥ ∅
a {< A,> >}
c {< B,> >}
b {< A,> >,< B,> >}
a′ {< A,> >,< C,> >}
c′ {< B,> >,< C,> >}
b′ {< A,> >,< B,> >, < C,> >}

Example 2:
The diagram of Figure 16 (a) has two equipollence classes, so we build two

cells A and B (A = {[⊥, a], [b′, a′], [⊥, c], [b′, c′]} and B = {[a, a′], [⊥, b′], [c, c′]}).
As the three join–irreducible elements are atoms, both cells are initial. Finally,
cell A contains two equivalence classes of projective prime intervals, and so it
may take two distinct values. To double–check, we fill out the correspondence
table:
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Figure 16: Example 2
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Figure 17: Example 3

domain element Configuration
⊥ ∅
a {< A, 0 >}
c {< A, 1 >}
b′ {< B, 0 >}
a′ {< A, 0 >,< B, 0 >}
c′ {< A, 1 >,< B, 0 >}

Remark: The domain on Figure 16 (a) is the cartesian product T ×O. Note
that O is represented by a single cell that may take only a single value, and
T is represented by a single cell that may take two values. We will see in the
next section that the cartesian product of two concrete domains is represented
by the juxtaposition of their representations.
Example 3:

Here again, the diagram of Figure 17 (a) is a lattice, thus all cells in its
representation as an information matrix may take only one value.

77



⊥
•��

�
HH

H ��
��

��

HH
HH

HH ��
��
��

HH
HH

HH

•a •b •c��
��

��

HH
H

��
��

��

•d •e •f
HH

HH
HH

HH
HH

HH
��
�

��
�H
HH

• ••
•

• • •
• • •

•

Figure 18: Example 4

There are four cells:

A = {[⊥, a], [b, e], [d, g], [i, j]}
B = {[⊥, b], [a, e], [c, f ], [h, j]}
C = {[a, c], [e, f ], [g, j], [d, i]}
D = {[b, d], [e, g], [f, j], [c, h]}

and six join–irreducible elements: a, b, c, d, h, i. Hence cells A and B are initial,
and sets {A,C} and {B} enable cell D; as well sets {B, D} and {A} enable cell
C. We notice here that the representation theorem doesn’t yield a “minimal”
representation since the matrix on Fig. 17 (b) is equivalent, i.e. gives rise to the
same configurations, but includes less constraints than the one we have built.
In view of the symmetry, we give only half of the correspondence between the
domain and the configurations of the information matrix.

domain element Configuration
⊥ ∅
a {< A,> >}
e {< A,> >,< B,> >}
c {< A,> >,< C,> >}
f {< A,> >,< B,> >, < C,> >}
h {< A,> >,< C,> >,< D,> >}
j {< A,> >,< B,> >, < C,> >,< D,> >}

Remark: Cell C enables cell D and conversely. This “loop” cannot be elim-
inated.
Example 4:
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The lattice on Figure 18 is the free distributive lattice with three genera-
tors. Any finite distributive lattice has property RT and therefore is automat-
ically a concrete domain. The lattice has six equivalence classes of projective
prime intervals and each class contains a single minimal interval. We will see
later that this fact is general in presence of distributivity. The diagram of the
representation is on Figure 14 (b).

For the moment, we do not give examples of infinite domains, beyond the
well–known domain of infinite sequences. We must first examine a number of
basic operations that allow one to construct concrete domains.

8 Basic Operations

In this section and in the next one, we study certain operations that allow
one to construct complex concrete domains starting from simpler ones. For
example, we have seen that the cartesian product of two computation domains
is a computation domain. Similarly:

Proposition 8.1 The cartesian product of two concrete domains is a concrete
domain

Proof: If D and E are two concrete domains, their cartesian product is
ordered componentwise:

< x, y >≤D×E< x′, y′ > ⇔ x ≤D x′ and y ≤E y′

The isolated points in D × E are pairs of the form < d, e > where d ∈ A(D)
and e ∈ A(E). One checks immediately that the covering and incompatiblity
relations are given by
{

< d, e >−<< d′, e′ > ⇔ (d −<D d′ and e = e′) or (d = d′ and e −<E e′)
< d, e > # < d′, e′ > ⇔ (d#Dd′) or (e#Ee′)

We can now verify that D × E has all the properties of a concrete domain.

1. Property I: Consider two isolated elements < d, e > and < d′, e′ > in
D × E. Any element < x, y > in the interval [< d, e >,< d′, e′ >]
satisfies:

{

d ≤ x ≤ d′

e ≤ y ≤ e′

There are only finitely many such pairs by Property I in D and E, and
a fortiori all chains in this interval are finite.
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2. Property C: Upper and lower bounds in D×E are taken componentwise.
Assume then we have < x, x′ >↑< y, y′ > and < x ∧ y, x′ ∧ y′ >−<<
x, x′ >. Two cases are to be considered:

Case 1. x = x ∧ y and x′ ∧ y′ −< x′. Then by C in E, y′ −< x′ ∨ y′

and of course x ∨ y = y. Hence < y, y′ >−<< x ∨ y, x′ ∨ y′ >=<
x, x′ > ∨ < y, y′ >.

Case 2. x′ = x′ ∧ y′ and x ∧ y −< x. Property C in D yields simi-
larly < y, y′ >−<< x, x′ > ∨ < y, y′ >.

So D × E has property C.

3. Property Q: Let < x, x′ > and < y, y′ > be two incompatible elements in
D × E such that < x ∧ y, x′ ∧ y′ >−<< x, x′ >. We have either x#y or
x′#y′ and these conditions are not mutually exclusive. Two (symmetric)
cases are possible:

Case 1. x ∧ y = x. Then x and y are comparable and therefore x′#y′;
since x′ ∧ y′ −< x′, by Property Q in E there exists an element t′

such that x′ ∧ y′ −< t′ ≤ y′ and x′#t′. Thus
{

< x ∧ y, x′ ∧ y′ >−<< x, t′ >≤< y, y′ >
< x, x′ > # < x, t′ >

so Property QE is established in this case. Since Property QU is
valid in E, there cannot exist an element t′′ distinct from t′ with

{

< x ∧ y, x′ ∧ y′ >−<< x, t′′ >≤< y, y′ >
< x, x′ > # < x, t′′ >

Furthermore, any element of the form < u, x′ ∧ y′ > with x ∧ y =
x −< u is compatible with < x, x′ >. Thus Property QU is valid in
this case.

Case 2. x′ ∧ y′ = x′. This case is treated symmetrically.

Property Q is therefore established in D × E.

4. Property R: To establish Property R, we must have closer look at the
prime intervals in D×E and the transposition relation. First, the interval
[< d, e >, < d′, e′ >] is prime iff
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Either [d, d′] is prime and e = e′

Or [e, e′] is prime and d = d′

Take two intervals [< d1, e1 >,< d′1, e
′
1 >] and [< d2, e2 >,< d′2, e

′
2 >].

If [< d1, e1 >,< d′1, e
′
1 >] ≤ [< d2, e2 >,< d′2, e

′
2 >] then

{

d1 = d′1 ∧ d2 and e1 = e′1 ∧ e2
d′2 = d′1 ∨ d2 and e′2 = e′1 ∨ e2

If [d1, d′1] is prime and e1 = e′1 then
{

[d1, d′1] ≤ [d2, d′2]
e1 = e′1 = e2 = e′2

If [e1, e′1] is prime and d1 = d′1 then
{

[e1, e′1] ≤ [e2, e′2]
d1 = d′1 = d2 = d′2

By symmetry and transitivity we obtain that if

[< d1, e1 >,< d′1, e
′
1 >] ∼ [< d2, e2 >,< d′2, e

′
2 >]

{

Either [d1, d′1] ∼ [d2, d′2] and e1 = e′1 = e2 = e′2
Or [e1, e′1] ∼ [e2, e′2] and d1 = d′1 = d2 = d′2

where both cases are mutually exclusive.

Assume now that we have [< d, e >, < d′, e′ >] ∼ [< d, e >,< d′′, e′′ >].

1. either [d, d′] ∼D [d, d′′], and by Property R, d′ = d′′. Since e = e′ =
e′′ we have indeed < d′, e′ >=< d′′, e′′ >

2. or [e, e′] ∼E [e, e′′] and by Property R, e′ = e′′. Since d = d′ = d′′

we have also < d′, e′ >=< d′′, e′′ >.

Property R is therefore valid in D × E. 2

Remark: To prove that a computation domain is concrete we have two strate-
gies. Either we examine in turn, as we just did, the properties that must be
verified. Or we make use of the representation theorem, i.e. we produce an
information matrix whose set of configurations is isomorphic to the domain in
question. These two strategies have their own advantages and we will illustrate
this in the sequel.
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Definition 8.1 Consider two information matrices M ′ =< Γ′, V ′,V ′, E ′ >
and M ′′ =< Γ′′, V ′′,V ′′, E ′′ > whose sets of cells are disjoint. The juxtaposi-
tion of M ′ and M ′′ is the information matrix < Γ, V,V, E > defined as follows:



































Γ = Γ′∪̇Γ′′

V = V ′ ∪ V ′′

∀c ∈ Γ′ V(c) = V ′(c)
∀c ∈ Γ′′ V(c) = V ′′(c)
∀c ∈ Γ′ E(c) = E ′(c)
∀c ∈ Γ′′ E(c) = E ′′(c)

Proposition 8.2 If M ′ and M ′′ are two information matrices and M is their
juxtaposition, then < ΣM ;⊂>=< ΣM ′ ;⊂> × < ΣM ′′ ;⊂>.

Proof: Consider an arbitrary configuration σ of M . Since the set of cells of
M is the disjoint union of the sets of cells of M ′ and M ′′, configuration σ is
the disjoint union of two sets of decisions σ′ and σ′′ concerning respectively
cells in M ′ and in M ′′. The sets σ′ and σ′′ are connected by definition of the
accessibility relation in M . As connected subsets of a configuration σ′ and σ′′

are configurations of M in in trivial correspondence with configurations of M ′

and M ′′. So to any element in ΣM we can associate an element in ΣM ′×ΣM ′′ .
Conversely, by definition of the juxtaposition of two matrices, to any element
in ΣM ′ × ΣM ′′ we can associate a configuration in ΣM . Finally:

σ1 ⊂M σ2 ⇔ (σ′1 ⊂M ′ σ′2) and (σ′′1 ⊂M ′′ σ′′2)

hence the one-one mapping between ΣM and ΣM ′ ×ΣM ′′ is order preserving.
Thus the domains ΣM and ΣM ′ × ΣM ′′ are isomorphic. 2

From the proposition above, we deduce a quick proof that the the cartesian
product of two concrete domains is concrete. If D′ and D′′ are two concrete
domains, represented respectively by matrices M ′ and M ′′, the set of config-
urations of the juxtaposition of M ′ and M ′′ is isomorphic to D′ ×D′′. Hence
D′ ×D′′ is a concrete domain. The reasoning can be extended to a countable
number of information matrices, so we obtain as well:

Corollary 8.1 The cartesian product of a countable domain of concrete do-
mains is concrete.

Example: Domain T on Figure 19 (a) is associated to the matrix repre-
sented on Figure 19 (b), and Tω, the universal computation domain of Plotkin
([Plo78]) is associated to the matrix of Figure 19 (c). Hence Tω is a concrete
domain. Similarly Nω

⊥, the domain underlying the language LUCID ([AW77])
is a concrete domain.
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Figure 19: T and Tω
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Figure 20: Separated sum

Definition 8.2 Consider {< Di;≤i >}i∈I a countable family of partial orders
whose domains are disjoint. The separated sum of this family is the partial
order defined by

i) D = {⊥}∪̇
⋃

i∈Di
Di

ii) x ≤ y ⇔ x = ⊥ or ∃i ∈ I x ≤i y

(The element ⊥ is not in any of the sets Di).

Proposition 8.3 The separated sum of countably many concrete domains is
concrete.

Proof: It is immediate that the separated sum of a countable number of
computation domains is a computation domain whose isolated elements are
those of the component domains plus the new element ⊥. Property I is valid
as soon as it is valid in the component domains. Property C carries because
no new pair of compatible and incomparable elements has been created. The
only pairs < x, y > with x#y and x ∧ y −< x that have appeared in the
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separated sum are of the form < ⊥i, dj > with i 6= j and dj ∈ Dj , since
in that case ⊥i ∧ dj = ⊥. But then ⊥j is the unique element such that
⊥i#⊥j ,⊥ −< ⊥j ≤ dj . Hence the separated sum D has property Q. Property
R remains valid because the only prime intervals that have appeared in D are
of the form [⊥,⊥j ] and they are alone in their projectivity class. 2

The separated sum of a family of concrete domains {< Di;≤i >}i∈I con-
tains only one new cell that is the equipollence class of the prime intervals of
the form [⊥,⊥i](i ∈ I). This cell is enabled by the empty set. This remark
leads into the following definition.

Definition 8.3 Consider a finite or countable set of information matrices
with disjoint sets of cells {Mi}i∈I . The sum of this family of matrices is the
matrix M defined by:

i) Γ = ( ˙⋃
i∈IΓi) ∪̇ {γ}

ii) V = (
⋃

i∈I Vi)∪{I}

iii) V(γ) = I and ∀c ∈ Γi V(c) = Vi(c)

iv) E(γ) = {∅} and ∀c ∈ Γi E(c) = {e∪̇{< γ, i >}|e ∈ Ei(c)}

Proposition 8.4 The set of configurations of the sum of a countable fam-
ily of information matrices is isomorphic to the separated sum of the sets of
configurations of this family. concrete.

Proof: Consider a countable set of information matrices with disjoint sets of
cells {Mi}i∈I and their sum M . A non empty configuration σ of M contains
necessarily one and only one decisions of the form < γ, i >. Thus all other
decisions in σ are decisions in Mi and they form a configuration in ΣMi . Thus
there is an injection of M in the separated sum (ΣMi)i∈I . Conversely it is
trivial to associate a configuration of M to any element in the separated sum.
Thus there is a one-one mapping that preserves order, so it is an isomorphism.
2
Remark: The choice of a separated sum of concrete domains is not arbitrary.
Indeed, the coalesced sum of two concrete domains is not necessarily a concrete
domains; nor is the skew sum where one of the minimal elements is taken to
be the minimal element of the result. The figure below illustrates the fact that
property Q may fail in both cases. Domain Q is either the coalesced sum of
O2 and O, or the skew sum of O2 and ⊥. But Q doesn’t have property Q.
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Remark: Domain ⊥ may be represented by the information matrix with no
cells. Domain N⊥ is the separated sum of a countable number of copies of
⊥. Hence N⊥ may be represented by a unique cell that can take an arbitrary
integer as value.

Definition 8.4 In a coherent partial order < D;≤> a coherent ideal is a
non-empty subset J of D such that:

i) ∀x ∈ J,∀y ∈ D y ≤ x =⇒ y ∈ J

ii) ∀X ⊂ J X consistent =⇒
⋃

X ∈ J

Remark: Since two compatible elements form a consistent set, this definition
is a generalization of Definition 2.1.

Proposition 8.5 In a concrete domain < D;≤>, any coherent ideal J is a
concrete sub–domain.

Proof: By definition < J ;≤> is coherent. If d is an isolated element in D
belonging to J , then d is certainly isolated in J . Conversely, by algebraicity
of D, for any d in J we have d =

⋃

A(d). But all elements in A(d) belong
to J since they are less than d. Hence if d is isolated in J it is also isolated
in D. Thus the isolated elements in J are exactly the isolated elements of D
belonging to J . So < J ;≤> is a sub–domain of < D;≤>. Lets us show now
that J is concrete.

Property I: Since A(J) = A(D) ∩ J it is immediate that A(J) is a well-
founded ideal of J .

Property C: If x and y are compatible elements in J , then x ∧ y ∈ J and
x ∨ y ∈ J . Since Property C holds in D it is valid in J .

Property Q: If x and y are incompatible elements in J , the whole interval
[x∧y, y] is contained in J . Thus the validity of Q in D implies its validity
in J .
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Property R: If R were not valid in J , it would not be valid in D. Hence R
is satisfied. 2

Before exhibiting the representation of coherent ideals, we note an inter-
esting result whose validity relies on the entire property R.

Lemma 8.1 In a concrete domain, the coherent ideal generated by a finite set
of finite elements is finite.

Proof: Let X be a finite set of finite elements in a concrete domain D. Take
∆ = ∪{∆(x)|x ∈ X}. The set ∆ is finite. Let J be the coherent ideal generated
by X, i.e. the intersection of all coherent ideals containing X. Consider the
set K = {z|∆(z) ⊂ ∆}. This set K contains X and it is a coherent ideal:

1. If x ∈ X then ∆(x) ⊂ ∆, thus x ∈ K

2. If x ≤ y and y ∈ K, we have ∆(x) ⊂ ∆(y) ⊂ ∆, thus x ∈ K

3. If Y is a consistent subset of D such that ∀y ∈ Y ∆(y) ⊂ ∆, then by
proposition 6.2

∆(
⋃

Y ) =
⋃

y∈Y

∆(y) ⊂ ∆

thus K is coherent.

Therefore J ⊂ K and ∀z ∈ J ∆(z) ⊂ ∆. By Theorem 6.1 z1 6= z2 =⇒
∆(z1) 6= ∆(z2) thus |J | ≤ |P(∆)|. Since ∆ is finite, so is P(∆). Hence J is
finite. 2
Remark: It is easy to generalize the example of Figure 12 to show that the
property above is not a consequence of RT alone.

Definition 8.5 Let M =< Γ, V,V, E > be an information matrix and X be
an arbitrary subset of ΣM . Take ∆X =

⋃

X. The restriction MX of M to X
is the information matrix < Γ′, V ′,V ′, E ′ > defined as follows:

i) Γ′ = {c| < c, v >∈ ∆X}

ii) V ′ = {v| < c, v >∈ ∆X}

iii) v ∈ V ′(c) iff < c, v >∈ ∆X

iv) A set of decisions ∆ in MX enables c iff ∆ ∈ E(c)
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Remark that two restrictions MX and MY are distinct iff ∆X and ∆Y are
distinct. The restrictions of a given information matrix are naturally ordered
by inclusion and we have:

Lemma 8.2 Let M be an information matrix. The set of restrictions of M
ordered by inclusion is isomorphic to the set of coherent ideals of ΣM .

Proof:

1. Consider an arbitrary subset X of ΣM and the restriction MX of M to
X. Let φ be the function that, for any X, maps MX to ΣMX . We show
first that ΣMX is a coherent ideal of ΣM .

i) A configuration σ of MX is also a configuration of M . If σ′ is an
arbitrary configuration of M such that σ′ ⊂ σ, then σ′ is certainly
a configuration of MX .

ii) Let S be a consistent set of configurations of MX . The set ∪σ∈Sσ
is also a configuration of MX . But by Lemma 6.2, in ΣM

⋃

S =
∪σ∈Sσ. Therefore

⋃

S ∈ ΣMX , which proves that ΣMX is a coherent
ideal of ΣM .

Function φ is trivially monotonic. We show that it is an injection. COn-
sider two distinct restriction MX and MY of M . By the remark above
we have ∆X 6= ∆Y . Hence there exists a configuration σ in Y such that
not all of its decisions are in ∆X . This configuration σ is an element of
ΣMY that is not in ΣMX .

2. Conversely let J be a coherent ideal of ΣM , and consider the restriction
MJ . By Part 1, the set ΣMJ is a coherent ideal of M that contains J .
If we had J 6= ΣMJ , there would be a decision in ΣMJ that is not in J .
But by Definition 8.5 this is impossible. So J = ΣMJ and φ is onto. 2

In a computation domain, the dual concept of an ideal is that of an upper
section. Recall that any upper section in a concrete domain is a concrete
domain. Upper sections have naturally the dual interpretation of that of ideals.

Definition 8.6 Let M =< Γ, V,V, E > be an information matrix and σ be an
arbitrary configuration of M . Take Oσ = {c | < c, v >∈ σ}. The extension
Mσ of σ in M is the information matrix < Γ′, V ′,V ′, E ′ > defined as follows:

i) Γ′ = Γ\Oσ
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ii) V ′ = V

iii) V ′ is the restriction of V to Γ′

iv) If a set of decisions ∆ in M enables c in Γ′ then ∆\σ enables c in Mσ;
conversely if ∆′ enables c in Mσ then it must be the case that ∆′ ∪ σ
enables c in M .

Lemma 8.3 Let M be an information matrix. The set of extensions Mσ of
the configurations σ of M is isomorphic to the set of upper sections ΣM .

Proof: A set of decisions τ in Mσ is a configuration of Mσ iff σ ∪ τ is a
configuration of M . 2

Definition 8.7 In a partial order < D;≤>, a subset X of D is convex iff
whenever it contains x and y with x ≤ y, it contains all elements in the interval
[x, y].

In a computation domain D, a sub-domain H has a minimum element ⊥H .
If H is convex, then H is a coherent ideal of [⊥H). Hence any convex sub–
domain of a concrete domain is concrete. A convex sub–domain is naturally
interpreted as the restriction of the extension of some configuration.

Definition 8.8 In a computation domain D, an open set is an arbitrary
union of upper sections of finite elements.

Remarks:

1. The family F of subsets of D defined in this way has the following
properties:

(O1) D ∈ F since D = [⊥)

(O2) Arbitrary union of elements of F are also elements of F
(O3) Finite intersections of elements of F are also elements of F by

Proposition 1.4.

Therefore the family F constitues a family of open sets in the usual sense,
which justifies our terminology. Note that the upper sections of finite
elements form a basis for this topology, and the the upper sections of the
join–irreducible elements are a sub–basis, i.e. that any element of the
basis is obtained by finite intersection of the elements of the sub–basis
(using Corollary 5.5).

88



F1

•
•

••

•
•

••

�
�
�

@
@
@
�
�
�

@
@
@

�
�
�

@
@
@

@
@
@

�
�
�

@
@
@

�
�
�

F2

•

••

•

•

•

�
�
�

@
@
@
�
�
�

@
@
@

@
@
@

@
@
@

�
�
�

F3

•

••

• •

•

�
�
�

@
@
@
�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

F4

•

••

•
•

••

�
�
�

@
@
@
�
�
�

@
@
@@
@
@

�
�
�

@
@
@

�
�
�

F5

•

••

•
•

�
�
�

@
@
@
�
�
�

@
@
@@
@
@

�
�
�

Figure 21: Fi = O2 Oi_ O

2. A subset of D is an open set iff it is the inverse image of> by a continuous
function from D to O. Indeed, first if f is a continuous function from D
to O it is the lub of a family of step functions φd,> with d isolated in D.
But φ−1

d,>(>) = [d), hence f−1(>) is an open set. Conversely if O is an
open set, the function f defined by

{

f(x) = > if x ∈ O
f(x) = ⊥ otherwise

is monotonic and continuous.

Definition 8.9 Consider two computation domains < D;≤D > and < E;≤E

>, and an open set O in D. The graft of E on D at O, noted D O_ E, is the
partial order < F ;≤> defined as follows:

i) F = {< d, e > | d ∈ D, e ∈ E and d ∈ O or e = ⊥}

ii) ≤ is the partial order induced by D × E on F .

Example: Take D = O2 and E = O. The open sets in O2 are the sets
Oi(0 ≤ i ≤ 5) defined by:

O1 = [⊥) O2 = [0) O3 = [1) O4 = [0) ∪ [1) O5 = [>)

and the grafts of E on D at Oi are the Fi whose diagram is shown on Figure
21.

Proposition 8.6 If D and E are concrete domains, any graft F of E on D
is a concrete domain, and D is isomorphic to a coherent ideal of F .
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Proof: Consider an arbitrary open set O in D and take F = D O_ E. The
set F is a subset of D × E. If two elements in F are compatible, they are
compatible in D × E. Conversely, if two elements < d1, e1 > and < d2, e2 >
of F are compatible in D×E, they have a lub < d1 ∨ d2, e1 ∨ e2 >. Two cases
may occur:

i) Either d1 or d2 is in O. Then d1 ∨ d2 ∈ O and < d1 ∨ d2, e1∨2 >∈ F .

ii) Or neither d1 nor d2 are in O. Then e1 = e2 = ⊥E so e1 ∨ e2 = ⊥E and
< d1 ∨ d2, e1∨2 >∈ F .

Therefore two elements in F are compatible iff they are compatible in D×E,
and the least upper bounds in F are those in D×E. It follows immediately that
F is coherent. We show now that F is ω-algebraic. If x is an isolated element
in D × E belonging to F , it is obviously isolated in F . Furthermore, any
element < x, y > in F is the lub of its approximants in D×E by algebraicity
of D × E. Consider an approximant < d, e > of < x, y > that is in D × E
but not in F . Then d 6∈ O and e 6= ⊥E . Hence y 6= ⊥E and therefore x ∈ O
Since the characteristic function of O is continuous, there exists c in A(x)∩O
such that d ≤ c ≤ x. Now < d, e > is less than < c, e > which is an isolated
element in F . Thus < x, y >=

⋃

{< d, e > | < d, e >∈ A(D × E) ∩ F}. It
follows that F is ω-algebraic.

Property I is trivially inherited from D×E. Before checking further prop-
erties, remark that < d, e >−<F < d′, e′ > implies < d, e >−<D×E< d′, e′ >.
Indeed two cases may occur:

Case 1: d ∈ O. Then < d, e >−<F < d′, e′ >⇐⇒< d, e >−<D×E< d′, e′ >.

Case 2: d 6∈ O. Then e = ⊥ and < d, e >−<F < d′, e′ > implies d −<D d′

and e′ = e = ⊥.

Now if we have < d, e >↑< d′, e′ > and < d, e > ∧F < d′, e′ >−<F < d, e > we
must have < d, e > ∧F < d′, e′ >−<D×E< d, e >. By Property C in D×E we
have

< d′, e′ >−<D×E< d ∨ e, d′ ∨ e′ >

and therefore < d′, e′ >−<F < d ∨ e, d′ ∨ e′ > which proves property C.
Similarly if < d, e > # < d′, e′ > and < d, e > ∧F < d′, e′ >−<F < d, e >

then < d, e > ∧F < d′, e′ >=< d∧d′, e∧e′ > and by Property Q in D×E there
exists a unique < t, t′ > such that < d∧ d′, e∧ e′ >−<D×E< t, t′ >≤< d′, e′ >
and < d, e > #t, t′ >. Two cases may occur:
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Case 1: d ∧ d′ ∈ O. Then < t, t′ >∈ F .

Case 2: d ∧ d′ 6∈ O. Then if e 6= ⊥ then d ∧ d′ = d but in that case
< d, e >6∈ F . Therefore e = ⊥ and d ∧ d′ −< d. If t′ 6= ⊥ then t = d ∧ d′

aand < d, d >↑< t, t′ >. So t′ = ⊥ and < t, t′ >∈ F . Hence Property Q
holds in F.

Finally, if two intervals of F are transposed, they are also transposed in D×E
thus Property R must be valid in F .

Domain D is isomorphic to the partial order of the pairs of the form <
d,⊥ > in F which is a coherent ideal of F . 2
Remarks:

1. The domains D and D D_ E are isomorphic, so that we can consider a
cartesian product as a particular kind of graft.

2. If D is finite, the set of maximal points in D is an open set M. The
construction D M_ E is particularly useful, so we write it simply D_E.

Proposition 8.7 Let M1 =< Γ1, V1,V1, E1 > and M2 =< Γ2, V2,V2, E2 > be
two information matrices, and X be an arbitrary set of finite configurations
of M1. Define M =< Γ, V,V, E > as follows:

i) Γ = Γ1∪̇Γ2 (One may assume Γ1 and Γ2 disjoint w.l.o.g.)

ii) V = V1 ∪ V2

iii) V(c) =

{

V1(c) if x ∈ Γ1
V2(c) if x ∈ Γ2

iv) The function E is defined by cases:

1. If γ ∈ Γ1 then E(γ) = E1(γ)

2. If γ ∈ Γ2 and ∆ ∈ E2(γ) then ∀σ ∈ X {σ} ∪∆ ∈ E(γ)

Then if we take O = {σ′|σ′ ⊃ σ ∈ X} we have:

ΣM = ΣM1
O_ ΣM2

Proof: It is immediate by definition that any configuration in ΣM is a con-
figuration of the juxtaposition of M1 and M2, hence that ΣM is included in
ΣM1 × ΣM2 . Furthermore, the ordering on ΣM is inherited from ΣM1 × ΣM2 .

91



If σ is a configuration of ΣM , let σ1 and σ2 be the restrictions of σ to Γ1 and
Γ2 respectively. By definition of E , either σ2 = ∅ and σ1 is a configuration of
M1, or σ2 6= ∅ and then σ1 must contain at least one element of X. Hence
there is an injection between ΣM and ΣM1

O_ ΣM2 . Conversely, any element
of ΣM1

O_ ΣM2 is a compatible set of decisions in ΣM1×ΣM2 , and by definition
of E it is connected in M , which concludes the proof of the isomorphism. 2
Example: Matrices MO2 and MO represent respectively O2 and O. Matrices
Mi in the table represent each one of the grafts Fi of O on O2.

MO

MO2

M1

M2
6

M3
6

M4
��* HHY

M5
��* HHŶ

9 Inverse limit constructions

We investigate now the possibility of constructing concrete domains by a lim-
iting process. Of course, since the property of being concrete is not in general
preserved by exponentiation, it is impossible to preserve it by arbitrary inverse
limits. However, it is also clear that certain restricted limit constructions will
preserve this property.

Definition 9.1 If D and E are two computation domains, a projection is a
pair of continuous functions < φ, ψ > with φ ∈ [D → E] and ψ ∈ [E → D]
such that

i) ∀x ∈ D ψ(φ(x)) = x

ii) ∀x ∈ E φ(ψ(x)) ≤ x
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Definition 9.2 A projection < φ, ψ > between D and E is rigid iff

∀d ∈ A(D), e ∈ A(E) e ≤ φ(d) ⇒ e = φ(ψ(e))

Proposition 9.1 A projection < φ, ψ > between D and E is rigid iff

∀x ∈ D, y ∈ E y ≤ φ(x) ⇒ y = φ(ψ(y))

Proof: Consider an arbitrary approximant e of y in E. If e is less than φ(x),
since φ is continuous, there exists an approximant d of x with e ≤ φ(d). But
< φ, ψ > is a rigid projection so e = φ(ψ(e)). As φ and ψ are continuous, so
is φ ◦ ψ and thus

y =
⋃

e∈A(y)

e =
⋃

e∈A(y)

φ(ψ(e)) = φ(ψ(
⋃

e∈A(y)

e))

and therefore y = φ(ψ(y)). 2

Proposition 9.2 Between two computation domains D and E, there exists a
rigid projection iff D is isomorphic to a coherent ideal of E.

Proof:

Part 1: Consider a coherent ideal J of E and let φ be the restriction to J
of the identity function on E. Map any x in E to ψ(x) defined by
ψ(x) =

⋃

{z| z ∈ A(x) ∩ J}. Since E is coherent, the element ψ(x)
exists; since J is coherent, the element is in J . We show that ψ(x) is
continuous using the characterization of Lemma 1.2. First ψ is trivially
monotonic. Consider now an arbitrary approximant e of ψ(x). Since e
is isolated and the set {z| z ∈ A(x)∩ J} is directed, there exists some z
with e ≤ z and z ∈ A(x) ∩ J . Since for any z in J we have ψ(z) = z:

∀e ∈ A(ψ(x)) ∃z ∈ A(x) e ≤ ψ(z)

which proves that ψ is a continuous function. The pair < φ, ψ > is a
projection between J and E as:

i) ∀x ∈ J ψ(φ(x)) = ψ(x) = x

ii) ∀x ∈ E ψ(x) ≤ x thus φ(ψ(x)) = ψ(x) ≤ x

Consider now two elements x and y with x in J and y in E. If y ≤
φ(x) = x, since J is an ideal, element y is in J and therefore ψ(y) = y
and also y = φ(ψ(y)). Hence the projection < φ, ψ > is rigid.
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Part 2: Assume that there is a rigid projection < φ, ψ > between D and E.
Take J = φ(D). We show first that J is a coherent ideal of E.

i) J is downward closed. Consider an arbitrary element y less than
φ(x), for some x in D. Since < φ,ψ > is rigid, we have y = φ(ψ(y))
by Proposition 9.1. Hence y belongs to φ(D).

ii) J is coherent. Consider a consistent subset X of φ(D) and let Y be
the inverse image of X by φ. The set Y is consistent: consider two
arbitrary elements a and b in Y . Since X is consistent, elements
φ(a) and φ(b) are compatible and we have:

{

a = ψ(φ(a)) ≤ ψ(φ(a) ∨ φ(b))
b = ψ(φ(b)) ≤ ψ(φ(a) ∨ φ(b))

hence a and b are compatible. Since Y is consistent, it has a l.u.b
η. Since φ is monotonic ∀x ∈ X x ≤ φ(η) and therefore, since X
is consistent

⋃

X ≤ φ(η) and
⋃

X = φ(ψ(
⋃

X)) since < φ, ψ > is
rigid. Thus

⋃

X belongs to φ(D) and φ(D) is a coherent ideal.

Finally, if < φ, ψ > is a projection between D and E, the partial orders
D and φ(D) are isomorphic. We conclude that D is isomorphic to a
coherent ideal of E when < φ, ψ > is rigid. 2

Notation: If D and E are concrete domains, we write D ≤ E when D is
isomorphic to a coherent ideal of E or, equivalently when there is a rigid
projection from D to E.

Proposition 9.3 Among concrete domains, relation ≤ is a preorder.

Proof:

i) If D is an arbitrary concrete domain, D is a coherent ideal of itself.

ii) Assume D ≤ E ≤ F i.e. that there are two rigid projections < φ1, ψ1 >
and < φ2, ψ2 > with:

{

∀x ∈ D ψ1ψ2(φ2φ1(x)) = ψ1(ψ2φ2(φ1(x))) = ψ1φ1(x) = x
∀x ∈ E φ2φ1(ψ1ψ2(X)) ≤ φ2(ψ2(x)) ≤ x

Assume now that, for some x in D and for some y in F we have
y ≤ φ2φ1(x). Since < φ2, ψ2 > is rigid y = φ2(ψ2(y)). But ψ2(y) ≤
ψ2φ2φ1(x) = φ1(x). Hence since < φ1, ψ1 > is rigid, ψ2(y) = φ1ψ1ψ2(y).
So finally y = φ2φ1ψ1ψ2(y) which proves that < φ2 ◦ φ1, ψ1 ◦ ψ2 > is
rigid. Therefore D is isomorphic to an ideal of F , i.e. D ≤ F .2
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Definition 9.3 A sequence {D1, D2, · · · , Dn, · · ·} of computation domains is a
directed sequence iff for all i(i ≥ 1) there exists a projection < φi,i+1, ψi+1,i >
between Di and Di+1.

Between two domains Di and Dj of a directed sequence (i < j), there exists
then a projection noted < φi,j , ψj,i >. By convention we note < φi,i, ψi,i >
the pair < Ii, Ii > where Ii is the identity function on Di. If all projections
< φi,i+1, ψi+1,i > are rigid, we say that the sequence is rigid, which we note

D1 ≤ D2 ≤ · · · ≤ Dn ≤ · · ·

By Proposition 9.3, all projections < φi,j , ψj,i > are also rigid.

Definition 9.4 Consider a directed sequence {D1, D2, · · · , Dn, · · ·} of compu-
tation domains. The inverse limit of this sequence is the partial order < D;≤>
where

i) D is the set of sequences < x1, x2, . . . , xn, . . . > with
{

∀i ≥ 1 xi ∈ Di
∀j ≥ i xi = ψj,i(xj)

ii) ≤ is the partial order defined componentwise:

x ≤D y ⇔ ∀i ≥ 1 xi ≤Di yi

Theorem 9.1 The inverse limit of a rigid sequence of concrete domains is a
concrete domain.

Proof: Let D be the inverse limit of the rigid sequence

D1 ≤ D2 ≤ · · · ≤ Dn ≤ · · ·

1. The partial order D is coherent. Let X be a consistent subset of D and
for all i(i ≥ 1) Xi be the set of i-th coordinates of the elements of X.
Each of the Xi is consistent in Di and therefore has a lub

⋃

Xi. We
show that the sequence <

⋃

X1,
⋃

X2, . . . ,
⋃

Xi, . . . > is in D. Since X
is a subset of D:

∀x ∈ X xi = ψj,i(xj) (i ≤ j)

hence
⋃

Xi =
⋃

xj∈Xj

ψj,i(xj)
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Let X ′
j be the directed set obtained from Xj by adding all lubs of its

finite subsets. By continuity:
⋃

xj∈Xj

ψj,i(xj) =
⋃

xj∈X′
j

ψj,i(xj) = ψ(
⋃

X ′
j) = ψ(

⋃

Xj)

and therefore

(
⋃

X)i =
⋃

Xi = ψj,i(
⋃

Xj) = ψj,i(
⋃

X)j

2. The partial order D is ω-algebraic. We must identify the isolated ele-
ments in D. To this end, define two collections of functions {φi,∞} and
{ψ∞,i} from Di to D and from D to Di respectively in the following
fashion:











∀e ∈ Di (φi,∞(e))j = φi,j(e) (j ≥ i)
∀e ∈ Di (φi,∞(e))j = ψi,j(e) (j < i)
∀x ∈ D ψ∞,i(x) = xi

This definition makes sense provided ∀i ≥ 1, ∀e ∈ Di, φi,∞(e) ∈ D.
Take x = φi,∞(e). For any k, it is immediate that xk belongs to Dk.
We must check now the second condition, i.e. ∀n ≥ m xm = ψn,m(xn).
There are three cases:

Case 1. m ≥ i. Then xm = φi,m(e) and xn = φi,n(e). We compute:

ψn,m(xn) = ψn,m(φi,n(e)) = ψn,m(φm,n(φi,m(e)))
= ψn,m(φm,n(xn))
= xm

Case 2. n ≥ i. Then xm = ψi,m(e) and xn = ψi,n(e). We compute:

ψn,m(xn) = ψn,m(ψi,n(e)) = ψi,m(e) = xm

Case 3. n ≥ i > m. Then xm = ψi,m(e) and xn = φi,n(e). Therefore:

ψn,m(xn) = ψn,m(φi,n(e)) = ψi,m(ψn,i(φi,n(e))) = ψi,m(e)

and here again xm = ψn,m(xn).

It is immediate that, for any i, the functions φi,∞ and ψ∞,i are contin-
uous. We show now that the pairs < φi,∞, ψ∞,i > are projections from
Di to D. First,

∀i ≥ 1, ∀e ∈ Di ψ∞,i(φi,∞(e)) = (φi,∞(e))i = φi,i(e) = e
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To prove the second condition, namely

∀i ≥ 1,∀d ∈ D φi,∞(ψ∞,i(d)) ≤ d

we examine the j-th coordinate and distinguish two cases:

Case 1. j < i. Then (φi,∞(ψ∞,i(d)))j = (φi,∞(dj))j = ψi,j(di). But d
belongs to D thus, if j < i then ψi,j(di) = dj . We have the required
inequality for all coordinates with rank less than i.

Case 2. j ≥ i. Then (φi,∞(ψ∞,i(d)))j = (φi,∞(di))j = φi,j(di). But d
belongs to D thus, if j ≥ i then di = ψj,i(dj). Therefore

(φi,∞(ψ∞,i(d)))j = φi,j(ψj,i(dj)) ≤ dj

since the pair < φi,j , ψj,i > is a projection. The inequality is estab-
lished in this case as well.

To conclude, we show now that the isolated elements of D are exactly the
φi,∞(e) for any i(i ≥ 1) and e isolated in Di. Consider first an element
d with d = φi,∞(e) and e isolated in Di. Let X be an arbitrary directed
subset of D such that d ≤

⋃

X. On the i-th coordinate, we have:

di = (φi,∞(e))i = φi,i(e) = e ≤ (
⋃

X)i =
⋃

Xi

As e is isolated and Xi is directed, there exists x in X with e ≤ xi. By
monotonicity of φi,∞ we conclude φi,∞(e) = d ≤ φi,∞(xi). We are left
to prove that φi,∞(xi) ≤ x.

i) j < i: (φi,∞(xi))j = ψi,j(xi) = xj

ii) j ≥ i: (φi,∞(xi))j = φi,j(xi) = φi,j(ψj,i(xj)) ≤ xj .

We conclude that d ≤ x with x ∈ X hence d is isolated in D. Similarly,
one shows that ∀i, k i ≤ k φi,k(e) ∈ A(Dk). Thus the set

{z|z ≤ x and z = φi,∞(e)}

is directed and its lub is x. Thus A(D) = {φi,∞(e)|i ≥ 1 and e ∈ Di}
and D is ω-algebraic.

3. The pairs < φi,∞, ψ∞,i > are rigid. Assume that we have y ≤ φi,∞(x)
for some y in D and x in Di. We have to show that y = φi,∞(ψ∞,i(y)).

i) j < i: Then yj = ψi,j(yi) hence yj = (φi,∞(yi))j = (φi,∞(ψ∞,i(y)))j .
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ii) j ≥ i: Then (φi,∞(x))j = φi,j(x). Since the pairs < φi,j , ψj,i >
are rigid, from yj ≤ φi,j(x) we deduce yj = φi,j(ψj,i(yj)). But
ψj,i(yj) = yi so that we obtain:

yi = φi,j(yi) = (φi,∞(yi))j = (φi,∞(ψ∞,i(y)))j

In both cases we have the desired inequality, The pairs < φi,∞, ψ∞,i >
are therefore rigid, and all domains Di are isomorphic to coherent ideals
of D.

4. The domain D is concrete. We check first Property I. If φi,∞(e) and
φj,∞(f) are two isolated elements in D with φi,∞(e) ≤ φj,∞(f), then
φi,∞(e) belongs to φj,∞(Dj) since φj,∞(Dj) is an ideal of D. Since
φj,∞(Dj) is isomorphic to Dj that has Property I, there cannot be an
infinite chain between φi,∞(e) and φj,∞(f). The remaining properties
C,Q,and R are expressed in terms of a finite number of finite elements
in D. There exists always a coherent ideal φk,∞(Dk) that contains all
these elements, and therefore the properties are valid in D because they
are valid in Dk. 2

Proposition 9.4 Any concrete domain is the inverse limit of a rigid sequence
of some of its finite coherent ideals.

Proof: Consider an enumeration {c1, c2, . . . , cn, . . .} of the finite elements in
a concrete domain D. This enumeration exists since D is ω-algebraic. Let us
build a sequence {J1, J2, . . . , Jn, . . .} of ideals where Ji is the coherent ideal
generated by {c1, c2, . . . , ci}. By Lemma 8.1, each one of these ideals is finite,
and by Proposition 8.6, each one of them is a concrete domain. Since for any
i domain Ji is a coherent ideal of Ji+1, the sequence {Ji} is a rigid sequence
of concrete domains, and its inverse limit J is a concrete domain. We have to
show that J is isomorphic to D.

By Proposition 9.2, if Ji is a coherent ideal of Jj the pair < φi,j , ψj,i >
with i ≤ j and

{

∀x ∈ Ji φi,j(x) = x
∀x ∈ Jj ψi,j(x) =

⋃

{z|z ∈ A(x) ∩ Ji}

is a rigid projection between Ji and Jj . Take x =< x1, x2, . . . , xn, . . . > an
element of J . From xi = ψj,i(xj) we deduce ∀i, j ≥ i xi ≤ xj . The sequence
{x1, x2, . . . , xn, . . .} is increasing and has a lub φ(x). It is immediate that
function φ is a monotonic function from J to D.
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1. φ is onto. Consider an arbitrary element d in D and the sequence δ =<
d1, d2, . . . , dn, . . . > where di =

⋃

{z|z ∈ A(d) ∩ Ji}. The sequence δ
belongs to J because if i ≤ j then Ji ⊂ Jj and therefore

di =
⋃

{z|z ∈ A(d) ∩ Ji} =
⋃

{z|z ∈ A(d) ∩ Jj ∩ Ji} (i ≤ j)
=

⋃

{z|z ∈ A(dj) ∩ Ji} = ψj,i(dj)

Finally φ(δ) =
⋃

i≥1 di = d since the family {Ji}i≥1 covers A(D).

2. φ is one-one. Consider two distinct elements x =< x1, . . . , xn, . . . > and
x′ =< x′1, . . . , x

′
n, . . . > of J and let k be the smallest integer such that

xk 6= x′k. We must have xk = x′k ∨ ck or the symmetric equality. From
∀l ≥ k xk =

⋃

{z|z ∈ A(Dl) ∩ Jk} we deduce ∀l ≥ k xl 6≥ ck and
therefore φ(x) =

⋃

i≥1 xi 6≥ ck. But φ(x′) ≥ x′k ≥ ck so that necessarily
φ(x) 6= φ(x′).2

We give now a result that justifies our expressing all properties in terms
of isolated elements.

Theorem 9.2 (Ideal Completion) Let < L;≤> be a partial order where
L is denumerable and

i) Any consistent finite subset of L has a lub.

ii) Between any two elements of L, all chains are finite.

iii) L has properties C, Q, and R.

Consider then the partial order ̂L of the directed ideals of L ordered by inclu-
sion. Then ̂L is a concrete domain and L is isomorphic to A(̂L).

Proof:

1. ̂L is coherent. Let X be a consistent family of directed ideals. Consider
two compatible elements J1 and J2 of J. They are compatible, so there
exists a directed ideal J3 with J1 ⊂ J3 and J2 ⊂ J3. For any a ∈ J1 and
b ∈ J2 we have also a ∈ J3 and b ∈ J3 so a and b are compatible. Let X ′

be the union of all ideals in X and J the set obtained from X ′ in adding
the lubs of all of the finite subsets of X ′ (they exist by hypothesis i) )
and the elements dominated by these lubs. It is immediate that J is
a directed ideal. Since any directed ideal containing the elements of X
must include J we deduce J =

⋃

̂L X and therefore ̂L is coherent.
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2. ̂L is ω-algebraic. We show that the principal ideal of L, i.e. the sets of
the form Ja with

Ja = {z|z ≤ a} (a ∈ L)

are exactly the isolated elements in ̂L. Consider a directed subset X of
̂L such that Ja ⊂

⋃

̂L X. We have a ≤
⋃

L(
⋃

̂L X). But in L, all elements
a are isolated because all chains from ⊥ to a are finite by hypothesis ii).
Thus there exists an element x in the directed ideal

⋃

̂L X with a ≤ x,
and therefore an ideal Ξ in X that contains x. We obtain Ja ⊂ Ξ which
proves that Ja is isolated.

Consider now an arbitrary element J in ̂L. Trivially we have J = ∪a∈JJa.
But ∪a∈JJa ⊂

⋃

a∈J Ja ⊂ ∪a∈JJa hence
⋃

a∈J Ja = ∪a∈JJa. Finally
J =

⋃

a∈J Ja, which proves that ̂L is algebraic, and that the principal
ideal of L are the isolated elements of ̂L. Since L is denumerable, ̂L is
ω-algebraic.

Finally we note that A(̂L) is isomorphic to L. Consequently, properties C,
Q, and R are valid in A(̂L) hence in ̂L. This concludes the proof that ̂L is a
concrete domain. 2

10 Distributive concrete domains

We are going to study now a special case of importance in applications, that
of concrete domains in which there is a unique minimal prime interval in each
equivalence class of projective prime intervals (by Proposition 6.4, there exists
at least one minimal interval in each projectivity class). We call this unicity
property Property U. It is defined as follows:

Property U

If [a, a′] and [b, b′] are two minimal projective prime intervals, then
[a, a′] = [b, b′].

Proposition 10.1 Property U is equivalent to Property U’:
If [a, a′] and [b, b′] are two minimal projective prime intervals and there exists
a prime interval o with [a, a′] ≤ o ≥ [b, b′] then [a, a′] = [b, b′].
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Proof: It is immediate that Property U implies Property U’. Assume now that
U’ holds, and consider an alternating sequence of transposed prime intervals
between two minimal intervals [a, a′] and [b, b′]

{[a, a′], [x1, x′1], . . . , [xn−1, x′n−1], [b, b
′]}

Since [a, a′] and [b, b′] are minimal, we have necessarily [a, a′] ≤ [x1, x′1] and
[b, b′] ≤ [xn−1, x′n−1] hence n is an even number. Take n = 2p and reason
by induction on p. If p = 1, we are in the configuration of Property U’, so
[a, a′] = [b, b′]. If p is larger than 1, two cases are possible:

Case 1: x′2 is join–irreducible. By U’ we have [a, a′] = [x2, x′2]. There exists
now an alternating chain of length 2(p − 1) of prime intervals between
[a, a′] and [b, b′]. By induction hypothesis we conclude [a, a′] = [b, b′].

Case 2: x′2 is not join–irreducible. Then there exists a minimal prime interval
[x2, x′2] with [x2, x′2] ≤ [x2, x′2]. But then [a, a′] ≤ [x1, x′1] ≥ [x2, x′2] ≥
[x2, x′2] and by Property U’ we obtain [a, a′] = [x2, x′2]. The sequence
{[x2, x′2], [x3, x′3], . . . , [b, b

′] is an alternating sequence of length 2(p− 1),
and [x2, x′2] = [b, b′] by induction hypothesis. We conclude [a, a′] =
[x2, x′2] = [b, b′]. 2

Lemma 10.1 In a concrete domain D, the following properties are equiva-
lent:

1. Property U

2. Conditional distributivity:

∀a, b, c ∈ D b ↑ c ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

3. Conditional modularity:

∀a, b, c ∈ D a ↑ b, a ≤ c ⇒ a ∨ (b ∧ c) = (a ∨ b) ∧ c

4. ∀x, y ∈ D ∆(x ∧ y) = ∆(x) ∩∆(y)

5. The height function is a valuation, i.e.

∀x, y ∈ A(D) x ↑ y ⇒ h(x) + h(y) = h(x ∨ y) + h(x ∧ y)

Proof:
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a) 1 implies 4. We know already, by Proposition 6.2, that ∆(x ∧ y) ⊂ ∆(x)
and ∆(x ∧ y) ⊂ ∆(y) and therefore ∆(x ∧ y) ⊂ ∆(x) ∩∆(y). Consider
now a decision d belonging to ∆(x) and ∆(y), and two prime intervals
[u, u′] and [v, v′] included respectively in [⊥, x] and [⊥, y] and in the
projectivity class of d. By Proposition 6.4, we can find two minimal
intervals [u, u′] and [v, v′] such that [u, u′] ≤ [u, u′] and [v, v′] ≤ [u, u′].
Since [u, u′] ∼ [v, v′] Property U allows one to deduce [u, u′] = [v, v′].
Since u′ and v′ are dominated respectively by x and y we have u′ = v′ ≤
x∧y. Thus decision d belongs to ∆(x∧y). We have shown the inequality
∆(x) ∩∆(y) ⊂ ∆(x ∧ y) and we conclude ∆(x ∧ y) = ∆(x) ∩∆(y).

b) 4 implies 5. In the lattice of finite subsets of an arbitrary set, we have
the equation |A ∪ B| = |A| + |B| − |A ∩ B|. Consider two arbitrary
compatible elements x and y in D. By Proposition 6.2 we have ∆(x∨y) =
∆(x) ∪∆(y). Therefore

|∆(x ∨ y)| = ∆(x) ∪∆(y)|
= |∆(x)|+ |∆(y)| − |∆(x) ∩∆(y)|
= |∆(x)|+ |∆(y)| − |∆(x ∧ y)| by 4

Using the result of Proposition 6.4, we obtain

x ↑ y ⇒ h(x) + h(y) = h(x ∨ y) + h(x ∧ y)

c) 5 implies 1. We show that 5 implies Property U’, which is sufficient by
Proposition 12.1. Assume we have [a, a′] ≤ [z, z′] ≥ [b, b′] with [a, a′] and
[b, b′] minimal. Let us show that either [a, a′] = [b, b′] or a ∧ b = a′ ∧ b′.
Suppose we had a ∧ b < a′ ∧ b′. By relative atomicity, there would exist
an element t such that a ∧ b −< t ≤ a′ ∧ b′. Thus either t 6≤ a or t 6≤ b.
Assume w.l.o.g. that t 6≤ a. Then t ∧ a = a ∧ b and by Property C
a −< a∨ t ≤ a′. Since we have also a −< a′ we must have a∨ t = a′ and
[a∧b, t] ≤ [a, a′]. Since [a, a′] is minimal a∧b = a and t = a′. Since [a, a′]
and [b, b′] are projective, by Theorem 5.1 a′ ≤ b is not possible. Hence
[a, a′] ≤ [b, b′]. But [b, b′] is also minimal, so [a, a′] = [b, b′]. We have
proved by contradiction that if [a, a′] and [b, b′] are distinct a′∧b′ = a∧b.
But Proposition 6.5 allows one to write:

[a, a′] ≤ [a ∨ b, a′ ∨ b′] ≥ [b, b′]

By hypothesis, function h is a valuation and we have

h(a ∧ b) = h(a) + h(b)− h(a ∨ b)
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thus 1 + h(a ∧ b) = h(a′ ∧ b′), which contradicts a ∧ b = a′ ∧ b′. We
conclude that [a, a′] = [b, b′] thereby proving Property U’.

d) 4 implies 2. Consider three elements a, b, c in D with b ↑ c.

∆(a ∧ (b ∨ c)) = ∆(a) ∩∆(b ∨ c) by 4
= ∆(a) ∩ (∆(b) ∪∆(c)) (Proposition 6.2)
= (∆(a) ∩∆(b)) ∪ (∆(a) ∩∆(c)) (set theory)
= ∆(a ∧ b) ∪∆(a ∧ c) by 4 again
= ∆((a ∧ b) ∨ (a ∧ c)) (Proposition 6.2)

And by Theorem 6.1 we conclude a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

e) 2 implies 3. This is a standard proof in lattice theory. Assume a ↑ b and
a ≤ c. By distributivity:

(a ∨ b) ∧ (a ∨ c)) = ((a ∨ b) ∧ a) ∨ ((a ∨ b) ∧ c)
= a ∨ ((a ∨ b) ∧ c)
= a ∨ ((a ∧ c) ∨ (b ∧ c)) by distributivity
= a ∨ a ∨ (b ∧ c) since a ≤ c

We obtain the required modularity law (a ∨ b) ∧ c = a ∨ (b ∧ c).

f) 3 implies 1. Assume we have the modularity law and consider two minimal
prime intervals [a, a′] and [b, b′] such that [a, a′] ≤ [a ∨ b, a′ ∨ b′] ≥ [b, b′].
Since a ∨ b′ = a′ ∨ b = a′ ∨ b′ and b ≤ b′ we obtain by modularity:

b′ = (a′ ∨ b) ∧ b′ = b ∨ (a′ ∧ b′)

But if [a, a′] and b, b′] are distinct, we have seen that a′ ∧ b′ = a∧ b thus
b′ = a∨(a∧b) = b which is a contradiction. Since [a, a′] = [b, b′] Property
U’ holds. 2

The result above justifies calling a domain satisfying Property U either
modular or distributive or even metric.

Proposition 10.2 A concrete domain D is distributive iff it is isomorphic to
the partial order of configurations of a matrix < Γ, V,V, E > with

∀γ ∈ Γ, |E(γ)| = 1

In other words D is represented by a matrix without disjunctions.
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Proof: From left to right, the result is a direct consequence of the construction
used in the Representation Theorem and Property U. Conversely, consider a
matrix M =< Γ, V,V, E > verifying the condition ∀γ ∈ Γ |E(γ)| = 1. For any
decision d, let p(d) the unique set of decisions that enables d. We show that,
in such an information matrix, if a decision d has a proof, then it has a unique
irredundant proof. The proof is by induction on the length l(d) of the proof
of d.

Base Case: l(d) = 1, i.e. d is initial and p(d) = ∅. The proof {d} is irredun-
dant and any other proof of d includes it, hence it is unique.

Inductive step: l(d) = n(n > 1). Then d has a proof d1, d2, . . . , dn−1, d.
Since only p(d) enables d, we must have p(d) ⊂ {d1, d2, . . . , dn−1}. Thus
all decisions in p(d) have proof of length less than n, therefore a unique
irredundant proof by induction hypothesis. Let now ∆(d) be the union of
all unique irredundant proofs of all elements of p(d). The set ∆(d)∪{d}
is a proof of d. Any proof of d contains d and the irredundant proofs
of the elements of p(d). Therefore ∆(d) ∪ {d} is the unique irredundant
proof of d.

Consider now σ1 and σ2 two finite compatible configurations of M . Since σ1
and σ2 are compatible, the set of decisions σ1∩σ2 doesn’t contain two distinct
decisions concerning the same cell because it is included in σ1 ∪ σ2. If d is
an arbitrary decision in σ1 ∩ σ2 it has a unique irredundant proof π. Since
σ1 and σ2 are connected π ⊂ σ1 and π ⊂ σ2 thus π ⊂ σ1 ∩ σ2 and the set
σ1 ∩ σ2 is connected. Hence it is a configuration and σ1 ∧ σ2 = σ1 ∩ σ2. Then
|σ1| + |σ2| = |σ1 ∧ σ2| + |σ1 ∨ σ2| and the height of the elements of ΣM is a
valuation. By Lemma 10.1 the concrete domain < ΣM ;⊂> is distributive. 2
Remark: The previous results states that if < ΣM ;≤> is distributive, then
there exists a matrix M ′ with < ΣM ;⊂>=< Σ′M ;⊂>. But it is perfectly
possible for M to contain disjunctions, as shown in the example of Figure 22.

The following proposition characterizes a frequent case, where distributiv-
ity can be proved quickly.

Proposition 10.3 A concrete domain is distributive iff the domain is the
partial order of configurations of some information matrix M =< Γ, V,V, E >
where any cell is enabled by sets of decisions that concern a single set of cells.

Proof: The proof follows the pattern of the proof of the previous result. The
property is immediate from left to right. For any d let q(d) be the common
set of cells occupied by all sets of decisions that enable the cell of d. We
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Figure 22: M and M ′ have the same configuration space ΣM

show that in such an information matrix, if a decision d has a proof, then all
irredundant proofs of d occupy the same set of cells. We proceed by induction
on the length l(d) of the length of d.

Base Case: l(d) = 1. The empty set is the only one that enables d. Hence
the cell of d is occupied by any proof of d.

Inductive step: l(d) = n(n > 1). Then d has a proof d1, d2, . . . , dn−1 ` d.
Let O({d1, d2, . . . , dn−1}) be the set of cells occupied by the decisions
in {d1, d2, . . . , dn−1}. Any set of decisions enabling d occupies q(d) so
q(d) ⊂ O({d1, d2, . . . , dn−1}). Consider an element ∆ in E(d) included
in {d1, d2, . . . , dn−1}. By induction hypothesis, all irredundant proofs of
the elements of ∆ occupy the same set of cells. Let γ be the cell occupied
by d. Taking the union of all these cells with γ we obtain a set of cells
Γ(d) and any irredundant proof of d contains Γ(d).

Consider now two finite and compatible configurations σ1 and σ2 of M and
take an arbitrary decision d in σ1 ∩ σ2. Any irredundant proof of d occupies
Γ(d). Hence σ1 and σ2 occupy Γ(d). Therefore d has a proof in σ1 ∩ σ2 and
thius set of decisions is connected. Hence σ1 ∧ σ2 = σ1 ∩ σ2 and ΣM is a
distributive concrete domain. 2

Proposition 10.4 The separated sum of a finite or denumerable number of
distributive concrete domains, the cartesian product of a finite or denumerable
number of distributive concrete domains, the inverse limit of any rigid sequence
of distributive concrete domains are distributive concrete domains.

Proof: It is immediate that the sum and the juxtaposition of an arbitrary
number of information matrices in which all cells are enabled by a unique set of
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decisions is of this kind as well. Let D be the inverse limit of a rigid sequence
of distributive concrete domains D1,≤ D2 ≤ · · · ≤ Dn ≤ · · ·. If [x, x′] and
[y, y′] are two minimal prime intervals with [x, x′] ≤ [x ∨ y, x′ ∨ y′] ≥ [y, y],
consider the coherent ideal generated by the isolated elements x′ and y′. The
ideal J is finite and thus there exists an integer k such that J ≤ Dk. Since Dk
is distributive, by Property U’ we obtain [x, x′] = [y, y′] which proves Property
U’ in D. 2

Proposition 10.5 If D and E are two distributive concrete domains, and if
O is an open set such that

∀d, e ∈ Ominimal Γ(d) = Γ(e)

then D O_ E is a distributive concrete domain.

Proof: By construction of the matrix associated to D O_ E, it is immediate
that it satisfies the condition of Proposition 10.3. 2
Example: It is easy to check on Figure 21 that only F4 is not distributive.

Historical Note(1978): The essential part of the research reported here
was carried out in Autumn 1975 at the University of Edinburgh. Preliminary
versions of this text have been distributed privately during seminars on Se-
mantics in Sophia-Antipolis in Autumn 1977 and on the Theory of Continuous
Lattices in Darmstadt, July 1978.
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