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Abstract

We study the enrichment of models of axiomatic do-
main theory. To this end, we introduce a new and
broader notion of domain, viz. that of complete cuboidal
set, that complies with the axiomatic requirements.
We show that the category of complete cuboidal sets
provides a general notion of enrichment for a wide class
of axiomatic domain-theoretic structures.

Introduction

The aim of Axiomatic Domain Theory (ADT) is to
provide a conceptual understanding of why domains
are adequate as mathematical models of computation.
(For a discussion see [12, § Axiomatic Domain The-
ory].) The approach taken is to axiomatise the struc-
ture needed on a category so that its objects can
be considered as domains, and its maps as continu-
ous functions. The task of ADT is to explain the
traditional approach, and also to provide new con-
cepts and theorems. In particular, part of our agenda
is to establish a representation theory for domains.
Here, as a first step, we concentrate on the enrich-
ment of models of ADT. The intention is that the
enriched Yoneda-Grothendieck-Dedekind-Cayley em-
bedding [27] will provide the desired representation
(c.f. [15, 11]).

Axiomatic versions of various traditional results in
domain theory can be found in e.g. [39, 16, 17, 38,
13, 9, 11, 32]. For instance, in [39], the crucial rôle
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of Cpo-enrichment in the solution of recursive domain
equations was recognised and made the central concept
of an abstract version of the limit/colimit coincidence
theorem [36].

From an axiomatic viewpoint, however, it is desir-
able not to assume any order-theoretic structure but
rather to derive it. The study of the enrichment of
domain-theoretic structures in an axiomatic framework
began in [11]. There, for a strong axiomatisation, every
axiomatic domain-theoretic category was shown to en-
rich over Cpo (the category of small ω-cpos and con-
tinuous functions) with respect to an intensional notion
of approximation, viz. the path relation (see e.g. [8]).

In this paper we study the issue of enrichment for the
weakest possible axiomatisation (along the lines of [11]
that is). To account for the notions of domain per-
mitted by this axiomatic theory we are forced to aban-
don Cpo-enrichment. Indeed, already the axiomatic
considerations of [11] suggested a category of domains
that cannot be Cpo-enriched in a relevant sense. Thus,
what is needed is to broaden the notion of domain!

We take a radical approach and consider domains
with a notion of (higher-dimensional) path replacing
the traditional notion of approximation formalised by
order-theoretic structures. Further, these domains
have an algebraic (rather than a universal) notion of
passage to the limit (traditionally formalised by lubs).
This results in a new notion of domain, viz. that of
a complete cuboidal set , complying with the axiomatic
requirements.

Cuboidal sets play a rôle similar to that played by
posets in the traditional setting. They are the ana-
logue of simplicial sets (see e.g. [28, 26]) but with the
simplicial category enlarged to the cuboidal category
of cuboids, i.e. of finite products On1 × . . . × Oni of



finite ordinals. These cuboids are the possible shapes
of paths. A cuboidal set P has a set P (C) of paths
of every shape C = On1 × . . . × Oni ; indeed, it is a
(rooted) presheaf over . The set of points of P is
P (O1). The set of (one-dimensional) paths of length
n is P (On+1); they can be thought of as (linear) com-
putations conditional on the occurrence of n linearly
ordered events e1 ≤ . . . ≤ en. Evidently, On is the par-
tial order associated to this simple linear event struc-
ture [30], and can be considered as a sequential process
of length n. At higher dimensions, P (On1 × . . .×Oni)
can be thought of as the set of computations condi-
tional on the occurrence of n1 + . . .+ni events ordered
by e1,1 ≤ . . . ≤ e1,n1 ; . . . ; ei,1 ≤ . . . ≤ ei,ni . This is the
event structure which can be considered as i sequen-
tial processes, of respective lengths n1, . . . , ni, running
concurrently.

Complete cuboidal sets are cuboidal sets equipped
with a formal-lub operator satisfying three algebraic
laws, which are exactly those needed of the lub op-
erator in order to prove the fixed-point theorem [35].
Computationally, the passage from cuboidal sets to
complete cuboidal sets corresponds to allowing infin-
ite processes. In fact, the formal-lub operator assigns
paths of shape C to ‘paths of shape C × ω’, for every
C. Here the set of paths of shape C×ω is the colimit of
the paths of shape C ×On; such paths can be thought
of as the higher-dimensional analogue of the increasing
sequences of traditional domain theory.

Analogous to what happens in the traditional set-
ting between cpos and posets, the category of complete
cuboidal sets appears as the category of Eilenberg-
Moore algebras for a certain ideal-completion monad
on the category of cuboidal sets.

As a central result of the paper we provide an en-
richment theorem stating that every axiomatic domain-
theoretic lifting monad enriches over the category of
complete cuboidal sets; as a corollary, so does every
domain-theoretic model of recursive types in a wide
class.

Organisation of the paper. Section 1 presents the
basic structures needed in the rest of the paper and
their relationships. In Section 2 we show how to con-
struct models of ADT. To this end, we introduce an
algebraic notion of passage to the limit, and describe
the ideal-completion monad. This theory is applied in
Section 3 to obtain the notion of complete cuboidal
set. In Section 4, domain-theoretic lifting monads and
domain-theoretic models of recursive types are shown
to enrich with respect to the category of complete
cuboidal sets. Section 5 indicates further directions
for research.

1 Basic concepts

We review the basic structures for discussing models
of ADT. Domain-theoretic commutative monads are
the central concept of study; the special case of lifting
is only needed for Section 4. (For the notion of monad
see [28]; for the notion of commutative monad see [24,
29]; for the notion of lifting monad see Appendix A.)

Free algebras and fixed-point objects. An al-
gebra for an endofunctor is said to be free [17] if it is
initial and if its inverse is a final coalgebra.

A fixed-point object [7] for a monad L = (L, η, µ)
on a category with a terminal object 1 is an initial
L-algebra Lw → w equipped with a global element
1 → w invariant under the successor loop succ def=
w

ηw→ Lw → w.

Theorem 1.1 For a commutative monad (L, η, µ, t)
on a cartesian closed category, the following are equi-
valent:

1. The pair of arrows Lω
σ→ ω ←∞ 1 is a fixed-

point object.

2. The algebra σ : Lω → ω is free and ∞ : 1 → ω
is the unique mediating coalgebra morphism from
η1 : 1 → L1 to σ−1 : ω → Lω.

Moreover, when either condition is satisfied, the dia-

gram 1
∞→ ω

succ→
id
→ ω is an equaliser.

The fixed-point object for a monad provides a
unique uniform fixed-point operator for endomorph-
isms on objects with bottom (viz. objects equipped with
an Eilenberg-Moore algebra structure) —see [7, 17].

Proposition 1.2 Let L be a commutative monad on a
cartesian closed category C. Assume that L has a free
algebra. Then,

1. the terminal object 1 in C becomes a zero object in
the category of Eilenberg-Moore algebras CL, and

2. if C has an initial object 0 then L0 ∼= 1 and so 0
becomes a zero object in the Kleisli category CL.

In the situation of the above proposition, one typ-
ically writes ⊥(A,a) for the unique L-algebra homo-
morphism from the zero L-algebra L1 → 1 to an
L-algebra a : LA → A. Notice that the endofunctor
L is pointed (i.e. it comes equipped with a global ele-
ment). Indeed, the family {⊥(LA,µA) : 1 → LA} is a
natural transformation 1 .→ L.



Domain-theoretic commutative monads. An
algebra s : Lw → w for an endofunctor L on a category
with an initial object 0 is said to be inductive if the
cone 〈[s]n〉 : 〈Ln(0 → L0)〉 .→ w inductively defined by

[s]0
def= (0 → w) and, for n ≥ 0, by [s]n+1

def= s ◦ L[s]n,
is colimiting.

A pre-domain-theoretic commutative monad is a
commutative monad L on a cartesian closed category
with an initial object, equipped with an inductive ini-
tial L-algebra (henceforth denoted ς : Lω → ω).

Examples of pre-domain-theoretic commutative
monads are the identity monad; the ( ) + 1 monad
on Set (the category of small sets and functions); and
the lifting monad ( )⊥ on Preo (the category of small
preorders and monotone functions), on Poset (the cat-
egory of small posets and monotone functions), and on
Poset∧ (the category of small posets with pullbacks
—i.e. binary bounded infs— and stable —i.e. pullback
preserving— functions).

A domain-theoretic commutative monad L is a pre-
domain-theoretic commutative monad in which the in-
ductive initial L-algebra is free. In this context, the
free L-algebra is denoted σ : Lω → ω and the global
element 1 → ω invariant under succ is denoted ∞.

Examples of domain-theoretic commutative monads
are the lifting monad ( )⊥ on Cpo (the category of
small ω-cpos and continuous functions) and on Cpo∧
(the category of small ω-cpos with continuous pullbacks
and stable continuous functions). The identity monad
is domain-theoretic only on trivial cartesian closed cat-
egories.

Models of linear type theory. A symmetric mon-
oidal functor (H, e, m) : V → V ′ between symmetric
monoidal categories (see [28] for this notion) consists of
a functor H : V → V ′, a morphism e : I ′ → HI, and a
natural transformation mA,B : HA⊗′HB → H(A⊗B)
such that

mA,B⊗C ◦ (idHA ⊗′ mB,C) ◦ a′HA,HB,HC

= H(aA,B,C) ◦mA⊗B,C ◦ (mA,B ⊗′ idHC),

r′HA = H(rA) ◦mI,A ◦ (e⊗ idHA),

mB,A ◦ c′HA,HB = H(cA,B) ◦mA,B .

A symmetric monoidal functor is said to be strong if e
and mA,B are isomorphisms.

There is a standard process that to a symmet-
ric monoidal functor H : V → V ′ associates a
2-functor H∗ : V-CAT → V ′-CAT, where for a mon-
oidal category W we write W-CAT for the (pos-
sibly large) 2-category of W-categories, W-functors,
and W-natural transformations. For a V-category
K, the V ′-category H∗K has the same objects as

K, hom-objects H∗K(A,B) def= HK(A,B), identities
I ′ → HI → HK(A,A), and composition HK(B, C)⊗′
HK(A,B) → H(K(B, C) ⊗ K(A, B)) → HK(A,C). If
H is strong, the underlying ordinary categories K0 and
(H∗K)0 are isomorphic.

A model of (intuitionistic) linear type theory [3]
is given by a strong symmetric monoidal functor
F : C → D between a cartesian closed category C and
a symmetric monoidal closed category D with finite
products, such that the functor F has a right adjoint.
It follows that the right adjoint is a symmetric mon-
oidal functor and thus that the monad on C induced by
the adjunction, henceforth denoted L, is commutative.

The following folklore result (see [21] and the ref-
erences therein) relates (accessible) commutative mon-
ads (on locally presentable cartesian closed categories)
to models of linear type theory. (For the notions of
locally presentable category and accessible monad see
Appendix B.)

Theorem 1.3 Let L be an accessible commutative
monad on a locally presentable cartesian closed cat-
egory C. Then, C −→⊥←− CL provides a model of linear
type theory.

In the above theorem, the symmetric monoidal
structure on CL is given by the tensor product ⊗ of
algebras; defined, for algebras X and Y , as the univer-
sal bilinear map X × Y → X ⊗ Y . For details con-
sult [25, 21].

Models of Axiomatic Domain Theory. Domain-
theoretic commutative monads and models of linear
type theory provide the enrichment structure for de-
fining models of ADT.

A domain-theoretic enrichment base is a model of
linear type theory such that its induced commutative
monad is domain-theoretic.

A domain-theoretic model of recursive types
with respect to a domain-theoretic enrichment
base F : C −→⊥←− D : U is a D-category M such that
the C-category U∗M is C-algebraically compact
(see [17, 9, 32] for this notion). The rôle of algebraic
compactness is to provide a universal approach for
solving recursive type equations. What is domain-
theoretic about these models is that fixed-points
of endofunctors (viz. free algebras) are obtained
by traditional domain-theoretic methods; viz. the
basic lemma [39] and a version of the limit/colimit
coincidence theorem [32].

Models of ADT are domain-theoretic models of re-
cursive types admitting a rich type structure (e.g. suit-
able for interpreting products, higher types, and sums).
Canonical examples of models of ADT are pCpo (the



category of small ω-cpos and partial continuous func-
tions [31]) and Cppo⊥ (the category of small ω-cpos
with bottom element and strict continuous functions)
with respect to the domain-theoretic enrichment base
( )⊥ : Cpo −→⊥←− Cppo⊥.

2 Constructing models of ADT

We explore the construction of models of ADT,
first from domain-theoretic commutative monads, then
from pre-domain-theoretic ones.

2.1 From domain-theoretic commutative mon-
ads

The models of ADT Cppo⊥ and pCpo are obtained
as an application of the following result to the lifting
monad on Cpo.

Theorem 2.1 Let L be an accessible commutative
monad on a locally presentable cartesian closed cat-
egory C. Assume that L has an inductive free algebra.
Then,

1. the category of Eilenberg-Moore algebras CL is
a domain-theoretic model of recursive types with
respect to the domain-theoretic enrichment base
C −→⊥←− CL, and

2. when L is a lifting monad, the Kleisli category
CL is also a domain-theoretic model of recursive
types with respect to the domain-theoretic enrich-
ment base C −→⊥←− CL.

Another traditional domain-theoretic commutative
monad satisfying the hypothesis of the theorem is the
lifting monad on Cpo∧.

2.2 From pre-domain-theoretic commutative
monads

Formally ω-complete objects. Domains are spaces
equipped with a notion of approximation (the inform-
ation order) and a notion of passage to the limit (the
lub operator). We now consider objects with an al-
gebraic (rather than a universal) notion of passage to
the limit. To this purpose we introduce a notion of
formal-lub operator [12, § Axiomatic Domain Theory].

Consider a pre-domain-theoretic commutative
monad L = (L, η, µ, t) on C. Think of the lifting
monad on Poset. Recall that we write ς : Lω → ω
for the inductive initial L-algebra, and write succ for
the successor loop ω

ηω→ Lω
ς→ ω. A formal-lub

operator (for ω-chains under the invariance succ) on
an object D in C is given by a map

∨

: Dω → D in C
satisfying the following three algebraic laws:

(Constant)

D
D!

→ Dω

@@@idD R
D
↓
∨

(i.e.
∨

n〈x〉 = x),

(Diagonal)

Dω×ω ∼= (Dω)ω
∨ω

→ Dω

Dω

D∆

↓
∨ → D

↓
∨

(i.e.
∨

n〈
∨

m〈xm,n〉〉 =
∨

n〈xn,n〉),

(Shift)

Dω Dsucc

→ Dω

@@@
∨

R
D
↓
∨

(i.e.
∨

n〈xn〉 =
∨

n〈xsucc(n)〉).

A formally ω-complete object is an object equipped
with a formal-lub operator. For formally ω-complete
objects (P,

∨

P ) and (Q,
∨

Q), a map f : P → Q in C is
said to be ω-continuous if it satisfies the following law:

(Continuity)

Pω fω

→ Qω

P

∨

P↓

f
→ Q

↓
∨

Q

(i.e. f(
∨

P 〈xn〉) =
∨

Q〈f(xn)〉).

We write
∨

(C) for the category of formally ω-complete
objects and ω-continuous maps. For our running ex-
ample,

∨

(Poset) is Cpo, the category of ω-complete
posets and ω-continous functions. If we perform
the construction on Preo (the category of preorders
and monotone functions) we obtain the same result;
∨

(Preo) is again Cpo. The real surprise comes when
we consider the construction on structures with not
only a one-dimensional notion of approximation (as the
above examples) but also with higher-dimensional no-
tions of approximation. For instance, consider Poset∧;
the pullback “squares” in the posets provide a (par-
ticular) “two-dimensional” notion of path. Then,
the category

∨

(Poset∧) strictly contains the category
Cpo∧ as a full subcategory and cannot be enriched
over Cpo in a relevant sense; see [11]. However, in



∨

(Poset∧) the constructions of domain theory are
possible (e.g.

∨

(Poset∧) has finite sums, is cartesian
closed, and admits a lifting monad which satisfies the
hypothesis of Theorem 2.1). In the next section we
will generalise this to cuboidal sets, our structures with
(general) finite higher-order notions of path.

A more succint presentation of the
∨

-construction is
as follows. Consider the exponentiation commutative
monad W on C with underlying endofunctor ( )ω, unit

D! : D → Dω, multiplication (Dω)ω ∼= Dω×ω D∆

→ Dω,
and tensorial strength A×Dω → (A×D)ω the expo-
nential transpose of the composite (A × Dω) × ω ∼=
A× (Dω × ω)

idA×eval→ A ×D (where eval denotes the
evaluation map). Then

∨

(C) is the full subcategory of
the category of Eilenberg-Moore algebras CW consisting
of the algebras satisfying (Shift).

As in traditional domain theory the formal-lub op-
erator allows the definition of a fixed-point operator
for endomorphisms on objects with bottom. Define
a formally ω-complete pointed object to be a triple
(D, d : LD → D,

∨

D : Dω → D) where (D, d) is an
L-algebra and (D,

∨

D) is a formally ω-complete object.
For an endomorphism f on D, let it(D,d)(f) : ω → D
be the unique L-algebra morphism from the initial
L-algebra (ω, ς) to the L-algebra (D, f ◦ d), and set

fix(D,d,
∨

D
)

def=
∨

D ◦ pit(f)q. The algebraic laws of the

formal-lub operator are enough to derive formal ver-
sions of the fixed-point and uniformity properties of
the fixed-point operator.

Proposition 2.2 Let (A, a,
∨

A) and (B, b,
∨

B) be
formally ω-complete pointed objects, let f be an en-
domophism on A and g an endomorphism on B, and
let h be an L-algebra morphism from (A, a) to (B, b).
Then,

1. f ◦ fix(f) = fix(f), and

2. if g ◦ h = h ◦ f then h ◦ fix(f) = fix(g).

The
∨

-construction. As we have seen above, some-
times the

∨

-construction takes us from a pre-domain-
theoretic commutative monad (e.g. the lifting monad
on Poset) to a domain-theoretic one (e.g. the lift-
ing monad on Cpo). What happens if we perform
the

∨

-construction on a domain-theoretic commutat-
ive monad?

Theorem 2.3 For a domain-theoretic commutative
monad on a category C, the forgetful functor

∨

(C) → C
is an isomorphism with inverse the functor sending
an object D in C to the formally ω-complete object
(D, D∞ : Dω → D) in

∨

(C).

Consider a domain-theoretic commutative monad L
on C. By the above theorem, every object D in C ad-
mits a unique formal-lub operator (viz. D∞ : Dω → D)
and so, for an L-algebra (D, d), we may simply write
fix(D,d) for fix(D,d,D∞). With this convention, for every
endomorphism f on D, we have that fix(D,d)(f) =
it(D,d)(f) ◦∞ (c.f. [7]).

Since the exponentiation functor ( )ω preserves
binary products, under a mild assumption the
∨

-construction preserves cartesian closure.

Proposition 2.4 Consider a pre-domain-theoretic
commutative monad on a category C.

The forgetful functor
∨

(C) → C creates products,
and hence

∨

(C) is cartesian. If in addition C has equal-
isers then

∨

(C) is cartesian closed.

Given a pre-domain-theoretic commutative monad
L on C, we will be interested in extending L to

∨

(C).
This is not always possible; e.g. for the ( ) + 1 monad
on Set, the category

∨

(Set) is equivalent to the arrow
category 0 → 1 . However, one can always extend L
to CW; this is equivalent to asking for a distributive law
of L over W (see [2] for this notion).

Proposition 2.5 The transformation L( ω) → (L )ω

with components L(Dω) → (LD)ω defined as the expo-

nential transpose of L(Dω)×ω t′→ L(Dω×ω)
L(eval)→ LD

yields a distributive law of L over W.

The ideal-completion monad. Consider a pre-
domain-theoretic commutative monad L on a category
C. Every object in C admits a free formal ω-completion
in

∨

(C) if the forgetful functor
∨

(C) → C is monadic.
That is, if it has a left adjoint delivering free con-
structions such that the category of Eilenberg-Moore
algebras for the monad on C induced by the adjunc-
tion C −→⊥←−

∨

(C) is equivalent to
∨

(C). In this case,
the monad I representing

∨

(C) as CI is called the ideal-
completion monad (as it generalises the case of posets).

The question arises as to when the ideal-completion
monad I exists and, if so, whether there exists a dis-
tributive law of L over I to extend L to

∨

(C). Details
of a general theory addressing these issues will appear
elsewhere.

3 A standard domain-theoretic enrich-
ment base

Cuboidal sets. We write Oκ for the ordinal associ-
ated to the cardinal κ.



The cuboidal category is defined as the full sub-
category of Poset∧ determined by the objects (hence-
forth called cuboids) On1 × . . .×Oni where i ≥ 1, and
0 ≤ nj < ℵ0 for all 1 ≤ j ≤ i.

For a small category C with an initial object 0,
we write ˜C for the full subcategory of the presheaf
topos [Cop,Set] consisting of the presheaves P such
that P (0) ∼= 1. When the initial object in C is strict, ˜C
is the sheaf topos obtained by declaring that the empty
cover covers the initial object.

We call ˜ the category of cuboidal sets . There are
two other presentations of ˜ . Let F be the full sub-
category of Poset∧ containing the initial object and
closed under finite products and lifting, and let FDL
be the full subcategory of Poset∧ consisting of the fi-
nite distributive lattices. Since FDL is the Cauchy
completion [27] of both and F, the full inclusions

↪→ F ↪→ FDL induce the following equivalences
˜ ' ˜F ' F̃DL. The category F plays a crucial rôle in
the enrichment theorem of Section 4.

The Yoneda embedding ↪→ ˜ associating to
a cuboid C the representable cuboidal set ˜ ( , C)
provides a full and faithful representation of the
cuboidal category into the category of cuboidal sets.
As a notational convention, we identify the cuboidal
category with its image under the Yoneda embed-
ding in the category of cuboidal sets ˜ .

The internal structure of a cuboidal set may be
grasped by looking at its paths. A path of shape a
cuboid C in a cuboidal set P is a map C → P in
˜ (or equivalently, by Yoneda, an element of P (C)).
To understand paths in some concrete cases it is in-
structive to look at the following embeddings. Let
C be either Preo, Poset, or Poset∧ and let J de-
note the inclusion functor → C. Then, the functor
N : C → ˜ associating to an object D in C the cuboidal
set N(D) def= C(J ,D), called the nerve of D (c.f. [26]),
is full and faithful.

A subset of a poset with pullbacks is said to be
a stable open if it is upper-closed and closed under
pullbacks. The set of stable opens of D in Poset∧
is denoted O∧(D). In Poset∧ and , stable opens
are closed under identities, composition, and pullbacks
along arbitrary maps (i.e. they provide a class of ad-
missible subobjects [33].)

The stable opens of a cuboid are easy to visualise;
they are either empty or determined by a vertex of the
cuboid. The notion of stable open can be extended
from the cuboidal category to the category of cuboidal
sets. The quickest way to this is by declaring a sub-
object O � Q of a cuboidal set Q to be locally stable

open if it appears in a pullback

O → O1

Q
↓

∨

→ O2

↓

∩

(1)

where O1 ↪→ O2 is the unique mono with stable-open
image. Equivalently, a subobject O � Q in ˜ is locally
stable open if and only if, for every cuboid C in and
every path C → Q in ˜ , we have a pullback square

V → O

C
↓

∩

→ Q
↓

∨

for some stable open V of C and a (necessarily unique)
map V → O in ˜ .

The stable open O1 ↪→ O2 not only determines the
locally stable opens, but also classifies them. Indeed,
every locally stable open O ↪→ Q in ˜ appears in a
pullback (1) for a unique characteristic map Q → O2.
Moreover, as the initial object in is strict, the cat-
egory ˜ is a topos and in it the Sierpinski space O2
is a dominance (see [34] for a general treatment). It
follows that the topos of cuboidal sets admits a lifting
monad L which we now make explicit.

To understand the following definitions think that a
path C → LP of shape C in LP is described by a pair
consisting of its degree of definedness represented by a
stable open V of the cuboid C and a total path V → P
of shape V in P .

• The underlying functor L is given by (LP )(C) def=
{(V, x) | V ∈ O∧(C), x : V → P} with action on
morphisms (LP )(C ′ → C) sending (V, V → P ),
with V a stable open of C, to (V ′, V ′ → V → P )
where the square

V ′ → V

C ′
↓

∩

→ C
↓

∩

is a pullback.

• The unit ηP : P → LP sends a path C → P to
(C, C → P ).

• The multiplication µP : L2P → LP sends
(V, (V ′, V ′ → P )), with V a stable open of C and
V ′ a stable open of V , to (V ′, V ′ → P ).

• The tensorial strength tQ,P : Q×LP → L(Q×P )
sends 〈C → Q, (V, V → P )〉, with V a stable open
of C, to (V, 〈V ↪→ C → Q,V → P 〉).



Theorem 3.1 ([14]) The lifting functor on the cat-
egory of cuboidal sets preserves non-empty connected
colimits.

The category of cuboidal sets is locally presentable
(as it is a sheaf topos) and, by the above theorem,
the lifting monad is accessible. It also follows from
the above theorem, e.g. using the basic lemma [39],
that the lifting functor has an inductive initial algebra.
Since connected colimits in the category of cuboidal
sets are given pointwise, the inductive initial L-algebra
ω = colim 〈On >

ln→ On+1〉n, where ln denotes the in-
clusion of On into On+1, has as its set ω(C) of paths
of shape C the set of sequences of the form

C ←↩ V0 ←↩ . . . ←↩ Vn ←↩ ∅ ←↩ . . . ←↩ ∅ ←↩ . . .

with each Vi a stable open of the cuboid C.

Corollary 3.2 1. The adjunction ˜

−→
⊥←−

˜

L
is a

model of linear type theory.

2. The lifting monad L on ˜ is pre-domain-theoretic.

Complete cuboidal sets. A cuboidal set is given
a notion of passage to the limit by equipping it with
a formal-lub operator. This results in the category
∨

(˜ ) of formally ω-complete cuboidal sets (henceforth
simply called complete cuboidal sets).

In this subsection, we study the domain-theoretic
structure of

∨

(˜ ). We start by observing that
∨

(˜ )
embeds the categories Cpo and

∨

(Poset∧); hence
also Cpo∧. Let C be either Poset or Poset∧. For
every object D in C, there is a canonical isomorph-
ism (ND)ω

.∼= N(DOℵ0 ) in ˜ (c.f. (4) below), where
N is the nerve functor C → ˜ defined in the previous
subsection. Then, the functor

∨

(N) :
∨

(C) →
∨

(˜ )
associating to an object (D,

∨

) in
∨

(C) the complete

cuboidal set (N(D), (ND)ω ∼= N(DOℵ0 )
N(

∨

)
→ ND) is

full and faithful.

Theorem 3.3 1. The category
∨

(˜ ) is locally
presentable and cartesian closed.

2. The lifting monad L on ˜ extends to an accessible
commutative monad Ľ on

∨

(˜ ).

The above result follows from a general theory al-
luded to in Section 2, § The ideal-completion monad.
Here we only give an idea of the proof.

One shows that ˜ admits an accessible ideal-
completion monad I; hence

∨

(˜ ) ' ˜

I
is locally

presentable (see Appendix B). The cartesian closure
of

∨

(˜ ) follows from Proposition 2.4.

In fact, one can construct the ideal-completion
monad I as a quotient of the exponentiation monad
W, and show that the distributive law LW .→ WL
collapses to an isomorphism L I

.∼= IL yielding another
distributive law. Then, the functor L on ˜ extends
to ˜

I
; if

∨

P : I(P ) → P is an I-algebra then so is the

composite ILP ∼= LIP
L(

∨

P
)
→ LP . We conjecture that

the commutative monad Ľ on
∨

(˜ ) is a lifting monad.

For illustrative purposes, for a complete cuboidal
set

∨

P : Pω → P , we give an explicit description of
the formal-lub operator

∨

LP : (LP )ω → LP in two
steps. First, to every generalised chain C → (LP )ω of
shape C in LP we associate a path C → L(Pω) again
of shape C in L(Pω) by (intuitively) removing bottom
elements from the chain whenever possible. Second,
we define the action of the formal-lub operator

∨

LP
on generalised chains C → (LP )ω as the composite

C → L(Pω)
L(

∨

P
)
→ LP . We describe the passage from

C → (LP )ω to C → L(Pω). We have the following
bijective correspondence:

C → (LP )ω

C × ω → LP

C ×On ← ⊃ Un → P

���� (n ≥ 0)

C ×On+1

idC × ln↓

∨

←⊃ Un+1

↓

∨

with the crucial property that there exists a least j
such that, for all n < j, Un = ∅ and, for all n,
Uj+n ∼= V ×O1+n for a unique V ∈ O∧(C). Then we
define C → L(Pω) as the characteristic map of the par-
tial map C ←↩ V → Pω where V → Pω is the exponen-
tial transpose of the unique mediating map V ×ω → P
from the colimiting cone 〈V ×On+1 → V × ω〉n to the
cone 〈V ×On+1 ∼= Uj+n → P 〉n.

Theorem 3.4 The commutative monad Ľ on
∨

(˜ ) is
domain-theoretic.

Notice that since IO0 ∼= O0 and ILP ∼= LIP , for
finite n, we have that On is isomorphic to its formal
ideal completion IOn. On the other hand, the formal
ideal completion ω def= I(ω) of ω with structure map

σ def= (L(Iω) ∼= I(Lω)
Iς
∼=
→ Iω) and global element

∞ def= (1
pιωq→ (Iω)ω

∨

→ Iω), where we write ι for the
unit of I, provides an inductive Ľ-fixed-point object.

We give an explict description of ω and ∞. We will
present ω as a quotient of ωω. The following bijective



correspondences describe the paths of ωω:

C → ωω

C × ω → ω

C ×On → ω

���� (n ≥ 0)

C ×On+1

idc × ln↓

∨

Vn,j+1
⊂ → Vn,j

⊂ → C ×On

Vn+1,j+1

↓
∨

⊂ → Vn+1,j

↓
∨

⊂ → C ×On+1

↓

∨
idC × ln

(n, j ≥ 0)

C ×Oℵ0 ←↩ V0 ←↩ . . . ←↩ Vn ←↩ . . .

v0 ≤ . . . ≤ vn ≤ . . . in C ×Oℵ0

Then the quotient of ωω yielding ω is done by ideal-
completing locally : for every cuboid C, the set ω(C),
of paths of shape C in ω, may be identified with
C ×Oℵ0+1. And ∞C ∈ C×Oℵ0+1 is the pair consist-
ing of the least element of C and the greatest element
of Oℵ0+1.

As ω admits an Ľ-algebra structure (viz. the com-

posite Ľω
Lσ−1

→ Ľ2ω
µω→ Ľω

σ → ω), by the
formal fixed-point property (Proposition 2.2 (1)), en-
domorphisms on it have fixed-points. It follows that
fix(succ) = ∞.

Corollary 3.5 The adjunction
∨

(˜ ) −→⊥←−
∨

(˜ )
Ľ

is a
domain-theoretic enrichment base with respect to which

the category of Eilenberg-Moore algebras
∨

(˜ )
Ľ

is a
domain-theoretic model of recursive types.

4 An enrichment theorem for domain-
theoretic lifting monads

We show that every domain-theoretic lifting monad
enriches over the category of complete cuboidal sets.

More precisely, say that a V-category K provides an
enrichment of the ordinary category C if the underly-
ing ordinary category K0 (with hom-sets K0(A,B) def=
V(I,K(A, B))) and C are isomorphic. Then, for a
domain-theoretic lifting monad on C we will construct
a

∨

(˜ )-category providing an enrichment of the ordin-
ary category C in such a way that the domain-theoretic
structure also enriches. It will follow as a corollary that
every domain-theoretic model of recursive types in a
wide class also enriches over

∨

(˜ ).

For a symmetric monoidal category W, write γW
(omitting the subscript if it is clear from the context)
for the global-sections functor W(I, ) : W → Set. For
a symmetric monoidal functor H : V → V ′ such that
(V H→ V ′ γV′→ Set)

.∼= (V γV→ Set), the V ′-category
H∗K (defined in Section 1, § Models of linear type the-
ory) provides an enrichment of K0.

Thus, for a domain-theoretic lifting monad on C we
aim at producing a cartesian functor C →

∨

(˜ ) such

that (C →
∨

(˜ )
γ→ Set)

.∼= (C γ→ Set). Then,
since C enriches over itself (as it is cartesian closed) the
above process will provide the aforementioned enrich-
ment result.

We start our considerations with respect to the pre-
domain-theoretic case.

Enrichment for pre-domain-theoretic lifting
monads. Let L = (L, η, µ) be a pre-domain-theoretic
lifting monad on C.

We define a functor S : → C. For n ≥ 0,
we write Σn for Ln0 and define the action of S on
objects by the mapping sending On1 × . . . × Oni to
Σn1 × . . . × Σni . To define the action of S on morph-
isms we proceed in two steps. First, for n ≥ 0, we
define Sn : (C,On) → C(S(C),Σn). Second, we let
S : (C,On1 × . . .×Oni) → C(S(C),Σn1 × . . .× Σni)
be the mapping f 7→ 〈Sn1(f1), . . . , Sni(fi)〉 where

fj
def= (C

f → On1 × . . . × Oni

πj→ Onj ). We
give an inductive definition of Sn. For n = 0, the
action S0 : (C,O0) → C(S(C), 0) is uniquely determ-
ined by its target. For n = m + 1 with m ≥ 0, let
C = On1 × . . . × Oni and consider f : C → Om+1 for
which the following diagram

On′1 × . . .×On′i

f ′
→ Om

On1 × . . .×Oni

↓
∩

f
→ Om+1

↓

∩

is a pullback in . Then, we let Sm+1(f) be the unique
characteristic map making the diagram

Σn′1 × . . .× Σn′i

Sm(f ′)
→ Σm

Σn1 × . . .× Σni

u1 × . . .× ui↓
∩

Sm+1(f)
→ Σm+1

↓

∩

ηΣm

,

where uj
def= (Σn′j

⊂ η→ · · · ⊂ η→ Σnj ), a pullback in
C. By construction, S is indeed a functor; moreover, it
preserves the initial object, finite products, and pull-
backs of stable opens along arbitrary maps.



We remark on a more conceptual definition of the
functor S. The category F is the free cartesian category
with an initial object and a lifting monad L such that
L0 ∼= 1; and, the functor S : → C is the composite

↪→ F → C where F → C is the unique structure
preserving functor given by freeness.

Define the nerve functor N : C → ˜ with action
given by the mapping f 7→ C(S , f). Thus for a cuboid
C in and an object D in C, we have the following
bijective correspondence

C → N(D)

S(C) → D

stating that the paths of shape C in the cuboidal
set N(D) are the paths of shape S(C) in the ob-
ject D. For instance, the C-parameterised paths
C ×On → N(D) in ˜ are in bijective correspondance
with the S(C)-parameterised paths S(C)×Σn → D in
C. It follows that,

γ2̃ ◦N
.∼= γC (2)

(ND)On ∼= N(DΣn) (3)

The nerve functor has the crucial property of pre-
serving limits. We thus have the following two con-
sequences.

1. Applying the N∗ functor to C regarded as a
C-category we obtain the ˜ -category N∗C which,
by (2), provides an enrichment of C.

2. The isomorphism (3) extends to the limit; that is,

(ND)ω ∼= N(DωC ) (4)

as (ND)ω ∼= (ND)colimOn ∼= lim (ND)On ∼=
lim N(DΣn) ∼= N(lim DΣn) ∼= N(Dcolim Σn) ∼=
N(DωC ).

In fact, from (4) we obtain a natural isomorph-
ism ν : (N )ω

.∼= N( ωC ) making the pair (N, ν)
into a morphism WC → W of monads (see [40] for
this notion). We thus get a functor CWC → ˜

W

sending a WC-algebra DωC

∨

→ D to the W-algebra

(ND)ω ν
∼=
→ N(DωC )

N(
∨

)
→ ND. Moreover, the dia-

gram

(N )ω ν
∼=
→ N( ωC )

(N )ω

(N )succ
↓

ν
∼=
→ N( ωC )

↓N( succC )

commutes, and so the functor CWC → ˜
W cuts down

to a functor
∨

(C) →
∨

(˜ ).

Enrichment for domain-theoretic lifting mon-
ads. Applying the above discussion to a domain-
theoretic lifting monad L on C, we get a limit
preserving functor

∨

(N) : C ∼=
∨

(C) →
∨

(˜ ),
sending an object D to the complete cuboidal set
(N(D), (ND)ω ν

∼=
→ N(Dω)

N(D∞)→ ND), such that

(C
∨

(N)
→

∨

(˜ )
γ→ Set)

.∼= (C γ→ Set).
We have thus obtained the first part of the following

result.

Theorem 4.1 (Enrichment theorem) Let L be a
domain-theoretic lifting monad on C.

1. The
∨

(˜ )-category
∨

(N)∗C provides an enrich-
ment of C.

2. In
∨

(N)∗C, the cartesian closed structure of C,
the commutative monad L on C, and the colimit
defining ω also enrich over

∨

(˜ ).

Enrichment for domain-theoretic models of re-
cursive types. Every domain-theoretic model of re-
cursive types with respect to a domain-theoretic en-
richment base inducing a lifting monad enriches over
the category of complete cuboidal sets.

Corollary 4.2 Let M be a domain-theoretic model of
recursive types with respect to a domain-theoretic en-
richment base F : C −→

⊥←− D : U inducing a lifting
monad.

The
∨

(˜ )-category
∨

(N)∗U∗M provides an enrich-
ment of M0.

We conjecture that (possibly under some mild as-
sumptions) domain-theoretic models of recursive types

enrich over
∨

(˜ )
Ľ
.

5 Concluding remarks

We have introduced a new notion of domain,
viz. that of complete cuboidal set , that complies with
the requirements of ADT. To this end, we have
provided an algebraic notion of passage to the limit
with respect to which a definition of ideal completion
was given. Further, we have shown that the category
of complete cuboidal sets provides a general notion of
enrichment, traditionally attributed to the category
of cpos, for a wide class of domain-theoretic struc-
tures (viz. domain-theoretic lifting monads and certain
domain-theoretic models of recursive types).



Many further directions of research are possible; we
mention a few here.

There are two orthogonal directions for extending
the enrichment theorem: by incorporating binary sums
into the domain-theoretic lifting monads, or by con-
sidering arbitrary commutative monads (rather than
lifting ones).

As in [10], the enrichment theorem seems likely to
provide the basis for developing a representation the-
ory. This possibility is under investigation.

Connections with synthetic domain theory are envis-
aged. In particular, a synthetic characterisation of the
category of complete cuboidal sets seems to be avail-
able. This might help in settling our first conjecture
(see Section 3, § Complete cuboidal sets), which is im-
portant for our representation programme.

At a more speculative level, we wonder what the re-
lationship is between this work and presheaf or higher-
dimensional models of concurrency [23, 42, 6, 41, 19,
18, 5, 20].
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A Lifting monads

A monad L = (L, η, µ) on a category with terminal
object is said to be a lifting monad if

• pullbacks of η1 along arbitrary maps exist;

• the unit η is cartesian (i.e. the squares required to
commute by naturality are pullbacks) and a partial
map classifier (i.e. in the situation

1 ← D → B

L1

η1↓

∩

← A
↓

∩

there exists a unique characteristic map A → LB
such that the diagram

D → B

A
↓

∩

→ LB
↓

∩

ηB

is a pullback).



Examples of lifting monads are the identity monad;
the ( )+1 monad on Set; the traditional lifting monad
( )⊥ on Preo, Poset, Poset∧, Cpo, and Cpo∧; and
the partial map classifier monad [22] on a topos.

Recall that lifting monads on cartesian categories
are commutative (see e.g. [9]).

B Locally presentable categories

We recall some basic definitions and facts of the the-
ory of locally presentable categories used throughout
the paper. For a thorough treatment consult [1, 4].

Let λ be a regular cardinal (i.e. an infinite car-
dinal which is not a sum of a smaller number of
smaller cardinals). An object C of a category C is
λ-presentable when its covariant hom-functor C(C, )
preserves λ-directed colimits. A category C is said to
be locally λ-presentable if it is cocomplete, and has a
small set PλC of λ-presentable objects such that every
object in the category is a λ-directed colimit of objects
from PλC. A functor between locally λ-presentable cat-
egories is called λ-accessible if it preserves λ-directed
colimits.

A category is said to be locally presentable if it is loc-
ally λ-presentable for some regular cardinal λ. Every
locally presentable category is complete.

A monad is called accessible if its underlying func-
tor is λ-accessible for some regular cardinal λ. The
category of Eilenberg-Moore algebras for an access-
ible monad on a locally presentable category is locally
presentable.


