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Abstract

We study the enrichment of models of axiomatic do-
main theory. To this end, we introduce a new and
broader notion of domain, viz. that of complete cuboidal
set, that complies with the axiomatic requirements.
We show that the category of complete cuboidal sets
provides a general notion of enrichment for a wide class
of axiomatic domain-theoretic structures.

Introduction

The aim of Aziomatic Domain Theory (ADT) is to
provide a conceptual understanding of why domains
are adequate as mathematical models of computation.
(For a discussion see [12, § Axiomatic Domain The-
ory].) The approach taken is to axiomatise the struc-
ture needed on a category so that its objects can
be considered as domains, and its maps as continu-
ous functions. The task of ADT is to explain the
traditional approach, and also to provide new con-
cepts and theorems. In particular, part of our agenda
is to establish a representation theory for domains.
Here, as a first step, we concentrate on the enrich-
ment of models of ADT. The intention is that the
enriched Yoneda-Grothendieck-Dedekind-Cayley em-
bedding [27] will provide the desired representation
(c.f. [15, 11)).

Axiomatic versions of various traditional results in
domain theory can be found in e.g. [39, 16, 17, 38,
13, 9, 11, 32]. For instance, in [39], the crucial role
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of Cpo-enrichment in the solution of recursive domain
equations was recognised and made the central concept
of an abstract version of the limit/colimit coincidence
theorem [36].

From an axiomatic viewpoint, however, it is desir-
able not to assume any order-theoretic structure but
rather to derive it. The study of the enrichment of
domain-theoretic structures in an axiomatic framework
began in [11]. There, for a strong axiomatisation, every
axiomatic domain-theoretic category was shown to en-
rich over Cpo (the category of small w-cpos and con-
tinuous functions) with respect to an intensional notion
of approximation, viz. the path relation (see e.g. [8]).

In this paper we study the issue of enrichment for the
weakest possible axiomatisation (along the lines of [11]
that is). To account for the notions of domain per-
mitted by this axiomatic theory we are forced to aban-
don Cpo-enrichment. Indeed, already the axiomatic
considerations of [11] suggested a category of domains
that cannot be Cpo-enriched in a relevant sense. Thus,
what is needed is to broaden the notion of domain!

We take a radical approach and consider domains
with a notion of (higher-dimensional) path replacing
the traditional notion of approximation formalised by
order-theoretic structures. Further, these domains
have an algebraic (rather than a universal) notion of
passage to the limit (traditionally formalised by lubs).
This results in a new notion of domain, viz. that of
a complete cuboidal set, complying with the axiomatic
requirements.

Cuboidal sets play a role similar to that played by
posets in the traditional setting. They are the ana-
logue of simplicial sets (see e.g. [28, 26]) but with the
simplicial category enlarged to the cuboidal category (]
of cuboids, i.e. of finite products O,, x ... x Oy, of



finite ordinals. These cuboids are the possible shapes
of paths. A cuboidal set P has a set P(C) of paths
of every shape C = O, x ... x O,,; indeed, it is a
(rooted) presheaf over [J. The set of points of P is
P(Q1). The set of (one-dimensional) paths of length
n is P(Oy41); they can be thought of as (linear) com-
putations conditional on the occurrence of n linearly
ordered events e; < ... < e,. Evidently, O, is the par-
tial order associated to this simple linear event struc-
ture [30], and can be considered as a sequential process
of length n. At higher dimensions, P(Q,, X ... x Qy,)
can be thought of as the set of computations condi-
tional on the occurrence of nq1 + ...+ n; events ordered
byei1<...<ein;---3e1 < ... <ep,. Thisis the
event structure which can be considered as i sequen-
tial processes, of respective lengths nq, ..., n;, running
concurrently.

Complete cuboidal sets are cuboidal sets equipped
with a formal-lub operator satisfying three algebraic
laws, which are exactly those needed of the lub op-
erator in order to prove the fixed-point theorem [35].
Computationally, the passage from cuboidal sets to
complete cuboidal sets corresponds to allowing infin-
ite processes. In fact, the formal-lub operator assigns
paths of shape C' to ‘paths of shape C x w’, for every
C. Here the set of paths of shape C' x w is the colimit of
the paths of shape C' x Q,; such paths can be thought
of as the higher-dimensional analogue of the increasing
sequences of traditional domain theory.

Analogous to what happens in the traditional set-
ting between cpos and posets, the category of complete
cuboidal sets appears as the category of Eilenberg-
Moore algebras for a certain ideal-completion monad
on the category of cuboidal sets.

As a central result of the paper we provide an en-
richment theorem stating that every axiomatic domain-
theoretic lifting monad enriches over the category of
complete cuboidal sets; as a corollary, so does every
domain-theoretic model of recursive types in a wide
class.

Organisation of the paper. Section 1 presents the
basic structures needed in the rest of the paper and
their relationships. In Section 2 we show how to con-
struct models of ADT. To this end, we introduce an
algebraic notion of passage to the limit, and describe
the ideal-completion monad. This theory is applied in
Section 3 to obtain the notion of complete cuboidal
set. In Section 4, domain-theoretic lifting monads and
domain-theoretic models of recursive types are shown
to enrich with respect to the category of complete
cuboidal sets. Section 5 indicates further directions
for research.

1 Basic concepts

We review the basic structures for discussing models
of ADT. Domain-theoretic commutative monads are
the central concept of study; the special case of lifting
is only needed for Section 4. (For the notion of monad
see [28]; for the notion of commutative monad see [24,
29]; for the notion of lifting monad see Appendix A.)

Free algebras and fixed-point objects. An al-
gebra for an endofunctor is said to be free [17] if it is
initial and if its inverse is a final coalgebra.

A fized-point object [7] for a monad L = (L,n, )
on a category with a terminal object 1 is an initial
L-algebra Lw — w equipped with a global element

. . def
1 — w invariant under the successor loop succ =

N
w — Lw — w.

Theorem 1.1 For a commutative monad (L,n, u,t)
on a cartesian closed category, the following are equi-
valent:

1. The pair of arrows Lw 25 1lisa fixed-
point object.

2. The algebra o : Lw — W is free and oo : 1 — @
is the unique mediating coalgebra morphism from
m:1—Lltoo ! :0— Lw.

Moreover, when either condition is satisfied, the dia-
succ
gram 1 =% —— W is an equaliser.
id
The fixed-point object for a monad provides a
unique uniform fixed-point operator for endomorph-
isms on objects with bottom (viz. objects equipped with
an Eilenberg-Moore algebra structure) —see [7, 17].

Proposition 1.2 Let L be a commutative monad on a
cartesian closed category C. Assume that L has a free
algebra. Then,

1. the terminal object 1 in C becomes a zero object in
the category of Eilenberg-Moore algebras C*, and

2. if C has an initial object O then LO = 1 and so 0
becomes a zero object in the Kleisli category C,.

In the situation of the above proposition, one typ-
ically writes L (44) for the unique L-algebra homo-
morphism from the zero L-algebra L1 — 1 to an
L-algebra a : LA — A. Notice that the endofunctor
L is pointed (i.e. it comes equipped with a global ele-
ment). Indeed, the family {1 z4,,) : 1 — LA} is a
natural transformation 1 = L.



Domain-theoretic commutative monads. An
algebra s : Lw — w for an endofunctor L on a category
with an initial object 0 is said to be inductive if the
cone ([s],) : (L™(0 — LO)) = w inductively defined by
[s]o o (0 — w) and, for n > 0, by [$]n+1 Lo L[s]n,
is colimiting.

A pre-domain-theoretic commutative monad is a
commutative monad I on a cartesian closed category
with an initial object, equipped with an inductive ini-
tial L-algebra (henceforth denoted ¢ : Lw — w).

Examples of pre-domain-theoretic commutative
monads are the identity monad; the (-) + 1 monad
on Set (the category of small sets and functions); and
the lifting monad (_); on Preo (the category of small
preorders and monotone functions), on Poset (the cat-
egory of small posets and monotone functions), and on
Poset, (the category of small posets with pullbacks
—i.e. binary bounded infs— and stable —i.e. pullback
preserving— functions).

A domain-theoretic commutative monad L is a pre-
domain-theoretic commutative monad in which the in-
ductive initial L-algebra is free. In this context, the
free L-algebra is denoted o : Lw — w and the global
element 1 — @ invariant under succ is denoted oc.

Examples of domain-theoretic commutative monads
are the lifting monad (_);, on Cpo (the category of
small w-cpos and continuous functions) and on Cpo,
(the category of small w-cpos with continuous pullbacks
and stable continuous functions). The identity monad
is domain-theoretic only on trivial cartesian closed cat-
egories.

Models of linear type theory. A symmetric mon-
oidal functor (H,e,m) : V — V' between symmetric
monoidal categories (see [28] for this notion) consists of
a functor H : V — V', a morphism e : I’ — HI, and a
natural transformation my g : HAQ'HB — H(A®B)
such that

ma,pgc © (idpa ® mp,c) o a}IA,HB,HC
= H(aa,B,c) omagn,c © (ma,p @ iduc),

T}IA - H(TA) omy,A© (6 ® idHA)’

/
mB,A°Cya g = H(ca,p)oma,p.

A symmetric monoidal functor is said to be strong if e
and m 4 p are isomorphisms.

There is a standard process that to a symmet-
ric monoidal functor H YV — V' associates a
2-functor H, : V-CAT — V'-CAT, where for a mon-
oidal category W we write W-CAT for the (pos-
sibly large) 2-category of W-categories, W-functors,
and W-natural transformations. For a V-category
K, the V'-category H,K has the same objects as

K, hom-objects H,K(A, B) o HK(A, B), identities
I' - HI — HK(A, A), and composition HX(B,C) &’
HK(A,B) — HK(B,C)® K(A,B)) — HK(A,C). If
H is strong, the underlying ordinary categories Ky and
(H.K), are isomorphic.

A model of (intuitionistic) linear type theory [3]
is given by a strong symmetric monoidal functor
F :C — D between a cartesian closed category C and
a symmetric monoidal closed category D with finite
products, such that the functor F' has a right adjoint.
It follows that the right adjoint is a symmetric mon-
oidal functor and thus that the monad on C induced by
the adjunction, henceforth denoted L, is commutative.

The following folklore result (see [21] and the ref-
erences therein) relates (accessible) commutative mon-
ads (on locally presentable cartesian closed categories)
to models of linear type theory. (For the notions of

locally presentable category and accessible monad see
Appendix B.)

Theorem 1.3 Let L be an accessible commutative
monad on a locally presentable cartesian closed cat-
egory C. Then, C z CY provides a model of linear

type theory.

In the above theorem, the symmetric monoidal
structure on CU is given by the tensor product @ of
algebras; defined, for algebras X and Y, as the univer-
sal bilinear map X x Y — X ® Y. For details con-
sult [25, 21].

Models of Axiomatic Domain Theory. Domain-
theoretic commutative monads and models of linear
type theory provide the enrichment structure for de-
fining models of ADT.

A domain-theoretic enrichment base is a model of
linear type theory such that its induced commutative
monad is domain-theoretic.

A domain-theoretic model of recursive types
with respect to a domain-theoretic enrichment
base F:C z D : U is a D-category M such that
the C-category U,M is C-algebraically compact
(see [17, 9, 32] for this notion). The role of algebraic
compactness is to provide a universal approach for
solving recursive type equations. What is domain-
theoretic about these models is that fixed-points
of endofunctors (viz. free algebras) are obtained
by traditional domain-theoretic methods; viz. the
basic lemma [39] and a version of the limit/colimit
coincidence theorem [32].

Models of ADT are domain-theoretic models of re-
cursive types admitting a rich type structure (e.g. suit-
able for interpreting products, higher types, and sums).
Canonical examples of models of ADT are pCpo (the



category of small w-cpos and partial continuous func-
tions [31]) and Cppo (the category of small w-cpos
with bottom element and strict continuous functions)
with respect to the domain-theoretic enrichment base

(1)L :Cpo L Cppo,.
2 Constructing models of ADT

We explore the construction of models of ADT,
first from domain-theoretic commutative monads, then
from pre-domain-theoretic ones.

2.1 From domain-theoretic commutative mon-
ads

The models of ADT Cppo, and pCpo are obtained
as an application of the following result to the lifting
monad on Cpo.

Theorem 2.1 Let I be an accessible commutative
monad on a locally presentable cartesian closed cat-
egory C. Assume that L has an inductive free algebra.
Then,

1. the category of Eilenberg-Moore algebras C* is
a domain-theoretic model of recursive types with
respect to the domain-theoretic enrichment base
C z CY, and

2. when L is a lifting monad, the Kleisli category
CL is also a domain-theoretic model of recursive
types with respect to the domain-theoretic enrich-
ment base C z ct.

Another traditional domain-theoretic commutative
monad satisfying the hypothesis of the theorem is the
lifting monad on Cpo,.

2.2 From pre-domain-theoretic commutative
monads

Formally w-complete objects. Domains are spaces
equipped with a notion of approximation (the inform-
ation order) and a notion of passage to the limit (the
lub operator). We now consider objects with an al-
gebraic (rather than a universal) notion of passage to
the limit. To this purpose we introduce a notion of
formal-lub operator [12; § Axiomatic Domain Theory].

Consider a pre-domain-theoretic commutative
monad . = (L,n,u,t) on C. Think of the lifting
monad on Poset. Recall that we write ¢ : Lw — w
for the inductive initial L-algebra, and write succ for

the successor loop w —=— Lw —— w. A formal-lub

operator (for w-chains under the invariance succ) on
an object D in C is given by a map \/ : D¥ — D in C
satisfying the following three algebraic laws:

D.
D —— D¥
(Constant) idD\‘ j\/ (e V, (z) = 2),
D
(Diagonal) DAJ j\/
DLL)

(Shift)

(i'e' \/n<$n> = \/n <$succ(n)>)'

A formally w-complete object is an object equipped
with a formal-lub operator. For formally w-complete
objects (P,\/ p) and (Q,\/Q), amap f: P — QinC is
said to be w-continuous if it satisfies the following law:

Pwﬁ)Qw

(Continuity) V pJ l\/Q

P—
fQ

(ie. f(Vplzn)) = Vo {f(@n))-

We write \/(C) for the category of formally w-complete
objects and w-continuous maps. For our running ex-
ample, \/(Poset) is Cpo, the category of w-complete
posets and w-continous functions. If we perform
the construction on Preo (the category of preorders
and monotone functions) we obtain the same result;
V/(Preo) is again Cpo. The real surprise comes when
we consider the construction on structures with not
only a one-dimensional notion of approximation (as the
above examples) but also with higher-dimensional no-
tions of approximation. For instance, consider Poset;
the pullback “squares” in the posets provide a (par-
ticular) “two-dimensional” notion of path. Then,
the category \/(Poset,) strictly contains the category
Cpo, as a full subcategory and cannot be enriched
over Cpo in a relevant sense; see [11]. However, in



V/(Poset,) the constructions of domain theory are
possible (e.g. \/(Poset,) has finite sums, is cartesian
closed, and admits a lifting monad which satisfies the
hypothesis of Theorem 2.1). In the next section we
will generalise this to cuboidal sets, our structures with
(general) finite higher-order notions of path.

A more succint presentation of the \/-construction is
as follows. Consider the exponentiation commutative
monad W on C with underlying endofunctor (_)“, unit

A
D': D — D, multiplication (D¥)* = D=x« 2=, pe,
and tensorial strength A x D¥ — (A x D)“ the expo-

~

nential transpose of the composite (A x D¥) X w &

A X (D¥ x w) Maxeadl 4w D (where eval denotes the
evaluation map). Then \/(C) is the full subcategory of
the category of Eilenberg-Moore algebras C" consisting
of the algebras satisfying (Shift).

As in traditional domain theory the formal-lub op-
erator allows the definition of a fixed-point operator
for endomorphisms on objects with bottom. Define
a formally w-complete pointed object to be a triple
(D,d : LD — D,\/, : DY — D) where (D,d) is an
[L-algebra and (D, \/ ) is a formally w-complete object.
For an endomorphism f on D, let it(p q)(f) : w — D
be the unique L-algebra morphism from the initial
L-algebra (w,¢) to the L-algebra (D, f o d), and set
ﬁX(D’d’\/D) &ef V polit(f)". The algebraic laws of the
formal-lub operator are enough to derive formal ver-

sions of the fized-point and wuniformity properties of
the fixed-point operator.

Proposition 2.2 Let (A,a,\/,) and (B,b,\/5) be
formally w-complete pointed objects, let f be an en-
domophism on A and g an endomorphism on B, and
let h be an L-algebra morphism from (A, a) to (B,b).
Then,

1. fofix(f) = fix(f), and
2. ifgoh =ho f then hofix(f) = fix(g).

The \/-construction. As we have seen above, some-
times the \/-construction takes us from a pre-domain-
theoretic commutative monad (e.g. the lifting monad
on Poset) to a domain-theoretic one (e.g. the lift-
ing monad on Cpo). What happens if we perform
the \/-construction on a domain-theoretic commutat-
ive monad?

Theorem 2.3 For a domain-theoretic commutative
monad on a category C, the forgetful functor \/(C) — C
is an isomorphism with inverse the functor sending
an object D in C to the formally w-complete object
(D,D*> : D¥ — D) in \/(C).

Consider a domain-theoretic commutative monad L
on C. By the above theorem, every object D in C ad-
mits a unique formal-lub operator (viz. D> : D¥ — D)
and so, for an L-algebra (D, d), we may simply write
fix(p,q) for fix(p 4, p~). With this convention, for every
endomorphism f on D, we have that fixpq)(f) =
it(p,a)(f) 000 (c.L. [7]).

Since the exponentiation functor (_)¥ preserves
binary products, under a mild assumption the
\/-construction preserves cartesian closure.

w

Proposition 2.4 Consider a pre-domain-theoretic
commutative monad on a category C.

The forgetful functor \/(C) — C creates products,
and hence \/(C) is cartesian. If in addition C has equal-
isers then \/(C) is cartesian closed.

Given a pre-domain-theoretic commutative monad
L on C, we will be interested in extending L to \/(C).
This is not always possible; e.g. for the (_) + 1 monad
on Set, the category \/(Set) is equivalent to the arrow
category . However, one can always extend L
to CV; this is equivalent to asking for a distributive law
of L over W (see [2] for this notion).

Proposition 2.5 The transformation L(_*) — (L_)¥

with components L(D¥) — (LD)* defined as the expo-

nential transpose of L(D¥)xw AN L(D¥ xw) L) 1p

yields a distributive law of . over W.

The ideal-completion monad. Consider a pre-
domain-theoretic commutative monad L on a category
C. Every object in C admits a free formal w-completion
in \/(C) if the forgetful functor \/(C) — C is monadic.
That is, if it has a left adjoint delivering free con-
structions such that the category of Eilenberg-Moore
algebras for the monad on C induced by the adjunc-
tion C z V(C) is equivalent to \/(C). In this case,

the monad I representing \/(C) as C! is called the ideal-
completion monad (as it generalises the case of posets).

The question arises as to when the ideal-completion
monad I exists and, if so, whether there exists a dis-
tributive law of L. over I to extend L to \/(C). Details
of a general theory addressing these issues will appear
elsewhere.

3 A standard domain-theoretic enrich-
ment base

Cuboidal sets. We write O,. for the ordinal associ-
ated to the cardinal k.



The cuboidal category [ is defined as the full sub-
category of Poset, determined by the objects (hence-
forth called cuboids) O, x ...x Q,, where ¢ > 1, and
0<n; <Rgforalll<y<i.

For a small category C with an initial object 0,
we write C for the full subcategory of the presheaf
topos [C°P, Set] consisting of the presheaves P such
that P(0) 2 1. When the initial object in C is strict, C
is the sheaf topos obtained by declaring that the empty
cover covers the initial object.

We call [J the category of cuboidal sets. There are
two other presentations of [J. Let F be the full sub-
category of Poset, containing the initial object and
closed under finite products and lifting, and let FDL
be the full subcategory of Poset, consisting of the fi-
nite distributive lattices. Since FDL is the Cauchy
completion [27] of both [J and F, the full inclusions
O — F — FDL induce the following equivalences
)~ F ~ FDL. The category F plays a crucial role in
the enrichment theorem of Section 4.

The Yoneda embedding O] — [J associating to
a cuboid C the representable cuboidal set [I(_,C)
provides a full and faithful representation of the
cuboidal category into the category of cuboidal sets.
As a notational convention, we identify the cuboidal
category [ with its image under the Yoneda embed-
ding in the category of cuboidal sets [].

The internal structure of a cuboidal set may be
grasped by looking at its paths. A path of shape a
cuboid C' in a cuboidal set P is a map C — P in
O (or equivalently, by Yoneda, an element of P(C)).
To understand paths in some concrete cases it is in-
structive to look at the following embeddings. Let
C be either Preo, Poset, or Poset, and let J de-
note the inclusion functor [0 — C. Then, the functor

N : C — O associating to an object D in C the cuboidal

set N(D) def C(J_, D), called the nerve of D (c.f. [26]),

is full and faithful.

A subset of a poset with pullbacks is said to be
a stable open if it is upper-closed and closed under
pullbacks. The set of stable opens of D in Posetx
is denoted OA(D). In Poset, and [, stable opens
are closed under identities, composition, and pullbacks
along arbitrary maps (i.e. they provide a class of ad-
missible subobjects [33].)

The stable opens of a cuboid are easy to visualise;
they are either empty or determined by a vertezx of the
cuboid. The notion of stable open can be extended
from the cuboidal category to the category of cuboidal
sets. The quickest way to this is by declaring a sub-
object O — @ of a cuboidal set @ to be locally stable

open if it appears in a pullback

O%@l

&
Q —— O

where @; — Qs is the unique mono with stable-open
image. Equivalently, a subobject O — Q in [ is locally
stable open if and only if, for every cuboid C in [J and
every path C — @ in [, we have a pullback square

V— 0
]
C—Q

for some stable open V of C and a (necessarily unique)
map V — O in 1.

The stable open @7 — Qs not only determines the
locally stable opens, but also classifies them. Indeed,
every locally stable open O — @ in ] appears in a
pullback (1) for a unique characteristic map @ — Qa.
Moreover, as the initial object in (7 is strict, the cat-
egory [ is a topos and in it the Sierpinski space Qs
is a dominance (see [34] for a general treatment). It
follows that the topos of cuboidal sets admits a lifting
monad L. which we now make explicit.

To understand the following definitions think that a
path C' — LP of shape C' in LP is described by a pair
consisting of its degree of definedness represented by a
stable open V of the cuboid C and a total path V. — P
of shape V in P.

e The underlying functor L is given by (LP)(C) e

{(V,z) | V € OA(C),z : V — P} with action on
morphisms (LP)(C’ — C) sending (V,V — P),
with V' a stable open of C, to (V/,V/ -V — P)
where the square

Vi —V

[~

o' ——C
is a pullback.

e The unit np : P — LP sends a path C — P to
(C,C — P).

e The multiplication pp L?P — LP sends
(V,(V', V' — P)), with V a stable open of C and
V' a stable open of V, to (V/, V' — P).

e The tensorial strength tg p : @ x LP — L(Q x P)
sends (C — Q, (V,V — P)), with V a stable open
of C, to (V,(V—C— Q,V — P)).



Theorem 3.1 ([14]) The lifting functor on the cat-
egory of cuboidal sets preserves mon-empty connected
colimits.

The category of cuboidal sets is locally presentable
(as it is a sheaf topos) and, by the above theorem,
the lifting monad is accessible. It also follows from
the above theorem, e.g. using the basic lemma [39],
that the lifting functor has an inductive initial algebra.
Since connected colimits in the category of cuboidal
sets are given pointwise, the inductive initial L-algebra

. In .
w = colim (0,, > Oy41)n, where ,, denotes the in-
clusion of @, into Q,,41, has as its set w(C) of paths
of shape C the set of sequences of the form

Ce—Vye— ...V, =0 .. =0 ...

with each V; a stable open of the cuboid C.

~ ~L
Corollary 3.2 1. The adjunction [ z O s a
model of linear type theory.

2. The lifting monad L on O] is pre-domain-theoretic.

Complete cuboidal sets. A cuboidal set is given
a notion of passage to the limit by equipping it with
a formal-lub operator. This results in the category
\/(3) of formally w-complete cuboidal sets (henceforth
simply called complete cuboidal sets).

In this subsection, we study the domain-theoretic
structure of \/(CJ). We start by observing that \/(0)
embeds the categories Cpo and \/(Poset,); hence
also Cpo,. Let C be either Poset or Poset,. For
every object D in C, there is a canonical isomorph-
ism (ND)® = N(D%o) in O (c.f. (4) below), where
N is the nerve functor C — [ defined in the previous
subsection. Then, the functor \/(N) : \/(C) — V(O)
associating to an object (D,V) in \/(C) the complete

. ~ oey NN .
cuboidal set (N(D),(ND)¥ =2 N(D"0) —— ND) is

full and faithful.

Theorem 3.3 1. The category \/(O) is locally
presentable and cartesian closed.

2. The lifting monad IL on O extends to an accessible
commutative monad L on \/(OJ).

The above result follows from a general theory al-
luded to in Section 2, § The ideal-completion monad.
Here we only give an idea of the proof.

One shows that [ admits an accessible ideal-
completion monad I; hence \/(OJ) ~ o s locally
presentable (see Appendix B). The cartesian closure
of \/(O) follows from Proposition 2.4.

In fact, one can construct the ideal-completion
monad I as a quotient of the exponentiation monad
W, and show that the distributive law LW — WL
collapses to an isomorphism L1 = IL yielding another
distributive law. Then, the functor L on [J extends

to E]H; if \/p : I(P) — P is an [-algebra then so is the
L(V,p)

composite [LP = LIP ——— LP. We conjecture that
the commutative monad L on \/(J) is a lifting monad.

For illustrative purposes, for a complete cuboidal
set \/p : PY — P, we give an explicit description of
the formal-lub operator \/, , : (LP)¥ — LP in two
steps. First, to every generalised chain C' — (LP)%“ of
shape C' in LP we associate a path C — L(P¥) again
of shape C' in L(P¥) by (intuitively) removing bottom
elements from the chain whenever possible. Second,
we define the action of the formal-lub operator \/, p
on generalised chains C' — (LP)“ as the composite

LV )
C — L(P¥) & LP. We describe the passage from

C — (LP)¥ to C — L(P“). We have the following
bijective correspondence:

C — (LP)~
Cxw— LP
Cx0, —U, — P

ide x ZWI - I / (n > 0)

C x ©n+1 — Un—'rl

with the crucial property that there exists a least j
such that, for all n < j, U, = 0 and, for all n,
Ujtn 2V x Q14 for a unique V€ OA(C). Then we
define C' — L(P%) as the characteristic map of the par-
tial map C' <= V — P¥ where V — P* is the exponen-
tial transpose of the unique mediating map V xw — P
from the colimiting cone (V x O, 11 — V X w),, to the
cone (V X Opq1 = Ujty — P

Theorem 3.4 The commutative monad I on \/(3) is
domain-theoretic.

Notice that since Qg = Qg and ILP = LIP, for
finite n, we have that Q,, is isomorphic to its formal
ideal completion /Q,. On the other hand, the formal

ideal completion @ ey (w) of w with structure map

o f (L(Iw) = I(Lw) % Iw) and global element

def (1 el (Tw)¥ L Iw), where we write ¢ for the
unit of I, provides an inductive L-fixed-point object.

We give an explict description of w and co. We will
present w as a quotient of w*. The following bijective



correspondences describe the paths of w®:

C — w¥

Cxw—w

Cx0, — w

id, x lnI / (n>0)

C x ©n+1

Vn7j+1 C— Vn,j —— (Cx @n
| _
I I Iidc X ln

Vat1,j+1 & Vag1,; & C x Opyy

(n,j >0)
CxOpy Vo= ...2V, — ...
vo < ... <v, <...in C x Oy,

Then the quotient of w* yielding @ is done by ideal-
completing locally: for every cuboid C, the set w(C),
of paths of shape C' in W, may be identified with
C % Ogy+1- And coc € C' x Oy, 41 is the pair consist-
ing of the least element of C' and the greatest element
of @N0+1. B

As W admits an L-algebra structure (viz. the com-

> o1 ~ — >
posite Lw L Lo [w w), by the
formal fixed-point property (Proposition 2.2 (1)), en-
domorphisms on it have fixed-points. It follows that

fix(succ) = oc.

~ ~ L
Corollary 3.5 The adjunction \/(J) z V@O isa
domain-theoretic enrichment base with respect to which

~ 1
the category of Eilenberg-Moore algebras \/(O) is a
domain-theoretic model of recursive types.

4 An enrichment theorem for domain-
theoretic lifting monads

We show that every domain-theoretic lifting monad
enriches over the category of complete cuboidal sets.
More precisely, say that a V-category K provides an

enrichment of the ordinary category C if the underly-

ing ordinary category Ko (with hom-sets Ko(A4, B) def

V(I,K(A, B))) and C are isomorphic. Then, for a
domain-theoretic lifting monad on C we will construct
a \/(O)-category providing an enrichment of the ordin-
ary category C in such a way that the domain-theoretic
structure also enriches. It will follow as a corollary that
every domain-theoretic model of recursive types in a
wide class also enriches over \/(C).

For a symmetric monoidal category W, write vy
(omitting the subscript if it is clear from the context)
for the global-sections functor W(I, _) : W — Set. For
a symmetric monoidal functor H : V — V'’ such that
v oy v Set) = (V 5 Set), the V'-category
H.K (defined in Section 1, § Models of linear type the-
ory) provides an enrichment of Ky.

Thus, for a domain-theoretic lifting monad on C we

aim at producing a cartesian functor C — \/(J) such
that (C — \/(O) —— Set) = (C —— Set). Then,
since C enriches over itself (as it is cartesian closed) the
above process will provide the aforementioned enrich-
ment result.

We start our considerations with respect to the pre-
domain-theoretic case.

Enrichment for pre-domain-theoretic lifting
monads. Let L = (L,n, u) be a pre-domain-theoretic
lifting monad on C.

We define a functor S : O — C. For n > 0,
we write X,, for L™0 and define the action of S on
objects by the mapping sending OQ,, x ... x O,, to
Yny X ... X Xy,. To define the action of S on morph-
isms we proceed in two steps. First, for n > 0, we
define S,, : I(C,0,) — C(S(C),%,). Second, we let
S (C,Opy X ... x0y,) = C(S(C),En, X...XEy,)
be the mapping f — {(Sn,(f1),...,Sn,(fi)) where
¥ Cc—L50,x...x0, —250,) We
give an inductive definition of S,. For n = 0, the
action Sy : [1(C,Qp) — C(S(C),0) is uniquely determ-
ined by its target. For n = m + 1 with m > 0, let
C=0,, x...x0,, and consider f : C' — Oy,4 for
which the following diagram

!
Opy X ... X Opy = Oy

f f

Opy ... x 0y, — Oppps

f
is a pullback in (J. Then, we let S;,,+1(f) be the unique

characteristic map making the diagram

Sm(f')

m
En/l X...in; 4>Em

U1X...Xui£ fﬁzm

- X an ) Em+1 )

_—
Sm+1(f

where u; Lef (an_ S AN ¥n,), a pullback in
C. By construction, S is indeed a functor; moreover, it

preserves the initial object, finite products, and pull-
backs of stable opens along arbitrary maps.



We remark on a more conceptual definition of the
functor S. The category F is the free cartesian category
with an initial object and a lifting monad L such that
L0 = 1; and, the functor S : [0 — C is the composite
0 — F — C where F — C is the unique structure
preserving functor given by freeness.

Define the nerve functor N : ¢ — [ with action
given by the mapping f +— C(S_, f). Thus for a cuboid
C in [J and an object D in C, we have the following
bijective correspondence

C — N(D)
S(C)— D

stating that the paths of shape C' in the cuboidal
set N(D) are the paths of shape S(C) in the ob-
ject D. For instance, the C-parameterised paths
C x 0,, — N(D) in OJ are in bijective correspondance
with the S(C)-parameterised paths S(C') x ¥,, — D in
C. Tt follows that,

woN = (2)
(ND)® = N(D™) 3)

1%

The nerve functor has the crucial property of pre-
serving limits. We thus have the following two con-
sequences.

1. Applying the N, functor to C regarded as a
C-category we obtain the [J-category N,C which,
by (2), provides an enrichment of C.

2. The isomorphism (3) extends to the limit; that is,

(ND)¥ = N(D“) (4)
as (ND)* = (ND)©mOn o |im(ND)% =
lim N(D®) = N(limD%) =~ N(D®mZ)
N(D®e).

In fact, from (4) we obtain a natural isomorph-
ism v : (N_)¥ = N(_“c) making the pair (N,v)
into a morphism We — W of monads (see [40] for
this notion). We thus get a functor CWe — W

V

sending a We-algebra D“¢ —— D to the W-algebra

y N
(ND)* —— N(D**) (4\/)> ND. Moreover, the dia-

gram
(N_)* —— N(_¢)

<] v
(N)* —= N(-)

commutes, and so the functor cWe — % cuts down
to a functor \/(C) — V(O).

Enrichment for domain-theoretic lifting mon-
ads. Applying the above discussion to a domain-
theoretic lifting monad L on C, we get a limit
preserving functor \/(N) : C = \/(C) — V(@O),
sending an object D to the complete cuboidal set

(N(D),(ND)* —2— N(D?) 227, ND), such that
V) = o i vy
© V(E) — Set) = (¢ —— Set).

We have thus obtained the first part of the following
result.

Theorem 4.1 (Enrichment theorem) Let L be a
domain-theoretic lifting monad on C.

1. The \/(OD)-category \/(N).C provides an enrich-
ment of C.

2. In \/(N).C, the cartesian closed structure of C,
the commutative monad I on g, and the colimit
defining @ also enrich over \/(OJ).

Enrichment for domain-theoretic models of re-
cursive types. Every domain-theoretic model of re-
cursive types with respect to a domain-theoretic en-
richment base inducing a lifting monad enriches over
the category of complete cuboidal sets.

Corollary 4.2 Let M be a domain-theoretic model of
recursive types with respect to a domain-theoretic en-
richment base F : C Z D : U inducing a lifting
monad.

The \/([Q)-category \/ (N) UM provides an enrich-
ment of M.

We conjecture that (possibly under some mild as-
sumptions) domain-theoretic models of recursive types

enrich over \/(E])L

5 Concluding remarks

We have introduced a new notion of domain,
viz. that of complete cuboidal set, that complies with
the requirements of ADT. To this end, we have
provided an algebraic notion of passage to the limit
with respect to which a definition of ideal completion
was given. Further, we have shown that the category
of complete cuboidal sets provides a general notion of
enrichment, traditionally attributed to the category
of cpos, for a wide class of domain-theoretic struc-
tures (viz. domain-theoretic lifting monads and certain
domain-theoretic models of recursive types).



Many further directions of research are possible; we
mention a few here.

There are two orthogonal directions for extending
the enrichment theorem: by incorporating binary sums
into the domain-theoretic lifting monads, or by con-
sidering arbitrary commutative monads (rather than
lifting ones).

As in [10], the enrichment theorem seems likely to
provide the basis for developing a representation the-
ory. This possibility is under investigation.

Connections with synthetic domain theory are envis-
aged. In particular, a synthetic characterisation of the
category of complete cuboidal sets seems to be avail-
able. This might help in settling our first conjecture
(see Section 3, § Complete cuboidal sets), which is im-
portant for our representation programme.

At a more speculative level, we wonder what the re-
lationship is between this work and presheaf or higher-
dimensional models of concurrency [23, 42, 6, 41, 19,
18, 5, 20].
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A Lifting monads

A monad L = (L,n, 1) on a category with terminal
object is said to be a lifting monad if

e pullbacks of n; along arbitrary maps exist;
e the unit 7 is cartesian (i.e. the squares required to

commute by naturality are pullbacks) and a partial
map classifier (i.e. in the situation

l1«~——D —— B
L

m

Ll1+—— A

there exists a unique characteristic map A — LB
such that the diagram

D——B

N

A—— LB
is a pullback).



Examples of lifting monads are the identity monad;
the (_)41 monad on Set; the traditional lifting monad
(-). on Preo, Poset, Poset,, Cpo, and Cpo,; and
the partial map classifier monad [22] on a topos.

Recall that lifting monads on cartesian categories
are commutative (see e.g. [9]).

B Locally presentable categories

We recall some basic definitions and facts of the the-
ory of locally presentable categories used throughout
the paper. For a thorough treatment consult [1, 4].

Let A be a regular cardinal (i.e. an infinite car-
dinal which is not a sum of a smaller number of
smaller cardinals). An object C' of a category C is
A-presentable when its covariant hom-functor C(C, _)
preserves A-directed colimits. A category C is said to
be locally \-presentable if it is cocomplete, and has a
small set P,C of A-presentable objects such that every
object in the category is a A-directed colimit of objects
from P,C. A functor between locally A-presentable cat-
egories is called A-accessible if it preserves A-directed
colimits.

A category is said to be locally presentable if it is loc-
ally A-presentable for some regular cardinal \. Every
locally presentable category is complete.

A monad is called accessible if its underlying func-
tor is A-accessible for some regular cardinal A\. The
category of Eilenberg-Moore algebras for an access-
ible monad on a locally presentable category is locally
presentable.



