
FULL ABSTRACTION FOR A SIMPLE PARALLEL PROGRAMMING LANGUAGE

M.C.B. Hennessy

G.D. Plotkin

Department of Artificial Intelligence

University of Edinburgh

Hope Park Square Meadow Lane

EDINBURGH EH8 9NW Scotland

INTRODUCTION

In [Plol] a powerdomain was defined which was intended as a kind of analogue of

the powerset construction, but for (certain kinds) of cpos. For example the power-

domain~(S±) of the flat cpo Si, formed from a set S, is the set {X ! S~I(X#~) and

((±cX) or X is finite)} with the Egli-Milner ordering :

X ~ Y ~ (~x ~ X.~ y ~ Y. x C y) A (~y c Y.3 x e X. x ~ y).
E-M

This enabled nondeterminism to be modelled by an analogue of set-theoretic union and

a denotational semantics for a simple language with parallelism was given, treating

parallelism in terms of non-deterministic mergeing of uninterruptible actions. Expec-

ted identities such as the associativity and commutativity of the parallel combinator

were true in this semantics.

Unfortunately, other reasonable identities do not hold, in particular the

distributivities :

P ; (Qor R) ~ (P ;Q) or (P ; R)

(Qo!r R) ; P~ (q; ~) or (R ; P)

and so, with a suitable definition of behavior, the semantics will not be fully

abstract [Mil I] , [Plo 2]. Analysis of the problem leads us to the desire for a

variant of the product of two powerdomains and a ~finition of union, u, on the new

structure and a pairing function, ®, so that :

x ®(y u z) = (x ®y) u (x ®z)

(y u z) ®x = (y ®x) u (z ®x).

The ordinary product and pointwise union will not do as then the stronger equation :

(x u x') ®(y u y') = (x®y) u (x' ®y')

109

holds and the corresponding equivalence for programs should be false.

In the present paper we further develop the idea of non-deterministic domains

[Egl] [Hen] which are cpos with an associative, commutative, absorptive continuous

binary function (called union). Their connection to cpos gives a definition of the

powerdomain for all epos, extending [Plol][Smyl]; there is a tens~Or product which

satisfies the above desire ; we can give a semantics using non-deterministic domains

for a simple parallel programming language like that in [Plol] which in at least one

sense, is fully abstract. Interestingly most of the manipulation of sets explicit in

[Plo;] disappears here as it is "built in" to the domains and their constructions.

2. THE PROGRA}&MING LANGUAGE

Syntax Our language has three sets of syntactic items.

I. BExp - a given set of Boolean expressions, ranged over by the metavariable b.

2. Act - a given set of primitive actions, ranged over by a.

3. Stat - a set of statements, ranged over by s, and given by the grammar :

s::= aI(s;s) l(if b then s else s) I(while b do s) I(s or s) I(s par s) l(s co s).

It is not necessary here to assume anything about the structure of BExp or Act ;

standard examples of elements would be "x ~ y" or "x:=y+5" for an arithmetic langua-

ge. The statements provide a simple imperative language with parallelism, which will

be treated in terms of interleaving of atomic actions, and with a somewhat strange

" eoroutine" facility which gives a very strict interleaving of the atomic actions.

Operational Semantics

We will use the set T = {it ,~ } of truthvalues and a given set, S, of states,

ranged over by c. The behaviours of the Boolean expressions and the primitive actions

are given, rather abstractly, by two functions :

1. ~ : BExp ÷ (S + T),

2. g~ : Act ÷ (S ÷ T).

For the statements we axiomatise a relation ÷ : StrxStr where Str=defSU(StatxS ~

the relation <s,o> ÷ o' (<s,o> ÷ <s',G'>) is to mean that executing the first unin-

terruptible step of s, starting from o, results in o' with the termination of s

(respectively, with s' being the remainder of s) ; no other relations are possible :

11. <a,~> +~E a~ (~),

Ill. <sl,~> ÷ a' 2. <s1,~> ÷ <s{,~'>
<(S]jS2),O> + <S2,G'> ' <(Sl;S2),~ > ÷ <(S~;S2),O'>

<sl,O> + str (~ [[b ~(~) = it ; str e Str),
III.] <(if b then sl else s2),o> + str

110

2.

IV I.

2.

<s2,0> ÷ str
<(if b then sl else s2),J> ÷ str (~ ~ b] (~) = N ; str ~ Str).

<S,O> + U ~
<{while b do s),o> + <(while b do §),if'> (~gb N (o) = t t) ,

<(while b do s),o> ÷ <(s';(while b do s)),o'> (~ b 11(o) = tt) ,

3. <(while b do s),o> ÷ o (~ b ~ (o) = if).

V|. <s{,O> ÷ str
<(sl or s2),C> ÷ str

Vl I.

2.

Vll].

(i = I, 2 ; str ~ Str).

<SI,~> ÷ ~I , <$2~ > ÷ O' ,

<(slpa_~r s2),U> + <s2,~'> <(sl par s2)~> ÷ <sl,O'>

<SI~U > + <S{~U T> <S2,~> ÷ <S~U'>

<(Sl par S2),O> + <(S{ par s2),o'> ' <(sl par s2),o> ÷ <(sl par s~),o'>

<SILO> ÷ ~
<(szco s2),o> + ~' 2. <(sl co s~),~> + <(s~ co s{),~

Now we can give a definition of the behavior of a statement in terms of a non-

deterministic state transformation function :

3. OR : Stag ÷ (s +~(s±)),

where :~ ~ s ~ (o) = {~' ~ Sl<s,~> % ~'} u

{±I there is an infinite sequence <s,o> + .. ÷ <Sn,~n > ÷ ..}.

As {strI<s,o> ÷ str} is always finite and nonempty, Konigs lemma shows~s~ (o) is

always finite or contains ± and so is in ~(S±) as required.

Note the flexibility of the method for specifying interruption points ; if we

had wished conditionals to be interruptable after the test, instead of the present

"test and set" capability, we would have written :

Ill'l. <(if b then s! else s2),O> ÷ <s],~> (~E b~ (~) = ~),

2. <(if b then s| else s2),o> ÷ <s2,o> (~ ~ b~ (o) = if).

3. NON-DETERMINISTIC DOMAINS

We discuss the extra structure provided by the union function, the connections

with powerdomains and useful constructions such as the tensor product.

Definition 3.] : A complete partial order (cpo____) is a partial order, <D,~>, with a

least element, iD' and lubs, UDXn , of increasing ~-chains ; a function f: D + E of

partial orders is strict, monotonic or continuous according, respectively, as it pre-

serves the least element, the order or the order and all existing lubs of increasing

111

~-chains. We let CPObe the category of cpo's and continuous functions, let ~ be

the subcategory of strict functions, and let 0 be the category of partial orders with

lubs of all increasing u-chains and continuous functions.

The reason for considering the three categories, CPO c CP0 c 0 is that the main

one of interest, CPO, lies between the more natural CP~O and 0_. All three have all

small products given by Cartesian product ; CPO± and ~ are small complete.

Definition 3.2 : A non-deterministic partial order (nd-po) is a structure <D,~,u>

where <D,!> is a po and u : D 2 ÷ D is a monotonic function (called union) where :

I. Associativity For all x, y, z in D, (x u y) u z = x u (y u z).

2. Commutativity For all x,y in D, (x u y) = (y u x).

3. Absorption For all x in D, (x u x) = x.

A function f: D ÷ E of nd-po's is linear if it preserves union. We let ND be the

category of non-deterministic domains (nd-pos which are cpo's and have a continuous

union) and continuous linear functions, let ND be the subcategory of strict func-

tions and let NO be the category of nd-po's ~lich are O-objects and which have a

continous union and continuous linear functions.

Again, __ND ± c ND c NO and all three have all small products given by Cartesian

product and ND± and NO are small complete. Note that in any nd-po, D, we can define

a "subset relation" by : x ! y iff (x u y) = y ; this is a partial order and if D

is __NO then ~ is inductive in the sense that if <Xn>,<yn > are two increasing u-chains

with x n ~ Yn then (UXn) ! (Uyn).

For constructions on ND± we use the Freyd Adjoint Functor Theorem (FAFT-see

[Mac]) in conjunction with a useful lemma.

Definition 3.3 : An 0 -category is one whose hom sets are equipped with a partial

order so that they form an O-object and so that composition is continuous in each

argument ; an 0-functor G:A ÷ X of O-categories is one which is continuous with res-

pect to the order on the hom-sets. An N0___-category is an 0-category whose hom -sets

are equipped with a binary function so that they form an NO-object and so that compo-

sition is linear in each argument ; an N0--functor G:A ÷ X of N0--categories is an

0-functor which is linear with respect to the union on the hom-sets.

Note that all the above categories are 0-categories with respect to the natural

pointwise ordering of morphisms ; further NO, ND and ND ± are all N0--categories with

respect to the natural pointwise union. Any small product of NO-categories is an

NO--category and so the product functor is an N0-functor (which is also strict on the

horn-sets).

Definition 3.4 : Let G:A ÷ X be an ~-functor. Then f:x ÷ Ga is a G-orderepi iff

whenever a g ' g~ a' are such that (Gg)f ~ (Gg')f then g ~ g'.

Le~na 3.5 : Let G:A÷ X be an ~-functor such that every f:x÷ Ga factorises as

112

x fL Ga ~ ~g Ga where f' is a G-orderepi. Then the left adjoint of G is also an

~-functor and if g is an N00-functor its left adjoint is an N00-functor too.

Powerdomains : The evident forgetful functor V2:N~ ÷ ~ has a left-adjointO:~ *N0

which is an ~-functor ; further ~ cuts down to a left-adjoint to each of the forget-

ful functions VI:ND ÷ CPO, Vo: ND i ÷ CP__O0 I. The powerdomain construction in ~loJ]Smyl]

is the restriction of ~ : CPO ÷ ND to the ~-algebraic case and then the unit map is

s£~gleton, {I "I} : D ÷~(D) and the "big union"~ :~(~(D)) ÷~(D) is the multiplica-

tion of the associated monad.

Other powerdomain constructions [Smyl][Mil]] can be treated similarly. Smyth's

one can be obtained by adding the inequation :

4. (x u y) cx.

If instead we add :

5. (xu y)]x

we would obtain a construction involving the "other half" of the Egli-Milner orde-

ring. Variations with an empty set EMilI] are obtained by considering algebras,

<D,C_,u,~> where ~ is an element of D satisfying :

6. (x U 9) = x.

Other possibilities are to consider a strict construction with the equation :

7. (x u J_) = ±

or to drop the absorption axiom to obtain a kind of multiset construction.

In all cases where we have the experience, all the neccessary auxiliary func-

tions can be obtained from categorial considerations ; it is not clear however whe-

ther the required properties can be (conveniently) so obtained and we might need

detailed constructions as in [Plo]][Smy]][Mil]], although they are not necessary

in the present paper.

Sums : The category ND has binary sums ; that is for any nd-domains, Do, DI there =±

is another (Do+DI) and strict continuous linear functions, in. : D. + (Do+D1)(i=0,1)
i i

such that for any other nd-domain, F, and strict continuous linear functions

fi:Di + F(i=0,|) there is a unique such function ~o,fl]:(~+Dl) + F such that the

following diagrams conmlute :

D.

in i i i ~ (i=0,1)

Do+D1 ~ F
[fo,fl]

113

Further, [.,.] is strict continuous and linear on the hom-sets and so is

+ : ND 2 ÷ ND considered as a functor (it is an NO-functor).

ND ÷ NO has a left adjoint (.)±: NO ÷ ND ; Lifting : The forgetful functor V± : =± = = =±

that is for any NO object, D, there is an nd-domain, (D)±, and a continuous linear

up : D ÷ (D)~ such that for any other continuous linear f: D ÷ E there is a unique

strict continuous linear lift(f) : (D)± ÷ E such that the following diagram commutes:

D± lift(f) ~ E

Further lift(.) is continuous and linear as is (.)± on the hom-sets. Finally, we

note that (.)1 cuts down to a left adjoint to the forgetful functor from ND± to ND.

Tensor products : The point of the tensor product is to reduce multilinear functions

to linear ones.

Definition 3.6 : Let A,B,C be nd-domains. A continuous function f : A × B ÷ C is

bistrict iff for all b in B f(±,b) = ± and for all a in A, f(a,±) = ± ; it is bi-

linear iff for all a, a' in A and h in B, f(a u a',b) = f(a,b) u f(a',b) and for

all a in A, b, b' in ~, f(a,b u b') = f(a,b) u f(a,b'). (N.B. We are not assuming f

either strict or linear). We let Bislin (A,B;C) be the set of bistrict, bilinear

continuous functions from AxB to C equipped with the pointwise order and union (and

so an nd-domain).

Note the bistrict functions are strict and linear binary functions are bilinear.

Any nd-domains A,B have a tensor product A ~ B ; that is, there is a bistrict,

bilinear continuous ® : A×B ÷ A®B which is universal in the sense that for any

bistrict, bilinear f: A×B ÷ C there is a unique strict, linear continuous slin

(f): A®B ÷ C such that the following diagram commutes :

A×B

A C
s l i n (f)

F u r t h e r s l i n : B i s l i n (A,B;C) ~ HoraND (A®B,C) i s an i s o m o r p h i s m o f n d - d o m a i n s . We

e x t e n d ® t o a f u n c t o r ® : ND~± × ND±~ ÷ ND±= by r e q u i r i n g t h a t t h e f o l l o w i n g d i a g r a m

a l w a y s commutes :

114

AxB fxg A~ < B ~

l
A®B f®g ~ A~®B '

Then we find that ® is continous, linear and bistrict on the hom-sets.

Domain Equations : All the theory in [Smy2] applies to ND and as constructions we

can use x, powers, ~ o Vo, +, (.)±oV±, ® (and others not mentioned here). In the

present work we only need to solve the one equation :

~: R ~- (~(S±) + (@(S±) ® (R)±)) S

(where we have omitted the V±). This gives us the nd-domain, R, of resumptions,

which have the same motivation as the corresponding cpo in [Plol]. Below we shall
-I

treat the isomorphism as an equality, omitting to write ~ or

4. DENOTATIONAL SEMANTICS

We present a useful sbbrevia~on. Suppose a,b,c are different variables of types

~(S±), ~(S±), R, respectively, and , , , are expressions of types

(~(S±) + (~(S±) ® R±)), D, D respectively where --- is strict and linear in a, and

.... is strict in b and linear in h and c ; then the expression, e, where :

e = (cases - - first a : second b, c, :)

is of type D and abbreviates :

[%a E~(Si). ---- , slin (~b ~(S±), d ~ R±. lift0~c ~ R)(d))] ()

where d is a new variable of type R± not free in There are two "evaluation"

values for e :

(cases in0(a) first a : second b,c :) ,

(cases inl(b~up(c)) first a : --- second b,c :) =

From now on we will often omit in 0, in I , up and {.} when they are clear from the

context. If , , are all continuous in a variable, x , so is e ; if

-- is strict in x or else if both and are strict in x then e is strict

in x ; if - - is linear in x, but x does not occur free in , or else if

both and are linear in x, but x does not occur free in --then e is

linear in x.

We now consider various useful combinators.

Sequence : The sequence combinator is the least continuous *: RxR + R such that :

r L * ~ = <cases 5(0) first a : a~ 5 second b,c : b®(c*~)> o ~ S

The sequence combinater is bilinear and left-strict.

115

Parallelism : The parallelism combinator is the least continuous *:RxR÷ R such that

r I II r 2 = <cases r1(o) first a:aer 2 second b,c:b®(c II r2)> ~ e S

u<cases r2(~) first a:aer, second b,c:b®(rll c)> o e S.

It is bilinear.

Coroutine : The coroutine combinator is the least continuous co : RxR ÷ R such that

r I co r 2 = <cases rl(~) first a:a second b,c:h®(r 2 co c)> ~ e S

It is bilinear and left-strict.

The denotational semantics of our language is given by a function ~ :Stat ÷ R

defined by structural induction on statements :

I. ~[[a~ = <0~F ~a~ (0)>O£ S

I I . ~Y~ s];s2~ =~S]]] *~'~'Es2]]

III. ~ if b then s] else s2~ = <if~ b~ ([~) then%re sl~(~ else~[[s2]]O> ~ £ S

IV. ~ while h do s~ = Y(kr ~ R. <if~[b~ (<~) then ~f~ s~ *r)(~ else (~> O e S)

v. ~/~s I or s 2~ =~sll u %f[s2~

VI. %~ s I pa__~r s2~ =%r~- s|~ []~FF s2] l

VII. ~ s I co s2~ = ~[F Sl]] co%~s2~

Again the method is flexible for specifying interruption points ; if we had

conditionals to be interruptable after the test we would have written :

III'. ~ if b then s] else s2~ = <i_f~b~(o) then ~ ~ff~ s1~ else ~ ®~/~2 ~ >

g ~ S.

5. RELATIONS BETWEEN THE TWO SEMANTICS

We begin by showing that the denotational semantics,] F , can be derived from

the operational semantics as "the least model of +". Specifically we can regard

(Stat ÷ R) as an nd-domain - the power R S~at - and define a continuous map

: R Stat ÷ R Stat by :

u{~'~ ~'~]<s,o> ÷ <s',o'>}

The definition makes sense as, by the properties of ÷, at least one of the sets

the right is non-empty and both are finite.

~n fixed-point of ~ n~0[-J ~/'n So putting = ~n(±), the least is ~/=de f

116

Lemma 5.1 ~ =q~F.

Proof (Outline) One proves that ~satisfies the equations defining ~]f'.

For example to show~E s I par s2~= ~ sl]] II ~f[s2]] one proves by induction on n

that ~n ~ Sl par s2~ ~_~[[~l ~ I!~[F s2~ and similarly that

~[[Sl]] IL~[[s2~ _U~[[s I pa__~r s2~ where IL is the nth approximant to II • ~

Next we recast the definition of '~:Stat ÷ (S ÷~(S±)) in the same style defi-

ning ~ : (@(si)S) Star ÷ (@(sI)S) Stat by :

¢(~) FFs]] ~ = U { ~ ' l < s , o > + ~ ' } u

U{ ~ [[s ']] ~, [<s,~> ÷ <s ' , ~ ' > }

L~rmna 5.2 ~ = Y(~)

Proof Put ~n = ~n(±) and then~=def Y(~) = [j ~" n n

One proves by induction on the length of the derivation that <s,~ > ~ ~' implies

~'~e~ s~ ~ and by induction on n that ~' ~ ~n ~ s~ implies <s,~> ~ ~' ; next one

÷ . ÷ <s ~ > ÷ ... is an infinite derivation sequen- shows that if <s,~> = <So,~o> .. m, m

ce then, by induction on n, ± c ~n ~ s~ ~ and finally one shows by induction on n

that if for all s,~ we have I e .~[s~then there is a derivation sequence of length

n from <s,~> and then applies Konig~s lemma. Q

Now let B be the least continuous function from R to (~(S±)) S such that :

~) = <cases r (~) first a:a second b,c : Ext(~(c))(b)> o e S.

Here Ext :~±)S ÷ (~(S±) +~(S±)) is defined sofi~atExt(f) is thetmique strict continuous

linear extension of f: Ext(f)(X) = {o:~x ¢ X. ~ ~ f(x)} where f:S± ÷~S±) is the

unique strict extension of f.

Lemma 5.3 The continuous function ~Stat : RStat ÷ (~(si)S)Stat is strict and the

following diagram eon~nutes :

RStat

6Stat t)
(@(S±) Stat

_R Stat

BStat

(~(s±)S) Stat

Proof

Theorem 5.5

Proof

Straightforward calculation.

~=~o~

= B Stat (y~)

=~oI~
=Bo~¢

(i emma 5.2)

(lemma 5.3)

(by definition)

(lemma 5.1).

117

Thus the semantics,~, determines the behavior,~ (via 6).

Full abstraction

Given a measure of behaviour, such as~, and relations between behaviours, such

as =, C, c on ~(Si)) S, we can define corresponding substitutive behavioural rela-

tions, ~, ~, ~. First, a context is a statement, C[.,..., .] with several "holes"

which can be filled by any statements Sl,...,s n to give a statement, C[s|,...,s n| ;

a formal definition is obtained by adding the production s :: = [~o those given

above for Stat. Now the relations ~, ~,C ~on Stat are defined by :

s| ~ s 2 iff VCE.]. ~ ~CEs]]~ =

C s| ~, s 2 iff ~C[.I. ~ [[CEs|]~ _C_

s.| ~ s 2 iff ~C[.]. ~[[C[sl]~ c__

Cle~rly s I ~ s 2 iff (s] ~ s 2 C sl) iff (s I F% s 2 F% Sl).

Proposition 5.5 I. ~[[si~ = ~[[s2]] ~ S| ~ S 2

2. clf'[[Sl] l ~ ~/[[_ s2]] = sl ~ s 2

3. ~ sl]] % %~[[s2]] ~ s 1% S 2

~Ec[s2]~

~cEs2]~

(by the continuity of *,

Proof I. ~'~ sl~ =~ s21 ~ ~ C[.l. ~E C~l]I =~ C[S2]~ (by definition of~)

~s I ~ s 2 (by theorem 5.4).

2.~[sl~C~ s2~ ~ V C[.]. ~[C[s]~ ~ ~C[s2]~
!

, c s2 (by the continuity of ~ and theorem u, }I co and the definition of ~) = ~I

5.4).

3. As 2, but using the linearity of u, the bilinearity of *, H , co and the

easily proved monotonicity in c of the conditional and while constructs and B- ~

The rest of the section establishes, under certain reasonable assumptions, the

converse of these implications, therely obtaining three full abstraction results.

The assumptions are :

]. S is infinite but denumerable.

2. For each ~ in S there is an element K of A such that for all o' in S,

6~[K ~ (o') = ~ (a next instruction).

3. For each o in S there is an element is

~is ~ (~') = m iff (~ = ~').

of BExp such that for all o' in S,

118

Under these assumptions we have :

Lemma 5.6 If ~Y[s1~ #~ s2~ then there is a context, C[.] and a state

so that ± ~ ~C[sl] ~(~) u~C[s2]~ (O) and~l C[sl]~)~ ~EC[s2]~ (~).

which is enough to show:

Theorem 5.7. l. ~ sl~ = ~F~ s2~ ~ s I ~ s 2

~ Sl~ £ ~ s2~ ~ s 1 ~ s 2

2. ~£~ Sl~ i ~ s2~ ~ S| ~ s 2

Proof 1 The lermna implies that~Sl~ # ~V~ s2 ~ implies s I ~ s 2.

So~[[Sl~ =~s2~ ~ ~ s]~ ~[[s2~ ~ s I ~ s 2 ~ ~ Sl~ = ~E s2~ and the rest

of 1 is immediate°

2. First s I ~ s 2 ~ (s I or s 2) ~ s 2. For let C[.] be a context ; then

~EC[s I or s2]~ ! ~ C[s 2 o__[r s2]~ (as s I £ s 2) =~ C[s2]~ (as~KE s 2 or s2~

=%~ s2~ shows s 2 or s 2 ~ s2) and conversely as ~ s2~ ~ q/~s] or s2~ , we have

~ C[s2]~. ~ ~ C[s I or s2]~ . But then by l,e~ s1~ ~ q/~s I or s2~ =q~ s2~ .

We now outline the proof of the lemma. First for any pair <s,o> put :

A = {O']<s,~> ÷ J'}
s~

B = {~' I~ S'.<S,O> ÷ <S',~'>}
S~

and for any ~' in Bs, 0 :

' or (...(s' I or s')...)) stEs,~,~'] = (s| __ n- -- n

where {s~ ,s n} = (s'I<s,o > ÷ <s',o'>} and clearly n # 0.

We say <s,o> is of types 1,2,3 according as Bs, ~ , As, ~ or neither is ~.

We have the useful formulae :

= °

S , O ~

V~s% = U As, ~ U o'~B o " ® ~ff~st[s,O,~']]]
s,(7

° VAs,

Define the relation ~ between such pairs by :

<s,O> ~ <s',~'> iff (As, ~ = As,,~,) and (Bs, ~ = Bs,,O,)

~n ~ 0 . s m Lemma 5.8 If ~ ~ Sl~ # ~ s2~ .then there are statements s i = si,.. , i (m >- 0)

states ~', o m and states ~J. in. Bs i,O! (J < m) such that

• " ' m m
= ~ m m ?c <sl, ~ > sJ+ll st[s~ '~j' ~j] (j < m), <s~,g j> <s~,OJ> (j < m)but <Sl,g > -

119

This sets up the path we want to follow to extract a difference. For assuming

~E Sl~ # ~. s2~ we have ~ s|~ # ~nnES2~ .for some n. And we apply the le~mma

to obtain s~(j < m ; i=1,2), ~3 (j ~ m), ~J (j < m).

Now for a state~/and a statement pm (to he chosen later) we define statements

PJ(o ~ j < m) by :

PJ = (if is_a j then (K (j+1) ; pj+l) else K%/)

and for a statement Q' (to be chosen later) we set :

= (if is I then KN/ else

(i_ff is 2 then K/else
d

(if is m then K/else Q')...))

and then calculate the following two formulae :

~ s o co pO~ (g0) (U A j) u C u ~ s m pm
= co _~

i -- j < m i --

(where C c {~/})

(~m)

[(s 0 ; ~) co_ o pO_]] ((70) = C u U

(where C c_ { ~ / })

~E(s m ;~) co pm]] (m)

Then the proof is completed by considering various cases based on the types of
m m m m

<Sl,(5 >, <s2,(7 > r e s p e c t i v e l y and u s i n g one o f t h e c o n t e x t s ([] c..~o P O) o r
v

(([] ; ~) c_~o p0) and choices of ~/, pm, ~ as appropriate for the case at hand.

6. DISCUSSION

We make a few critical remarks to obtain some perspective on the above results.

First the notion of behaviour chosen is inappropriate for languages for writing

continuously interacting programs expressly written not to terminate. One should

study our language with the addition of some I/0 instructions and a different notion

of behaviour. Again the coroutine instruction is 9omewhat peculiar and its rSle is

somewhat similar to that of the "parallel or" in [Plo2] ; without it our semantics

would, we conjecture, not be fully abstract, as we would have :

(x : = x) ; (x : = x) ~ (x : = x)

(X: = g(f(x))) £ (x: = f(x) : x: = g(x))

We could also study definability questions, as in [Plo2] , and look for proof rules

for ~ ,~ ,~ using the semantics. Most importantly, our language is hardly a good

model of cormnunicating processes, and we feel it is rather important to study many

120

other models of parallelism ([Bri], [Hoa] [Mill and others) before claiming that

the semantics of parallelism is understood.

ACKNOWLEDGEMENTS

We thank the Science Research Council and Orsay University, Paris for their

support.

REFERENCES

[Bri]

[Egl]

[Hen]

[Hoa]

[Mac]

[~ i l l]

[Mil2]

[Plol]

[Plo2]

[Smy[]

[Smy2]

Brinoh Hansen, P. (1978), Distributed Processes : A Concurrent Programming

Concept. Comm. ACM 21, 11, pp. 934-940.

Eg!i, H. (1975) : A Mathematical Model for Nondeterministic Computation,

Hennessy, M.C.B. and Ashcroft, E.A. (1979) : A Mathematical Semantics for

a Nondeterministic Typed h-calculus. To appear.

Hoare~ C.A.R. (1978) : Communicating Sequential Processes. Comm. ACM 21,

8, pp. 666-677.

Mac Lane~ S. (1971) : Categories for the Working Mathematician. Berlin,

Springer Verlag.

Milne, G.J. and Milner, Ro (1977) : Concurrent processes and their syntax.

To appear in the J.A.C.M.

Milner, R. (1977) : Fully Abstract Models of Typed ~-calculi. T.C.S.

Plotkin, G.D. (1976) : A Powerdomain Construction. SIAM Journal on Compu-

ting 5, 3, pp. 452-487.

Plotkin , G.D. (1977) : LCF Considered as a Programming Language. T.C.S.

5, pp.223-255.

Smyth, M. (1978) : Powerdomains. J.C.S.S. 16, I.

Smyth, M. and Plotkin, G.D. (1978) : The Category Theoretic Solution of

Recursive Domain Equations. University of Edinburgh : D.A.I. Research

Report N ° 60.

