
A n i d e a l m o d e l f o r r e c u r s i v e p o l y m o r p h i c t y p e s

David MacQueen

Bell Laboratories

Murray Hill, New Jersey 07974

Gordon Plotkin

Department of Computer Science
University of Edinburgh

Edinburgh EH9 3J2

Ravi Sethi

Bell Laboratories

Murray Hill, New Jersey 07974

1. The setting

We will consider types as somehow being or generating constraints on expressions in a
language. A consistent type discipline will ensure that any expression satisfying the constraints
will not produce a run-time error. For example during any evaluation of the expression f (x) , the
value o f f must be a function; otherwise, a run-time error occurs because the computation cannot
proceed. As we want to guarantee the absence of such run-time errors, the constraints on the
values o f f and x must be spelled out further. In particular, if the value of x satisfies constraint
s, then it suffices that f is a function that is applicable to all such values. For instance, f might
satisfy the constraint of sending all values satisfying s to values satisfying another constraint t.
These constraints on the values o f f and x will bc written as:

X : $

f : s - . t

It follows from the above constraints that the value o f f (x) satisfies t. This inference can be
written as the rule:

, f : S " * t X : S

f (x) : t

Inferences like the above (i.e. f (x) : t) will be made using a formal system of axioms and
rules in which terms like s, t, and s -* t are called type expressions, or simply types. One advan-
tage of the formal rules is that they allow type inference to be studied separately from the under-
lying intuition of types being sets of values. Consider for example the expression x(x). Reason-
ing as for f (x) above,

Permission to copy without fee all or part of this material is 10"anted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

© 1983 ACM 0-89791-125-3/84/001/0165 $00.75

publication and date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

165

- 2 -

X ". 5

X : S " * t

It is natural to formulate a system of rules in which we equate the constraints on x, leading to
s = s --- t, and wc use the notation Ixs.s-'t to formally denote a solution o f this equation. Morris
[16, pp. 122-124] observes that such rccursivc or circular types allow types to bc inferred for
combinators like Y (scc Scction 3). However, it is nontrivial to model constraints as sets of
values so that thcrc is a set o f values s satisfying the equality s = s --" t. Wc will present a model
in which almost all such equations have solutious, and these solutions will bc unique.

Our semantic model o f types, essentially that described in III I (scc also 113, 21, 22]), was
developed to explain the implicit form of polymorphism based on type quantification, as used in
the programming languages ML 161 and I lope 131. It is a formalization o f the naive view of
types as sets o f values; a value x has a type s if x is a member o f the set o f values modeling s.
Other models (e.g. 1121), which combine recursion with the explicit form o f polymorphism
expressed in terms o f type parameters !181, do not lend themselves to such an intuitive interpreta-
tion. The main technical innovat io, o f this paper is the use o f a metric structure on types to
establish the existence and uniqueness o f solutions o f most rccursivc type equations.

2. An aside on self application

The expression x(x) is an example o f a se![application, because x is applied as a function to
itself. Self application is essential to the treatment o f recursion in the lambda-calculus; this is suf-
ficient motivation for studying the type checking o f expressions containing self application.

It may however be helpful to give an example showing that pure self application also occurs
in languages like Pascal, C, and Lisp that allow function parameters with incomplete or nonex-
istent type specifications. The following definition o f the factorial function in Pascal uses self
application o f the auxiliary function f and its parameter function g.

function factorial(n: integer): integer;

function f (function g: integer) : integer ;

var m: integer ;

begin

m := n;

if m = 0 then f := I

else begin n := n -

end;

begin

factorial

end;

:= f(f)

I; f := m ~ g(g) end

The types o f both f and g could be given by Vs.s -- int, but in fact the function compiles
because the parameter types o f function parameters are not checked (in the original definition o f
Pascal).

The language in this paper is based on the lambda calculus, but the results are applicable to
imperative languages as well. Henderson 17] relates type checking o f most programming
language constructs to type checking o f a functional language.

3. Examples

The examples in this section suggest the typc inferences we would like to make.

Similar to the expressions f (x) and x(x) mentioned above, is the "nonsensical" expression
3(x). The type o f the subexpression 3 is int, the type o f x call bc represented by a variable s,
but it is not possible to infer a type fi~r 3(x) since an i , teger cannot be applied as a function. The
remaining examples hcrc consider expressions fi~r which types can be found.

166

- 3 -

We return to the expression x (x) since many o f the questions addressed in this paper can be
discussed in connection with it. Recall that the type constraims on the two instances o f x lead to
the type s = s--,t for x. The discussion of x (x) extends to the larger expression h x . x x . t Sincc the
type o f x is s = s--,t, x x has type t, h x . x x has type s = s--,t, and the type of (h x . x x) (h x . x x) i s I .

T w o remarks provide some perspective on the above discussion. (1) Since there arc no
constraints on the type variable t, the above discussion applies with any type expression substi-
tuted for t. Thus, (h x . x x) (h x . x x) has type ~r for any type expression tr. Since the meaning of
(h x . x x) (X x . x x) is / , it follows that _L has every type. The sets o f wducs used to model types
must therefore always bc noncmpty. Moreover, nontcrmitmting expressions can have well
defined types. (2) Any pure lambda expression has type I~ t . t ' - ' t , i.e. t = t--,t, since the expres-
sion can be used either as a function or as an argument. It follows that constants like 3 arc
needed to construct expressions like 3(x) that do not have types.

A type can also be inferred for the Y combinator 116]. Recall that

Y = x y . (X x . f (x x)) (X x . f (x x))

The first few lines are familiar by now:

X : $ = S "* t

X X : t

f : t - . t '

f (x x) : t t

X x . f (x x) : s -; t'

from x x : t and f (x x)

from lambda abstraction

in its type being The self application in the expression (h x . f (x x)) (h x . f (x x)) results
s = s -- t ' . Faced with the equalities

S "* t = $ = 5 "P t t

we equate t and t ' . T h e n . f : t -- t and (as might be expected)

Y : (t ' t) ' t

4. Relation to type checking

In order to place the above discussion on a precise footing, we need a formal system o f
axioms and rules to infer types. Wc sketch such a system in Section 7. Finding an algorithm for
discovering types that can be inferred from the rules is a separate problem, it is desirable for an
algori thm to discover the most general type for an expression. For example, the Y combinator
satisfies the constraint (t -- t) -- t for any type t. A less general statement is that Y satisfies the
constraint (int -- int) -- int. Type expressions like (t - - t) - - t , containing type variables, are
called type schemes following Hindley 18]. The type scheme discovered by an algorithm is princi-
pal if it is the most general type scheme that can be inferred for the expression f rom the rules.
For the type systems o f 18, 13, 16l, unification [191 can be used to construct linear algori thms for
discovering principal type schemes {41. We do not address the existence o f principal type
schemes in the presence o f recursivc types.

However , it has been observed (e.g. 114]) that rccursive types can bc discovered using "cir-
cular" unification in which a type variable can be unified with a term containing it. in this way,
the appropriate type can bc found for the Y combinator. (Such an algori thm has been imple-
mented for Scheme, which is a dialect o f Lisp 1231.) Algori thms for "circular" unification [15]
can readily be adapted f rom algorithms for testing the equivalence o f (1) finite automata and (2)
linked lists with cycles [10, Section 2.3.5, Exercise 111. The almost linear algori thm for testing

I A s usua l , f u n c t i o n a p p l i c a t i o n is i nd ica t ed b y j u x t a p o s i t i o n attd associa tes to the left: b o t h f (x) y a n d f x y are

e q u i v a l e n t to (f (x)) (y) .

167

- 4 -

equivalence o f finite automata in [91 can be viewed as an implementation o f the sketch in [10, p.
594].

A 0 = V

A2

A1

Figure 1. The sequence A0, AI, • • • converges to A, yielding a solution to the equation
s = s -- t. Lines indicate inclusions between sets.

5. Informal types for self application

The constraint f : s -" t, requires f to map all values satisfying s to values satisfying t. I f
the constraint s is weakened to s ' , then, informally, s' denotes a larger set than s. Weakening s
has the opposite effect on the type o f a function from s to t, because f : s ' - , t becomes a
stronger constraint: f is required to map a larger set to values satisfying t.

Intuition on the role o f - " can be provided by considering a particular sequence o f sets that
arises in connection with the equality s = s -- t. The semantic counterpart o f the operator -- on
types is the operator [] on sets o f values modeling types. Informally, D [] E is the set o f all
functions that map elements o f D to elements o f E.

In keeping with the view of types as sets, let B bc the set o f values modeling the type t.
Starting with the set V of all values, we estimate the set A modeling s by writing the sequence:

A 0 = V

A1 = A0 [] B =

A2 = A j F ; I B =

A3 --- A2 [] B =

V B B

(V B B) [] B

((V B B) B B) B n

Since A0 is the entire set V o f values, At consists o f functions that map all values in V to
elements o f B - a fairly restrictive condition. Since AI must be a subset o f A0 = V, more func-
tions belong to AI [] B than to A0 [] B. Therefore, A2 is a larger set than AI. The inclusions
we get are (see Figure 1):

A0 _D A2 _D A 4 ~ • • •

At C A3 C As C_ • • •

Fortunately, it can bc shown that the limits o f the even and odd sequences are the same, so there
is a unique set A modeling the type satisfying the equality s - s -- t. Howevcr , the techniques
used to show this result abandon the approach based on the convergence o f the unions and

168

intersections o f nested sequences. Instead, converge,co is established using a metric on sets
modeling types. Thc progression is as follows:

1. We begin with thc spacc o f values V uscd to givc the semantics o f a iambda-calculus bascd
language.

2. The informal notion o f a type as a sct of valucs is madc prccisc by considcring ccrtain sub-
sets o f V. These subscts modcl collections of structurally similar valucs, whcrc the tcrm
"structure" refers to notions likc being a function, or bcing a pair.

3. The solution o f recursive typc equations is facilitatcd by considcring thc convcrgence o f
particular sequences o f types. Notc that thc scqucncc convcrging to A in Figurc 1 is neither
monotonically increasing nor dccreasing. Convcrgencc of scqucnccs cannot therefore be
proved using monotonici ty properties. Instead, wc dcfinc a metric that measures the dis-
tance between types.

4. The Banach Fixed Point theorem 121 ca, bc invoked to show thc cxistcncc o f unique fixed
points for "contract ive" functions on metric spaces in which limits cxist. Wc show that
this theorem can be applied to thc metric spacc o f types.

Metric spaces have been used previously to invcstigatc thc scmantics o f nondcterministic
and parallel recursive programs 11, 5], whcrc thc main application was to obtain thc metric com-
pletion o f a space generatcd by finite elements. In our casc, wc start with a complete metric
space o f types and obtain fixed points by using the Banach Fixed Point theorem.

6. Semantics o f type expressions

6.1. Domains. The space o f values used to interpret the expressions o f our language is V,
which has an isomorphism:

V ~ T + N + (V - - V) + (V x V) + (V + V) + {wrong}± (6.1)

This can be read as saying that V is (isomorphic to) the sum of the truth values T, the integers
N, continuous functions from V to V, the produc~ o f V with itself, the sum of V with itself, and
a value w r o n g standing for (dynamic) type-errors. The mathematics needed to solve equations
like (6.1) is due essentially to Scott [20]. Details may be found m many places, such as [17].

Solutions to equations like (6.1) are particular partially ordered sets: a complete partial order
(cpo) (D,_L-) consists o f a set D and a partial order r- on D, such that (i) there is a least element 1
in (D,L-), and (ii) each increasing sequence xq~ • • • ~x,/- • • - has a least upper bound (lub) I._] x, .

It will be necessary to know much more o f the structure of V than just that it is a cpo (in
order to define a metric on sets modeling types). Well behaved cpos have two kinds o f elements:
finite elements; and limit elements, which arc iubs o f increasing sequences o f finite elements. 2 The
finite elements in any subset, X, o f a cpo are denoted by X °. The cpos we consider arc called
domains; they have a countable number o f finite elements. 3

6.2. Ideals. Type expressions will bc interpreted using certain subsets o f V, called ideals
[13, 21, 22, 11]. Recall from the summary at the end of Section 6 that we think of a type as a
collection o f structurally similar values. The structural distinctions that types are meant to cap-
ture satisfy the following basic principles; (1) structure is preserved as we go " d o w n w a r d " to
approximations, and (2) structure is preserved when wc go "upward" to limits o f ascending

2 An element o f a cpo is oJ-finite i f and only if whenever it is less than the lub o f an increasing sequence it is less
than some element o f the sequence. A set X is directed if every finite subset o f X has an upper bound in X. A
cpo is oJ-algebraic i f and only if it has countably many to-finite elements and given any element, the set o f to-
finite elements less than it is directed and has that element as its least upper bound, to-algebraic cpos have lubs
of arbitrary directed sets (sometimes cpos are taken to be partial orders with such lubs and .t); the to-finite ele-
ments are even finite, meaning that when one is below the lub o f a directed set it is below some element.
3 A cpo is a domain i f and only if it is consistently complete and to-algebraic. A cpo D is consistently complete, if
any consistent subset o f D has a least upper bound; here X_CD is consistent if it has an upper bound in D, that
is there is a y(!D such that xr-y for all x in X.

169

- 6 -

sequences o f values. These notions are made precise in the definition o f ideals. For technical rea-
sons the definition is in two stages: a subset 1 o f some partial order P is an order-ideal i f and only
if

I. I 4 : O

2. Y y ~ l . Y x ~ D . xFy D x ~ l

A subset I o f a domain D is an ideal if and only if it is an order-ideal satisfying the additional
constraint:

3. Y increasing sequences < x , > (Vn. x,, E 1) D LJx,, ~ I

That is, ideals are the nonempty left closed sets closed under lubs o f increasing sequences.
Nonempt iness is needed becausc _L has every type (see Section 4). We write .~o(P) for the order-
ideals o f a partial order P and ~(D) for the ideals o f a domain D.

Ideals are determined by their finite elements. Regarding D* as a partial order (inherited
f rom D) and ordering ideals by subset we find:

PROPOSITION. T/,e correspondence I~-.I ° is an isomorphism of <. ,~(D),C> and <~0(D*),_C>
with inverseJ+-.{lla,, I <a , ,> an increasing sequence in J} n

This proposit ion allows us to restrict attention to finite elements while comparing ideals.

6.3. Metric space of ideals. The idea here is to solve recursive type equations by structuring
the ideals as a complete metric space. The distance between two ideals will be measured via a
notion o f the smallest rank of a finite element in one but not the other. The rank function will be
left unspecified for the m om en t (except that it maps finite elements to natural numbers), i f I and
J are ideals then a witness for I and J is any finite element that is in I but not in J or vice versa.
The closeness c(1,J) of I and J is the least possible rank o f a witness for I and J , and if none exists
it is 00.

Given such an closeness function, one can define a metric d that measures the distance
between two ideals. Here we take d(I,J) = 2 - ' (;d) where, by convention, 2 -® = 0. This is even
an ultrametric meaning that

d(1,K) ~< m a x (g (I J) , d (/ , K))

holds, which is stronger than the triangle inequality.

A sequence o f ideals < li > i ~ is called a Cauchy sequence i f given any ~ > 0 there exists n such
that for all i ,j larger than n, d(li , l i)<e. A metric space is complete i f every Cauchy sequence con-
verges.

TtJEOREM 1. The metric space of ideals is complete. D

At first sight this theorem is a little surprising given the arbitrary nature o f the rank func-
tion. But note, for example, that i f the rank function is constant then the only Cauchy sequences
are those which arc eventually constant.

6.4. Rank of an element, in order to apply this result to V we need to construct a rank
function and consider its properties. The domain V is constructed by a l imiting process using a
chain o f domains V . starting f rom V0 = {_1.}:

V .+ I = T + N + (V . - . V .) + (V n x V .) + (V n + V .) + ~/'

The rank o f a finite element is taken to be the first place it appears in the chain.

6.5. Unique fixed points. In order to find ideals satisfying such equations as I = I F;I IN we
use the Banach Fixed-Point Theorem [2]. A (uniformly) contractive map f : X -. Y o f metric spaces
is one such that there is a real number 0<~r<l such that for all x and x ' in X, we have

d (f (x) , f (x ')) <~ rd(x) ,

and it is non-expansive i f this holds but with r~<l. The generalization to n-variable functions
requires

d(l'(xl, . . . , x ,) , f (x ' l x ' ,)) <~ • max{d(x, ,x '~) I l~<i<~n}

170

The Banach Fixed-Point Theorem states that if X is a nonempty complete metric space and
f : X - - . X is contractive then it has a unique fixed point, namely l imf"(x .) where xc~ is any point in

X.

6.6. Contractive maps. In order to apply the Banach Fixed-Point "l'heorem to determine
ideals modeling recursive types, we need to consider the contractivcncss of maps on ideals. Some
care is needed, since union and intersection have the weaker property o f being noncxpansive.

Auxi l iary maps. The projection functions ~ri:X~ x • . • × X , -* Xi arc not contractive but are
non-expansive. The composi t ion o f a m a p f : X i x " • • x X , -. Y with g , : V i x • • " × V,, -* X, is
non-expansive i f f and all gi arc; i f f is contractive and all g, are non-cxpansive then the composi -
tion is contractive and this holds also if all the gi arc contractive and f is nonexpansivc. Finally,
we note that when Y is an ultrametric space then a m a p . f : X I x • • • ×X,, -- Y as abovc is con-
tractive {non-expansive) iff it is contractive (non-expansive) m each argument taken separately.

PROPOSITION. Intersection and union are not contractive but are non-expansive, considered as binary

functions over ideals. []

Type constructors. We define three binary functions on ideals corresponding to the three
domain constructions. The sum I [B J of two ideals is defined by injecting I and J into V + V
and taking the union o f the injections. The product 1 N I J of two ideals I and J is s imply I x J .
The exponentiation (function-ideal) is defined by:

I [] J = { f ~ V - - V I f(I)C_./}

It is straightforward to show that, when viewed as a subset o f V, each o f these sets is an ideal.
The idea behind the definition o f the function-ideal appears in many papers (see [13, 11] for
example). The next theorem is central to the results o f this paper.

THEOREM 2. Al l three functions, sum, product, and exponentiation, are contractive. []

The basic idea behind the p roof o f this theorem is that two distinct compound ideals (e.g.
l [~J and I ' NIJ') have a compound witness o f least rank (e.g. < i , j > E l [~J - 1' ~zJ') whose com-
ponents are simpler (i.e. lower rank) witnesses to the differences between the componcn t ideals
(e.g. i (l - l ' and j E J - J ') . This implies that the compound elements are closer together than
their components.

Note that this theorem would fail if we kept the same definition o f exponcntiation but
allowed arbitrary sets. Since (O[]O) = V and (V[]O) = O, cxponentiation is not then contrac-
tive in its first argument.

Quantification. Let ~(D) dcnotc the collection o f all ideals. Suppose f : ~ (D) " ~I-*~(D) is a
function o f n + 1 arguments. Then we can produce a function o f n arguments by "quant i fy ing"
its first argument. The universal quantification o f f relative to a given collection o f ideals 5YC~(D)
is defined by:

Ot X]')(l l J .) = t g ~ f (I d ,, . . . , J .)

and the existential quantification by:

~ x f) (] ! J ,) = i ~ i (I , J I , . . . ,J ,)

It is here that fixing on a particular collection o f sets as the types - the ideals - makes a difference
to the definition of our operations, since it affects the range o f variation of the ideal I in the above
definitions.

THEO,EM 3. l f f : $ (D) ' + l - " $ (D) is contractive (non-expansi, ,e) in its last n arguments, so are its

universal and existential quantification, o

Fixed points. Our last construction makes sense in a general setting. Let
f : X × Y I x • • • x Y , -* X be a function o f non-empty complete metric spaces which is contrac-
tive in its first argument. Define the "parameterized f ixed-point" function
~ f : Y i x • • • x Y , -* X by taking (~f)(Yl y,) to be the unique element, x, o f X such that

171

- 8 -

x = f (x , y l , • • • , y,,) as guaranteed by the Banach Fixed-Point Theorem.

THEOaEM 4. l f f is contractive (non-expansive) so is ~ f . D

The functions shown to be contractive/non-expansive in the above theorems are the seman-
tic counterparts o f constructors appearing in the type expressions below. The results o f this sec-
tion will be applied to show that the semantics o f type expressions is well defined.

6.7. Semantics of type expressions. The syntax of type expressions is given by an abstract
syntax g rammar . The set o f type variables T V a r is ranged over by t, and the g r a m m a r is given
b y

: := i n t I bool I t I ` ' " I , r× , , I , ,+`" I r rn~ I ` 'u , , I V t . ~ I =lt.cr J p,t.o,

In fact, we cannot allow all such exprcssions since we can only give meaning to Ixt. cr when cr
denotes a contractive function o f t. So say `" is (formally) contractive in t iff one o f the following
conditions hold:

1. `" has one o f t h c forms int, boo l , t' (with t ' ~ t) , crn--~r 2, ~rt×~r 2, or ` '!+cr2.

2. cr has one o f t h c forms `'nN`'2 or `'nUcr 2 with both cr I and cr 2 contractive in t.

3. `" has one o f the forms V t ' . ` ' b ::lt'.~rt, or Fzt'.`'l with either t' = t or `'1 is contractive in t.

N o w we takc T E x p to be the set o f well formed type expressions where cr is well formed iff
one o f the following conditions hold.

1. cr is in t , b o o i , or t' .

2. cr has onc o f t h c forms `'1--~r2, crl×cr 2, crt+cr2, criOcr2, or criLkr 2 with both ~rt and or2 well
formed.

3. `" has onc o f t h c forms Vt. cr I or =It'.or1 with cr I well formed.

4. `" has thc form I~t.`'t with ~rl well formcd and contractive in t.

For the semantics wc dcfine thc semantic function

3":TExp -. T E n v -- # (V)

where T E n v = T V a r -* # (V) is the set o f type environments ranged over by v. The definition is
by structural induction and below ~C.9(D) is the collection o f ideals not containing w r o n g .

ff~int~v = N

,ff~boolBv = T

.~tDv = v~tB

~lIo" I --* O'2Dl., = ,c~0"I~V [] ,Gf~`'2]V

~ r l x ~'2Dv = ~ll~,llv ~ ~-[tr2llv

~ ` ' ~ + ,,2ll,, = ~ , , , B v [] ~ ` ' 2] v

~ t . `'],, = V~(~,t~,~(DL ~ H (v lVt l /

ff~3t. '̀fly = 3 x (h t ~#(D) . ~ll`'~ (v i l / t l)

ff~lxt. ` 'Iv = Fx(hl~#(D). ,°'~`'ll (v l l / t l)

TtlEOREM. The semantic.fio~ction ,°'5 is well d(fined. 1:3

We prove by structural reduction on `" that: (1) for all v, ~crllv is well defined; (2) for any
t, h l ~ $ (D) , f f~crll(v[l/t]) is non-expansive, and is contractive if cr is contractive in t. The
results o f the last section make such a p roof quite straightforward. It is also s t raightforward to
prove that provided v(t) does not contain w r o n g for any t then neither does ff[erllv.

172

- 9 -

7. Rules f o r t y p e inference

The rules for type inference are keyed to the syntax o f type expressions. The rule for func-
tion application is essentially like that for f (x) in Section 1, except that constraints like x : s and
f : s -- t are relative to an assignment .~ o f types for the free variables in an expression: written

F x : s and ~ k f : s -- t. If e and e' are expressions, the rule for function application is as fol-
lows (note that type expressions ~ and "r are permitted instead o f the type variables s and t):

~ k e : ~y ~ ' r , ~ k e ' :¢y
k e(e') : "r

The turnstile symbol I" denotes a well typing relationship between type assignments, value
expressions, and type expressions that is defined by the inference rules: ~ k e :~ holds if and only
if there is a p roof o f it using the rules. Rules tend to come in pairs, corresponding to the intro-
duction or elimination o f a type construct. For instance, the above function application rule
could be called the -- elimination rule, and its complement is the following -- introduction rule
for typing lambda abstractions

,~,x:~y k e : 'r

The rules for the usual type constructs, including universal quantification, are fairly standard, fol-
lowing those o f Hindley [8] and Milner [13, 4]. The rules for existential quantification are novel,
but are beyond the scope of this paper.

T o deal with recursive type expressions, we add the following two rules that correspond
respectively to "unwinding" and "winding" the recursive type

, ~ F e : Ia, t . cr
F e: ~[p.t. Gr/t]

F e : o[Iz t . ~r/t]

As usual, we verify the soundness o f these rules by proving (by structural induction on the
expression e) that ~ k e :or implies that the value o f e in any environment consistent with ~ is a
member o f the ideal denoted by o.

8. Conc lus ion

This paper justifies the extension o f the type system of [11] to include recursive types.
However , in contrast to the type system of Milner [13, 4], it is difficult to decide in general
whether a given expression has a given type. It can be shown that this is a l-Ii-complete question,
even when restricted to terms o f the pure ~,-calculus and the type int-*int. It follows that no
recursively enumerable axiomatic type system can be complete for the true type assertions.

On a practical level, this paper justifies the extension o f unification based type checking
algorithms for the type systems o f [8, 13, 4] to allow circular unification. Similar algorithms can
be applied to check the Algol family o f languages, even though the types o f procedure parameters
are not specified. Note that dialects o f Pascal that require full declaration of the types of pro-
cedure parameters do not allow self application to be expressed since they do not support recur-
sive functional types.

173

- I 0 -

R e f e r e n c e s

1. A. Arnold and M. Nivat, "Metric interpretations of finite trees and semantics of nondeter-
ministic rccursive programs," Theoretical Computer Science 11, pp. 181-205 (1980).

2. S. Banach, "Sur les operations dans les ensembles abstraits et leurs applications aux 6qua-
tions inte'grales," Fund. Math. 3, pp. 7-33 (1922).

3. R . M . Burstall, D. B. MacQueen, and D. T. Saneila, "Hope: an experimental applicative
language," Lisp Conference, Stanford, pp. 136-143 (August 1980).

4. L. Damas and R. Milner, "Principal type-schemes for functional programs," Ninth Annual
ACM Symposium on Principh's qf Programmin¢ Languages, Albuquerque NM, pp. 207-212
(January 1982).

5. J. W. deBakker and J. I. Zucker, "Processes and the denotational semantics of con-
currency," Information and Control 54, pp. 70-120 (1982).

6. M.J. Gordon, A.J. Miiner, and C. P. Wadsworth, Edinburgh LCF, Lecture Notes in Com-
puter Science 78 (1979).

7. P. Henderson, "An approach to compile-time type checking," pp. 523-527 in Information
Processing 77, ed. B. Gilchrist, North-Holland (1977).

8. R. Hindley, "The principal type-scheme of an object in combinatory logic," Trans. AMS
146, pp. 2%60 (December 1969).

9. J . E . Hopcroft and R. M. Karp, "An algorithm for testing the equivalence of finite auto-
mata," TR-71-114, Dept. of Computer Science, Cornell Univ. (1971).

10. D. E. Knuth, The Art of Computer Programming: Volume 1, Fundamental Algorithms,
Addison-Wesley, Reading MA (1968).

11. D . B . MacQueen and R. Sethi, "A higher order polymorphic type system for applicative
languages," 1982 Symposium on Lisp and Functional Programming, Pittsburgh PA, pp. 243-252
(August 1982).

12. N.J . McCracken, "An investigation of a programming language with a polymorphic type
structure," Ph.D. Thesis, Computer and Information Science, Syracuse Univ. (June 1979).

13. R. Milner, "A theory of type polymorphism in programming," JCSS 17(3), pp. 348-375
(December 1978).

14. F.L. Morris, "Automatic assignment of concrete type schemes to programs," unpublished
(1977).

15. F.L. Morris, "On list structures and their use in the programming of unification," Report
4-78, School of Computer and Information Science, Syracuse Univ. (August 1978). A fast
algorithm for circular unification is credited to G. Huet, G. Kahn, and J. A. Robinson.

16. J. H. Morris Jr., "Lambda-calculus models of programming languages," P h . D . Thesis,
Sloan School of Management, MIT (1968).

17. G. Plotkin, "Advanced domains," Summer School, Pisa (1978).

18. J . C . Reynolds, "Towards a theory of type structure," pp. 408-425 in Programming Sympo-
sium, Paris, 1974, Lecture Notes in:Computer Science 19, Springer Verlag, Berlin (1974).

19. J . A . Robinson, "A machine-oriented logic based on the resolution principle,"J. ACM 12,
pp. 23-41 (1965).

20. D.S. Scott, "Continuous lattices," pp. 97-136 in Lecture Notes in Mathematics 274 (1972).

21. A. Shamir and W. W~ Wadge, "Data types as objects," pp. 465-479 in Automata, Languages
and Programming, 4th Colloquium, Turku, Lecture Notes in Computer Science 52, Springer-
Verlag, Berlin (1977).

22. W.W. Wadge, Personal communication to R. Milner, March 1978.

23. M. Wand, personal communication, January 1983.

174

