An ideal model for recursive polymorphic types

David MacQueen

Bell Laboratorics
Murray Hill, New Jcrscy 07974

Gordon Plotkin

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3j2

Ravi Sethi

Bell Laboratories
Murray Hill, New Jerscy 07974

1. The setting

We will consider types as somechow being or generating constraints on expressions in a
language. A consistent type discipline will ensure that any expression satisfying the constraints
will not produce a run-time error. For example during any evaluation of the expression f(x), the
value of f must be a function; otherwise, a run-time error occurs because the computation cannot
proceed. As we want to guarantec the absence of such run-time errors, the constraints on the
values of f and x must be spelled out further. In particular, if the value of x satisfies constraint
s, then it suffices that f is a function that is applicable to all such values. For instance, f might
satisfy the constraint of sending all values satisfying s to values satisfying another constraint ¢.
These constraints on the values of f and x will be written as:

x s
f st

It follows from the above constraints that the valuc of f(x) satisfies t. This inference can be
written as the rule:

fis—=t x:s

f(x) . ¢

Inferences like the above (i.e. f(x) : t) will be made using a formal system of axioms and
rules in which terms like s, ¢, and s - ¢ are called type expressions, or simply types. One advan-
tage of the formal rules is that they allow type inference to be studied separately from the under-
lying intuition of types being sets of values. Consider for example the expression x(x). Reason-
ing as for f(x) above,

Permission to copy without fee all or part of this material is granted publication and date appear, and notice is given that copying is by
provided that the copies are not made or distributed for direct permission of the Association for Computing Machinery. To copy
commercial advantage, the ACM copyright notice and the title of the otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-125-3/84/001/0165 $00.75

165

X S

x @ st

It is natural to formulate a system of rules in which we equate the constraints on x, leading to
s =5 = ¢, and we usc the notation ps.s—f to formally denote a solution of this equation. Morris
[16, pp. 122-124] observes that such recursive or circular types allow types to be inferred for
combinators like Y (sec Scction 3). However, it is nontrivial to model constraints as sets of
values so that there is a sct of values s satisfying the equality s = s = 1. We will present a model

in which almost all such cquations have solutions, and these solutions will be unique.

Our scmantic model of types, essentially that described in [11] (see also [13, 21, 22]), was
developed to explain the implicit form of polymorphism based on type quantification, as used in
the programming languages ML [6] and Hope [3]. It is a formalization of the naive view of
types as scts of values; a value x has a type s if x is a member of the set of values modeling s.
Other modcls (c.g. [12]), which combine recursion with the explicit form of polymorphism
expressed in terms of type paramecters [18], do not lend themselves to such an intuitive interpreta-
tion. The main technical innovation of this paper is the use of a metric structure on types to
establish the cxistence and uniqueness of solutions of most recursive type equations.

2. An aside on self application

The expression x(x) is an example of a self application, because x is applied as a function to
itself. Self application is esscntial to the treatment of recursion in the lambda-calculus; this is suf-
ficient motivation for studying the type checking of expressions containing sclf application.

It may however be helpful to give an cxample showing that pure sclf application also occurs
in languages like Pascal, C, and Lisp that allow function paramcters with incomplete or nonex-
istent type specifications. The following definition of the factorial function in Pascal uses self
application of the auxiliary function £ and its paraméter function g.

function factorial(n: integer): integer;

function f(function g: integer): integer;
var m: integer;
begin
m := nj;
if m = 0 then £ := 1
else begin n :=n - 1; £ :=m » g(g) end
end;
begin
factorial := f(f)
end;

The types of both f and g could be given by ps.s — int, but in fact the function compiles
because the parameter types of function paramecters are not checked (in the original definition of
Pascal).

The language in this paper is based on the lambda calculus, but the results are applicable to
imperative languages as wecll. Henderson 7] relates type checking of most programming
language constructs to type checking of a functional language.

3. Examples
The examples in this section suggest the type inferences we would like to make.

Similar to the expressions f(x) and x(x) mentioned above, is the “nonsensical” expression
3(x). The type of the subexpression 3 is int, the type of x can be represented by a variable s,
but it is not possiblc to infer a type for 3(x) since an integer cannot be applied as a function. The
remaining cxamples here consider expressions for which types can be found.

166

-3

We return to the expression x(x) since many of the questions addressed in this paper can be
discussed in conncction with it. Recall that the type constraints on the two instances of x lead to
the type s = s —¢ for x. The discussion of x (x) extends to the larger expression Ax.xx.' Since the
type of x is s =5 —1, xx has type £, Ax.xx has type s =35 =, and the type of (Ax.xx)(Ax.xx) is ¢.

Two remarks provide some perspective on the above discussion. (1) Since there are no
constraints on the type variable 1, the above discussion applies with any type expression substi-
tuted for t. Thus, (Ax.xx)(Ax.xx) has type o for any type expression o, Since the meaning of
(Ax.xx)(Ax.xx) is L, it follows that L has cvery type. The sets of values used to model types
must therefore always be nonempty. Morcover, nonterminating expressions can have well
defined types. (2) Any pure lambda cxpression has type pf . f—t, 1.c. t =t—t, since the expres-
sion can be used cither as a function or as an argument. It follows that constants like 3 are
needed to construct expressions like 3(x) that do not have types.

A typc can also be inferred for the Y combinator {16]. Recall that
Y = M. (A f(xex))(Ax.f (xx))
The first few lines are familiar by now:

X $§$=5s—=>t

xx it
f:t-=7 from xx : ¢ and f(xx)
flxxy ot
Ax. f(xx): s =1 from lambda abstraction

The self application in the expression (Ax.f(xx))(Ax.f(xx)) results in its type being
s = s = t". Faced with the cqualities

s=t = s = s>/
we cquate t and t'. Then f : ¢+ > ¢ and (as might be expected)
Y: (t—=1t)—t

4. Relation to type checking

In order to place the above discussion on a precise footing, we need a formal system of
axioms and rules to infer types. We sketch such a system in Scction 7. Finding an algorithm for
discovering types that can be inferred from the rules is a separate problem. It is desirable for an
algorithm to discover the most general type for an expression. For example, the Y combinator
satisfics the constraint (f = t) = ¢ for any type 1. A less general statement is that Y satisfies the
constraint (int — int) » int. Typc cxpressions like (f =) = ¢, containing type variables, are
called type schemes following Hindley [8]. The type scheme discovered by an algorithm is princi-
pal if it is thec most genceral type scheme that can be inferred for the expression from the rules.
For the type systems of [8, 13, 16], unification [19] can be used to construct lincar algorithms for
discovering principal type schemes [4]. We do not address the existence of principal type
schemes in the presence of recursive types.

Howecver, it has been observed (c.g. [14]) that recursive types can be discovered using *“cir-
cular” unification in which a type variable can be unified with a term containing it. In this way,
the appropriate type can be found for the Y combinator. (Such an algorithm has been imple-
mented for Scheme, which is a dialect of Lisp [23]).) Algorithms for “circular” unification [15]
can rcadily be adapted from algorithms for testing the equivalence of (1) finite automata and (2)
linked lists with cycles [10, Scction 2.3.5, Excrcise 11]. The almost lincar algorithm for testing

! As usual, function application is indicated by juxtaposition and associates to the left: both f(x)y and fxy are
equivalent to (f(x))(y).

167

- 4.

equivalence of finitc automata in [9] can be viewed as an implementation of the sketch in [10, p.
594].

A;
A, —
Ao ..
\ T A
/ AS
Ay
A,
Figure 1. The sequence A, Ay, - - - converges to A, yielding a solution to the equation

s = s = t. Lincs indicate inclusions between sets.

5. Informal types for self application

The constraint f : s = t, requires f to map all valucs satisfying s to values satisfying ¢. If
the constraint s is weakened to s’, then, informally, s denotes a larger set than s. Weakening s
has the oppositc effect on the type of a function from s to ¢, because f:s' =t becomes a
stronger constraint: f is required to map a larger set to values satisfying ¢.

Intuition on the role of = can be provided by considering a particular sequence of sets that
arises in connection with the cquality s = s = t. The semantic counterpart of the operator — on
types is the operator B on scts of values modeling types. Informally, D B E is the sct of all
functions that map clements of D to clements of E. '

In kceping with the view of types as sets, let B be the sct of values modeling the type t.
Starting with the set V of all values, we estimate the set A modeling s by writing the sequence:

A, =V

A, = A)BB = VBB

A, = AJ/BEB = (VEB) BB

A; = A,BB = (VEBEBB)BB

Since A, is the entire sct V of values, A, consists of functions that map all values in V to
elements of B ~ a fairly restrictive condition. Since A, must be a subset of Ag = V, more func-
tions belong to A; B B than to Ay 8 B. Therefore, A, is a larger set than A,. The inclusions
we get are (sce Figure 1):

Ay2A, DA D
AfCA;CAC

Fortunately, it can be shown that the limits of the even and odd sequences are the same, so there
is a unique set A modeling the type satisfying the equality s = s - t. However, the techniques
used to show this result abandon the approach based on the convergence of the unions and

168

-5-

intersections of nested sequences. Instead, convergence s established using a metric on sets
modecling types. The progression is as follows:
1. We begin with the space of values V used to give the semantics of a lambda-calculus based
language.

2. The informal notion of a type as a set of values is made precise by considering certain sub-
sets of V. These subscts modcl collections of structurally similar values, where the term
“structure’ refers to notions like being a function, or being a pair.

3. The solution of rccursive type cquations is facilitated by considering the convergence of
particular sequences of types. Note that the sequence converging to A in Figure 1 is neither
monotonically increasing nor decreasing. Convergence of sequences cannot therefore be
proved using monotonicity propertics. Instcad, we define a metric that measures the dis-
tance between types.

4. The Banach Fixed Point thcorem {2] can be invoked to show the existence of unique fixed
points for “‘contractive’ functions on mectric spaces in which limits exist. We show that
this theorecm can be applied to the metric space of types.

Metric spaces have been used previously to investigate the semantics of nondeterministic
and parallcl recursive programs [1, 5], where the main application was to obtain the metric com-
pletion of a space gencrated by finite clements. In our case, we start with a complete metric
space of types and obtain fixed points by using the Banach Fixed Point theorem.

6. Semantics of type expressions

6.1. Domains. The space of values used to interpret the expressions of our language is V,
which has an isomorphism:

V=T+N+ (V-V)+ (VX V)+ (V+V)+ {wrong}, (6.1)

This can be read as saying that V is (isomorphic to) the sum of the truth values T, the integers
N, continuous functions from V to V, the product of V with itsclf, the sum of V with itself, and
a value wrong standing for (dynamic) typc-errors. The mathematics needed to solve equations
like (6.1) is due essentially to Scott [20]. Dectails may be found in many places, such as [17].

Solutions to equations like (6.1) arc particular partially ordered sets: a complete partial order
(¢po) (D,L) consists of a sct D and a partial order C on D, such that (1) there is a least clement L
in (D,D), and (ii) each increasing scquence x,L -+ Ex,C - - - has a Icast upper bound (lub) L;]‘x,,.
n=0)

It will be necessary to know much morce of the structure of V than just that it is a cpo (in
order to define a metric on scts modecling types). Well behaved cpos have two kinds of elements:
finite elements; and limit clements, which arc lubs of increasing sequences of finite clements.? The
finite elements in any subsct, X, of a cpo arc denoted by X°. The cpos we consider are called
domains; they have a countable number of finite clements.?

6.2. Ideals. Typc expressions will be interpreted using certain subscts of V, called ideals
[13, 21, 22, 11]. Recall from the summary at the end of Scction 6 that we think of a type as a
collection of structurally similar values. The structural distinctions that types are meant to cap-
ture satisfy the following basic principles; (1) structure is preserved as we go “downward’™ to
approximations, and (2) structurc is preserved when we go *“upward” to limits of ascending

2 An element of a cpo is w-finite if and only if whenever it is less than the lub of an increasing sequence it is less
than some element of the sequence. A set X is directed if every finite subsct of X has an upper bound in X. A
cpo is w-algebraic if and only if it has countably many w-finite elements and given any element, the set of ©-
finite elements less than it is directed and has that element as its least upper bound. w-algebraic cpos have lubs
of arbitrary directed sets (sometimes cpos are taken to be partial orders with such lubs and 1); the w-finitc ele-
ments are even finite, meaning that when onc is below the lub of a directed sct it is below some element.

3 A cpo is a domain if and only if it is consistently complete and w-algebraic. A cpo I is consistently complete, if
any consistent subset of D has a least upper bound; here XCD is consistent if it has an upper bound in D, that
is there is a y €D such that xCy for all x in X.

169

-6 -

sequences of values. These notions are made precise in the definition of ideals. For technical rea-
sons the definition is in two stages: a subsct I of somc partial order P is an order-ideal if and only

if
1. I+J
2. Vyel. ¥x€D. xCy D x¢l

A subsct I of a domain D is an ideal if and only if it is an ordcr-ideal satisfying the additional
constraint: '

3. V increasing scquences <x,> (Vn. x,€1) D Ux, €1

That is, idcals arc the noncmpty left closed scts closed under lubs of increasing scquences.
Nonemptincss is nceded because L has every type (sce Scction 4). We write $,(P) for the order-
ideals of a partial order P and $(D) for the ideals of a domain D.

Ideals arc determined by their finitc clements. Regarding D° as a partial order (inhcrited
from D) and ordering ideals by subset we find: ‘

PrOPOSITION. The correspondence 1+-1° is an isomorphism of <$(D),C> and <$,(D°),C>
with inverse] +—{lJa, | <a,> an increasing sequence in J} O

This proposition allows us to restrict attention to finite clements while comparing idcals.

6.3. Metric space of ideals. The idca here is to solve recursive type equations by structuring
the ideals as a complete metric space. The distance between two ideals will be mcasured via a
notion of the smallcst rank of a finite clement in onc but not the other. The rank function will be
left unspecificd for the moment (cxcept that it maps finitc clements to natural numbers). If I and
J arc ideals then a witness for I and J is any finite element that is in I but not in J or vice versa.
The closeness ¢(1,]) of I and J is the least possible rank of a witness for I and J, and if none exists
1t is .

Given such an closencss function, one can definc a metric d that measures the distance
between two ideals. Here we take d(I,J) = 27Y) where, by convention, 27 = 0. This is even
an ultrametric meaning that

d(1,K) < max(d(1,]).d(J.K))
holds, which is stronger than the triangle incquality.

A scquence of ideals <I;> is called a Cauchy sequence if given any €>0 there exists n such
that for all i,j larger than n, d(I;,I;)<e. A metric spacc is complete if every Cauchy sequence con-
verges.

THEOREM 1. The metric space of ideals is complete. O

At first sight this thcorem is a little surprising given the arbitrary nature of the rank func-
tion. But note, for cxample, that if the rank function is constant then the only Cauchy sequences
arc those which are eventually constant.

6.4. Rank of an element. In order to apply this result to V we need to construct a rank
function and consider its propertics. The domain V is constructed by a limiting process using a
chain of domains V,, starting from V, = {1}:

vn+l =T+ N+ (vn_.vn) + (vnxvn) + (vn+vn) + W
The rank of a finite element is taken to be the first place it appears in the chain.

6.5. Unique fixed points. In order to find ideals satisfying such equations as I = I B N we
usc the Banach Fixed-Point Theorem [2]. A (uniformly) contractive map f:X — Y of metric spaces
is onc such that there is a real number 0=<r<1 such that for all x and x’ in X, we have

d(f(x).f(x")) = rd(x),

and it is non-expansive if this holds but with r<1. The generalization to n-variable functions
requires

d(f(xy, - - - %) f(x" 1, - o ., x")) < r max{d(x;,x';) | 1<i=<n}

170

-7-

The Banach Fixed-Point Theorem states that if X is a nonempty complete metric space and
f:X-X is contractive then it has a unique fixed point, namely limf” (x4} where x, is any point in
n)

X.

6.6. Contractive maps. In order to apply the Banach Fixed-Point Theorem to determine
idcals modcling recursive types, we need to consider the contractiveness of maps on ideals. Some
care is needed, since union and intersection have the weaker property of being nonexpansive.

Auxiliary maps. The projection functions m;: XX - - - X X, - X; ar¢ not contractive but are
non-cxpansive. The composition of a map f: XX - - - XX, = Y with g:V,x - - XV, = X is
non-cxpansive if f and all g; arc; if f is contractive and all g; ar¢ non-cxpansive then the composi-
tion is contractive and this holds also if all the g; arc contractive and f is nonexpansive. Finally,
we note that when Y is an ultrametric space then a map f: XX - - - XX, = Y as above is con-
tractive (non-cxpansive) iff it is contractive (non-cxpansive) in cach argument taken scparately.

PROPOSITION. Intersection and union are not contractive but are non-expansive, considered as binary
Sfunctions over ideals. D

Type constructors. We define three binary functions on ideals corresponding to the three
domain constructions. The sum I B] of two idcals is defined by injecting I and J into V + V
and taking the union of the injections. The product I 8] of two ideals I and J is simply IX].
The exponentiation (function-ideal) is defined by:

18] = {feV-V | f(DCJ}

It is straightforward to show that, when viewed as a subsct of V, cach of these sets is an ideal.
The idea behind the definition of the function-idcal appears in many papers (sce [13, 11] for
cxample). The nexe thecorem is central to the results of this paper.

THEOREM 2. All three functions, sum, product, and exponentiation, are contractive. O

The basic idea behind the proof of this thecorem is that two distinct compound ideals (c.g.
I8 and I'®J’') have a compound witness of least rank (c.g. <i,j>€IRJ — I'KJ") whose com-
ponents are simpler (i.c. lower rank) witnesses to the differences between the component idcals
(c.g- i€I-I' and j€J—]J'). This implics that the compound clements are closer together than
their components.

Note that this thcorem would fail if we kept the same dcfinition of cxponentiation but
allowed arbitrary scts. Since (JBJ) = V and (VBOJ) = J, cxponentiation is not then contrac-
tive in its first argument.

Quantification. Lct $(D) denote the collection of all ideals. Supposc [(D) =HD) is a
function of n+1 arguments. Then we can produce a function of n arguments by *‘quantifying”

its first argument. The universal quantification of f rclative to a given collection of ideals HCH(D)
is defined by:

(fo.)(,l' cot 'J") = ’Q’([(IJ" L '_]n)
and the existential quantification by:

(37(]-)(]1! s :.]n) = ’IEIJ(f(IJIx Lo '.]n)

It is here that fixing on a particular collection of scts as the types — the ideals — makes a difference

to the definition of our opcrations, since it affects the range of variation of the ideal I in the above
definitions.

THEOREM 3. If f:$(D)"*1=$(D) is contractive (non-cxpansive) in its last n arguments, so are its
universal and existential quantification. O

Fixed points. Our last construction makes sense in a general setting. Let
[:XXY X -+ XY, = X bc a function of non-cmpty complete metric spaces which is contrac-
tive in its first argumcent. Dcfine the “paramcterized fixed-point™ function
nfYx - XY, = X by taking (0nf)(y1, - . - ,ya) to be the unique clement, x, of X such that

171

-8-

x=f(x,y1, . - . ,¥n) as guarantced by the Banach Fixed-Point Theorem.
THEOREM 4. If f is contractive (non-expansive) so is pf. O

The functions shown to be contractive/non-expansive in the above theorems are the seman-
tic counterparts of constructors appearing in the type expressions below. The results of this sec-
tion will be applied to show that the semantics of type expressions is well defined.

6.7. Semantics of type expressions. The syntax of typc cxpressions is given by an abstract
syntax grammar. The sct of typc variables TVar is ranged over by ¢, and the grammar is given
by \

o:= int |bool |t |o=0 |oX0o |o+0o |oNe | oUc |Vi.o |It.o | pt.o
In fact, we cannot allow all such expressions sincc we can only give meaning to pt.o when o

denotes a contractive function of t. So say & is (formally) contractive in t iff onc of the following
conditions hold:

1. o has onc of the forms int, bool, ¢’ (with (' #t), o,=0,, 0X 03, or o;+05.
2. o has one of the forms 0N, or oUa, with both ¢ and o5, contractive in ¢.
3. o has onc of the forms V¢ .o, 3t'. 0|, or ut'.oy with either ¢' =t or o is contractive in .

Now we take TExp to be the set of well formed type expressions where o is well formed iff
onc of the following conditions hold.

1. o is int, bool, or ¢'.

2. o has onc of the forms a,~0,, 01X, 01+0,, 0NG,, or 0;Uc, with both ¢ and o; well
formed.

3. o has onc of the forms Vt.o, or 3¢'. 0 with o} well formed.
4. o has the form pt. oy with o, well formed and contractive in ¢.

For the semantics we define the semantic function
J:TExp - TEnv - $(V)

where TEnv = TVar = $(V) is the sct of type environments ranged over by v. The definition is
by structural induction and below HC$H(D) is the collection of ideals not containing wrong.

Jlintp = N
?T[[b;)ol]]v T
Flev = vle]
Iloy = ov = Tlo,v 8 Tfo,lv
Tloy X axjv = Tloyv B To,Jv
Iloy + oav = FloyJv B Tlo,lv
Jloy Nolv = Tfolv 0 To,]v
Tloy U aav = Flov U Tloo]v
IVt olv = YyuWESD). Tlo] (v]l/e])
I oy = Ix(IEKD). Tlo] (v[I/])
Flnt. clv = pNEXD). Tla] (v[I/t})

THEOREM. The semantic function T is well defined. O

We prove by structural induction on ¢ that: (1) for all v, J[ov is well defined; (2) for any
t, N e(D). ol (v[I/t]) is non-cxpansive, and is contractive if o is contractive in t. The
results of the last scction make such a proof quite straightforward. It is also straightforward to
prove that provided v(t) docs not contain wrong for any ¢ then ncither does Jo]v.

172

7. Rules for type inference

The rules for type inference are keyed to the syntax of type expressions. The rule for func-
tion application is essentially like that for f(x) in Section 1, except that constraints like x : s and
f s =t are relative to an assignment & of types for the frec variables in an expression: written
AFx:sandAF f:s >t Ife and ¢ are expressions, the rule for function application is as fol-
lows (note that type expressions ¢ and T are permitted instcad of the type variables s and ¢):

dte:og-7 HAbLe o
Ale(): v

The turnstile symbol + denotes a well typing relationship between type assignments, value
expressions, and type expressions that is defincd by the inference rules: o F e :o holds if and only
if there is a proof of it using the rules. Rules tend to come in pairs, corresponding to the intro-
duction or climination of a type construct. For instance, the above function application rule
could be called the — elimination rule, and its complement is the following — introduction rule
for typing lambda abstractions

d,xokre:r
AFAx.e:0—>7
The rules for the usual type constructs, including universal quantification, are fairly standard, fol-

lowing those of Hindley [8] and Milner [13, 4]. The rules for existential quantification are novel,
but are beyond the scope of this paper.

To deal with recursive type cxpressions, we add the following two rules that correspond
respectively to “‘unwinding’ and “winding” the recursive type
Ale: pt.o
Ale: o[pt.o/t]

AFe: afut o/t]
Adle:pt.o

As usual, we verify the soundness of these rules by proving (by structural induction on the
expression ¢€) that & | e:o implies that the value of e in any environment consistent with o is a
member of the ideal denoted by o.

8. Conclusion

This paper justifies the extension of the type system of [11] to include recursive types.
However, in contrast to the type system of Milner [13, 4], it is difficult to decide in general
whether a given cxpression has a given type. It can be shown that this is a [Ij-complete question,
even when restricted to terms of the purc A-calculus and the type int—int. It follows that no
recursively enumerable axiomatic type system can be complete for the truc type assertions.

On a practical level, this paper justifics the extension of unification based type checking
algorithms for the type systems of [8, 13, 4] to allow circular unification. Similar algorithms can
be appliced to check the Algol family of languages, even though the types of procedure parameters
are not specified. Note that dialects of Pascal that require full declaration of the types of pro-
cedure paramecters do not allow sclf application to be expressed since they do not support recur-
sive functional types.

-10-

References

1.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20,

21.

22
23.

A. Arnold and M. Nivat, “Mectric interpretations of finite trees and semantics of nondcter-
ministic recursive programs,” Theoretical Computer Science 11, pp. 181-205 (1980). '

S. Banach, “Sur les opcrations dans les ensembles abstraits et leurs applications aux équa-
tions intégralcs,” Fund. Math. 3, pp. 7-33 (1922).

R. M. Burstall, D. B. MacQucen, and D. T. Sanclla, “Hope: an experimental applicative
language,” Lisp Conference, Stanford, pp. 136-143 (August 1980).

L. Damas and R. Milner, “Principal type-schemes for functional programs,” Ninth Annual
ACM Symposium on Principles of Programming Languages, Albuquerque NM, pp. 207-212
(January 1982).

J. W. deBakker and J. 1. Zucker, *“Processes and the denotational semantics of con-
currency,” Information and Control 54, pp. 70-120 (1982).

M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF, Lecture Notes in Com-
puter Science 78 (1979).

P. Henderson, “An approach to compile-time type checking,” pp. 523-527 in Information
Processing 77, cd. B. Gilchrist, North-Holland (1977).

R. Hindley, “The principal type-scheme of an object in combinatory logic,” Trans. AMS
146, pp. 29-60 (Dccember 1969).

J. E. Hopcroft and R. M. Karp, “An algorithm for testing the equivalence of finite auto-
mata,”” TR-71-114, Dept. of Computcr Science, Cornell Univ. (1971).

D. E. Knuth, The Art of Computer Programming: Volume 1, Fundamental Algorithms,
Addison-Wesley, Reading MA (1968).

D. B. MacQueen and R. Scthi, “A higher order polymorphic type system for applicative
languages,” 1982 Symposium on Lisp and Functional Programming, Pittsburgh PA, pp. 243-252
(August 1982).

N. J. McCracken, “An investigation of a programming language with a polymorphic type
structure,” Ph. D. Thesis, Computer and Information Science, Syracusc Univ. (June 1979).

R. Milner, “A thcory of type polymorphism in programming,” JCSS 17(3), pp. 348-375
(December 1978). '

F. L. Morris, “‘Automatic assignment of concrete type schemes to programs,’ unpublished
(197?).

F. L. Morris, “On list structures and their usc in the programming of unification,” Report
4-78, School of Computer and Information Science, Syracuse Univ. (August 1978). A fast
algorithm for circular unification is credited to G. Huet, G. Kahn, and J. A. Robinson.

J. H. Morris Jr., “Lambda-calculus modcls of programming languages,” Ph. D. Thesis,
Sloan School of Management, MIT (1968).

G. Plotkin, ‘“Advanced domains,” Summer School, Pisa (1978).

J. C. Reynolds, “Towards a theory of type structure,” pp. 408-425 in Programming Sympo-
sium, Paris, 1974, Lecture Notes in-Computer Science 19, Springer Verlag, Berlin (1974).

J. A. Robinson, *“A machinc-oricnted logic based on the resolution principle,” J. ACM 12,
pp- 23-41 (1965).

D. S. Scott, *“Continuous latticcs,” pp. 97-136 in Lecture Notes in Mathematics 274 (1972).

A. Shamir and W. W, Wadge, “Data types as objects,” pp. 465-479 in Automata, Languages
and Programming, 4th Colloquium, Turku, Lecture Notes in Computer Science 52, Springer-
Verlag, Berlin (1977).

W. W. Wadgc, Personal communication to R. Milner, March 1978.

M. Wand, personal communication, January 1983.

174

