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Abstract. The paper studies connections between denotational and operational semantics for a 
simple programming language based on LCF. It begins with the connection between the 
behaviour of a program and its denotation. It turns out that a program denotes _L in any of severai 
possible semantics iff it does not terminate. From this it follows that if two terms have the same 
denotation in one of these semantics, they have the same behaviour in all contexts. The converse 
fails for all the semantics. If, however, the language is extended to allow certain parallel facilities, 
behaviours: equivalence does coincide with denotational equivalence in one of the semantics1 
considered, which may therefore be called “fully abstract”. Next a connection is given which 
actually determines -he semantics up to isomorphism from the behaviour alone. Conversely, by 
allowing further parallel facilities, every r.e. element of the fully abstract semantic?, becomes 
definable, thus characterising the programming language, up to interdefinability, from the set of 
r.e. elements of he domains of the semantics. 

We present here a study of some connections between the operational and 

denotational semantics of a simple programming language based on LCF [3,5]. 
bile this language is. itself rather far from the commonly used languages, we do 

hop,- that the kind o connections studied will be illuminating in the study of these 

ature of its denotatdon. For us a program will b 
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restrictive requirements. Two terms (more generally, two members of the same 
syntactic category in the specification of the language) are denotationally equiva- 

in any environment they denote the same thin 
two terms are operationally equivalent if either can 
and rephxd by the other without altering the beha 
equivaknces are induced by similarly defined qu 
semantic equivalence (quasi-ordering) implies ope 
ordering) but not conversely. The reason is that the denotational semantxs allows 
functions which require parallel facilities to realise while the programming lan- 
guage is deterministic. owever, we can now discriminate between diRerent 
denotational semantics b onsidering their closeness to the operational semantics 
according to the various equivalence relations, or quasi-orderings. 

Complete identity of all the relations is obtained by adding limited parallel 
facilities to the programming language. The kind of parallelism considered does not 
allow inconsistent (different) results in parallel computations. It remains an open 
prob!, IB c T +o find a denotationa? semantics whose quasi-ordering corresponds exactly 
to the deterministic operational one. 

Although it is probable that more than one denotational semantics can give the 
same quasi-ordering as the operational one, nevertheless the denotational seman- 
tics which we give for the language with some parallel facilities can be character- 
ised, up to isomorphism, as the least such denotational semantics, in a sense to be 

stly we might consider how the operational semantics is determined by the 
denotational one. It is clear that the first connection considered answers this 
question since, if the connection is to hold, the evaluation function is completely 

ed. A more interesting question along the same lines is whether keeping the 
domains of the denotational semantics fixed we ought to acid anything to the 
programming language. The class of recursively enumerable elements of the 
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A/37 -calculus 
forms are a 

non-terminati 
weak normal form whit tuition about 

onds to the fact that in that model two terms have the same 

g one in a context gives a term with a head normal form i 

ther in the same context also does eorem 4.3(l) corresponds to 

wever, apart fro the use of the ‘s below, the proof methods 
ar ot directly analogous. 

PCF is a programming langua+ P for computable functions, based on LCF, Scott’s 

logic of computable functions [3]. is that of LCF, except that 

only terms are considered and some of the terms are singled out as programs. 

‘I’hz set of types i: e least set containing c, Q and containing (a + r) whenever it 
contains a and T. .he Greek letters dz and T range over types, (al,. . ., on, 7) 

abbreviates (cr, --3 (02-+ l l l (q, + r) l 0 l )) (n 2 0) and c and o are the ground types 

(of individuals 41-rd truthvalues respectively). The level of a type is defined by: 
level (& ) = level ) = 0 and level@ + r) = 1 + max (level (a), level (7)). 

Starting with a co1 ection 9’ of constants, each aving a fixed type, and 
denumerably many variables arp (i 20) of each type, the Z-terms are given by 

the rules: 
(I) Every variable ~4 is an A?-term of type a. 
(2) Every constant of type G is an 55term of type U. 

are Z-terms of types (a + r) and clr respectively then ( 

is an Z-term of type T then (hcuf ) is one of type (a-+ 7) (i 2 0). 
hen 9’ is understood from the context it need not be u 

an& occasionally, ot 
ver Z-terms, 

ta-variables of 
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written as C[ l , . . ., l 1. They can be filled with terms of the appropriate type to give 
a term: C[ 1, l l -9 1. We omit a formal definition. 

/afIN is the result of substituting t for all free occurrences of 4x7 
in ppropriate than riables of N so that no free 
va become bound. e omit a formal definition and the derivation of 
elementary properties. 

e programs are the closed L&terms of ground type. The idea is that the ground 
types are the datatypes and programs produce data (via the operational semantics). 
The other terms are significant only as subterms of programs. 

All languages, A??, considered include L&, the set of standard constants. These, 
together with their types, are: 

tt : 0, 

ff : 0, 

3‘ : (0, 4, c, L), 

I* :(o,o,o,o), 

Y, : ((a + a)+ a) (one for each a). 

Generally we will be interested in a language A!& for arithmetic which also has: 

k n : c (one for each integer FI a 0), 

(+ 1): (L + L), 

(-l):(L-+*), 

Z:(4+0). 

The operational semantics is given by a partial function, Eva&, which gives 
constants from programs. Eva1 2 is defined by means of an immediate wduction 
~e~~t~~~, +Q een terms by: 

Y ( -S c, for ally program 
Y 

exive closure of --+. 
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If 2? = L& we also add: 

(14) (+ 1)kn z kn+, (m =q, 

w (- l)k,+12 kn (m W9 

‘913) 
N-=-gN’ 

(f i is -t-l, - 11 or 2). 

W9$~J+J’) 

9A is actually a partial function, which is undefined on constants 
and so Evalse, is \ivell-defined. Generally Evalse, is abbreviated to EvalA and similar 

abbreviations will be made elsewhere. This style of operational semantics is 

erent from the SE,CD style, although in fact an equivalent S -type semantics 

could be given (cf. ere operational semantics is part of the provability 

relation, e.g. i = N is provable in GCF togther with the axioms 

for arithmetic [5]. Notice that, because of (I3), (111) function calls are by name 
rather than value. 

Turning now “ho the denotational semantics, we brie y recall some defhitions and 
facts. fuller tr ent containing proofs an er definitions can be foun 

or ing. 
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At the xxt of some artificiality we could use complete lattices instead of cpo’s. 
Example 3.5 shows what goes wrong if one uses them in the natural way. (A 
complete lattice is a po in which every subset has a lub; if are complete lattices 

(and hencle cpo’s), so is [ 

) of cpo s, one for ea 
the truthvalue cpo 

ordered as in Fig. 1. 

Fig. 1. 

An S+rterpreUon of a language 9 is a collection, {D,} of domains for PCF 
ith a mapping 

which is type-respecting; that is if c is a constant of type G, then JZI[C 1 is in D,. 
otice the use of decorated square brackcs when passing from syntactic entities to 

denota.tional ones. 
an interpretation is standard if (De} is, .A? 2 PO and: 

x (if p = tt) 

d~3Jj(p)(x)(y)= y (ifp=ff) (pE , x, y E D, and o ground), 

1, (if p = I) 

,r for constants c in 
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ains for arithmetic toget er with the standar 

such that: 

S&A[knp= n (n 201, 

x + 1 (x 20) 

&.A i( + 1)D(x) = 
I (x =I) 

x-l (X31) 

&A I(- l)](x)= 
I (x=I,O) 

Given an igrterpretation ({ }, &) of 9 we obtain a denotational semantics 2 
for 9, 

First the set, Env, of environments is the set of type-respecting functions from the 
set of variables to U t is ranged over by p. If x E then 2 [A /ai ] is that 
environment p’ such 

The denotational semantics C3 : Terms-, ( U}) is defined by: 
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If &Yl=P’I[“lj f or all Q! in FV(M), then &[Mj(p)== a[M&?‘). For 
terms A4 and N, and any p, dU[M~iar~]l\rll(p)=~j[Ng(p[~I[Mlj(p)lap]). If 

&wnw=e~uwbv or all p then for any context C[ ] for which M and N have 
the appropriate type, dbC[M]B(p)= b[C[N]J(p) for all pa 

Sometimes we will say that M defines (or denotes) f in the environment p, if 
dl[M](p) = jT The reference to p is omitted if M is closed. The undefined 
en&onmenf, _L, sends arr to IDa. 

3. Termination of PCF programs 

The behaviour of a program, M, is determined by whether it terminates and its 
value when it does; that is whether EvalA (M) exists and which constant it is, if it 
does. Frog remarks made above, if EvalA (M) = c, then .s& [ M 1 (I) = & UC 1. So 
here the behaviour of a terminating program determines its denotation. Our aim is 
to fill the gap and show that nonterminating programs denote 1, demonstrating: 

Theorem 3.1. For any Z&-program M and constant c, EvalA (M) = c iff 
5&4Mn(q=94Aucn. 

It is important here that a ground constant cannot denote _L. 
Theorem 3.1 could be proved directly by first establishing it for terms not 

containing any Y, and then using Lemma 3.2 below. However, there is a more 
flexible method, borrowed from proof theory [9], which allows easy extensions to 
languages other than &, as will be seen. In proof theory the disadvantage of the 
method is that it uses strong principles of proof and does not (directly) yield 
information about certain proof-theoretic ordinals, as do methods involving proof 
by induction on these ordinals. These do not constitute disadvantages for us, since 
we have no inierest in using weak methods, and since no use is known for the extra 
information provided by the other methods, which are also more difficult to carry 
out [2]. 

The method is simply a proof of the required property by structural induction on 
terms, which requires a suitable. induction hypothesis at higher types. Predicates, 
Comp, are defined by induction on types by: 

(1) If Mu is a program then Mb has property Comp, iff J& [M n(L) = J& [Ic 1 
implies Evaln (M) = c. 

(2) If M++,, is a closed term it has property Camp,,,,, iff whenever N, is a 
ciosed term with property Camp,, (M+,,JV,) has property Comp,. 

(3) If is an open term with free variables al,. . ., a, of types gl,. . ., a,, then it 
as property Comp, iff [NJa t ] l l l [IV, /a, ] has property Comp, whenever 
1, o l ., N,, are closed terms having properties Comp,, . . ., Comp, respectively. 
A term MC7 is computable iff it has property Comp,. Clearly if M(,,,, and N, are 
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closed computable terms, so is (M(,,,, N,) and also a term M,, where u = 

( g1, . . ., a,, a’) is computable iff A$..N1,. . ., IV,, is computable whenever N1,. . ., N, 

are closed computable terms of types gl,. . ., 0, and @ is a closed instantiation of 
aww by computable terms. The latter assertion is proved by using clause 3 of the 
definition if M, is open, and then clause 2 y1 times. 

The only difficulty in nroving all terms computable is caused by the recursion a 

operators, Y,. These can be approximated by certain terms Yb”‘, (n 2 0). Define 
terms In, by 0‘ = Y, (ha;&,), In, = Y, (ha:aZ) and &.+,, = A&?,. Then the 
terms y(n) are defined by putting 
(~~~,“‘“‘((U~U’“‘(Yb”)ab”‘“‘))). 

Yc)= &,,,+,, and YF+‘)= 

Then ~[Y&L)= Ll(a[Yb”‘l: n 3 0) expresses the LIIS as the union of a 
denumerable chain, for any standard interpretation &. 

We also need some syntactic information. Let < be the least relation between 
terms such that 

(1) & < Me and Y, (“) < Y, for all u and n 2 0. 
(2) M-, < Mm. 
(3) If M+w,, 6 M;,-a,, and N, < NL then (AaN,) < (AcuNL) and (M,,,,JQ+ 

(M ;a-V) NL). 

Lemma 3.2. 1 M S N and M +A M’ then either M’ =G N or else for some N’, 
N+A N’ and MT’ < N’. 

Proof. By structural induction on M and cases according to why M-,* M’. 0 

Lemma 3.3. Every term is computable. 

Proof. (1) Every variable Q! is computable since any closed instantiation, E, of it 
by a computable term is computable. 

(2) Everv constant other than the Y,‘s is computable. This is clear for constants . 

of ground type. Out of (+ l), (- l), Z, I,, 1, we only consider (- 1) as an example. 
It is enough to show (- l)M, computable when Mb is a closed computable term. 
Suppose 5& (I) = J& [c 1. Then c = k, ior some m and so 
,piz,[Ml@_)= m + 1). Therefore as M is computable, ---+%,+Q and so 
(- l)M-+; k, = c. 

(3) If M+,, and N, are computable, so is (A&,,,, N,). If I@&,,,, N,) is closed so 
are A&,,,, and NW and its computability follows from clause (2). If it is open, any 
closed instantration L of it by computable terms has the form (A&+ l’$ ) where 

and P+J, are such instantiations of A&,,, and N, and are therefore 
themselves computable which in turn implies the computability of L and hence of 

( (a-+r) ) . 
(4) If M, is computable so is @CC’ ). It is enough. to show that the ground term 

LN, l l l I+& is computable when A&,. . ., N, are closed computable terms and L is a 
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closed instantiation of @&‘A&) by computable terms. Here L must have the form 
(~a~&&) where & is an instantiation of all the free variables of M,, except a”, by 
closed computable terms. If dA [L-N l l 0 N, l(I) = J& [C 1, then we have 

& [[[ Nlla ]&Nz l l l Iv, j(1) = Jail [ LNI * l l N” l(I) = J& [c 1. 

Rut [N&j A$ is computable and so too therefore is [N&l A&N2 l l l Ar,. Therefore 
LN, l l l A$ -+A [Nla]M,W- N,,-+Z c, as required. 

(5) Each Y, is computable. It is enough to prove Y,Ni l l l IV, computable 
when Ni l l l N, are closed computable terms and Y,N1 l l l N, is ground 
SUppOSe &A o[ YN, - l l Nk j@) = dA [C 1; Since d& (I ym n(I) = ~rlaod& [ Yg’j(l), 

dA [ Y(*)Nl l Nkn(~)=cT&Aucnf or some n. Since J& &G, D(L) = 1. for v ground, 
&&, is computable for Q ground. From this and (1), (3) and (4) proved above it 
follows that every &k, and Yz) is computable. Therefore Y(“) N, l l l Nk+); c and so 
by Lemma 3.2, Y,N, l l l N,-*z c, concluding the proof. 17 

Theorem 3.1 follows at once from previous remarks and Lemma 3.3. 
The denotational semantics 2A determines the operational semantics EvalA, if 

we require Theorem 3.1 to be true, for at most one partial function EvalA from 
programs to constants can satisfy the statement of the theorem. Of course, EvalA 
can be defined in many ways, some of which, no doubt, give faster algorithms than 
the one provided by the definition from +A (cf. [ 10,111). In the last section it will be 
shown how starting with the collection of domains (D,} above one can determine, 
to an extent, what zA and &A and hence EvalA ought to be. 

In the other direction, the mere requirement that Theorem 3.1 holds by no means 
determines &A and &?A. Some examples follow. 

&ample 3.4. Take the standard collection of domains {Do} generated from 
DC ={_L,O,l,..., 33) ordered as in Fig. 3. 

Fig. 3. 

The interpretation J& is determined by the conditions for &A together with: 
dJ(+ i)]M) - d,[I(-- qn(q = 00~ J&[Z n(m) = jj’. Although J& is not a mo 
the axioms for arithmetic, it is quite straightforward to modify the previous proof of 
properties of &$A to show that if EvalA ( )=c then J&U n(L) - d,uc 1. 

f of the converse goes through word for word as above. owever, it does not 
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(1’) If M, is a closed term of ground type then M, has property Comp, iff either 
~&([M,~(L)=I~[c~and EvalA(M,)=c or else J&[M~~(_L)=_L. 

Then only a slight change in part 2 of the proof of the computability lemma is 
required. 

Example 3.5. Take the collectio of domains generated from Do -2 
D, = N’ where T+ = {I, T, tt, ff} and + = {I, T, 0, 1, . . . } are ordered as in Fig. 4: 

Fig. 4. 
I 

The interpretation & is determined by the conditions for .&, together with: 

Ja >an(wX)(Y) = T (x7 y E w9 

&:@ + llj(T) = .s&~-- 11(T) = T, 

.42[2g(T) = T 

The correspondence between the behaviour of a program and its de,notation 
according to J& is similar to that of Example 3.4 and is left to the reacer. This 
example would be a natural denotational’semantics to use if only complett: lattices 
and not other cpo’s were considered. In the next section it will be shown how the 
standard sema;ltics corresponds more closely, in a certain sense, to EvalA tllen &. 

4. E@valence of PCF terms 

Since terms are only of interest insofar as they are part of programs, we can 
regard tw3 terms as operationally equivalent if they can be freely substituted for 
each other in a program without affecting its behaviour. Therefore given \- al9 we 
define operational equivalence, = ,P by: 

] are programs either both of 
ed or else both are defined and 

equal. 

dcf=lned by: 

=s is an equivalence relation. Along the 

) 
= 

=.d between terms 
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M.&J% iff dgM,~(p)Ed[N,n(P) for all p, 

M*=, N, iff M&&-N- and NWEJa M,. 

This concern is the second connection between operational and denotational 
semantics. Hopefully Fre and Ed will coincide and so will = 2 and Em. In the former 
case, we say that s& is fully abstract, relative to Eva&. 

Under fairly general circumstances the denotational relations are included in the 
corresponding operational ones. 

Theorem. 4.X. Suppose that & is a model of Evalz in the sense that if EvaIs (M) = c 
then$E1Mn(I)=aI[cnandsupposetoothatif~nMn(l)aaI[c]IforaprogramM 
then & [M n(L) = Se I[c 1. Then the following are equivalent: 

’ (i) For any program M, a U M 11(L) = J$ UC 1 implies Evalsp (M) = c. 
(2) For any .terms M,,, N,-,, M,C,N, implies M,&N,.. 
(3) For any terms M, N, M,=& N, implies Me=xN,. 

Proof. (1) * (2). Suppose C[M,] and C[N,J are programs and 
Eva19 (C[ M-1) = c. Then dUC~~N,]n(l)asUC[M,]]1(1)= &UC& 
Therefore from hypothesis and (l), Evalo (C[N,I) = c. 

(2) + (3). Trivial. 
(3) + (I). If b[Mn(I)=d[cJ then MS&.:. Therefore Masc. 
As Evalv (c) = c, it follows that Evalv (M) = c. 
From the previous section we know that the hypotheses of this theorem and (1) 

are satisfied by all of J&, & &. Therefore if M,C, N, M,G, NW or MWlZ2 N,, then 
M&,J%, for any term M,, and N, and similarly for =A and =A. 

Unfortunately the converses do not hold. For a counter-example, define Mi 
(3 = 0, I) by: 

where a has type (0, o, 0). The terms Mi are, perhaps, more comprehensible if 
written diagrammatically as in Fig. 5. 

Fig. 5. 
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We are going to show that =A IV, but neither MOE M1 nor M, L MO when C is 
any one of GA, &I or r,. 

For LA, C, define V in D(,, O o) by Table 1. . 1 

Tabje 1 

I I I tt 

If _L IT rf 
tt tt tt tt 

Then ..& [Mi g(I)(V) = ki and similarly for .&. 

The same thing works for E2 if we define V’ by Table 2. 

V’ I fl tt T 

I 

ff 

tt 

T 

Table 2 

I _I_ tt tt 

I ff tt T 

tt tt tt tt 

tt T tt T 

Thereforc MO and M1 are incomparable by any of GA, & or lE2. On the other 
hand MOaA MI. To see this it is necessary to gather some information about +A. 

The active subprogram in a program M, if any, is defined by: 
(1) If M has one of the forms ((AarM,) l ~*),(~~“*),((+l)c),((-l)c),(~c)or 

(2 oc l l 0) then M is the active program in M. 

(2) If M has one of the forms (( ~fr l)MJ(ZM,) or (LJ’K . l 0) where AlI is not a 

constant, the active program in M, if any, is the one in MI, if any. 
Notice that if a program has no active program it is a constant and that if a 

program terminates and has an active program then the active program slso 

terminates. 

Lemma 4.2. (Activity lemma). Suppose C[M,, . . ., M,,, ] is a terminating program 
with value c, containing closed terms M,, . . ., M,,,. Then either C[M i, . . ., MJ,] 
terminates with value c for all closed terms M :. . . ., MA of appropriate type or 
else there is a context D[, . . .,] and an integer i, 1 s i s m, and integers 
d l,. . ., dk such that for all closed terms Mi, . . ., MA of the appwpriate types, 
C[ML . . .,A&]-*:D[M&, . . ., &] and the active program in D[K,, . . l , MLk] 

exists and e&her is the active program in a term of the form (M: 9 9 a ), or else has one of 
the forms (( t l)M:), (ZMQ or (3,M: l l l ). 

straightforwa n on n, where 

0 
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Now suppose C[A&,] and @[Ml] are programs, that c[MO] terminates and 
c[MI] if it terminates does so with a different value. the activity lemma applied 

to C[Mo], c -+:M and the actEv2 progr exists and terminate 
since MO has t has the form rom the definition of 
follows that the pr terminate with values tt, tt and fl 
respectively. Applying the activity lemma to C’[ tt, d’% ] = iL tt , since Q, does not 

ate either ISalA ( A) = tt for all & NL or else for all 
A+: some program hose active progr is the active program in 

else has the form (3,M~ . a-) and terminates if LMLNL does. The first possibility is 
ruled out because IGalA (Lfifl) = fi and the second because LlZ,tt terminates but 
a0 does not. This contradiction proves that M&.JW~; Mt GA MO is proved in rhe 
same way. 

If we require that denotational and operational semantics provide the same 
equivalence relations and the appropriate analogue of Theorem 4.1 holds then we 
must therefore reject &,, J& and .&. If we want to choose between them according 
to the closeness of = to en, it will be seen later that ,P& is preferable to .P& and J& 
and they are incomparable. 

It should be noted that examples like the Mi can be given in ALGOL 60 if the 
parameters of type o and L are cal1ed by name; other examples at higher type can 
be given if these are to be called by value. 

One practical consequence of such mismatches is an unpleasant incompleteness 
phenomenon in program proving systems. If we wish to prove an ey relation, but 
our proof system is based on axioms about So, we might not be able to prove 
equivalences, such as MO = lM1 which on other operational grounds can be fairly 
easily seen to hold. Further, proofs of #z relations may not even be valid. 

The basic difficulty is that the collections of domains considered allow such 
“parallel” functions as V or V’ whereas -)A provides a deterministic operational 
semantics as is shown by the activity lemma: if a “subprocedure” is called first the 
corresponding one is also called first in corresponding programs. 

One way to close the gap would be to define a “smaller” collection of domains 
ons capable of determ’.nis; ic realisation and starting with 

Vuillemin in [lo] defined a notion of sequential function which 
the ai's ground, but not at 
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The: operational semantics is given via +YPA which is specified by the rL;les for 
+zD4. together with: 

c -+PA c, : I,@ -+PA N 

(1138 .- 

Clearly *PA is non-deterministic. It is not hard to show that if k&+,fi 

(i = 2,3) then there is an M4 such that for each i either n_Zi = M4 or else Mi+pA 

Therefore -+ :A has the Church-Rosser property and EvalY,+, is well-defined. 
.%$A : SPA ---) U {D,} is the extension of &A such that: 

x (p=tt) 

&‘,A ii: 3d(p)(x)ty) = ; E=TJand x = =Y) (PE 09 x, y E a ). 
_L @=~andx#y) 

Note that ?&A is an extension of &&A. The deterministic conditional 1, can be 

simulated, by: 

which has the same denotation as 1,. 
Also 7 is defined by Aphq (: 3,pttq). 

The analogue of Theorem 3.1 holds, the proof in one direction being easy atnd in the 

other direction requires only a slight addition to part 2 of the proof of the 
computability lemma: 

To show that : Ia is computable consider : 3,L,M,N, where k,, Mu and 
IV, are conrputable and suppose k&Q 0: 3, L,M,N, ]( 1.) = c&‘A [C 1. Either 

&&A [LO j(l) := ?? and &&A M,j(d..)=~&&~ or else &&A[~o~(l)=ff and 

or else &&A[M&L) = &?pA[~&](_.L) = &k&j. 
LoM~N~+~A : >,ttMmN,+pA hIm+hpA C, and similarly in the 

second case. In the third case : I,LoM~N~-*~A >~LOCN~+$A ~,LCC+IJ,A C, which 
concludes the proof that: >, is computable. 

The definitions of J& and .s& and their properties are now fakly clear an 

left to the reader. 
e now have an example of a pair of semantics whit 

equivalence relations: 
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A cpo(D, C) is algebraic if, for each x, the set {d C x: d finite} is directed and its 

lub is x. 
If d, e are 5nite members of D and E, then (d_ _ e) is the member of 

[D + E] defined by: 

A cpo D is consistently complete iff wirenever x and y in D have an upper bound 

they have a least upper bound, x U y. 
If D and E are consistently complete cpo’s and dl, . . “, d, are finite elements of D 

and er, . . ., e, of E it is not hard to see that the set (4 + ei) has a least upper 

bound in [D -+ E] iff whenever a subset of (di ) has a 1ub so does the corresponding 

subset of (ei]., and then the lub is given by 

Ll(di * ei}(x)= bl(ei:x Jdi} 

Lemma 4.4 (Scott). (1) T and N are consistently complete algebraic cpo’s. 

(2) If D and E are consistently complete algebraic cpo’s so is [D + E]. 
Its finite elements are all lub’s of finite sets of elements of the form (d _ e), with 
d, e finite members of D and E respectively. 

Proof. (1) Obvious. 
(2) Suppose f, g jn [D -+ E] have an upper bound h, then for any x, h(x) is an 

upper bound of f(x) and g<x) and so as E is consistently complete we can define a 
function k : D -+ E by 

k(x) = fWWW cx E w 

Clearly k is the lub off and g in [D ---) E]. So [D + E) is consistently complete. 
Now suppose (d + e)c U F where F is a directed subset of [D -+ E]. Then 

e = (d =$s e)(d)C(l.M)(d) = u,,,f(d). As e is finite, e cf(d) for some f E F’. 
Then (d =$- e )C fa Therefore (d + e ) is finite and it follows that any lub of a 
finite set of elements of the form (d + e) is also finite. 

Take f E [D -+ E] and consider the set F = (U F’: F’ is a finite set of elements of 
[D + E] of the form (d => e) and C f}. It will be shown that f = U F. Clearly if 
f’ E F then f _7 f’, so U 6; exists and f 1 LJ F. To show that f S (U F), take x E D 
and a finite element e C f(x), 

Then 

ti5[(xj=r f(tJ(d ED: d finite and Lx)) 

= U{!(d): d finite and C x}. 

erefore for some finite d C x, e Gf( ). Ther&-Jre ( e)cf and as 
( s d was arbitrary, ( IJ F)(n 
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Now if f is finite then as F is directed, f is the lub of a finite set of elements of the 

form (d + e), as required. 
Therefore if instead f is an arbitrary member of [D -+ E], F is the set of all finite 

members of [D -+E], fz$ Asf= UF, [D + E] is algebraic, concluding the proof 
of the lemma. Cl 

So each U, is a consistently complete algebraic cpo. From Lemma 4.4 and the 
fact that d + (e U e’) = (d + e)Ll (d + e’), one side existing iff the other 
does, for d a finite member of a consistently complete cpo, D and e, e’ of another, 
E, the finite members of D, are lub’s of finite subsets F of Da such that: 

(1) Each element of F has the form (e, + l l 9 + (e, + d) l l l j where 

et, . . ., e, are finite elements of D,,, . . ., D,, and d E D, is not 1. 

(2) If (e, =S l *. + (e, + d)**)and(ei + .a. + (e: + d’)*~~) 
are in F and e,Ue:,...,e,Ue~ exist then d = d’. 

Here ct = (a,, . . ., a,,, r) with T ground. 
Also a set F satisfying (1) has a lub iff it satisfies (2). 

Lemma 4.5. Every finite element of each Do is definable by an 2’~term. 

Proof. The proof is by induction on types and shows that if e, J’ are finite elements 
in D, then e, e =+ tt and, if it exists, (e + tt)U (f + f) are definable by 
SPA -terms. 
CT = 0: I, tt and ff are defined by O,, tt, and fl. 

I + tt, tt + tt and fl + tt are defined by Apt, 

hp(~.p1i2~) and hp(>,pln,ff), respectively. 
(tt S+ tt)u@ + fl) and cljr + tt)U(tt _ 19) 
are defined by App and Ap(I.pftt). 

cct= c: _I_ and yo are defined by 0, and k,. 
_L + tt and n + tt are defined by Axtt and 
Ax (Z,Z(( - l)“x)ttfl,); (k, + tt) U(k, + f) and 

rk, + tt)U (k, 1 fl), where m I’ n, are defined by 

Ax(L (Z(( - l)mx))tt (3, (Z(( - l)“x)).@k )) and 

Ax(Z (Z(( - l)“x))ff(X (z(( - l)“X))tta,)). 
U = ( Cl,. . ., CT,, 7) with r groand: Suppose e and f are lub’s of finite sets F, F’ as 
explained above. To show that e, e + tt are definable we use induction on the 

size or’ F and then show (e =$+ tt)U (f + fJ) dGnable, if it exists. 

itself is definable by: 
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Otherwise if el 9 l * c! and t?i * l l l _-a d’ are in F then d = d’, 
and all the ei U e i’s exist l Take el * l l - =G+ e, +i+ d in F and let E,, . . ., 

F1 define (el <> tt ), l l . , (en =$S tt), d and U Fl (e, =2> l l l -_1 d}. Then 

‘F is defined by 

is the term hphq (1,~ (3,qttff )jf) and is usled as an infix. 
nor e Z+B tt, if F = 0, e is defined by Aa! “tt. 
Suppose Ff 0 and take et =3 l l l =S en __Z d in F and let &,. . ., E’,, D, F, 

define et, . . l , epr, d + tt, (U F, {el 3 l l l * d}) =3: tt respectively. Then 
e =+ tt is defined by: 

If (e =+ t#-.J(f * fl) exists, e Uf does not and so there are e, + 
-a-e, ad in F and ei+ l l . + el, + d’ in F’ such that 

eWei, . . ..e.LJeL exist but d # d’. Let El, . . ., En, F’*, F:, D define 
(e&k:),..., (e, u e:), e =+ tt, f + tt, (d +S tt)U (d’ + ff) respectively. 

Then (e + tt)bl(f + f) is defined by: 

ha” (L), (D(a”E, . l l E,))(F1a)“)(NEG(PI’Ia”))) 

where NEG is the term Ap (>&ftt). 

‘This concludes the proof of the lemma. Cl 

It is now possible to prove Theorem 4.3. First suppose M, and N, are Z&+,-terms 
such that Ma E$P& but ~.+JV~. Suppose too that and Iv, are closed and 
define f and g, respectively, in D, wh u = (a,, . . ., a,,, 7) with 7 ground. Then 
fgg. Therefore there are x1,. . ., x, in D, such that f(x,) 0 l 0 (x, ) # 1. and 
f(xl)~~=(X,)#g(x,S~~~(x,),SinceD,,*~* D, are algebraic and every element of 

7 is finite we can assume that x ],. . .,x, are finite and so, by Lemma 4.5 can be 
y the an;l%gue of Theorem 3.1, 

, with free variable; 
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J&Z consider the terms Ni and Mi (i = 0,l) defined by: N,, = Ap (30pttQ,), 

def.nes (tt + tt)LJ(T + T) and I’++!, = Ap(>,pSl,f)‘) which defines 
) U (T + T) in the collection of domains {Do} given by sBPz. 

Let 

4rere a has type (O + o)+ o. Let h = ((tt =+ tt) * tt) L-NUT a 8) =a- fl) 
ich exists as D~~O,O~,O~ is a complete lattice. 

Then dP2[ M&l)(h) = tt# ff = M&Q(h). Therefor MI l 

Switching to the collection, } of domains for PA, No and N, 

define (tt Z+B tt) and w =+ fl) res ectively. Suppose h is D((O,Oj,Oj. If 
dpAIMOj!(k)(h)#l then h(tt + tt)= tt and h(ls ==+ fl)=fl, which is a 
contradiction as then h ((tt _ tt) U (fJ + ff )) 2 tt, fl. Therefore M, 
the appropriat and similarly MlspA 0,. Therefore MofpZ MI but 

Note too that 
Returning tc zDA for a moment we can now verify an earlier cJaim. For any two 

.%&A terms Mm, N, we have M EDiN implies M&JV implies MC, N implies 
MEpAN impYes MEDAN for i = 1,2 and by the notes above since the various 

counterexamples do not use a : X,, neither of CD,, EM are included in the other. 
we now consider to what extent interpretations of zPA are restricted by 

requiring that they be fully abstract relative to EvalpA. The answer depends on the 

class of interpretatiorrs considered. For example, we shall see that any fully abstract 

standard interpretation of %A is isomorphic to &&A, but there are fully abstract 

interpretations of a more general kind which are not isomorphic to .6&*. However 
&&A will stand out as a kind of weak initial element in the category formed from the 

fulIy abstract general interpretations. 
First of all we choose a convenient notion of general interpretation. A gene& 

colkction of dmains for PCF is a family {D,} of cpo’s, one for each type and a 

family (ApS) of continuous maps, one for each pair of types such that: 

n conveGent we shail ait/riie f (x) instead of A 
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(where Env is the set of type-respecting maps from the set of variables to U (00)) 
such that: 

(2) ~u(~u4TN,)n(P)=~uM,-TD@)~~u~~n(P~)~ 

(3) if M is closed dC[M](p) is independent of p. 
Sometimes d will be confused with the whole general interpretation 

(d, {D,), iAp;}). Clearly any interpretation provides a general interpretation. If a 
general interpretation is a model of /Wonversion, then we have: 

(3’) If p and @have the same values on FV(A4”) then &Ml(p) = a@Jl(p’). 
For, 

= ~uww (by (l), (2) and p -conversion). 

A general interpretation, .& of 9 is fully &tract relative to EvaZ9 iff for all terms 
M, NC: 

M&&N, iff (VpEEnv~I[M]l(p)C~([NB(p)). 

The lrsndition on the rig ht is -written as: MiI&l; M =d N has the chbvious meaning. 
With the evident definition of product one can show that the class of fully 

abstract gener& interpretations of LZ? is closed under the product operation. 
Therefore, for example, J&~ x ,&A is fully abstract, but not isomorphic to aP,+ 

To compare general interpretations, we introduce a convenient notion of 
morphism. Suppose (2, {D,,}, {APT}) and (@, {E,,}, {Ap:“}) are general interpreta- 
tions of X 

A morphism @ : d’ + $8 is a collection of continuous maps, @@ : D,, -+ E, such 
that: 

(I) !I$ (ApF(f)(x)) = Ap:“(R,--.,(j))(QI, (x)) (for any types a and 7; f in D,-., 
and x in D@), 

(2) ~~(~I[-~~n(I))C~QM,jl(L)(M, a closed term of type (r), 
(3) @&a[Maj(l))= @I[ J( I)(M, a program of type a). 
Here _L is the environment sLzh that _~(a”) = I~,. If 2 and 98 are models of 

any term of type a)- 

Composition of morphisms is defined by Thus we have a 
category of general interpretations of a given language 5?_ 
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If 45 : d + @ is an isomorphism, then ;C can be replaced by = in condition (2) 

and, consequently, ir condition (2’). 

Theorem 4.6. (1) If @ is a general interpretation, which is fully abstract relative to 
Eva&+,, then there is a monomorphism @ : ihA + 4. 

(2) If d is a general interpretation, which is fully abstract relative to EvaL, and it 
has the property ascribed to J& in 1 then there is a unique isomorphism 
@:%!&~+J-& 

Proof. (1) We definf; Qp = {@, } by 

@,(x) = u{& [MJ( I): M is closed and J& [Mjj( I) is finite 

and Cx} (x E D,), 

First we check that the set on the RI-IS is directed. Suppose G?[Mil(-L) is in the 

set for i = 1,2. Then each ,!&A [Mi j/(_L)tx and so by Lemma 4.4 there is a finite 

J& [M D(Q where M is closed, such that J&A [Mil(-L)EdpA [Mj(L)Cx for 

i = 1,2. Then as J&A is fully abstract M&PA Mandso~([M,n(l)c~UM]l(i)for 

i = I, 2 as required, for 38 is fully abstract too. 

Next wz establish condition (2) for @ to be a morphism. Zil; follows at once 

from the definition of @, and the fact that if M, M’ are closed terms such that 

,&AIIM’~(._QIZ.&A ([Ml(I) then &l[n/l ](I)C& [MI(I), as dPA and 4 are 

fully abstract. 
Now, if M, defines a finite element of D, we can see that 

This follows from condition (2) and the definition of @=. It establishes condition 

(3) for si to be a morphism and shows that for x in D,, Cp, (x) = U {c& (d): d E x 
and finite}. This last remark implies that a,-, is continuous. 

For condition (1) we calculate, 

@T (f(x )) = LJ {@T (f 7.x 7): f ‘9 x’ finite and E f, x respectively} (& is continuous) 

= U {aT (&, [F~(J_)(.&+, [X~(_Q)):‘F and X are ZPA-terms 

defining finite elements &f, n respectively} 

== u{e(dpA uFxn(q):-g 
= u@ pxn(1): l e 0) (each FX defines a finite element) 

= Apz(U{@ [FJ(_l_): F defines a finite element cf)) 

nite element C x 1) 

(Ap: is continuous) 

= Ap:(@-(f))(@u (x)). 
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Therefore @ is indeed a morphism. TO show that it is a monomorphism it is 
enough to show that each ‘p, is l-1. This is clear fQr a ground since then all 
elements Da are definable and we can use co,;dition (3). Suppose the @vi are l-l for 
i= 1, IZ. %Ve show that Cr;a is also l-1. for CT = (cl,. . ., m,, I-) with 7 ground. Suppose 
CO,., u) = 4,,(g) for f, g E D,. Take x1, . . .,x,, in Dal,. . ‘,, D, respectively. 

Then 

4cr(fxr*x,)= Wf)@&l) l e 6 @,.,, (a,) (by condition (I)) 

and so as @jV is l-1, fxl.. l x, = gx, l l l xn. Therefore @, is 1-1 and by induction Qi is 
a monomorphism. 

(2) Let a be such an interpretation. Let Qz : dpA -+ d be the monomorphism 
given in part 1 and let @’ : d --) J&~ be any monomorphism - and one exists, by 
hypothesis. A siraightforward induction on C;T using conditions (1) and (3) shows 
that &* is rigid in the sense that the only morphism ?P : dpA + apA is the identity. 
Therefore @‘oQz is the identity, and as @’ is a monomorphism so is Qi 4’. 

This concludes the proof. CI 

Presumably the G/s defined in part 1 of the proof are not unique in general, so 
that we cannot expect JJ! pA to be the initial object in the evident category. At any 
rate the theorem does characterise d pA as a kind ot weak initial object. 

Theorem 4.7. Let ( .& (E, ), (Ap:) > be a pointwise ordered general interpretation of 
SPA, which is fulfy abstract relative to Evalpn. Suppose too that ~l[Y+,D(I)(j) = 
u,,,f” (I) (f in E& and that there are elements T and F in E(,,, such that: 

Jm.nw (if x E5ml(-O~ 
T(x) = 

_L (otherwise ), 

I d[iffB(L) (if x IZ~lbtR(O, 
F(x) = 

LA_ (otherwise ). 

en ~2 is isomorphic to &&A. 

. In this proof, we confuse ~los sed 2pA terms with their denotations and will 
continue to drop ApH’s when convenient. 

We begin by showi that E, (rind DO- are isomorphic. Noti 
holds’between the terms an 

that ap”‘pCd 
G? and &&A are 
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Similarly, fd ,7 ~~ddf(tt))cf~)), for any f in I!&,, and d in E,. These facts will be 
used repeatedly. 

We now show that every element, d, of D, is either et? or else is Cfi Suppose 
otherwise and that d in DO is g tt and QJ. Then e = (: 3, (d)(tt)(J)) is 2 lt 
and gff. 

For on the one hand, 

)z : 30 (d)(tt)( J-) = : 10 (d)(T(tt))(TW)) 

,3 T(d) (by the above remarks) 

=tt (asdgf), 

and on the other, 

: 10 (d)(tt)(f)z 3, (d)( -L)(f) = : 3, (d)(F(tt))(hf)) 

,3 F(d) (by the above remarks) 

= ff (as d g tt). 

Now c/t, denotes _L as a, sap and further 0, ~2 ~,p(~,p120tt)f20. Therefore, 

1. = JL? (e)( JO (e)( I)(t?))( I) 

7 3, (tt)(3ow))(l)(tt)h (I) (as e 2 tr, 

= tt (as >,,ffpq =~q and IO ttpq =a~). 

But this contradicts ;he fact that tt ~&-,. 

Therefore we have indeed proved that every element d of D, is either c tt or fl. 
Now we show that every element, d, of E, is _L, tt or fl. Let 

J [Ap : ~op(a~“‘p)(a~o’p)D(IIT/a~o)][F/~~o’]). 

ly, J(x) T= : Do (x)(T(x))(F(x)) for any x in E. as fl-conversion is valid in 2. 
We will show that J(x) = x (x in E, ). We have: 

X = : IO (x)(tt)(f) (as p==d (: 3,ptt 

= : 10 (x)(J(tt)l)(J 

Now let d be in E,. As d g tt o ere are three cases. 
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0 a CECtt and dcff. 

(b) dctt and dgff. 

0 C dgtt and dEfl. 

Then cl = J(d) 

= : 3, (d)( 1)( 

Then d = J(d) 

= : 3, (d)(tt)( L) = : 3, (d)(T(tt))( wn) 

,3 T(d) 

= tt. 

Then d = J(d) = : 3, (d)(l)(f) 

= : 2.l (dW(tt))(wr)) 

X(d) 

So E = {I, tt,fl}. Further 1.5: tt,f as 0, cdtt,f, tt g either I or fl as tt & 

either a0 or fl, and similarly fl is c either I or tt. Therefore E, is isomorphic to D,. 
be the isomorphism defined by: 

tt (e = d[ttj(l.)), 

E(e)= 8 (e = aml(~))~ 

I (e = d[Oo~(L)). 

Next we show that EC is isomorphic to D,. It is clear that the elements a [kn I( I) 
are all incomparable and 1 B[J~,D(_L) which is 1. Now, x =a Y(,,, x where, 

= k+“(3, (Zx)k,((at”(X - 1)) + 1)). 

,,Jn (I), it follows that, if d is in , then d = 
the continuity of Api). 

n that for al 
then follow imm 

ism 
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as 1&y -_sir y. Now “CM - 1) is either _i_ or some k,. n the first case the k 
is .l as In the second it is kn+l ES k,, -I- l=d +l. This completes the 

-+ J&’ be the monomorphism constructed in the proof of 
4.6, We will construct an inverse morphism P : d + &PA. The ?&‘s are defined 
by induction. and !P& are as defined above; 

ned by: 

KrJf)(d) = Pr (Ap:(f)(@w (d)))(f E 

t is clearly conti 
by induction that @7 and !P7 are verses for all r. This is clear 
Jora-+r,finE,,,ande in we calculate: 

AP3 -0 K&f))(e) = ApT( -0 K4f))(qU 0 % (e)) 

(by induction hypothesis) 

= Gr W (Ap3fWk (% (e))))) 

Qby definition of P,,,) 

= ApTCf)(e) (by induction hypothesis). 

As 2 is poi z;:wise ordered, it iollows that mAr~ P,,, = IdE,,_,,. Further, 

= u-w0 IdL,,,,,, . 

Therefore as @ m.+t is l-1, !t?L,o which concludes the induction. 
We can now establish condition (1) that ?P be a morphism. or f E I%- and x in 

m we have: 

nition of UT”7 i 
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E,,,, . . ., &_. Then there are closed ter 

finite elements tEr,,(e&. D ., 

of types car,, . . ., o, defining the 

(by a known property of @) 

erefore as 2 is pointwise ordered and E, is algebraic, (*) holds. Therefore P 

is a morphism. Now, as @, and !&, are inverses for all a, so are @ and V. Both are 

therefore isomorphisms, concluding the proof. 0 

A careful examination of the proof shows that we do not need to use all the 
power of full abstraction. One only actually needs a recursive subset of the relations 

JV: MCPA IV}. 

e theorem applies to any fully abstract standard interpretation and indeed to 
any fully abstract interpretation in which Y (L,L) is given the standard denotation. It 

also applies to any fully abstract pointwise ordered general interpretation whose 

ground domains are isomorphic to the corresponding ground domains of J&*, 
although it is quicker to note that in the above proof the assumptions about Y(,,,, T 
and F are only used to establish the ground domain isomoryhisms. We conjecture 

at there is a fully abstract interpretation ill wh:,ch Y(,,, is not given the standard 
deiiotation. 
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cr = L: Let 0 code e;= 1 and (n + 1) code e:,, = n. hus e& e;, , , . enumerates 

the finite elements of 
o= 0=,,...,0+“,7)wi ( 7 grou 9. l -9 0) be any coding function 

of (n i- 1).tup?cs of integers, each integer m being the code of 

codes e”,= U ere, if 

F’= e huh -- 
O’ -+ l .- elm,) :iaO 

either F’ satisfies the conditions mentione after Lemma 4.4, and F = 
Jse if F’ does not satisfy these conditions F = 8. In the second case we say that wo is 
trivial as a (+-code. enumerates the finite elements of 

The relations e”,Eez, e:Ue”, exists and the functions eE”‘(eZ)= e;: and 
ezLJe”,= er, where e:Ue”, = e:Ue”, if it exists and eo” otherwise, are all primitive 
recursive in their indices. 

So we say that x E Da is computable iff {n: eEc x} is r.e. 
An equivalent definitio;] is that x is the lub of a chain eZ,,L eK, C l l l where the 

sequence no, nl, *. . is primitive recursive. 
It turns out that every JL -definable element is computable, but, perhaps 

surprisingly, tLe converse fails. One way to see that every L&+,-term defines a 
computable element is first to notice by the uzlual combinatory methods that, to 
within = -p& all the terms are combinations of. the terms (+ l), (- l), ko, tt, f, 2, Ia, 

: % Y,,, Sm,.02.9) and K,,,, (all ul, CT~ and a3 and ground a) where: 

ese terms define computable elements d the class of computable 
d under application. To see this for UlU29 S “1~2U.7 and U,,, one 

proves, witkut much difficulty that: 
u,,u2 defines 

s Ul.fl2*U3 defines 

(x)= LJ{e: 
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One computable element which is not zPA-definable is 3: Q~(r,OJ,oj defined by: 

i 

l-7 w->-in 
w = tt (f(n) = tt for some n 3 O), 

_l (otherwise). 

It can be regarded as the best continuous approximation to th6 Gxisteneial 
quantifier. 

Let F be a term defining I, + fl and let T” be a term defining n + tt for 
each n 2 0. We prove that whenever E, is a term of ground type with FV(E) = 

1 a(““)} such that [F/d’+“)]E and [TJa! ‘““)]E denote different things neither of 
which is &, for infinitely many. n a 0 then [F/d‘+“)]E cannot terminate in less 

than k stegs for any k (that is if [F/d’““‘]E -% c then k’> k). Since a definition, 
M, of 3 would provide such a term, namely Mx(‘+~), we would then find that MF 
cannot terminate, and yet denotes ff which contradicts the analogue for PA of 
Theorem 3.1 showing that 3 is not 2PA-definable. 

The proof proceeds by induction on k and cases on the form of E,. We can 
assurile w.1.o.g. that 2~ does not occur in E,. For k = 0 since [F/a(““)]E, is not a 
constant the assertion is obvious. 

For k >O the first case is when E, has the form: 

(AaE1)Et l . l . 

Here E+pA E’ iff E’ = [EJa] Et l . l . Since E ‘zpA E we can apply the induction 
hypothesis to E’. 

The case where E has the form YE1 l l 0 is similar. 
The case where E is a constant cannot occur. 
In the case where E has the form (( + JE,) or (( - l)&) or (Z&) apply the 

induction hypothesis to El. 
e case E = (&+O) E,) leads to a contr(adiction, for then there are n., n’ 3 0, 

wi nf n’ such that neither of [T,/d”“‘]E nor [T,&d”“)]E define -LL,. Then 

fT f n M(‘+)]& and [ TJ&+O) ]E, must define n and n’ respectively. So if T defines 
(n + tt)U(g~’ + tt), [?‘/c$~-~)]E~ defines something 3n, n’, which is a - 
contradiction. 

Finally we consider the case where E has the form : z) E,EZE3. 
suppose [F/c& (&-O) ]E terminates in k steps. here are three subcases. 
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(3) [F/a (L-o) ]Ei terminates in ki steps with value C, for i = 1,2 where kl + kT < k. 
Here for almost all n > 0, and i = 1,2 [T,/~‘““‘]Ei defines I,, which concludes the 

proof. 
It is now natural to add a constant 3 of type ((L, o), o j to 5%~ obtaining %A+3 and 

adding a clause in the definition of & p& obtaining the definition of &pA+3. The 

efinition of Eva1 PA+3 and the examination of its prOpertieS iS postponed. From the 

oint of view of computability no more constants need be introduced. 

eorem 5.1. (Definability theorem.) An element of D, is computable ifl it is 
efinable from sPA+3- 

First we may regard a primitive recursive function f of n arguments as a member 

f of D, where c = (6,. . ., L, L) by: 

i 

I (f i some Xi = I), 

f(G) l * l (X”) = 
f( Xl, . . .,x,) (otherwise). 

Under’ this identification it is straightforward to show that every primitive 

recursive function is definable by an Z&~term. 
Similarly if a primitive recursive predicate P of n arguments is regarded as a 

member of 13, with a = (L,. . ., L, o) in the corresponding way, it can be defined by 

an sDA -term. 
The apartness relation #V on D, is defined by: 

x # uy iff x and y have no upper bond. 

In general, x # . OY iff there are finite elements d, e C X, y respectively such that 
d # ae. A criterion for the existence of an upper bound of d and e has been given 

earlier. 
For a = (ol -+ a*), x # Oy iff for some finite e in D,,, x(e) # “y(e). 
From this one can show that for X, y, z E D,, if y U z exists then x # u (y U z) iff 

x # uy or x # 3. 
A computable approximation to x # “e: is provided by # Z: D, -+ Do defined 

by: 

Ig (x Zk), 

tt (A #"eg), 

_L (otherwise). 

That # z is continuous ollows from previous remar 

e s 79”: (1,Q.O) such that ( # *k,) defines # Z. 
cr is ground # u is an SPA -term. 
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. The proof is like that of Lemma 4.5. It is an induction on W, but the 
subcases are, as it were, handled primitive recursively inside the # O’s rather than 

fact the terms # z and also closed terms EN”: (L, c, o) are defined by induction 
ach (H+Pk,) defines a function f, such that: 

f(Qf(fL is a list of the finite elements of D, which are 2 ez. 
0- =o:Take #” = hxhp (if0 Zx then ff else (if Z(( - 1)x) then NEC p else p)) and 

EN” = hxhy (if0 ZX then Z(( - 1)~) else Z(( - 1)x)). 
ere (ifm . 6 l then - - - else - - - ) abbreviates (3, (0 9 l )(- = -)( - - - )); 

EG is the term defined in the proof of Lemma 4.5. 
a= b:Take #‘= hxhy (if0 2% then fl else NEG (EQ(( - l)x)y)), and EN’ = hxhy 

Zx then (- 1)y else (- 1)x). 
ere is an _2&-term defining the (p.r.) equality predicate, under the above 

identi ion. 
U = ( Cl,..., v~, 7) with r ground and n > 0: First define the context OR[ ] by: 

GW[ ] = I(+,, (Ac~(~~~~hx(if, Zx then else V([ ]x)(a(‘-*I(( - 1)x)))). 
ere V is tht.: term defining parallel Y given above. 
If Z? (L --) 0) is an open term then if all of (Fk,). l l (Fk,) define fl in an , 

environment ip then (QR[t;lk,) defines ff in p and if one of them defines tt in p, 
[Fjk,A) defines tt in p, (m 3 1). 

L41~~ (ORIF]ko) defines fl. 
Then take 

#” 

(au (EN”1 (FIRST xz)y )))] (SIZE x)). 

ere c# = (c+,. . .) &r,, 7) and FIRST, S CQND and SIZE define primitive 
recursive functions f, g and h such that if m is a trivial c-code or the set F 

y m is empty then h(m) = 0; otherwise h(m) is the size of 6;‘ 
e u’ l 

g(m.i): 2 = 1, h(m)}. 
e facts that e”, # “d i eS;;m,i,) # “d for s<cwe i 

ere is a finite e 7 efqrn,i, such that e$,,i, # u’ d(e), for some 
h (m \ 3 I!, that this is a correct definition of # *. , 

Next set 

=A&“-. Aa >AyAa ;,,+I,( (1-w) (A a:Z,& ( 
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the set F associated with e”, by m is { e:m,l,r, =$B 0 0 l -ul 
e i(m.n,~) e ,;,,,,, + l.l) : 

l~l~h(rn)}. 

Notice that if, for x1,. . ., x, in o,, e:x, l 0 9 x, = d’ f 1 and d’ # ei;m.n+l,IJ 
then for some i, with 1 s i 6 n, ez,,,i,,) # a’xi (h(m) > 0 and 1 G I s h (m )). 

u ,....a”.L.T.T) and if the set F associated with m is 0 then 
kx (nb if eO,x, l l l x, = d’= 1 then kx, l l l x,m d = d’ and if for all 
I, with l<&h(m) t re is an i with ? G i 6 n such that x? # ez,,,i,,, then 

l **x”md =d (xi E 
inally, if e Gx l l - l x, = I, and whenever eam,i.,)# ‘?xi is false for all i between 1 

= d then kx,-x,md = d and otherwise kx,***x,rnd = 1. 

Now we can take 

It is now possible to prove the definability theorem. Suppose x E I), is 
computable. If o is ground it is certainly definable, and if it is i it is defined by a,. 

otherwise there are primitive recursive functions fl, . . .,f,,, g such that 

where a = (al,. . -. cr,, T) with T ground, and g(nr ) > 0 for all m 2 0. Let 
F 1,. . ., F,, G define fl, . . ., fnr g respectively. 

Then x can 3e defined by the term: 

( # “n (Ex )a>))(a;;T; (( + 1)x ))(EN’ko Gx ))))ko). 

It is interesting to notice that only recursion operators of level 3 haw been used. 
Notice too that is only needed to define elements of level 2 2, confirming the 
impression that only systems cf McCarthy-recursio n equations perhaps with some 

parallel facilities. are needed to define functions of level 1. 
It is not difficult to define enumeration functions ( }“: L-+C such that if rt codes 

an r.e. set of fimte elements with lub, f then (n)rr = fi Indeed this follows from 

the definability theorem. There are computable functions a:: 

for some n E e resist the temptation to go any 
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operational semantics which is provided by the rules for the reduction relation of 
.Z&+ extended to all .Z’PA+3-terms together with the following: 

ere +3 abbreviates +9PA+3. 
Clearly -+$ as defined is the transitive reflexive closure of +a for terms o 
an be shown (by a simultaneous induction) that 73 is consi nt in the sense that 

F*3 tt cannot both hold and that if Ml+3 (i = 2,3) then for 
M& M4 (i = 2,3). Then the Church-Rosser theorem holds for +g 

and we can define the evaluation fanction, EvalPA+3 by: 

EvalpA +3 (M) = c iff M-,* c, for any program M. 

The computability lemma goes ckrough as before, with addition of the easy 
proof of the computability of 3. Thus we find that EvalPA+3(M) = c iff 

J(.L)=d P_++g c [ 1 , since the other half is routine. The proof -’ Theorem 
4.3 clearly extends and we have i&l&+3 N, iff M&PA : 2 MO and also Ma =PA+3 N, 

iff &!g=PA+3 NC. Finally the analogue of Theorems 4.6 and 4.7 hold, the proofs 
being similar and of course the definability theorem holds too. With all this, we 
have at last an example of an operational and denotational semantics which fit 
together harmoniously. 

As regards the problem of generalising these results to other domains than the 
!ntegers, it seems feasible to carry them over to other discrete cpo’s, that is, cpo’s 
with no increasing chains of length > 2, considering in some way effectively given 
domains and base functions on them for the computability considerations. A more 
challenging problem would be to give a goold definition of “concrete datatype” and 

an arbitrary one. Among the con datatypes should be the 
domains, and the cpo of all e and infinite sequences of 

en as the initial subsequence 
escribed in [8]. oughly, the concrete datatypes should be 

so that notations for 
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