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The completeness theorem for the first-order predicate
calculus characterises provability by a semantic means which
demonstrates the logical nature (validity) of theorems. Our
aim here is to attempt something similar for definability in the
full type hierarchy by terms of the typed A-calculus. The
obvious first try is invariance under permutations, but this
fails. A first extension using hereditarily defined relations
characterises A-definability up to type level 2 (theorem 1); we
do not know what happens at higher types. A second extension
using a generalised kind of relation succeeds in characterising
A—definability at all types when the ground set is infinite
(theorem 2). Along the way (theorem 3) we obtain a complete-
ness theorem for Bn—conversion. It would be interesting to
investigate relative definability, to look at other models of
the typed A—-calculus and to consider the untyped A-calculus.
Since the present work was completed, Statman has obtained other
interesting results in the same area; see, especially, [Stal
where, among many other things, a stronger version of our
theorem 3 is proved. -

For information on the typed i-calculus, consult [Hin]; here
we briefly consider the necessary background material. The set

of types is the least set containing 1 and containing (o ~» 1) if
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it contains o and 1 ; (

(01 > (....(om > T)...))

of a type is defined by induction on types: r(1) = 0 and

01,...,om,r) abbreviates
(

for m20). The rank (= order = level)

r(o > T) = max(r(T), r(o) +1). We assume a denumerable set,
Var , of variables ¥ of each type o, and put Var = Y Var_ (and
often omit the superscripts on variables). The set of terms of
the typed X-calculus (as considered here) is the least set such

that:

1. TEach variable x° is a term of type o.

2. If M, N are terms of types (o -+ T),0 respectively then
(MN) is a term of type 1 (called a combination).
3. If M is a term of type T then (AxG.M) is a term of type
(o » 1) (called an abstraction).
The set of free variables of a term M is denoted by FV(M); we
do not distinguish a-equivalent terms and often drop brackets
(understood as associated to the left); we use M = N to mean
M and N are B,n-interconvertible. ’

We consider a fixed non-empty ground set D throughout and the
full type hierarchy {Do} is defined over D by: D1 = D and
oo T (DU -> DT) the set of all functions from D_to D_.  The
set of emvirowmments is Env = {p: Var - U DOI\/XO.QXOE DU};

p[d/xo], where d is in D° has value py when y # x and d if y = x.

The valuation [[M]](p) of a term is defined by induction on terms:

1 [0x"1(e) = px”
2. (Ml (o) = [(M]) (o) (IINT] (p))
3. [ (p)(a) = M) (p[a/x°])
If M has type o then [[M]](p) is in D_. The value of (M1 (o)

1l

depends only on what values p assigns to the free variables of
M; 1if M is closed we often omit reference to p. If M = 8.n N
then for all o, [[M]](p) = [[N]](p). An element d in U Do is
A-definable if there is a closed term M (one without free

varigbles) such that 4 = [[M]]; it is A-definable from X EUODO
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if there is a closed term M and elements d

=[] (a))... ().

Because of the "logical' nature of the A-definable elements,

1""’dn of X so that

they should be invariant under permutations of D. Precisely,
let @ D » D be a permutation and define ﬂU: DO »-DO by

induction on types putting Wl = 7 and for f 1n D(o S 1)?

-\ o o -1
)(f) = TTT f 'ITO .

Mo » 1
Then we say an element d of D0 is Tnvariant if m (d) = 4 for
all such permutations, it It is easily shown FLHuT that all
A-definable elements are invariant but, as remarked by LHuchli,
there are uncountably many invariant elements when D is infinite
(1,1,1) as

(even in D(( ). For example taking o

1> 1),1,1) =def
a truthvalue type let tt and ff be, respectively, the terms
AX. Ay.x and Ax.Ay.y. The ground equality EQ: D(1 Lo
b bl
invariant but not A-definable if |D| >1, where EQ(d)(d

[[tt]] if 4 = 4" and [[ff]] otherwise.

) is

M. Gordon proposed, as a possible remedy.,that relations
rather than just permutations should be extended to higher
types; this idea was also used by Howard for defining his
hereditarily majorisable functionals [Trol. Specifically
suppose R ED&(K any ordinal) and define R0 [= Dz by induction on

. _ . K
types putting R1 = R and for f in D(o > 1)

_ K
Rig 5 o)(f) =V a e D (R (a) DR (£(a))).
Here f£(d) is <fA(dA)>X<K' Then an element d of Dosatlsfies R
if R (<a> ) holds.
o A<k

PROPOSITION 1. Suppose R ¢ DK. Then every A-definable
element satisfies R and every element A-definable from a set of

elements satisfying R itself satisfies R.

Proof. We demonstrate by induction on terms M that:
Vo eEnve. (Vx' « FV(M).RT(D(XT))) D RO(HNUKQ))

where o is the type of M. Here p(x') is <Q6XT)>A<K and [[MIl(p)
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is <[M1(p,)>, ... T T
In case M is a variable, x , [[M]J(p) = o(x ) which satisfies

Ro by assumption. In case M is a combination (MlMg),[[Mngﬂ(g)

= HMlﬂ (O)GIMQH(Q)) and this satisfies R_ by the definition of

) using the induction hypothesis for M, and M,. In case

(0 > 1 1 2

M is an abstraction (AXO.Ml) let d satisfy R . Then
(D, o) (a) = [ Nlp"), where o' = <p,[a,/x°]>, and we can
apply the induction hypothesis to Ml’ concluding the inductive
proof. The first part of the proposition then follows
applying the above to closed M. The second part is then
immediate. [

As an example of non-definability suppose 0,1 are distinct
elements of D and take R = {<0,0>,<0,1>,<1,0>}. Then
RO(HttH,HffH) does not hold as Rl(i,O) and Rl(O,l) but not
Rl(ﬂttﬂ(l)(O),Hffﬂ(O)(l)); so EQ does not satisfy R as RI(O,O)
and Rl(O,l) but not Rl(EQ(O)(O),EQ(O)(l)). This shows EQ is
not A-definable when |D| > 1.

As an example of non-relative definability ccnsider the
"

™iniversal quantification N

functional, F: D(1 0)» D, where:

([tt]] (if £(a) =[[tt)for 211 4 in D)
F(f) =

[[£f]] (otherwise)

Now F is invariant but not A-definable from EQ if |D| »2.  For
let R = {<0,0>,<1,1>} where O # 1. Then EQ satisfies R but
[ax'.tt]] and g(d) =[[tt]] if d is O or 1 and g(a) =[[£]]
(f,g) but not R_(Ff,Fg).

with f

otherwise we have R
(v > o)

(Incidentally F is A-definable from EQ if [D| <2.)

THEOREM 1. Suppose r(c) < 2. Then if D is infinite and

f €Do satisfies every Rc D2, f is A-definable.

Proof. We Jjust consider two cases to give the idea without
too much detail.  The first case is o = (1,1,1). TLet d,e,0,1

be elements of D with O #1 and put R = {<d,0>,<e,1>}. Then
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R (fde,f01) and so for all d,e in D either fde = d and fO1
or else fde = e and fO1 = 1. So either f01 = 0 or fO1 1

n
(@)

in the first case £ =[[tt]] , in the second case £ =[[ff]].

The second case is ¢ = ((1,1),1,1). We can suppose w ¢ D1
and choose s: DT »'Dl to act as the successor on the integers.
For g in D,y end d in D let R ={<g"da,s"0> |n > 0}. As
Rl(d,o) and R(1 y )(g,s) and f satisfies R there is an n such
that fgd = g'd and £s0 = s°0. As the s(0) are all different
we see that for some n,f = [[Ax. Ay.x ()], in an obvious
notation. [

We believe this theorem holds without the restriction on D;
we know nothing about what happens at higher types.

To proceed further we try to interpret the implication sign
in the definition of the Ro Y on in an intuitionistic way, hoping

thereby to make any f satisfying RO more likely to be

>
constructive and therefore X—definabl;. In order to do this
we use Kripke's ideas [Kri] on the interpretation of intuition-
istic logic.

Specifically suppose <W,<> is a quasiorder (i.e. a reflexive
transitive relation), where we interpret W as a set of worlds

and < as an alternativeness relation over W and suppose too that

R c DX W is a relation such that for all d in D°, w in W:
R(d,w) DV w' 2 w. R(a,w")

We call such an R an TI-relation and now define RO < Dg xXW by

putting R = R and for any £ in DX and v in W:
1 o> T

R, o, . (£5w0) Vu' 2 w.V d e D;.(Ro(d,w“) DR (ra,w")).

Then an element d of D; I-satisfies R if R(<a> ,w) holds for

A<k
all w in W. Tt is clear (taking W to be a singleton) how this

generalises the previous idea of satisfaction.
LEMMA 1. With RO as above and for any 4 in DZ, w in W:

R(d,w)DV w' > w.R(d,w")
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Proof. The proof is an easy induction on ¢ , using the

transitivity of <. R

PROPOSITION 2 Suppose R < Dx W is an I-relation. Then every
A—definable element I-satisfies R and every element A-definable

from a set of elements I-satisfying R itself I-satisfies R.

Proof. We demonstrate by induction on terms M that:
Vv e WVo e Envi((Vx' ¢ FV(M).R_(p x'w)) D R ([M])(p) ,w))

where o is the type of M. The proposition follows.
The cases where M is a variable or a combination are easy -
the latter uses the reflexivity of <. In case M is an
abstraction (kxo.Ml) suppose Rc(d,w') where w' > w. Then
o _ R Vomen T o
.M D) (a) =[M TI(p") where o' =<p,ld, /x 1>,

lemma 1 and the assumption on d,RT(p'XT,w') holds for all x' in

Now by

FV(Ml) and we can apply the induction hypothesis to M. DA

THEOREM 2 (Completeness Theorem) Suppose D is infinite.
Then an element 4 of DO is Xx—definable iff it I-satisfies every

I-relation R ¢ D3 x W.

We do not know if the restriction on D can be dropped or if 3
can be reduced to 2 — it cannot be reduced to 1 because, for

example, if D = w and F: D(( is defined by:

1> 1),1,1)
P(g)(a) = g5V (a)
then it I-satisfies every I-relation R ¢ D x W but is not
A-definable.

The consistency half (definability implies I-satisfaction) of
theorem 2 is given by proposition 2; the rest of this paper is

devoted to proving the other half. The intention is to

construct a suitable W and R. We begin with some notation for

vectors. Ifd-= <d1,....,dm> in 1s¥3mDo. 1s a vector )

(= finite sequence) of elements and f is 1n D( 5 1) then
. ’ . (0 5eneso s

fd is fd ....d (m> 0); if v = <Xqse-e.,% > 1sTa vector of

variables then v is mnon-repeating if the X, are all different;
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for p in Env, pv is Py 5eees PX > for a term M, Mv is
Mxl....xm and Av.M is Axl ..... Axm.M. A property P holds for
essentially all vectors of variables if there is a finite set

F c Var such that whenever no component of v is in F then P(v)
holds. Concatenation of vectors i1s indicated by Jjuxtaposition;

note the essential unambiguity of the notation Mvv'.

From now on we assume D is infinite. Let | |be a map from

terms of type 1 to D such that:
||M[|=[|N|11ffM=B,nN.

Define d 5 M for any environment p , element d of Do and term M

of type o (where o = (o . om,l)) by :

SIEREE
d ~ M= For essentially all non-repeating v in

a(pv)

fen'2g
l

1 m
IMV‘|%

p

I IA

Note that this relation depends only on the value of p at

variables of types strictly smaller than o . Also if d g Mi
(i = 0,1) then MO =8’nM1. Now for d in D0 let M(d,p) be a
term of type o such that d ~ M(d,p) if one exists, and an

arbitrary term (say x°) of that type otherwise.

Now we can define an environment o by putting for %% where

o = (ol,....,om,1), and d in ligEmDOi
o o
ps(x )(a) = ||x M(dl’ps)""M(dm’ps)ll

The above remarks show, by structural induiction on o , that this

is a good definition.

LEMMA 2. For all terms M [[M]] (o) ~ M.
s
Proof. Without loss of generality we can just prove the
proposition by induction on terms in long Bn -normal form, see
[Jen]. So assume M has the form Ax, ....Ax .xM ....Mn where

1 m 1

XMi"'°Mn has type t and the Mj (1<j<n) are in long Bn-normal

form. To show [[M]] (ps) 5‘ M it is enough to consider only
s
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vectors, v, in E Var none of whose components are free
o]

1<1<m

variables of M. By tak%ng a-conversions of M we see that the
case v = <x1,...,xm> is typilcal. 5o we calculate:
) Co ) (o x ) oo x )= M. .eox I (o)
= [, ... Do)
= o GOlMo ). A TiCo,)
= ) 1 )
||XM([[M1]](QS/,DS)---M(l[Mn]](oS,,os))|
= “XM ..M y' (by induction
1 n
hypothesis, the definition of ||'|| and the above remark on g)
= HMX1 ..... xm||. K

This gives a completeness theorem for Rn—conversion (cf.

[B8h]). From now on we generally omit the reference to Py in
[l ).
THEOREM 3. For any term M of type 1 , [M]] = ||M||. Further

for any terms M and N of the same type o:

W=, NiffVe e Bav[[M](e) = [0 (o) iff ()] (o) = [[NNCo )

Proof. The first part is immediate from lemma 2. For the
second part the implications from left to right are well~known;
for the converses suppose HMH(QS) = HNH(QS), o = (01,....,0m,1)
and let X be a variable of type o8 not free in either M or N

(1<i<m). Then

||Mx1....xm]| = HMXl...XmH (by the first part)
=[[Nx1....xmﬂ (by assumption)
=|\NX1....xm‘[(by the first part).

So Mx,...x = Nx,....x_ and so taking the x. to be all
1 m B,Nn 1 1 :

aifferent we find that M =, N o

s
The second part of this theorem fails if D is finite; for
example, there are only finitely many elements in

D but infinitely many closed normal terms of that
((1 > 1),1,1)

type.
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We are now in a position to define <W,<> and R. First:

= {<d,v,;> d is a vector of elements of g Do’ v and v are

non-repeating vectors of variables, all three have the same
length and corresponding components have the same type}.
For i = 1,2,3 the ith component of any w in W 1s written as Vs
for any w,w+ in w the concatenation ww' is defined to be the
componentwise concatenation <w1w1,w2w2,w3w3> and we define w<w'
to mean w' = ww' for some W . Finally, R ¢ D3 X W is defined by:

R(d,w) = There is a closed term M such that 4, = [[M]](wl),
and d; = ﬂMwiH for i=2,3.

Clearly < 1s reflexive and transitive and R is an I-relation.

A term, M, is head-A —free iff it has the form XMi""Mk'

LEMMA 3. Let M be a head—-A-free term and let d,d' be elements
of Dc' Then if d ps(v) =4’ ps(v) for essentially all non-—
repeating vectors, v, of variables of the appropriate types such

that do(v) has type 1 , then [[M][(d) =[[M]](d").

Proof. As M(d,ps) =4 nM(d',ps) by assumption, the conclusion
b

is immediate from the definition of o b

LEMMA 4. 1. Suppose R (f,g,h,w) holds where w = <d,v,v>.
Then there is a closed term M such that f =I[[M]4, g(pv ) =|IMVV+H
and h(pv+) —[IMVV H whenever vv+, ;;+ are non-repeating vectors
of variables of the appropriate type such that[IMvv+ﬂ is of type 1.

2. Suppose f,g,h are of type ¢ and w is a world. If g,h are
dernotations of head—A-free terms and there is a closed term M
such that f = [[M]]w1,g = [[ng]] and h = [[Mw3]] , then Ro(f,g,h,w)
holds.

Proof. Both parts are proved together by induction on o.
1. For 1 the result is immediate from the definition of R.

For the case ¢ - T suppose R (f,g,h,w) holds where w*=<d,v,;>.

o+ T
Let w' = w<e,x,x> be a world with e in Da' Then by induction

hypothesis, using part 2 we see that Ro(e,ps(x),ps(;),w') (take
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= AV.AX.X).
RT(fe,gp (x)
using part 1, there is a closed term M such that
= [uJhe, (go_(x) o (v) = Mwxy™ | and (no (), (v1) = [Mviv "]

+ T . :
whenever vxv , VXV are non-repeating vectors of variables of the

Therefore, by the definition of R L oo Ve have
2ho (x),w'). Therefore by induction hypothesis,

appropriate type such that HMVXV+H is of type .

Clearly M may depend on e, x and x. As o (X)p (v +) = HMVXV+H
and neither side of the equation mentions e or ; and as vxv+ is
non-repeating and M is closed it follows by Theorem 3 that M is
independent of e or x; similarly, using the equation for h it
is independent of x. Therefore we have & closed term M such
that fe =[[M] de, g(oSX)(pSX+) =[[Mviv+ﬂ , h(psi)(psg+) = [[rxv ]
whenever e is in D0 and vxv and vxv are non-repeating vectors

of variables of the appropriate type such that [[Mvxv+]] is of type

1, which finishes the proof of part 1.

2. For 1 the result is immediate from the definition of R. For
the case (o - T) suppose f,g,h are of type (o » 1), w = <d,v,v>
is a world, that g,h are denotations of head-A-free terms and

that there is a closed term M such that f =[[M]d, g =[[Mv]] and

— + o+ —+
=[[mv]l . Let w' = w<d ,v ,v > be a world and suppose that
R (e,a,b,w'). Then by induction hypothesis using part 1, there
9 + ++ + 4+
is a closed term M, such that e =[[M Jlada , a(p(v ")) —[IM vwov ]

—++ Sttt 4+ ———t+
and b(p(v ))=[[M1vv v Jwhenever vv v , vv v  are non-—

repeating vectors of variables of the appropriate type such that
HM vv v H is of type 1.
+
Now we have, f(e) = HMHd<HM Tlaa ) = HMgﬂdd , where
+ ++
M2 = Av. Av MV(M vvo). Since a(ps(v )) = HMl

essentially all non—repeating vectors of variables of the

VV+HpS(V++> for

appropriate types such that a(ps(v++)) has type 1 and since g is
the denotation of a head-A-free term, we can apply lemma 3 to
see that gla) = éIMlvv+H. Therefore gla) = [[Mv]] HMlvv+H =
HMZVV+H and similarly h(b) = HMZVV+H. As g(d) and h(b) are

clearly, therefore, denotations of head-A-free terms and as we
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have already shown that f(e) = HMQH dd+ 1t follows by the

induction hypotheses, using part 2, that RT(fe,ga,hb,w'),

showing Ro R T(f,g,h,w) and concludi?g the inductive proof. N
The proof of the rest of theorem 2 is now immediate. For

suppose an element 4 in D0 I-satisfies every I-relation

R c D3 X W. Then with.R as defined above and taking w_ as the

world all of whose components are empty we have Ro(d,d,d,wo).

Then by lemma 4.1 there is a closed term M such that 4 = [[M]L.
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