
The Origins of Structural Operational Semantics

Gordon D. Plotkin

Laboratory for Foundations of Computer Science,
School of Informatics, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, Scotland

I am delighted to see my Aarhus notes [59] on SOS, Structural Operational
Semantics, published as part of this special issue. The notes already contain
some historical remarks, but the reader may be interested to know more of the
personal intellectual context in which they arose. I must straightaway admit that
at this distance in time I do not claim total accuracy or completeness: what I
write should rather be considered as a reconstruction, based on (possibly faulty)
memory, papers, old notes and consultations with colleagues.

As a postgraduate I learnt the untyped λ-calculus from Rod Burstall. I was
further deeply impressed by the work of Peter Landin on the semantics of pro-
gramming languages [34–37] which includes his abstract SECD machine. One
should also single out John McCarthy’s contributions [45–48], which include
his 1962 introduction of abstract syntax, an essential tool, then and since, for
all approaches to the semantics of programming languages. The IBM Vienna
school [42, 41] were interested in specifying real programming languages, and,
in particular, worked on an abstract interpreting machine for PL/I using VDL,
their Vienna Definition Language; they were influenced by the ideas of McCarthy,
Landin and Elgot [18].

I remember attending a seminar at Edinburgh where the intricacies of their
PL/I abstract machine were explained. The states of these machines are tuples
of various kinds of complex trees and there is also a stack of environments; the
transition rules involve much tree traversal to access syntactical control points,
handle jumps, and to manage concurrency. I recall not much liking this way
of doing operational semantics. It seemed far too complex, burying essential
semantical ideas in masses of detail; further, the machine states were too big.
The lesson I took from this was that abstract interpreting machines do not scale
up well when used as a human-oriented method of specification for real languages
(but see below for further comment).

Rules play a central rôle in SOS. I recall two contributions in particular. The
first is Smullyan’s elegant work on formal systems [66]. These are systems of
rules of the form:

A1, . . . , Am

B

where the antecedents and consequents are atoms of the form P (t1, . . . , tn) and
where, in turn, P is a predicate symbol of a given arity n and the tj are terms,
taken to be strings of constants and variables. These systems enable the inductive
specification of sets of strings; for example it will be clear how to regard Post
production systems as formal systems with a single unary predicate symbol

in which the rules have a single antecedent. Smullyan showed how his formal
systems enable very clear and natural specification of a variety of examples.
The second contribution is Henk Barendregt’s thesis [10] where reduction in the
λ-calculus is axiomatised by rules such as:

N ≥ N ′

MN ≥ MN ′

This was a striking improvement on the usual tedious syntactic definition and it
influenced my later work on programming aspects of the λ-calculus.

After completing my doctoral thesis in 1972, I went to the USA, visiting
Syracuse and Stanford. One interest of mine there was John Reynolds’ paper [61]
on call-by-name, call-by-value and continuations; Michael Fischer at MIT had
also written on this topic (see [19] for a recent version). This led to my work,
reported in [54], where I wanted to deal systematically with the subject of the
λ-calculus as a programming language. It was therefore important to give a
thorough treatment of operational semantics and how the equational aspects of
the λ-calculus relate to its programming language ones. Landin’s SECD machine
provides one kind of operational semantics and Reynolds had used evaluation
functions to provide another. These were to be linked to the equational logic
of the λ-calculus via the relevant call-by-value, or call-by-name, normal order
reduction; normal order reduction itself was a well-known idea in the λ-calculus,
though not for calling mechanisms.

Several reduction relations are considered in [54]. One is a ‘left reduction’
relation −→

V
. Iterated, this provides the required call-by-value normal order re-

duction. The relation −→
V

is defined inductively in the paper, but that definition

is immediately equivalent to one using the following set of rules, leaving out
those for the constants:

M → M ′

MN → M ′N

N → N ′

MN → MN ′ (M a value)

(λx.M)N → [N/x]M (N a value)

Immediately after the definition of −→
V

an auxiliary reduction relation is defined

by rules, rather than inductively, so perhaps I considered there to be little dif-
ference between the two modes of presentation. In more modern terms, the rules
for −→

V
provide a small-step call-by-value transition relation; a corresponding

relation −→
N

for call-by-name is also given, again defined inductively.

Mike Gordon’s thesis [20, 21] on pure LISP, under the direction of Rod
Burstall, appeared in 1973. It contains a pretty rule-based operational semantics,

with the environment needed to model dynamic binding incorporated in the con-
figuration; this was the first treatment of part of a real programming language.
Also relevant was work on recursive function definitions à la McCarthy [46] by
Cadiou [15] and Vuillemin [70]; they considered various computation rules in-
cluding ones for call-by-value and call-by-name. The Edinburgh group further
increased in strength with the arrival of Robin Milner from Stanford in 1973.

My next paper in this line was going to be on the denotational semantics
aspects of the untyped λ-calculus considered as a programming language. How-
ever, it seemed better to consider the simpler typed case first; here the relevant
work was by Dana Scott: his famous, then underground, paper on LCF, the Logic
of Computable Functions [65]. This resulted in my paper on PCF [55, 56], the
Programming language for Computable Functions, where I gave an operational
semantics for the term calculus of the logic, a typed λ-calculus with booleans,
natural numbers and recursion at all types; later I worked on the untyped case,
but that material never appeared in print. The operational semantics of PCF is
given by a system of rules for a relation which one would now view as a small-
step call-by-name transition relation; the connection to a variant call-by-name
SECD machine is mentioned but not given. I viewed this operational semantics
as making precise Scott’s thoughts on symbolic calculation. I further claimed
that it is only through having an operational semantics that the term calculus
of the logic could be viewed as a programming language.

I recall Dana was sceptical regarding the latter point and, in that connection,
he asked a good question: why call it operational semantics? What is operational
about it? It would be interesting to know the origins of the term ‘operational
semantics’; an early use is in a paper of Dana’s [63, 64] written in the context
of discussions with Christopher Strachey where they came up with the denota-
tional/operational distinction. The Vienna group did discuss operations in their
publications, meaning the operations of the abstract interpreting machine, but
do not seem to have used the term itself.

The above discussion of influence is not complete, but rather intended as a
description of immediate influence. There was certainly other relevant work, for
example, by Wadsworth [71, 72] and by Milne and Strachey [52]; other authors
whose names come to mind as working on operational notions for the λ-calculus
are Corrado Böhm, Clement McGowan, Jim Morris and Peter Wegner, and this
list is surely not complete. Wadsworth started from a semantics and found corre-
sponding λ-calculus mechanisms; these perform reductions inside λ-binders and
so do not, I think, correspond to any programming language mechanisms. Milne
and Strachey converted operational notions into the framework of denotational
semantics and so were not concerned with finding direct symbolic presentations
of operational semantics.

In the following years greater experience was gained with rule-based ap-
proaches to operational semantics. The work on PCF had yielded some increase
in simplicity: from the untyped case to the typed one. In 1973 I taught a course to
Edinburgh third year students and, since I felt the typed λ-calculus was still too
far from their experience, I tried something simpler, namely McCarthy recursive

function definitions. By then rule-based ideas on operational semantics were cur-
rent in the Edinburgh group and had come to seem quite natural. When Robin
taught the third year course on the semantics of programming languages in 1975
he used them for the imperative case, publishing the rules in [50]; the language
used was SIL, the Simple Imperative Language, which features in introductory
texts on denotational semantics such as Mike Gordon’s [22], itself the product
of an Edinburgh undergraduate course. Outside Edinburgh, Matthew Hennessy
and Ed Ashcroft and Egidio Astesiano and Gerardo Costa used the ideas when
working on nondeterministic extensions of PCF, possibly with call-by-value [25,
26, 7, 8].

The ideas were next extended to handle parallel programming and concur-
rency. In 1979 Matthew Hennessy and I gave a structural operational semantics
for an extension of SIL with a construct for parallel programming [29]; the transi-
tion relation is then nondeterministic. In the second half of the 1970s Robin was
working on concurrency, developing what was to become CCS, his Calculus of
Communicating Systems. In 1979 he found a beautiful and surprising structural
operational semantics; the central new thought was to put transition information
above the arrow, i.e., to use Keller’s [33] labelled transition systems in the rules.
This enabled one to give operational semantics for languages for communicating
processes. Robin then left for six months in Aarhus, under their visiting lecturer
program. That resulted in his CCS book [51] where the operational semantics
was first published. As an aside, it is interesting to note his remark there that
‘the original definition of ALGOL 68, though strongly verbal, is in essence a set
of reduction rules.’

Some other papers by Matthew, Wei Li, Mark Millington and me exploited
these ideas further: to study the model theory of CCS [30]; to give operational
semantics for Hoare’s (original) CSP [58, 60], inspired by the operational seman-
tics in [1]; to give semantics for multitasking and exception handling in Ada and
semantics for Edison [39, 40]; and to prove correct translations of some of these
languages into each other [28, 27, 40, 49]. Some of these publications are dated
after 1981, but they form a logical part of this group of papers.

Nondeterminism is a natural companion to concurrency and parallelism. Hen-
nessy and Ashcroft’s and Astesiano and Costa’s work is mentioned above; I gave
an operational semantics for Dijkstra’s guarded command language in [57]; and
operational semantics also proved useful in work with Krzysztof Apt on count-
able nondeterminism [4, 5].

A realisation struck me around then. I, and others, were writing papers on
denotational semantics, proving adequacy relative to an operational semantics.
But the rule-based operational semantics was both simple and given by elemen-
tary mathematical means. So why not consider dropping denotational semantics
and, once again, take operational semantics seriously as a specification method
for the semantics of programming languages? When Mogens Nielsen invited me
to Aarhus to take up a six month visiting lectureship in 1981, I decided to pursue
this idea by giving a course of lectures on the subject. These were as follows:

1. Transition Systems and Interpreting Automata

2. Simple Expressions and Commands
3. Definitions, Declarations and Type Checking
4. A First Subset of PASCAL
5. Functions and Procedures
6. Parallelism with Shared Resources
7. Communicating Processes
8. Hardware Description Languages
9. Types, Abstract Types and Polymorphism

with the SOS notes corresponding to the first three and the fifth.
It was by then natural to start with a justification of the rule-based approach,

beginning with a discussion of what I took to be the main competitor, abstract
machines, or interpreting automata. So in the first lecture a discussion of the
SECD machine was given and used as an introduction to structural operational
semantics. Two ideas were important for me there and bear repeating here.

The first idea, already clear from the above ‘preliminary trials,’ was that
structural operational semantics was intended as being like an abstract machine
but without all the complex machinery in the configurations, just the mini-
mum needed to explain the semantical aspects of the programming language
constructs. The extra machinery is avoided by the use of the rules, making the
exploration of syntactical structure implicit rather than drearily explicit. Of
course, abstract machines are important for the actual implementation of pro-
gramming languages; indeed it would be good to have a general theory of such
machines.

It is worth saying more about the relationship with VDL here. After working
on PL/I, the group, now with the addition of Cliff Jones, worked on ALGOL
60 [6]. They too were sensitive to the problem of the ‘grand state’ of the PL/I
machine, and sought a ‘small state’ alternative. They separated out the environ-
ment from the state; Cliff Jones had the idea of treating jumps by a suitable class
of ‘exit’ configurations [24]; and, finally, not having to consider concurrency also
simplified matters. However they did not have the idea of using rules, central to
SOS. I have to confess that I was not aware of any of this previous development
of VDL until Cliff Jones brought it to my attention when I was writing the
present account!

The second idea was that the rules should be syntax-directed; this is reflected
in the title of the Aarhus notes: the operational semantics is structural, not,
as some took it, structured. In denotational semantics one follows an ideal of
compositionality, where the meaning of a compound phrase is given as a function
of the meaning of its parts. In the case of operational semantics one considers
the behaviour of a program phrase, which is just the collection of the transitions
it can make. This behaviour is, however, not compositional when thought of as
a function of program phrases. However the rules do give it structurally, i.e.,
primitive recursively, in the syntax; the idea of structural recursion is due to
Burstall [14].

Unfortunately I have very little memory of how I came to this view; it is not
explicit in anything I am aware of before the Aarhus notes. It may be that I began

with the idea of the rules as syntax-directed and then, perhaps considering the
comparison with denotational semantics, realised that that meant the behaviour
function can be given by structural induction. In a recent paper aiming towards
an integration of operational and denotational semantics, the structural view is
expressed in a categorical form [69].

In fact ideas from denotational semantics pervade SOS. My plan was to fol-
low Tennent’s book [68] on programming languages. Tennent used the linguistic
ideas developed by Dana Scott, Christopher Strachey and others in their semi-
nal work [67] on denotational semantics, coupled with his own contributions. I
wanted to illustrate those ideas by considering various language features for both
functional and imperative programming languages. The idea of doing this via
a series of ‘toy’ languages would have been natural given Ledgard’s survey [38]
and teaching and research experience: they make things clearer for students;
they help focus on particular semantical points; and, as Robin demonstrated,
considered as calculi they provide useful systems.

The tremendous computer science library at Aarhus was a great help for
preparing both the lectures and the notes. It enabled me to find many examples
for exercises and, much more importantly, by seeing that the method could
handle a very wide range of language constructs, my confidence in its robustness
was enhanced.

Not everything went well, particularly the treatment of recursion, where the
dynamic semantics seemed to me to be quite clumsy and unnatural, although the
idea used there of a recursion construct rec d for definitions was itself attractive.
Indeed, the rules as stated in the Aarhus notes are not quite right; they have been
corrected in the version of the notes published in this special issue. Nowadays I
would prefer to treat recursion by using a suitable µ-construct. For example if
one had a typed functional programming language, one could have an expression
construct µx:σ.e to be thought of as: x, recursively defined to be e; the variable
x will generally occur free in e. A suitable small-step transition relation rule is:

e[µx :σ.e/x] → e′

µx :σ.e → e′

where capture-avoiding substitution, familiar from the λ-calculus, is intended;
an environment-based variation is also possible. Proceeding analogously for def-
initions, one would allow identifiers to range over definitions, as considered in
the Aarhus notes in the section on modules and classes, and use the construct
µm :α.d with the corresponding transition rule.

On the other hand the rule-based treatment of static semantics, the context-
sensitive aspects of syntax, went very smoothly, and seemed to me to provide
a useful alternative to attribute grammars, at least for specification purposes.
It may be that these rules were based on ideas from the typed λ-calculus. Be-
haviour is now the type, or types, associated with a phrase and things do go
compositionally; in fact researchers had already given compositional static se-
mantics using the tools of denotational semantics. It would be interesting to
formalise the rule-based approach in the compositional case and investigate the
relationship with attribute grammars.

The lecture on PASCAL was, as will be evident, aimed at giving the seman-
tics of a real programming language, though it did not get very far. The lecture
covered some basic grammatical categories, up to blocks with constant and vari-
able definitions. The lecture on parallelism covered parallelism in imperative
languages, including synchronisation constructs: test and set, semaphores, crit-
ical sections and monitors. The lecture on communicating processes discussed
CCS in a fairly standard way and then explored some alternative semantics.
The first was a ‘true concurrency’ semantics involving multisets of actions; the
second, following Lynch and Fischer [43], viewed communication as a disciplined
use of shared variables; and in the last, influenced by Kahn and MacQueen [32],
a dataflow view of lines as buffers of values was taken. Finally there was a brief
exposition of a ‘capability language,’ in which channels could be passed as values
(cf. Milner’s pi-calculus [62]).

The lecture on hardware description languages was based on work of Mike
Gordon on models of register transfer systems [23]. The language considered
permitted both combinatorial and register transfer level circuit description and
had facilities for parameterised recursive circuit specifications; there was an elab-
orate semantics involving micromoves for circuit stabilisation. The last lecture
covered type variables, allowing constant type definitions and private ones, yield-
ing something like ML abstract types without the facility for recursive definition;
I do not know that anything was said, or thought, about polymorphism.

One topic not covered in the lectures was that of jumps. These could be
treated via continuations but that seemed to me too complex for simple jumps
and, I believe, I looked at the idea of adding suitable ‘exit’ configurations to
the usual ones, possibly following the corresponding idea for the treatment of
jumps in VDM [12, 31], the Vienna Development Method: the Vienna school went
on to denotational semantics after their work on abstract machines, inheriting
the treatment of jumps from VDL, giving us a curious cycle of influence of three
treatments of jumps, from operational to denotational and back again! Flemming
Nielson and Hanne Riis, then students at Aarhus, used this direct method to
give a thorough treatment of several kinds of jumps in a student project [53];
the two or three main sources of their inspiration were the treatment of jumps in
denotational semantics (Stoy’s book [67]), perhaps a bit of influence from VDM,
but mainly some ideas about complete labels which probably came from Bobrow
and Wegbreit’s [13].

Returning home from Aarhus I thought about revising the notes for publica-
tion, incorporating the material on concurrency. The other material was either
too preliminary or seemed not to fit into the general flow. Unfortunately that was
a project that never materialised. I sometimes wonder if (and hope that) the fun
of obtaining ‘underground’ copies helped push the ideas more than conventional
publication would have done!

Beyond that the story largely belongs to other people, and I just want to
pick up one or two points. I had deliberately worked on small step operational
semantics. Gilles Kahn and his coworkers showed with TYPOL [16], the speci-
fication language for their MENTOR system [17], what could be done with big

step semantics, which they called natural semantics because of an analogy with
natural deduction. Their system made good use of the fact that rules can be
viewed as Horn clauses and so can be executed in Prolog, thereby yielding an in-
terpretation facility for the language. Interestingly this effort was initially driven
by the desire to specify programming language type systems, specifically that
of Ada. However it was soon realised that if one can have rules for the relation
between a program phrase and its type, one can just as well have rules for the
relation between a phrase and its value. An important question is how to execute
the rules efficiently; work in this direction linking with attribute grammars can
be found in [9].

Big step semantics also appears in the work of Per Martin-Löf. In [44] he gave
an informal structural definition of an evaluation relation for closed type-theory
terms; this evaluation relation is a big step semantics and so is the graph of
the corresponding evaluation function. Per’s paper was published in 1979, and
therefore anticipates the Aarhus notes; he is very clear that his type theory can
be thought of as a programming language. I think I was not aware of this work
until after my visit to Aarhus.

Robin Milner and I had never written a paper together although our ideas
had most certainly influenced each other’s. One day I proposed to Robin that we
do something. The SOS notes had deliberately not been written in a theoretical
framework as I wanted not to be constrained but rather to work naturally with
the various features; there was some idea that a theory could come later: once we
had the data! Robin produced some notes on a general approach to operational
semantics for a given algebraic signature, but unfortunately no publication re-
sulted. There has been quite a bit of work on formats for operational semantics,
see, e.g., Chapter 3 of [11]; what Robin had in mind was closest to De Simone
format.

As mentioned above, SOS can be convenient as a basis for proving properties
of programming languages; indeed in the Aarhus notes some proofs by structural
induction are given and the possibility of proofs on the size of derivations is
mentioned. A common current example is the proof of type safety properties, to
the general effect that a phrase that can be typed cannot result in a dynamic
type error. Another example is proving that the rules of a program logic are
sound: this last theme first appears in the work of Apt, who used SOS for proof
rules for CSP [1], in his survey article on Hoare logic [2], and, most recently, in
his book with Olderog [3].

I should like to conclude this account with an idea which occurred to me
on returning to Edinburgh but that also never saw the light of day. There is a
question of how best to present the rules. Generally one is content with a ‘logical’
format, such as the CCS left rule for the parallel operator:

P
α−→ P ′

P |Q α−→ P ′|Q

I saw the rules as directly formalising the natural English description, for ex-
ample, this rule says that the first step in executing P |Q can be that of P . In

this sense one really wants to read the rules clockwise: I have P |Q and I want to
start executing it, so I can start executing P . One can organise this information
diagrammatically, as follows:

P

P ′

α

P ′|Q

α

Parallel Composition (Left): P |Q

where the arrows indicate transitions as usual and the horizontal lines of rules
become long drawn out turnstiles, perhaps interspersed with some conditions,
the side-conditions of the rules. The reader may prefer to insert P |Q, the ‘subject’
of the rule, in the gap.

This notation has the advantage of directly showing the flow of control, rather
than having to compute it by looking at the rules. Another advantage is that
it is quite compact and by combining several of these diagrams one can give a
single diagram for all the rules for a given program construct. For example for
the CCS parallel construct one could have:

τ

P ′|Q′

b
b

b
b

b
b"

"
"

"
"

"

α = β

P

P ′

α

P ′|Q

α

Q

Q′

β

P |Q′

β

Parallel Composition: P |Q

This can perhaps be viewed as a way of depicting flow of control via a kind of
schematic Petri Net that also allows logical connections between conditions. One
can go further. For example, for an imperative language one could also leave the
state component implicit. So for the rule:

〈S1, σ〉 −→ 〈S′
1, σ

′〉
〈S1;S2, σ〉 −→ 〈S′

1;S2, σ′〉

one could have the diagram:

S1

S′
1

S′
1;S2

Sequential Composition: S1;S2

where the idea is that the state changes along whole transitions but remains
constant along inferred ones. One could again combine such diagrams to give a
single diagram for each program construct.

Similar diagrammatic conventions allow one to give rules with environments
but without explicitly mentioning them: one only indicates the local changes in
information. For example suppose the imperative language had a local definition
facility let x = E in S, where E ranges over arithmetic expressions. Then one
would have the rule:

ρ[x = m] ` S −→ S′

ρ ` let x = m in S −→ let x = m in S′

which could be indicated diagrammatically by:

S′S let x = m in S′

[x = m]

Local definition: let x = m in S

where the change in environment is indicated by decoration of the arrow and
where, for variation’s sake, we use a horizontal display instead of a vertical one.

What I find interesting in the above story of the origins of SOS is, on the one
hand, how complex the various influences on ideas are and, on the other hand,
even if the ideas themselves are simple, how much work one needs to do to show
their power. I would expect that in this respect the story of the development
of SOS is quite typical. Another interesting aspect is the mutual influence of
teaching and research: things need to be simple so they can be taught to students
who do not know strange calculi, and they need to be comprehensive to convince
them; pleasingly, these qualities are also what are needed scientifically.

Acknowledgements

First I would like to give a belated but very heartfelt thanks to Mogens Nielsen
and everyone at Aarhus for the great visit there, which gave me the time and
facilities for work on operational semantics. Special thanks go to Jette Milwertz,
who typed up the notes, and to Karen Møller, Flemming Nielson and others,
who kept them available for many years as an Aarhus technical report, includ-
ing a reprinting in 1991. Having such a visiting lectureship available is a truly
wonderful idea; there should be many more such positions in the universe!

My truly heartfelt thanks also go to Dr. Tetsuya Saito who, encouraged by
Professor Tatsuya Hagino at Keio University, produced the original Latex version
of the SOS notes in 1993; this was no mean task. Thanks also go to Luca Aceto
and Wan Fokkink for inviting me to publish these notes in this special volume
and for organising its proof reading and editing. I am further most grateful to
the following people for the very substantial work involved in carrying out these
latter editorial tasks: Luca Aceto, Patricia Bouyer, Ilaria Castellani, Emmanuel

Fleury, Wan Fokkink, Hans Hüttel, Francois Laroussinie, Bas Luttik and Paulien
de Wind. Finally, thanks for comments and other help go to Krzysztof Apt, Henk
Barendregt, Mike Gordon, Jan Friso Groote, Matthew Hennessy, Cliff Jones,
Gilles Kahn, Robin Milner, Peter Mosses, Flemming Nielson, John Power, John
Reynolds, Dana Scott, Colin Stirling and Daniele Turi.

References

1. Krzysztof R. Apt, Formal Justification of a Proof System for Communicating
Sequential Processes, JACM, Vol. 30, No. 1, pp. 197–216, 1983.

2. Krzysztof R. Apt, Ten Years of Hoare’s Logic: a Survey, Part II: Nondeterminism,
TCS, Vol. 28, pp. 83–109, 1984.

3. Krzysztof R. Apt and Ernst-Rüdiger Olderog, Verification of Sequential and Con-
current Programs, Graduate Texts in Computer Science, Berlin: Springer-Verlag,
2nd. edition, 1997.

4. Krzysztof R. Apt and Gordon D. Plotkin, A Cook’s Tour of Countable Nonde-
terminism, Proc. 8th. ICALP (eds. S. Even and O. Kariv), LNCS, Vol. 115,
pp. 479–494, Berlin: Springer-Verlag, 1981.

5. Krzysztof R. Apt and Gordon D. Plotkin, Countable Nondeterminism and Random
Assignment, JACM, Vol. 33, No. 4, pp. 724–767, 1986.

6. C. Dave Allen, Dave N. Chapman and Cliff B. Jones, A Formal Definition of
ALGOL 60, Technical Report 12.105, IBM Laboratory, Hursley, 1972.

7. Egidio Astesiano and Gerardo Costa, Sharing in Nondeterminism, Proc. 6th. Coll.
on Automata, Languages and Programming (ed. H. A. Maurer), LNCS, Vol. 71,
pp. 1–15, Berlin: Springer-Verlag, 1979.

8. Egidio Astesiano and Gerardo Costa, Nondeterminism and Fully Abstract Models,
Informatique Théorique et Applications, Vol. 14, No. 4, pp. 323–347, 1980.

9. Isabelle Attali, Sémantique Naturelle: Evaluation et Expressivité, Mémoire
d’Habilitation à Diriger des Recherches, Université de Nice, Sophia Antipolis, 1996.

10. Henk Barendregt, Some Extensional Term Models for Combinatory Logics and
λ-Calculi, Ph.D. Thesis, Department of Mathematics, Utrecht, 1971.

11. Jan A. Bergstra, Alban Ponse and Scott A. Smolka (eds.), Handbook of Process
Algebra, Amsterdam: Elsevier, 2001.

12. Dines Bjørner and Cliff B. Jones (eds.), The Vienna Development Method: the
Meta-Language, LNCS, Vol. 61, Berlin: Springer-Verlag, 1978.

13. Daniel G. Bobrow and Ben Wegbreit, A Model for Control Structures for Artificial
Intelligence Programming Languages, IEEE Transactions on Computers, Vol. 25,
No. 4, pp. 347–353, 1976.

14. Rod M. Burstall, Proving Properties of Programs by Structural Induction, The
Computer Journal, Vol. 12, No. 1, pp. 41–48, 1969.

15. Jean-Marie Cadiou, Recursive Definitions of Partial Functions and their Compu-
tations, Ph.D. thesis, Stanford University, 1972.

16. Thierry Despeyroux, Executable Specification of Static Semantics, Semantics of
Data Types (eds. G. Kahn, D. B. MacQueen and G. Plotkin), LNCS, Vol. 173,
pp. 215–233, Berlin: Springer-Verlag, 1984.

17. Véronique Donzeau-Gouge, Gérard Huet, Gilles Kahn and Bernard Lang, Pro-
gramming Environments Based on Structured Editors: The MENTOR experi-
ence, Interactive Programming Environments (eds. D. Barstow, E. Sandewall and
H. Shrobe), pp. 128–140, New York: McGraw-Hill, 1984.

18. Calvin C. Elgot and Abraham Robinson, Random-Access Stored Program Ma-
chines, an Approach to Programming Languages, JACM, Vol. 11, No. 4, pp. 365–
399, 1964.

19. Michael J. Fischer, Lambda-Calculus Schemata, Lisp and Symbolic Computation,
Vol. 6, Nos. 3 & 4, pp. 259–288, 1993.

20. Michael J. C. Gordon, Models of Pure LISP, Ph.D. Thesis, Experimental Program-
ming Reports: No. 31, School of Artificial Intelligence, University of Edinburgh,
1973.

21. Michael J. C. Gordon, Operational Reasoning and Denotational Semantics, Con-
struction, Amélioration et Vérification de Programmes, pp. 83–98, Colloques IRIA,
Arc et Senans, 1975.

22. Michael J. C. Gordon, The Denotational Description of Programming Languages,
Berlin: Springer Verlag, 1979.

23. Michael J. C. Gordon, Register Transfer Systems and their Behaviour, Com-
puter Hardware Description Languages and Their Applications (eds. M. Breuer
and R. Hartenstein), pp. 23–36, Amsterdam: North Holland, 1981.

24. Wolfgang Henhapl and Cliff B. Jones, On the Interpretation of GOTO Statements
in the ULD, Technical Report LR 25.3.065, IBM Laboratory, Vienna, 1970.

25. Matthew C. B. Hennessy, The Semantics of Call-by-Value and Call-by-Name in
a Nondeterministic Environment, SIAM J. on Comp., Vol. 9, No. 1, pp. 67–84,
1980.

26. Matthew C. B. Hennessy and Edward A. Ashcroft, A Mathematical Semantics for
a Nondeterministic Typed Lambda-Calculus, TCS, Vol. 11, No. 3, pp. 227–225,
1980.

27. Matthew C. B. Hennessy and Wei Li, Translating Ada Tasking into CCS, Proc.
IFIP TC-2 Work. Conf. on Formal Description of Programming Concepts (II) (ed.
D. Bjørner), pp. 227–247, Amsterdam: North-Holland, 1982.

28. Matthew C. B. Hennessy, Wei Li and Gordon D. Plotkin, A First Attempt at
Translating CSP into CCS, Proc. 2nd. Int. Conf. on Distributed Computing Sys-
tems (ed. E. Gelenbe), pp. 105–115, New York: IEEE Computer Society Press,
1981.

29. Matthew C. B. Hennessy and Gordon D. Plotkin, Full Abstraction for a Simple
Parallel Programming Language, Proc. 8th. MFCS (eds. G. Goos and J. Hartma-
nis), LNCS, Vol. 74, pp. 108–120, Berlin: Springer-Verlag, 1979.

30. Matthew C. B. Hennessy and Gordon D. Plotkin, A Term Model for CCS, Proc.
9th. MFCS (ed. P. Dembinski), LNCS, Vol. 88, pp. 261–274, Berlin: Springer-
Verlag, 1980.

31. Cliff B. Jones, Scientific Decisions which Characterize VDM, FM’99 - Formal
Methods (eds. J. M. Wing, J. Woodcock and J. Davies), LNCS, Vol. 1708, pp. 28–
47, Berlin: Springer-Verlag, 1999.

32. Gilles Kahn and David MacQueen, Coroutines and Networks of Parallel Processes,
Proc. IFIP’77 (ed. B. Gilchrist), pp. 993–998, Amsterdam: North-Holland, 1977.

33. Robert M. Keller, Formal Verification of Parallel Programs, CACM, Vol. 19, No. 7,
pp. 371–384, 1976.

34. Peter J. Landin, The Mechanical Evaluation of Expressions, Computer Journal,
Vol. 6, No. 4, pp. 308–320, 1964.

35. Peter J. Landin, A Correspondence between ALGOL-60 and Church’s Lambda
Notation: Parts I and II, CACM, Vol. 8, pp. 89–101 & 158–165, 1965.

36. Peter J. Landin, The Next 700 Programming Languages, CACM, Vol. 9, No. 3,
pp. 157–166, 1966.

37. Peter J. Landin, A Lambda Calculus Approach, Advances in Programming
and Non-Numerical Computation (ed. L. Fox), Symposium Publications Division,
Chapter 5, pp. 97–141, Oxford: Pergamon Press, 1966.

38. Henry F. Ledgard, Ten Mini-Languages: A Study of Topical Issues in Programming
Languages, ACM Computing Surveys, Vol. 3, No. 3, pp. 115–146, 1971.

39. Wei Li, An Operational Semantics of Multitasking and Exception Handling in
Ada, Proc. AdaTEC Conf. on Ada, pp. 138–151, New York: ACM Press, 1982.

40. Wei Li, An Operational Approach to Semantics and Translation for Concurrent
Programming Languages, Ph.D. Thesis, Department of Computer Science, Univer-
sity of Edinburgh, CST-20-83, 1983.

41. Peter Lucas, Formal Semantics of Programming Languages: VDL, IBM J. of Res.
and Dev., Vol. 25, No. 5, pp. 549–561, 1981.

42. Peter Lucas and Kurt Walk, On The Formal Description of PL/I, Annual Review
in Automatic Programming, Part 3, Vol. 6, pp. 105–182, Oxford: Pergamon Press,
1969.

43. Nancy A. Lynch and Michael J. Fischer, On Describing the Behavior and Imple-
mentation of Distributed Systems, TCS, Vol. 13, No. 1, pp. 17–43, 1981.

44. Per Martin-Löf, Constructive Mathematics and Computer Programming, Proc.
6th. International Congress for Logic, Method, and Philosophy of Science (eds.
L. J. Cohen et al), Studies in Logic and the Foundations of Mathematics, Vol. 104,
pp. 153–175, Amsterdam: Elsevier North-Holland, 1982.

45. John McCarthy, Towards a Mathematical Theory of Computation, Proc. IFIP
Congress ’62 (ed. C. M. Popplewell), pp. 21–28, Amsterdam: North Holland, 1963.

46. John McCarthy, A Basis for a Mathematical Theory of Computation, Computer
Programming and Formal Systems (eds. P. Braffort and D. Hirschberg), pp. 33–70,
North-Holland, Amsterdam, 1963.

47. John McCarthy, A Formal Description of a Subset of ALGOL, Formal Language
Description Languages for Computer Programming, Proceedings of an IFIP Work-
ing Conf. (ed. T. B. Steel, Jr), pp. 1–12, Amsterdam: North Holland, 1966.

48. John McCarthy and James A. Painter, Correctness of a Compiler for Arithmetic
Expressions, Mathematical Aspects of Computer Science (ed. J. T. Schwartz), Proc.
Symp. in Applied Mathematics, Vol. 19, pp. 33–41, Providence, RI: American
Mathematical Society, 1967.

49. Mark Millington, Theories of Translation Correctness for Concurrent Program-
ming Languages, Ph.D. Thesis, Department of Computer Science, University of
Edinburgh, CST-46-87, 1987.

50. Robin Milner, Program Semantics and Mechanized Proofs, Foundations of Com-
puter Science II (eds. K. R. Apt and J. W. de Bakker), Mathematical Centre
Tracts, No. 82, Amsterdam, 1976.

51. Robin Milner, A Calculus of Communicating Systems, LNCS, Vol. 93, Berlin:
Springer-Verlag, 1980.

52. Robert Milne and Christopher Strachey, A Theory of Programming Language
Semantics, London: Chapman & Hall, 1976.

53. Flemming Nielson and Hanne Riis, A Treatment of Goto and Jump, unpublished
manuscript, Aarhus, 1981.

54. Gordon D. Plotkin, Call-by-Name, Call-by-Value and the Lambda-Calculus, TCS,
Vol. 1, No. 2, pp. 125–159, 1975.

55. Gordon D. Plotkin, LCF Considered as a Programming Language, Construction,
Amélioration et Vérification de Programmes, pp. 243–261, Colloques IRIA, Arc et
Senans, 1975.

56. Gordon D. Plotkin, LCF Considered as a Programming Language, TCS, Vol. 5,
No. 3, pp. 225–255, 1977.

57. Gordon D. Plotkin, Dijkstra’s Predicate Transformers and Smyth’s Power Do-
mains, Abstract Software Specifications: 1979 Copenhagen Winter School Proceed-
ings (ed. D. Bjørner), LNCS, Vol. 86, pp. 527–553, Berlin: Springer-Verlag, 1980.

58. Gordon D. Plotkin, An Operational Semantics for CSP, Logics of Programs and
their Applications (ed. Salwicki, A.), LNCS, Vol. 148, pp. 250–252, Berlin: Springer-
Verlag, 1980.

59. Gordon D. Plotkin, A Structural Approach to Operational Semantics, DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

60. Gordon D. Plotkin, An Operational Semantics for Hoare’s CSP, Proc. IFIP
TC-2 Work. Conf. on Formal Description of Programming Concepts (II) (ed. D.
Bjørner), pp. 199–226, Amsterdam: North-Holland, 1982.

61. John Reynolds, Definitional Interpreters for Higher-Order Programming Lan-
guages, Proc. 25th. ACM National Conf. , pp. 717–740, New York: ACM, 1972.

62. Davide Sangiorgi and David Walker, The π-calculus: a Theory of Mobile Processes,
Cambridge: Cambridge University Press, 2001.

63. Dana S. Scott, Outline of a Mathematical Theory of Computation, Proc. 4th.
Annual Princeton Conf. on Information Sciences and Systems, pp. 169–176, 1970.

64. Dana S. Scott, Outline of a Mathematical Theory of Computation, Programming
Research Group, Technical Monograph PRG–2, Oxford University, 1970.

65. Dana S. Scott, A Type-Theoretical Alternative to ISWIM, CUCH, OWHY, TCS,
Vol. 121, Nos. 1 & 2, pp. 411–440, 1993.

66. Raymond M. Smullyan, Theory of Formal Systems, Annals of Mathematics Studies
No. 47, Princeton: Princeton University Press, 1961.

67. Joseph E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory, Cambridge: MIT Press, 1977.

68. Robert D. Tennent, Principles of Programming Languages, Prentice Hall Series in
Computer Science (ed. C. A. R. Hoare), London: Prentice Hall, 1981.

69. Daniele Turi and Gordon D. Plotkin, Towards a Mathematical Operational Se-
mantics, Proc. 12th. LICS, pp. 280–291, Los Alamitos: IEEE Computer Society
Press, 1997.

70. Jean Vuillemin, Correct and Optimal Implementations of Recursion in a Simple
Programming Language, JCSS, Vol. 9, No. 3, pp. 322–354, 1974.

71. Christopher Wadsworth, Semantics and Pragmatics of the Lambda Calculus, Ph.D.
Thesis, Oxford University, 1971.

72. Christopher Wadsworth, The Relation between Computational and Denotational
Properties for Scott’s D∞-models of the λ-calculus, SIAM J. on Comp. , Vol. 5,
No. 3, pp. 488–522, 1976.

