
A POWERDOMAIN FOR COUNTABLE NON-DETERMINISM

(Extended Abstract)
G.D. Plotkin

Dept. of Computer Science
University of Edinburgh

i. Introduction

This paper proposes a general powerdomain for countable nDndeterminism and uses it
to give the denotational semantics of a simple imperative programming language with
a fair parallel construct. As already known from the simple case of a discrete cpo
[AP] countable nondeterminism seems to force the consideration of non-continuous
functions. In the classical Scott-Strachey approach only continuous functions are
allowed and it is necessary to extend the mathematics to a weaker kind of continuity
and show how it is still possible to specify and work with least solutions to
recursive equations for elements of domains and initial solutions to recursive
domain equations.

Fairness or the finite delay property is a natural assumption that has been studied
in many settings by many authors. The general idea is that no suhprocess is to be
delayed indefinitely. More exactly there are two main ways to define a fair
computation sequence:

Weak Fairness No event is almost always possible (unless the sequence is finite).

Strong Fairness No event is infinitely often possible.

These statements are deliberately informal: all depends on what counts as an event
(see also [AO,Kwo,LPS,Man,Par]). In the present paper only weak fairness is studied
as there are no possible strong fairness phenomena in the simple language at hand.

Section 2 begins by defining an operational semantics for our language. This
provides a concrete model against which it proves possible to test any denotational
semantics. The definition is of the well-known restrictive or negative kind implied
by the above formulations of fairness: first specify all execution sequences and
then restrict attention to the fair ones (= rule out the unfair ones). Since our
language is richer than the usual case of n sequential processes with shared memory
the techniques used may be of interest. They comprise a structural operational
semantics [Plo2] to specify transitions, redexes (here called actions) to specify
potential occurrences (in our case these are also all possible) and residuals to
trace potential occurrences through transitions [Bar]. Now it is well-known that
fairness (in either form) implies countable nondeterminism. Section 2 concludes by
using this idea on the meta-level to provide a generative or positive operational
semantics in which all computation sequences are fair (and which gives all the fair
sequences that the restrictive semantics does); this is proved inTheorem i.

Section 3 begins with a review of th~e~iScrete case which suggests a suitable form
of weak continuity (= el-continuity = preservation of lubs of increasing ~1-sequences)
and a suitable form of cpo (having a • and lubs of ~0 ~ and ~-sequences). These
assumptions permit least fixed-points to exist and give rise-to a form of Scott
induction (called w1-induction) that is used extensively in Section 4. The essential
feature for handlin~ countable nondeterminism seems to be the ability to take
arbitrary countable unions. Now in the case of bounded (= finite) nondeterminism one
needed only to take finite unions; the abstract view is that semilattices were needed
and in [HP] all the various powerdomains previously considered were characterised as
suitable free continuous semilattices. Here o-semilattices seem indicated (as noted
independently by Axel Poign~) and several candidates for the free weakly-continuous
q-semilattice are shown to exist (Theorem 2). Now the lack of continuity extends
also to the powerdomain construction itself and that makes it impossible to sol~e
recursive domain equations by the usual categorical analogue of the formula for the
least fixed-point of a continuous function. In Theorems 5 and 6 and Corollary i an
extension of the work in [SP] is presented that allows such equations to be solved
in the presence of weak continuity (and Theorem 5 appears already in [AK]).

419

Section 4 begins with an attempt to use the preferred candidate for the powerdomain
construct to give a denotational semantics to the example language. The idea is to
use a recursively-specified domain of resumptions (as in [Plol]). To the author's
surprise, however, this does not work as it does not seem possible to define the
semantics of the parallel construct; the problem is that with the preferred
candidate there remains some continuity requirements and these are violated.
However these difficulties do not arise with the alternate candidate. Finally
various relationships between the operational and denotational semantics are estab-
lished. Theorem 7 shows that the operational semantics determines the denotational
semantics, and Theorem 8 shows the converse for some simple notions of behaviour
derived from the operational semantics.

clearly there remains much to do. The proposed powerdomains are shown to exist by
highly nonconstructive methods of category theory. Direct existence along the lines
of [Plol,Smy] should be established and an investigation made of the effectiveness of
the constructions and functions involved. This is extremely important as the loss of
continuity seems to violate Scott's most reasonable thesis that all computable functions
are continuous. Next the relation between the various semantics needs further invest-
igation (see [HP] for some discussion of the so-called full-abstraction issue).
The successful employment of ~1-induction encourages an attempt to use it as a means
of proving correct the many cl~ssical algorithms based on underlying fairness
assumptions. It also seems feasible to extend the work to extensions of the current
language where, in particular, both weak and strong fairness can be considered.
Finally it is not at all clear what can be done in other settings where fairness
considerations arise such as languages for message-passing or communication or
dataflow languages where there is the difficult "fair merge" problem.

2. Operational Semantics

By adding a parallel construct to a simple imperative language we obtain a first
setting for studying fairness. The language has three syntactic categories.

$. ACom A given set of atomic commands, ranged over by ac.
2. BExp A given set of Boolean expressions ranged over by b.
3. Com A set of commands ranged over by c and with abstract syntax given by:

c:: = aelskiplcl;c-~2 if b then c i else c21while b do clclIlc 2.

Operational semantics is provided via a labelled transition relation [Kel,Mil] on a
set, F, of configurations (ranged over by y). To d~fine F assume a given denum-

' aex
erable set S of states (ranged over by ~). Then F =7 ~<c,~>} U {~}. We will
specify a transit--~on~elation -> ~ F x aez ~ . A x F where A = {1,2} is the set of
actions (ranged over by a and b). The idea is that in a relation y ~> y' the
action indicates which of the possible transitions is taken. We assume that the
semantics of atomic commands and Boolean expressions are given by functions
~. ACom -> (S -> S) and ~: BExp -> (S -> T) (where T = {tt,ff} is the set of truth-
values). Now the following rules specify the transition relation by structural
induction on commands [Plo2].

Atomic Commands <ac,~> -> ~[[ac]](~) Skip . <skip,O> ->

Composition <cl,~> ~> <c~,~'>I~'

<cI;c2,~ > a> <c~;c2,~,>i<c2,~,>

Conditional i. <if b then c I else c2,~> ~> <ci,~> (if ~[[b]](~) = tt)

2. <if b then c I else c2,~> ~> <c2,~> (if ~[[b]](o) = ff)

c
Repetition I. <while b do c,o> -> <c;while b do c,O> (if ~[[b]](o) = tt)

2. <while b do c,o> ~> ~ (if ~[[b]](~)= ff)

Parallell i. <el,o> ~> <c~,~'>I~'

la -> <ciiic2,o> <c~flc2,o'>l<c2,~>

420

2. <c2,~> ~> <c~,o'>lo'

<ell Ec2,o> ~9 <cll Ic~,~,>l<c1,~,>
To see how the actions are working define a function, Act, sending commands to non-
empty finite subsets of A by: Act(ac) = Act(skip) = Act(if b then c I else c~) =
Act(while b do c) = {~}; Aet(cl;c 9) = Act(cl)-~-Act(cll Ic~ = [A~ct(c~--U-2 ~ct(Cg)
and ex-~-enend it to configurations by-putting Act(<c,o>)'= A~t(c) ; Act(o~ = ~. One "
can think of Act(y) as the set of potential events of T.

Lemma i i. VTVaVy'.,u ~> y' m a ~ Act(y)

2. VTVa ~ Act(y)B!y'.y ~ T'

~> g, 3. V~a(~d'y) ~ {&} = {r = Act(y)

Intuitively parts 1 and 2 of Lemma i say there is a i-i correspondence between
potential and possible events. To be able to express fairness we now need to see
how possible actions change from one transition to another. For any a,b in Act(y)
we define the residual actions Res(b,y,a) ~A of b after the a transition from ~ by
induction on the command in T.

Res(b,<c,g>,a) = ~ (if c is atomic, skip, a conditional or a repetition)
Res(b,<cl;c2,o~a)=Res(b,<cl,g>,a)

Res(ib l,<clI[c2,~>,a) = I { ib I}

{b I}
Res(2b2,<cllic2,o>,a) is defined symmetrically

a 1
(if a=la I and <cl,q> ~ <c~,q'>)

(if a=la I and <cl,g> ~ ~')

(if a=2a 2 and <c2,g> ~ <c',g'>)

(if a=2a 2 and <c2,g> ~ a '~

Lemma 2 i. Either Res(b,y,a) is empty and b = a or else it is a singleton {blb2}
(where b = blib 2 for some i in [l,2,e}) and b ~ a.

2. If y ~> y' and b' E Res(b,y,a) then b' e Act(T'). a
a 0 a 1

Definition 1 An execution sequence y = T -> T -> ... -> y -~ ... of T is unfair
0 1

if it is infinite and there is an infinite sequence bm,bm+l,~., where for every

k>m b k 6 Act(y k) and bk+ 1 ~ ReS(bk,Yk,ak)-

Pictorially an unfair sequence looks like this

a 0 a ~

-> -> ~-~ i , 1 -> > ~ ~i ->

I

i Act Act Act Act

I

bm--~ees bin+- ~ ~ bk--~ bk-~

Intuitively the b k correspond to an event which is almost always possible but never
actual.

Definition 2 A configuration diverges if it has an infinite fair execution sequence.

When commands are run for their final state a suitable measure of their behaviour is
given by the relational approach modified to deal with termination. For any command
c we define its relation and its termination domain by

R[[c]] = {<~,~'>] <c,~> ->* o,} (where --> = U{~> l a ~ ~) and T[[~ = {0[<c,~>
converges} respectively.

Generative Semantics

The operational semantics presente~abo~e can. be considere~ ~a~s restrictive
in that first a set of execution sequences is considered andl thgn certain ones are
ruled out as unfair. Now a positive or ~eneratiqe operation a.l semantics is

421

proposed in which only (and all) fair sequences can be generated in the first place.
idea is that at any point in a fair execution of cil[c 2 there is an upper bound %~ne

on the number of transitions that c I makes before c 2 makes one, since otherwise there
is an action of c 2 almost always possible but never taken (and similarly for c2).

formalise the idea we add constructs c I Imc2 and c~,111 mC2 (for m>0) to the language To
giving a new set gCom of co=ands. To execute c~ II c~ one executes m+1 steps of c 4
(unless prevented by the termination of Cl); an~ then executes c. II c 2 for an •
arbitrary n~0; the execution clIlmC 2 proceeds symmetrically. Aslbe~ore, the
generative semantics is given by a transition relation -> c F • A • F where
(evidently) F_ = (gCom • S) U S; the rules are the same ~s--be~ore except for the
parallel construct and ones for the new constructs.

parallel i. <elllme2 ,~> ~> ~ 2. I ~> ~> g (m>_0) <ci ImC2' g (m>_0)

<cl l lc 2 o> e> , g u <cllIc2,o> ~>g 7

a <c~,~ >Io Left-Parallel i. <cl,0> --> g
(n>0)

<ciII~ l# <c~llne2,o,>l<c2,o,> g

2. <el,a> ~> <c~,~'>l~'
g ~>0)

<c111m+Ic2,O> leg <c~IImc2,o,>l<c2,o> -

R_ight--Parallel (Symmetric to Left-Parallel)

To connect up the two approaches let w: F -> F be the function which removes the
labels of constituent parallel commands g

Lemma 3 If y ~> y' then w(u ~> w(y')
g

Now we can state a theorem that insofar as execution sequences are concerned the
generative semantics captures the restrictive semantics.

Theorem im.~__... For any execution sequence ~ _ ~ ~ i~ ion a_ 1 g ~ the execution sequence

w(y I) -~w(y 2) ... is fair and every fair e t" sequence can be found thus.

3. Powerdomains

If we are to give denotational semantics to our language with its fair parallel
construct then we need to be able to solve recursive domain equations involving a
powerdomain for countable nondeterminism; for this purpose we want a powerdomain
functor over a suitable category of partial orders. We start with a review of the
discrete case.

Definition 3 For any countable set X the powerdomain ~(X• is the set of non-empty
subsets of X 1 under the Egli-Milner partial order

X ~ Y iff (Vx 6 X~y E Y.x S y) ^ (Vy ~ Y~x ~ X.x ~ y)

The singleton function {'}: X. -> ~(Xl) and the subset relation, c, on ~(XI) have
the usual set-theoretic definltions.

Fact I I. The powerdomain [(XI) has a least element {• lubs of increasing
m--~hains and increasing ~l-Chalns (the latter constant). being eventually

Binary union U: -- ~(X.) 2 -> ~ ~(Xl) is ~0-and and ~1-continuous and 2.
countable union ~: ~ (X~ -> s is ~i-~ontinuous but not-in general ~0-continuous.

3. For every monotonic f: ._~X -> ~(Y,) (where Y is also any countable set)
there is a unique function f~: ~ (XI~ -> ~(Y~)~ such that the following diagram
commutes

422

X•

~(x• ~g (Y•

and such that f% is m -and m -continuous (wrt ~) and preserves countable unions.
0 ,i

Also if f is strict so is fY.

4. As a function, (.)T is monotonic, ~1-continuous but not in general

m0-continuous.

The non-continuity of extension leads to the non-continuity of important functionals

for which a guaranteed fixed-point is required. Luckily we are saved by the
completeness of the spaces involved.

Fact 2 Let D be a po with a • and lubs of increasing ~0-and ~]-se~uences" Then
any Ul-continuous functionKf: D -> D has a least fixed-point Fixf d=f f~l where

for <<~. the <th iterate f is defined by
--0 i <+i < l U <
f = I, f = f(f)' f = <<I f (I a limit ordinal).

How are we to react in the light of the above (carefully selected!) experience? In
general it seems that we want a countable union function and that will involve us in
non-~0-continuous (but ~ "continuous) functions. On the other hand the partial

1
orders we will use can be expected to be not too bad having lubs of increasing

m0-and ~l-sequences.

Definition 4 Let Pos (K,...;I,...) be the category whose objects are partial orders

with lubs of increasing <-chains and ... and whose morphisms are those monotonic
functions preserving lubs Of increasing l-chains and In particular set

= ~ (~0'~i;w0'~I) ~i = ~ (~0'~i;wl)

Here A is the nicest category of partial orders we could hope to work in, but A 1 is
the e~pected one. Both are Cartesian closed with the usual Cartesian product ~nd
pointwise-ordered function spaces (written D -> E and D ->. E in A, A. respectively).

1 = =i
In ~I the least fixed-point operator Fix: (D ->i D) ->i D is ~l-continuous but not,

in g~neral, m0-continuous.

In [HP] the available powerdomains for bounded nondeterminism [Plol,Smy] were
characterised as free semilattices over a category of partial orders. It now seems
appropriate to try free J-semilattices.

Definition 5 A semilattice is a partial order <p,c> with binary lubs x U y (c is
called subset and ~ is called binary union). A a-semilattice is a semilattice with

countably infinite lubs~x i-
Definition 6 Let oSLPos (K,...;I ;~,...;U,...) be the category whose objects are ======
structures <D,~,c~ where <D,C> is a Pos (<,...;I,...) object and <D,c~ is a
g-semilattice such that binary unio~ is ~-continuous and ... (wrt ~) and countable
union is u-continuous and ... (wrt ~) and whose morphisms are those ~
(<,...;i,...) morphisms preserving countable union. In particular set

~0 = ~ (~ 0 ' ~ 1 ; w 0 ' ~ 1 ; ~ 0 ' ~ I ;WO'W1)

= ~ (~ 0 ' ~ 1 ; ~ 0 ' ~ 1 ; ~ 0 ' ~ 1 ; ~ 1) ~1 = ~ (~ 0 ' ~ 1 ; ~ 1 ; ~ 0 ' ~ 1 ; ~ 1)
Here B~ is the nicest category of o-semilattices we could hope for where even
countaDle union is ~ -continuous; B and B are the categories corresponding to A

= =I . =
and A~ where countable union is ~1-continuous, but need not be ~0-contlnuous (but
we do-assume binary union ~0-continuous). Although the morphism~ in B I are not
~0-continuous in general, w@ do have --

Lemma 4 Quasi-continuity Let f: D ->. B be a B -morphism. For any increasing
H have f(U~n -- n ~0-chain ~-~i~]~.] wee) ~f(a) =i

423

All these categories are related by various forgetful functors :

/ i 0W0

A./ u
= =

1
~ u1 B=I

~nd we expect that the desired powerdomain will be a left-adjoint to U 1 or U or

maybe even U 0 or V. U.

Theorem 2 The functors U,U0,V,W have left adjoints, called F,F0,G,H. However U 1
has no left adjoint.

Proof The positive assertion uses Freyd's Adjoint Functor Theorem [Mac]. The
negative one depends on the quasi-continuity lemma. []

So possible powerdomains are ~ def U - F,F 0 and ~i def V. U, F. G = V. ~o G.

Not surprisingly the second is unacceptable because of:

Fact 3 Let D be an A object and let x and y be two elements of F_U 0 (D).
Then if x~_ y we ha~ x _c y. Further if D has a least element t~en the converse

also holds.

Now we examine the properties of our two candidate powerdomains. In A we have a
morphism {-}: D -> ~D (called singleton) which is universal in the sense that to
any f: D -> UA there is a unique B=-morphism ft: FD -> A (the extension = left-

adjunct of f) such that the following diagram commutes.

D

In A~ analogous remarks hold with ~,{-}_,f#l,V ~ U and F o G replacing ~,{-},ft,U and

F. As an example c~check that ~(X• ~(X• = -- ~(X• We now try to one
generalise Fact i.3.

Definition 7 A ~-category is a category whose hom, sets ~e equipped with partial
orders so that composition is monotonic. A funetor of ~-categories is locally-
monotonic (= a Pos-functor) iff it is monotonic on morphisms; it is locally
K-continuous if it preserves lubs of K-chai~ of morphisms.

Definition 8 Let G: L -> K be a Pos-functor. Then f: D -> GA is a G-orderepi iff
= ===

whenever g,g': A -> A q are Such that (Gg) , f ~ (Gg') �9 f then g ~g'

Lemma 5 Let G: L -> K be a ~-~nctor with left-adjoint F such that every

~' G~ f' f: D -> GA factorises as D => GA' GA where is a G-orderepi. Then the unit
ED: D -> GFD is a G-orderepi and extension is an isomo~hism of p~tial orders.

~eore~ In both A and ~i extension is monotonic and preserves lubs of increasing
~n-~d ~-chains. Further F and F o G ~e locally ~0--and m~-continuous ~2~ functors.
F w �9 .--- lnally ~and ~ are locally ml-continuous ~ funetors which are not In general

~0-continuous.

~ere is no contradiction here with Fact 1.3 ~ in the fixst case extension has

424

range in B and in the second in A. Now we turn to issues involved with the bottom

element, ~.

Definition 9 A I (respectively A~,B I) is the full subcategory of A (respectively
~ ~ h o ~ e Objects D containing a least el~me~t, /~; further A_ (respectively

A~.?B I) is the subcategory of A m (respectively A~,B • wi~h the same g~jects but only
~nSs~--morphisms preserving the=least element, t~e strict ones.

These new categories can be pictured together in terms of a commuting diagram of

natural forgetful functors (of which we name six).

V U

! i v i _i . •

iT --/i
The next theorem says that our powerdomain construction also works when these

variations are considered.

Theorem 4 If D is an A-object with a least element then FD has a least element too
and the singleton function is strict; further extensioniPreserves strictness.
Consequently F cuts down to left adjoints F-- and F i of U and U I respectively. The

corresponding assertions for A 1 also hold.

Solving Domain Equations

To solve recursive domain equations D ~ F (D) one normally proceeds by a~alogy with
fixed-point equations x = f(x)where the solution is given as Fix~ = n>u~fn(1)and

n>
this is justified by the t~-continuitv of f. What one does is construt~t the

�9 . . n n

solutlon as FIX~ = llm A w~ere A = <F (i) , F (In,,,)> and justify that by the
o0-continuity o~ F. --Unfortunately neither ~ n~r ~J~have the needed continuity
property and, so we turn to a categorical generalisation of Fact 2, due to Adamek and
Koubek [A~]. Below < is always a limit ordinal.

Definition i0 Let K be a category. It is a <-category if it has an initial element, =
/~., and it has direct limits of all l-chains for %<<; for any D we write I for the
~umlque morphism from ~ to D. Let F: _K -> _L be a functor between <-categorles.U It
is <-continuous if whe~ever A is an <-chainand p: A -> D is a limiting cone then
Fp : FA -> FD is a limiting cone. Clearly the composition of <-continuous functors
is <-continuous as are the constant and identity functors.

Definition ii Let F: K -> K be a functor. An F-algebra is a pair <D,@> with = =
~: FD -> D. A morphism of F-algebras, f: <D,~> -> <E,8> is any morphism
f: D -> E such that the following diagram commutes

FD + D

Ff

FE

This clearly gives a category of F-algebras.

Theorem 5 Let K be a <~category and suppose F: K -> K is <-continuous. Then the - = =
initial F-algebra exists and can be constructed by the following Initial Algebra

Construction

I. D O = i K and D%+ 1 = F(DI)

2. f01 = ~D and fX+I,X+2 = F(fx,k+l)

3. For limi~ l", <fA,l,,~<%,,~<D%,f%,%,>%<%,<%,,-> D%,, is a colimiting cone

4 2 5

4. For limit I", fl" ' is the mediating morphism between the universal cone
,I'+1 D and

<fl+l,l ->: <Dl+l'fl+l,l'+i>l<l'<l" -> I"

<Ffl,l,,>l<l,, : <Dl+1'fl§ ,, -> F(DI, ,)

Then f : D -> F(D) is an isomorphism whose inverse gives the initial F-algebra,
~,<+1 < <

<D ,f:l .>.
< < ~ <+1

TO a p p l y t h e s e i d e a s we g e n e r a l i s e [SP] and w o r k i n a P ~ - c a t e g o r y s e t t i n g .

D e f i n i t i o n 12 L e t K be a ~ - c a t e g o r y . A p a i r D ~> E ~> D i s a p r o j e c t i o n p a i r
(and f i s an embedd ing and g i s a p r o j e c t i o n) i f g o f = i d D and f , g ~ i d E-

The elementary_ facts about enlheddings and projections are shown, in [SP]. In
particular~qery projection g is determined by its corresponding emheddir~ f and we
write g = rE" Also the emheddings form a category under K-momposition which we
d?~ote my K . Ei~lly moth emheddings and projections a~e strict and so
A-- = A. and and A~ = All. Note that both have an initial object namely the one-
~int p~set To-see they are both ~ -categories one checks both A and A have

" =i =• =11
hoth ~0-and o1-1imits and uses Theorem 6 below.

Definition 13 A ~s(<) category is a ~-category in which the morphism partial
orders ha~e lubs of all increasing <-chains and where composition is <-continuous.

Then K has <-colimits Theorem 6 Suppose K is a P2s(<~ ~ategory with K-limits. E
and indeed for ~ny ~-chain-~-in K- we have that-~: A -> D is c~limiting iff

idD =I~< ~I " ~i"
op

Turning to functors we note that if T: K • L -> M is a Pos-functor then as in [SP]
E E E = E = = ===

we can define a cQvarian~ T : K x L -> M with the same action as T on objects
~e ~ = = =

and with T (f,g) =~ T(f ,g) on morphisms.

Corollary i Let K,L,M be Pos(<) categories with all limit~ of ~-chains; let
T: K x ~ -> M be-a~l~call~=~-continuous functor. Then T is <-continuous.

Now we see that both ~ and ~[and the product and function-space functors all give
~l-continuous functors. In addition both A and A 1 have categorical sums which = =~
are just the usual smash sums (e.g. see [SP}) these are also locally ~l-continuous
and so give ol-continuous functors.

We can therefore follow [HP], say, and obtain a domain of resumptions

R ~ S• -> ~(S l + (S• x R))

in A (to be ranged over by r) and another one (also ranged over hy r)

in ~I" Below the isomorphism Will be treated as an actual equality for simplicity's
sake; similarly we will omit injection functions when dealing with sums. Again we
should have used more accurate domain equations to model strictness phenomena, but
the extra complications did not seem worthwhile here, and do not affect the theorems
in the next section.

4. Denotational Semantics

By using resumptions we attempt to give a denotational semantics to our programming
language; the idea will be to model the generative operational semantics. At first
we try R; this will fail but R 1 will succeed.

~attempttouse A To begin we develop a little "categorical programming". Let
e I be an expres-~lon of type ~(S• + (S. • R)) and let e. and e~ be expressions of
t ~ J ype ~(D) monotonic in U and where e. is ~^-and m.-con~inuous in r. Then e = cases e l
f. , , , J U xrst 0 . e_ second q , r . e_ is of type ~D) an~ abbreviates

z , - , T "
E S I. e2,1o [S], r ~ ~. e 3] (el). If e.,e. and e~ are ~.-contlnuous ina

V - ~ IZ J I ariable then so is e (and because of s extenslon we do not expect ~0-continuity
in general). Again, if e is an expression of type ~(D) monotonic in n (ranging over

426

NI) then the countable choice expression Ve abbreviates (In E Nl.e)tN; this is
~l-continuous in any variable that e is.

Now we try to define various useful combinators. The definitions are recursive and
justified by an appeal to Fact 2.

Flattening The combinator (= operation) I" I : R -> (S. -> S.) is defined recursively
by: Irl~ = cases r(~) first a'. {~'} second ~',r'.Ir'~(~') ~

Composition To model the composition of commands we recursively define a composition
combinator ; : R -> (R ->I R) by:

rl;r2(o) = cases rl(~) first g'. {<o',r2>} second g',r'.{<g',r';r2>}

Parallelism We need three combinators corresponding to the three syntactic
operators of the generative operational semantics. They are
I I~,II : N 1 -> R ->9 R ->9 R and II: R ->~ R ->9 R where we do not yet know which

.R functlon spaces are'intenaed. We will see there are no possible choices which make
our attempted definitions work.

Try to define II L and I~ by mutual recursion:
m

rlllLr2(g) = cases rl(~) first ~'.{<~',r2>}

second g',r', if m=0 then U{<0',r'll~r2>}
- - - - n

m-i
else {<o',r'll L r2>}

(II R is defined symmetrically).

If these definitions were legitimate we would then go on to define the parallel
combinator by

n n
rll Ir2 (g) =~n rl I I L r2(~)U ~ rll I R r2(g)

However the definitions cannot be acceptable. For example in the definition of II L
in order ~hat the conditional expression be ~0-continuous in r' it is necessary
that r II r be m -continuous in r ; but r occurs in both the "first" and "second"

IR 1
branches of ~he definition of II- an~ so such continuity cannot be guaranteed.
Despite some effort it was not ~ound possible to produce any acceptable definitions
and for that reason the attempt to use A seems doomed to failure. =

Using ~1 Here one tries the domain R I. The _cases construction
__cases e.l w--first 0'. e2 ~sec~ o', r'. e 3,is introduced, as above but now only

-contlnulty of e in r is required; it abbrevlates
[~g' & S,. e~,Ig' ~ S., r' & R~.e~]" I (e~). The cQuntable union construction U e
is intro~uce~ as above and abbrevlates (~n ~ N• e) I(N).

The flattening combinator I" I: RI ->i (S! ->I SI) and the composition combinator ; :
R 1 - ~ R are defined analogously-to Defore and now-the analogous definitions
for t{e paralle{ combinators I I~, I I~: N. ->i RI ->i R~ ->~ R and
If : R 1 ->~ Rq --~I R1 are legiti~ate~

We are at last in a position to give the denotational semantics of our programming
language. The denotational function ~: gCom -> R 1 is defined by structural
induction on commands:

~[[ac]] = io E S I. ~[ac]](o)}i

[[skip]] = id S

~[[if b then c I else c2]] = ~o~ S• if ~[[b]](g) then {<g, ~[[Cl]]>} 1

else {<~,~ [[c2]>} l

~[[while b do c]] = ~r ~ RI.Xg ~ S i. if ~[[b]](o)

then {<g, ~ [[c]];m>} i else {o} I

cll t TM ca]l = Col el]] I e2n

427

4Et e111 I & ~ cl Im c2~ }[[cl]]

gt~ ~ le211 = t l 4~Ir c21J
Here if e is an expression of type D that is ~ -continuous in a variable x of type

1
D then ~x ~ D.e is the least x=e; it is ~l-continuous in any variable that e is.

Relation with the operational semantics

~e resumption semantics was introduced as an abstract version of the operational
semantics. To formalise this we define Op; gCom -> R I by

op[[c]](a = U{{<~',op[[o,]] >}i[~<c,o> ~> <e' o'>} uU{{~, }l[~a <c,o> ~>
g g

ThiS definition is easily justified. Now we see that the operational semantics
determines the denotational semantics.

Theorem 7 ~ = Op.

The proof of this theorem makes heavy use of a form of Scott Induction which we call
~l-induction (and contrast that with the usual ~o-induction). A property P c D is
~-(~i-) inductive if it has lubs of increasing ~ ~ i v e l y ~i-) chains~ The

~1-induction rule is:

P(~ %~x P(X) D P(e)
P(~x.e)

provided P is both ~-and ol-inductive and lx.e is ~l-continuous. What we hope is
that ~l-induction will prove as useful a tool for handling countable non-determinism

~0-1nduction has proved for sequential programming. as

Finally we see that the operational semantics of section 2 can be obtained from the
denotational semantics.

Theorem 8 i. For any e in Corn and states o, o', oR[[e]] o' if, ~' ~]~[[e]]l(

2. For any c in Corn and state 0, o ~ T[[e]] if, i ~ [{[[e]]I(

Acknowledgements
�9 /

I would like to thank Axel Polgne, Matthew Hennessy and Robin Milner for useful
discussions, and Eleanor Kerse for the typing. The work was supported with the aid
of an SERC grant.

References

[AK] Adamek, J. and Koubek, V~ Least fixed points of a functor. JCSS, Vol. 19,
No. 2, pp. 163-178, (1979).

[AO] Apt, K.R. and Olderog, E.-R. Proof rules dealing with fairness. Bericht
Nr. 8104, Institut f~r Informatik und Praktische Mathematik, Kat.
Christian-Albrechts Universit~t, (1981).

lAP] Apt, K.R. and Plotkin, G.D. A Cook's tour of countable non-determinism.
Proc. ICALP 1981. Z~CS Vol. 115 (eds. S. Even and O. Kariv). Berlin:
Springer-Verlag, pp. 479-494, (1981).

[Bar] Barendregt, H.P. The lambda calculus, its syntax and semantics. Studies
in Logic, Vol. 103, (1981). Amsterdam: North-Holland.

[HP] Hennessy, M.C.B. and Plotkin, G.D. Full abstraction for a simple parallel
programming language. Proc. MECS, LNCS Vol. 74, pp. 108-120 (ed. Becvar,J.)
(1979), Berlin: Springer-Verlag.

[Kel] Keller, R. A fundamental theorem of asynchronous parallel computation in
parallel processing, LNCS Vol. 24 (ed. T. Feng) Berlin: Springer-Verlag~

[Kwo] Kwong, Y.S. On the absence of livelock in parallel programs. Semantics of
concurrent computation, LNCS Vol. 70, pp. 172-190 (ed. G. Kahn) Berlin:
Springer-Verlag, (1979).

428

[LPS]

[Mac]

[Man]

[~l]

[Par]

[Plol]

[Plo2]

[Smy]

[SP]

Lehmann, D., Pnueli, A. and Stavi, J. Impartiality, justice and fairness:
the ethics of concurrent termination. Proc. ICALP 1981, LNCS Vol. 115
(eds. S. Even and O. Kariv) Berlin: Springer-Verlag, pp. 264-277, (1981).

MacLane, S. Categories for the Working Mathematician. Berlin: Springer-
Verlag, (1971).

Manna, Z. Logics of programs. Proc. IFIP Congress 1980.

Milner, R. A calculus of communicating systems. LNCS Vol. 92,(1980)
Berlin: Springer-Verlag.

Park, D. A predicate transformer for weak fair iteration. Proc. 6th IBM
Symposium on Mathematic~l Foundations of Computer Science, Hakone, Japan,
(1981).

Plotkin, G.D. A powerdomain construction. SIAM Journal on Computation,
Vol. 5, No. 3, pp. 452-487, (1976).

Plotkin, G.D. A structural approach to operational semantics. DAIMI FN-19.
Computer Science Department, Aarhus University, (1981).

Smyth, M.B. Powerdomains. JCSS, Vol. 16, No. i, (1978).

Smyth, M. and Plotkin, G.D. The categorical solution of recursive domain
equations. SIAM Journal on Computation. To appear. (1981).

