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i. Introduction 

This paper proposes a general powerdomain for countable nDndeterminism and uses it 
to give the denotational semantics of a simple imperative programming language with 
a fair parallel construct. As already known from the simple case of a discrete cpo 
[AP] countable nondeterminism seems to force the consideration of non-continuous 
functions. In the classical Scott-Strachey approach only continuous functions are 
allowed and it is necessary to extend the mathematics to a weaker kind of continuity 
and show how it is still possible to specify and work with least solutions to 
recursive equations for elements of domains and initial solutions to recursive 
domain equations. 

Fairness or the finite delay property is a natural assumption that has been studied 
in many settings by many authors. The general idea is that no suhprocess is to be 
delayed indefinitely. More exactly there are two main ways to define a fair 
computation sequence: 

Weak Fairness No event is almost always possible (unless the sequence is finite). 

Strong Fairness No event is infinitely often possible. 

These statements are deliberately informal: all depends on what counts as an event 
(see also [AO,Kwo,LPS,Man,Par]). In the present paper only weak fairness is studied 
as there are no possible strong fairness phenomena in the simple language at hand. 

Section 2 begins by defining an operational semantics for our language. This 
provides a concrete model against which it proves possible to test any denotational 
semantics. The definition is of the well-known restrictive or negative kind implied 
by the above formulations of fairness: first specify all execution sequences and 
then restrict attention to the fair ones (= rule out the unfair ones). Since our 
language is richer than the usual case of n sequential processes with shared memory 
the techniques used may be of interest. They comprise a structural operational 
semantics [Plo2] to specify transitions, redexes (here called actions) to specify 
potential occurrences (in our case these are also all possible) and residuals to 
trace potential occurrences through transitions [Bar]. Now it is well-known that 
fairness (in either form) implies countable nondeterminism. Section 2 concludes by 
using this idea on the meta-level to provide a generative or positive operational 
semantics in which all computation sequences are fair (and which gives all the fair 
sequences that the restrictive semantics does); this is proved inTheorem i. 

Section 3 begins with a review of th~e~iScrete case which suggests a suitable form 
of weak continuity (= el-continuity = preservation of lubs of increasing ~1-sequences) 
and a suitable form of cpo (having a • and lubs of ~0 ~ and ~-sequences). These 
assumptions permit least fixed-points to exist and give rise-to a form of Scott 
induction (called w1-induction ) that is used extensively in Section 4. The essential 
feature for handlin~ countable nondeterminism seems to be the ability to take 
arbitrary countable unions. Now in the case of bounded (= finite) nondeterminism one 
needed only to take finite unions; the abstract view is that semilattices were needed 
and in [HP] all the various powerdomains previously considered were characterised as 
suitable free continuous semilattices. Here o-semilattices seem indicated (as noted 
independently by Axel Poign~) and several candidates for the free weakly-continuous 
q-semilattice are shown to exist (Theorem 2). Now the lack of continuity extends 
also to the powerdomain construction itself and that makes it impossible to sol~e 
recursive domain equations by the usual categorical analogue of the formula for the 
least fixed-point of a continuous function. In Theorems 5 and 6 and Corollary i an 
extension of the work in [SP] is presented that allows such equations to be solved 
in the presence of weak continuity (and Theorem 5 appears already in [AK]). 
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Section 4 begins with an attempt to use the preferred candidate for the powerdomain 
construct to give a denotational semantics to the example language. The idea is to 
use a recursively-specified domain of resumptions (as in [Plol]). To the author's 
surprise, however, this does not work as it does not seem possible to define the 
semantics of the parallel construct; the problem is that with the preferred 
candidate there remains some continuity requirements and these are violated. 
However these difficulties do not arise with the alternate candidate. Finally 
various relationships between the operational and denotational semantics are estab- 
lished. Theorem 7 shows that the operational semantics determines the denotational 
semantics, and Theorem 8 shows the converse for some simple notions of behaviour 
derived from the operational semantics. 

clearly there remains much to do. The proposed powerdomains are shown to exist by 
highly nonconstructive methods of category theory. Direct existence along the lines 
of [Plol,Smy] should be established and an investigation made of the effectiveness of 
the constructions and functions involved. This is extremely important as the loss of 
continuity seems to violate Scott's most reasonable thesis that all computable functions 
are continuous. Next the relation between the various semantics needs further invest- 
igation (see [HP] for some discussion of the so-called full-abstraction issue). 
The successful employment of ~1-induction encourages an attempt to use it as a means 
of proving correct the many cl~ssical algorithms based on underlying fairness 
assumptions. It also seems feasible to extend the work to extensions of the current 
language where, in particular, both weak and strong fairness can be considered. 
Finally it is not at all clear what can be done in other settings where fairness 
considerations arise such as languages for message-passing or communication or 
dataflow languages where there is the difficult "fair merge" problem. 

2. Operational Semantics 

By adding a parallel construct to a simple imperative language we obtain a first 
setting for studying fairness. The language has three syntactic categories. 

$. ACom A given set of atomic commands, ranged over by ac. 
2. BExp A given set of Boolean expressions ranged over by b. 
3. Com A set of commands ranged over by c and with abstract syntax given by: 

c:: = aelskiplcl;c-~2 if b then c i else c21while b do clclIlc 2. 

Operational semantics is provided via a labelled transition relation [Kel,Mil] on a 
set, F, of configurations (ranged over by y). To d~fine F assume a given denum- 

' aex 
erable set S of states (ranged over by ~). Then F =7 ~<c,~>} U {~}. We will 
specify a transit--~on~elation -> ~ F x aez ~ . A x F where A = {1,2} is the set of 
actions (ranged over by a and b). The idea is that in a relation y ~> y' the 
action indicates which of the possible transitions is taken. We assume that the 
semantics of atomic commands and Boolean expressions are given by functions 
~. ACom -> (S -> S) and ~: BExp -> (S -> T) (where T = {tt,ff} is the set of truth- 
values). Now the following rules specify the transition relation by structural 
induction on commands [Plo2]. 

Atomic Commands <ac,~> -> ~[[ ac]](~) Skip . <skip,O> -> 

Composition <cl,~> ~> <c~,~'>I~' 

<cI;c2,~ > a> <c~;c2,~,>i<c2,~,> 

Conditional i. <if b then c I else c2,~> ~> <ci,~> (if ~[[ b]](~) = tt) 

2. <if b then c I else c2,~> ~> <c2,~> (if ~[[ b]](o) = ff) 

c 
Repetition I. <while b do c,o> -> <c;while b do c,O> (if ~[[ b]](o) = tt) 

2. <while b do c,o> ~> ~ (if ~[[ b]](~)= ff) 

Parallell i. <el,o> ~> <c~,~'>I~' 

la -> <ciiic2,o> <c~flc2,o'>l<c2,~> 
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2. <c2,~> ~> <c~,o'>lo' 

<ell Ec2,o> ~9 <cll Ic~,~,>l<c1,~,> 
To see how the actions are working define a function, Act, sending commands to non- 
empty finite subsets of A by: Act(ac) = Act(skip) = Act(if b then c I else c~) = 
Act(while b do c) = {~}; Aet(cl;c 9) = Act(cl)-~-Act(cll Ic~ = [ A~ct(c~--U-2 ~ct(Cg) 
and ex-~-enend it to configurations by-putting Act(<c,o>)'= A~t(c) ; Act(o~ = ~. One " 
can think of Act(y) as the set of potential events of T. 

Lemma i i. VTVaVy'.,u ~> y' m a ~ Act(y) 

2. VTVa ~ Act(y)B!y'.y ~ T' 

~> g, 3. V~a(~d'y ) ~ {&} = {r = Act(y) 

Intuitively parts 1 and 2 of Lemma i say there is a i-i correspondence between 
potential and possible events. To be able to express fairness we now need to see 
how possible actions change from one transition to another. For any a,b in Act(y) 
we define the residual actions Res(b,y,a) ~A of b after the a transition from ~ by 
induction on the command in T. 

Res(b,<c,g>,a) = ~ (if c is atomic, skip, a conditional or a repetition) 
Res(b,<cl;c2,o~a)=Res(b,<cl,g>,a) 

Res(ib l,<clI[c2,~>,a) = I { ib I} 

{b I} 
Res(2b2,<cllic2,o>,a) is defined symmetrically 

a 1 
(if a=la I and <cl,q> ~ <c~,q'>) 

(if a=la I and <cl,g> ~ ~') 

(if a=2a 2 and <c2,g> ~ <c',g'>) 

(if a=2a 2 and <c2,g> ~ a '~ 

Lemma 2 i. Either Res(b,y,a) is empty and b = a or else it is a singleton {blb2} 
(where b = blib 2 for some i in [l,2,e}) and b ~ a. 

2. If y ~> y' and b' E Res(b,y,a) then b' e Act(T'). a 
a 0 a 1 

Definition 1 An execution sequence y = T -> T -> ... -> y -~ ... of T is unfair 
0 1 

if it is infinite and there is an infinite sequence bm,bm+l,~., where for every 

k>m b k 6 Act(y k) and bk+ 1 ~ ReS(bk,Yk,ak)- 

Pictorially an unfair sequence looks like this 

a 0 a ~ 

-> . . . .  -> ~-~ i , 1  -> . . . . .  > ~ ~i -> . . . .  

I 

i Act Act Act Act 

I 

bm--~ees bin+- ~ .... ~ bk--~ bk-~ .... 

Intuitively the b k correspond to an event which is almost always possible but never 
actual. 

Definition 2 A configuration diverges if it has an infinite fair execution sequence. 

When commands are run for their final state a suitable measure of their behaviour is 
given by the relational approach modified to deal with termination. For any command 
c we define its relation and its termination domain by 

R[[ c]] = {<~,~'>] <c,~> ->* o,} (where --> = U{~> l a ~ ~) and T[[ ~ = {0[ <c,~> 
converges} respectively. 

Generative Semantics 

The operational semantics presente~abo~e can. be considere~ ~a~s restrictive 
in that first a set of execution sequences is considered andl thgn certain ones are 
ruled out as unfair. Now a positive or ~eneratiqe operation a.l semantics is 
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proposed in which only (and all) fair sequences can be generated in the first place. 
idea is that at any point in a fair execution of cil[c 2 there is an upper bound %~ne 

on the number of transitions that c I makes before c 2 makes one, since otherwise there 
is an action of c 2 almost always possible but never taken (and similarly for c2). 

formalise the idea we add constructs c I Imc2 and c~,111 mC2 (for m>0) to the language To 
giving a new set gCom of co=ands. To execute c~ II c~ one executes m+1 steps of c 4 
(unless prevented by the termination of Cl); an~ then executes c. II c 2 for an • 
arbitrary n~0; the execution clIlmC 2 proceeds symmetrically. Aslbe~ore, the 
generative semantics is given by a transition relation -> c F • A • F where 
(evidently) F_ = (gCom • S) U S; the rules are the same ~s--be~ore except for the 
parallel construct and ones for the new constructs. 

parallel i. <elllme2 ,~> ~> ~ 2. I ~> ~> g (m>_0) <ci ImC2' g (m>_0) 

<cl l lc  2 o> e> , g u <cllIc2,o> ~>g 7 

a <c~,~ >Io Left-Parallel i. <cl,0> --> g 
(n>0) 

<ciII~ l# <c~llne2,o,>l<c2,o,> g 

2. <el,a> ~> <c~,~'>l~' 
g ~>0) 

<c111m+Ic2,O> leg <c~IImc2,o,>l<c2,o> - 

R_ight--Parallel (Symmetric to Left-Parallel) 

To connect up the two approaches let w: F -> F be the function which removes the 
labels of constituent parallel commands g 

Lemma 3 If y ~> y' then w(u ~> w(y') 
g 

Now we can state a theorem that insofar as execution sequences are concerned the 
generative semantics captures the restrictive semantics. 

Theorem im.~__... For any execution sequence ~ _ ~  ~ i~ ion a_ 1 g ~ the execution sequence 

w(y I) -~w(y 2) ... is fair and every fair e t" sequence can be found thus. 

3. Powerdomains 

If we are to give denotational semantics to our language with its fair parallel 
construct then we need to be able to solve recursive domain equations involving a 
powerdomain for countable nondeterminism; for this purpose we want a powerdomain 
functor over a suitable category of partial orders. We start with a review of the 
discrete case. 

Definition 3 For any countable set X the powerdomain ~(X• is the set of non-empty 
subsets of X 1 under the Egli-Milner partial order 

X ~ Y iff (Vx 6 X~y E Y.x S y) ^ (Vy ~ Y~x ~ X.x ~ y) 

The singleton function {'}: X. -> ~(Xl) and the subset relation, c, on ~(XI) have 
the usual set-theoretic definltions. 

Fact I I. The powerdomain [(XI) has a least element {• lubs of increasing 
m--~hains and increasing ~l-Chalns (the latter constant). being eventually 

Binary union U: -- ~(X.) 2 -> ~ ~(Xl) is ~0-and and ~1-continuous and 2. 
countable union ~: ~ (X~ -> s is ~i-~ontinuous but not-in general ~0-continuous. 

3. For every monotonic f: ._~X -> ~(Y,) (where Y is also any countable set) 
there is a unique function f~: ~ (XI~ -> ~(Y~)~ such that the following diagram 
commutes 
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X• 

~(x• ~g (Y• 

and such that f% is m -and m -continuous (wrt ~) and preserves countable unions. 
0 ,i 

Also if f is strict so is fY. 

4. As a function, (.)T is monotonic, ~1-continuous but not in general 

m0-continuous. 

The non-continuity of extension leads to the non-continuity of important functionals 

for which a guaranteed fixed-point is required. Luckily we are saved by the 
completeness of the spaces involved. 

Fact 2 Let D be a po with a • and lubs of increasing ~0-and ~]-se~uences" Then 
any Ul-continuous functionKf: D -> D has a least fixed-point Fixf d=f f~l where 

for <<~. the <th iterate f is defined by 
--0 i <+i < l U < 
f = I, f = f(f )' f = <<I f (I a limit ordinal). 

How are we to react in the light of the above (carefully selected!) experience? In 
general it seems that we want a countable union function and that will involve us in 
non-~0-continuous (but ~ "continuous) functions. On the other hand the partial 

1 
orders we will use can be expected to be not too bad having lubs of increasing 

m0-and ~l-sequences. 

Definition 4 Let Pos (K,...;I,...) be the category whose objects are partial orders 

with lubs of increasing <-chains and ... and whose morphisms are those monotonic 
functions preserving lubs Of increasing l-chains and .... In particular set 

= ~ (~0'~i;w0'~I) ~i = ~ (~0'~i;wl) 

Here A is the nicest category of partial orders we could hope to work in, but A 1 is 
the e~pected one. Both are Cartesian closed with the usual Cartesian product ~nd 
pointwise-ordered function spaces (written D -> E and D ->. E in A, A. respectively). 

1 = =i 
In ~I the least fixed-point operator Fix: (D ->i D) ->i D is ~l-continuous but not, 

in g~neral, m0-continuous. 

In [HP] the available powerdomains for bounded nondeterminism [Plol,Smy] were 
characterised as free semilattices over a category of partial orders. It now seems 
appropriate to try free J-semilattices. 

Definition 5 A semilattice is a partial order <p,c> with binary lubs x U y (c is 
called subset and ~ is called binary union). A a-semilattice is a semilattice with 

countably infinite lubs~x i- 
Definition 6 Let oSLPos (K,...;I .... ;~,...;U,...) be the category whose objects are ====== 
structures <D,~,c~ where <D,C> is a Pos (<,...;I,...) object and <D,c~ is a 
g-semilattice such that binary unio~ is ~-continuous and ... (wrt ~) and countable 
union is u-continuous and ... (wrt ~) and whose morphisms are those ~ 
(<,...;i,...) morphisms preserving countable union. In particular set 

~0 = ~ ( ~ 0 ' ~ 1 ; w 0 ' ~ 1 ; ~ 0 ' ~ I  ;WO'W1 ) 

= ~ ( ~ 0 ' ~ 1 ; ~ 0 ' ~ 1 ; ~ 0 ' ~ 1 ; ~ 1  ) ~1 = ~ ( ~ 0 ' ~ 1 ; ~ 1 ; ~ 0 ' ~ 1 ; ~ 1  ) 
Here B~ is the nicest category of o-semilattices we could hope for where even 
countaDle union is ~ -continuous; B and B are the categories corresponding to A 

= =I . = 
and A~ where countable union is ~1-continuous, but need not be ~0-contlnuous (but 
we do-assume binary union ~0-continuous). Although the morphism~ in B I are not 
~0-continuous in general, w@ do have -- 

Lemma 4 Quasi-continuity Let f: D ->. B be a B -morphism. For any increasing 
H have f(U~n -- n ~0-chain ~-~i~]~.] wee ) ~f(a ) =i 
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All these categories are related by various forgetful functors : 

/ i  0W0 

A./ u 
= = 

1 
~ u1 B=I 

~nd we expect that the desired powerdomain will be a left-adjoint to U 1 or U or 

maybe even U 0 or V. U. 

Theorem 2 The functors U,U0,V,W have left adjoints, called F,F0,G,H. However U 1 
has no left adjoint. 

Proof The positive assertion uses Freyd's Adjoint Functor Theorem [Mac]. The 
negative one depends on the quasi-continuity lemma. [] 

So possible powerdomains are ~ def U - F,F 0 and ~i def V. U, F. G = V. ~o G. 

Not surprisingly the second is unacceptable because of: 

Fact 3 Let D be an A object and let x and y be two elements of F_U 0 (D). 
Then if x~_ y we ha~ x _c y. Further if D has a least element t~en the converse 

also holds. 

Now we examine the properties of our two candidate powerdomains. In A we have a 
morphism {-}: D -> ~D (called singleton) which is universal in the sense that to 
any f: D -> UA there is a unique B=-morphism ft: FD -> A (the extension = left- 

adjunct of f) such that the following diagram commutes. 

D 

In A~ analogous remarks hold with ~,{-}_,f#l,V ~ U and F o G replacing ~,{-},ft,U and 

F. As an example c~check that ~(X• ~(X• = -- ~(X• We now try to one 
generalise Fact i.3. 

Definition 7 A ~-category is a category whose hom, sets ~e equipped with partial 
orders so that composition is monotonic. A funetor of ~-categories is locally- 
monotonic (= a Pos-functor) iff it is monotonic on morphisms; it is locally 
K-continuous if it preserves lubs of K-chai~ of morphisms. 

Definition 8 Let G: L -> K be a Pos-functor. Then f: D -> GA is a G-orderepi iff 
= === 

whenever g,g': A -> A q are Such that (Gg) , f ~ (Gg') �9 f then g ~g' 

Lemma 5 Let G: L -> K be a ~-~nctor with left-adjoint F such that every 

~' G~ f' f: D -> GA factorises as D => GA' GA where is a G-orderepi. Then the unit 
ED: D -> GFD is a G-orderepi and extension is an isomo~hism of p~tial orders. 

~eore~ In both A and ~i extension is monotonic and preserves lubs of increasing 
~n-~d ~-chains. Further F and F o G ~e locally ~0--and m~-continuous ~2~ functors. 
F w �9 .--- lnally ~and ~ are locally ml-continuous ~ funetors which are not In general 

~0-continuous. 

~ere is no contradiction here with Fact 1.3 ~ in the fixst case extension has 
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range in B and in the second in A. Now we turn to issues involved with the bottom 

element, ~. 

Definition 9 A I (respectively A~,B I) is the full subcategory of A (respectively 
~ ~ h o ~ e  Objects D containing a least el~me~t, /~; further A_ (respectively 

A~.?B I) is the subcategory of A m (respectively A~,B • wi~h the same g~jects but only 
~nSs~--morphisms preserving the=least element, t~e strict ones. 

These new categories can be pictured together in terms of a commuting diagram of 

natural forgetful functors (of which we name six). 

V U 

! i v i _i . • 

iT --/i 
The next theorem says that our powerdomain construction also works when these 

variations are considered. 

Theorem 4 If D is an A-object with a least element then FD has a least element too 
and the singleton function is strict; further extensioniPreserves strictness. 
Consequently F cuts down to left adjoints F-- and F i of U and U I respectively. The 

corresponding assertions for A 1 also hold. 

Solving Domain Equations 

To solve recursive domain equations D ~ F (D) one normally proceeds by a~alogy with 
fixed-point equations x = f(x)where the solution is given as Fix~ = n>u~fn(1)and 

n> 
this is justified by the t~-continuitv of f. What one does is construt~t the 

�9 . . n n 

solutlon as FIX~ = llm A w~ere A = <F (i) , F (In,,,)> and justify that by the 
o0-continuity o~ F. --Unfortunately neither ~ n~r ~J~have the needed continuity 
property and, so we turn to a categorical generalisation of Fact 2, due to Adamek and 
Koubek [A~]. Below < is always a limit ordinal. 

Definition i0 Let K be a category. It is a <-category if it has an initial element, = 
/~., and it has direct limits of all l-chains for %<<; for any D we write I for the 
~umlque morphism from ~ to D. Let F: _K -> _L be a functor between <-categorles.U It 
is <-continuous if whe~ever A is an <-chainand p: A -> D is a limiting cone then 
Fp : FA -> FD is a limiting cone. Clearly the composition of <-continuous functors 
is <-continuous as are the constant and identity functors. 

Definition ii Let F: K -> K be a functor. An F-algebra is a pair <D,@> with = = 
~: FD -> D. A morphism of F-algebras, f: <D,~> -> <E,8> is any morphism 
f: D -> E such that the following diagram commutes 

FD + D 

Ff 

FE 

This clearly gives a category of F-algebras. 

Theorem 5 Let K be a <~category and suppose F: K -> K is <-continuous. Then the - = = 
initial F-algebra exists and can be constructed by the following Initial Algebra 

Construction 

I. D O = i K and D%+ 1 = F(DI) 

2. f01 = ~D and fX+I,X+2 = F(fx,k+l) 

3. For limi~ l", <fA,l,,~<%,,~<D%,f%,%,>%<%,<%,,-> D%,, is a colimiting cone 
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4. For limit I", fl" ' is the mediating morphism between the universal cone 
,I'+1 D and 

<fl+l,l ->: <Dl+l'fl+l,l'+i>l<l'<l" -> I" 

<Ffl,l,,>l<l,, : <Dl+1'fl§ ,, -> F(DI, ,) 

Then f : D -> F(D ) is an isomorphism whose inverse gives the initial F-algebra, 
~,<+1 < < 

<D ,f:l .>. 
< < ~ <+1 

TO a p p l y  t h e s e  i d e a s  we g e n e r a l i s e  [SP] and w o r k  i n  a P ~ - c a t e g o r y  s e t t i n g .  

D e f i n i t i o n  12 L e t  K be a ~ - c a t e g o r y .  A p a i r  D ~> E ~> D i s  a p r o j e c t i o n  p a i r  
(and f i s  an embedd ing  and g i s  a p r o j e c t i o n )  i f  g o f = i d  D and f ,  g ~ i d  E- 

The elementary_ facts about enlheddings and projections are shown, in [SP]. In 
particular~qery projection g is determined by its corresponding emheddir~ f and we 
write g = rE" Also the emheddings form a category under K-momposition which we 
d?~ote my K . Ei~lly moth emheddings and projections a~e strict and so 
A-- = A. and and A~ = All. Note that both have an initial object namely the one- 
~int p~set To-see they are both ~ -categories one checks both A and A have 

" =i =• =11 
hoth ~0-and o1-1imits and uses Theorem 6 below. 

Definition 13 A ~s(<) category is a ~-category in which the morphism partial 
orders ha~e lubs of all increasing <-chains and where composition is <-continuous. 

Then K has <-colimits Theorem 6 Suppose K is a P2s(<~ ~ategory with K-limits. E 
and indeed for ~ny ~-chain-~-in K- we have that-~: A -> D is c~limiting iff 

idD =I~< ~I " ~i" 
op 

Turning to functors we note that if T: K • L -> M is a Pos-functor then as in [SP] 
E E E = E = = === 

we can define a cQvarian~ T : K x L -> M with the same action as T on objects 
~e ~ = = = 

and with T (f,g) =~ T(f ,g) on morphisms. 

Corollary i Let K,L,M be Pos(<) categories with all limit~ of ~-chains; let 
T: K x ~ -> M be-a~l~call~=~-continuous functor. Then T is <-continuous. 

Now we see that both ~ and ~[ and the product and function-space functors all give 
~l-continuous functors. In addition both A and A 1 have categorical sums which = =~ 
are just the usual smash sums (e.g. see [SP}) these are also locally ~l-continuous 
and so give ol-continuous functors. 

We can therefore follow [HP], say, and obtain a domain of resumptions 

R ~ S• -> ~(S l + (S• x R)) 

in A (to be ranged over by r) and another one (also ranged over hy r) 

in ~I" Below the isomorphism Will be treated as an actual equality for simplicity's 
sake; similarly we will omit injection functions when dealing with sums. Again we 
should have used more accurate domain equations to model strictness phenomena, but 
the extra complications did not seem worthwhile here, and do not affect the theorems 
in the next section. 

4. Denotational Semantics 

By using resumptions we attempt to give a denotational semantics to our programming 
language; the idea will be to model the generative operational semantics. At first 
we try R; this will fail but R 1 will succeed. 

~attempttouse A To begin we develop a little "categorical programming". Let 
e I be an expres-~lon of type ~(S• + (S. • R)) and let e. and e~ be expressions of 
t ~ J ype ~(D) monotonic in U and where e. is ~^-and m.-con~inuous in r. Then e = cases e l 
f. , , , J U xrst 0 . e_ second q , r . e_ is of type ~D) an~ abbreviates 

z ...... , - , T " 
E S I. e2,1o [ S], r ~ ~. e 3] (el). If e.,e. and e~ are ~.-contlnuous ina 

V - ~ IZ J I ariable then so is e (and because of s extenslon we do not expect ~0-continuity 
in general). Again, if e is an expression of type ~(D) monotonic in n (ranging over 
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NI) then the countable choice expression Ve abbreviates (In E Nl.e)tN; this is 
~l-continuous in any variable that e is. 

Now we try to define various useful combinators. The definitions are recursive and 
justified by an appeal to Fact 2. 

Flattening The combinator (= operation) I" I : R -> (S. -> S.) is defined recursively 
by: Irl~ = cases r(~) first a'. {~'} second ~',r'.Ir'~(~') ~ 

Composition To model the composition of commands we recursively define a composition 
combinator ; : R -> (R ->I R) by: 

rl;r2(o) = cases rl(~) first g'. {<o',r2>} second g',r'.{<g',r';r2>} 

Parallelism We need three combinators corresponding to the three syntactic 
operators of the generative operational semantics. They are 
I I~,II : N 1 -> R ->9 R ->9 R and II: R ->~ R ->9 R where we do not yet know which 

.R functlon spaces are'intenaed. We will see there are no possible choices which make 
our attempted definitions work. 

Try to define II L and I~ by mutual recursion: 
m 

rlllLr2(g) = cases rl(~) first ~'.{<~',r2>} 

second g',r', if m=0 then U{<0',r'll~r2>} 
- -  - -  n 

m-i 
else {<o',r'll L r2>} 

(II R is defined symmetrically). 

If these definitions were legitimate we would then go on to define the parallel 
combinator by 

n n 
rll Ir2 (g) =~n rl I I L r2(~)U ~ rll I R r2(g) 

However the definitions cannot be acceptable. For example in the definition of II L 
in order ~hat the conditional expression be ~0-continuous in r' it is necessary 
that r II r be m -continuous in r ; but r occurs in both the "first" and "second" 

IR 1 
branches of ~he definition of II- an~ so such continuity cannot be guaranteed. 
Despite some effort it was not ~ound possible to produce any acceptable definitions 
and for that reason the attempt to use A seems doomed to failure. = 

Using ~1 Here one tries the domain R I. The _cases construction 
__cases e.l w--first 0'. e2 ~sec~ o', r'. e 3,is introduced, as above but now only 

-contlnulty of e in r is required; it abbrevlates 
[~g' & S,. e~,Ig' ~ S., r' & R~.e~]" I (e~). The cQuntable union construction U e 
is intro~uce~ as above and abbrevlates (~n ~ N• e) I(N). 

The flattening combinator I" I: RI ->i (S! ->I SI) and the composition combinator ; : 
R 1 - ~ R  are defined analogously-to Defore and now-the analogous definitions 
for t{e paralle{ combinators I I~, I I~: N. ->i RI ->i R~ ->~ R and 
If : R 1 ->~ Rq --~I R1 are legiti~ate~ . . . . . .  

We are at last in a position to give the denotational semantics of our programming 
language. The denotational function ~: gCom -> R 1 is defined by structural 
induction on commands: 

~[[ ac]] = io E S I. ~[ ac]](o)}i 

[[ skip]] = id S 

~[[ if b then c I else c2]] = ~o~ S• if ~[[ b]](g) then {<g, ~[[ Cl]]>} 1 

else {<~,~ [[ c2]>} l 

~[[ while b do c]] = ~r ~ RI.Xg ~ S i. if ~[[ b]](o) 

then {<g, ~ [[ c]];m>} i else {o} I 

cll  t TM ca]l = Col el]] I e2n 
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4Et e111 I & ~ cl Im c2~ }[[ cl]] 

gt~ ~ le211 = t l 4~Ir c21J 
Here if e is an expression of type D that is ~ -continuous in a variable x of type 

1 
D then ~x ~ D.e is the least x=e; it is ~l-continuous in any variable that e is. 

Relation with the operational semantics 

~e resumption semantics was introduced as an abstract version of the operational 
semantics. To formalise this we define Op; gCom -> R I by 

op[[ c]](a = U{{<~',op[[ o,]] >}i[~<c,o> ~> <e' o'>} uU{{~, }l[~a <c,o> ~> 
g g 

ThiS definition is easily justified. Now we see that the operational semantics 
determines the denotational semantics. 

Theorem 7 ~ = Op. 

The proof of this theorem makes heavy use of a form of Scott Induction which we call 
~l-induction (and contrast that with the usual ~o-induction). A property P c D is 
~-(~i-) inductive if it has lubs of increasing ~ ~ i v e l y  ~i-) chains~ The 

~1-induction rule is: 

P(~ %~x P(X) D P(e) 
P(~x.e) 

provided P is both ~-and ol-inductive and lx.e is ~l-continuous. What we hope is 
that ~l-induction will prove as useful a tool for handling countable non-determinism 

~0-1nduction has proved for sequential programming. as 

Finally we see that the operational semantics of section 2 can be obtained from the 
denotational semantics. 

Theorem 8 i. For any e in Corn and states o, o', oR[[ e]] o' if, ~' ~ ]~[[ e]]l( 

2. For any c in Corn and state 0, o ~ T[[ e]] if, i ~ [{[[ e]]I( 
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